The sequence of open and closed prefixes of a Sturmian word

Alessandro De Luca¹ Gabriele Fici² Luca Q. Zamboni³

¹Università di Napoli Federico II ²Università di Palermo ³Université Claude Bernard Lyon 1

Secondo Incontro di Combinatoria delle Parole University of Palermo, January 20th, 2017

Outline

- Open and closed words
 - Basic definitions
 - Open and closed prefixes: oc-sequences
- Main results
 - General properties
 - The case of Sturmian words
 - Algorithms
- Conclusions

Palermo, Jan 20, 2017

- Open and closed words
 - Basic definitions
 - Open and closed prefixes: oc-sequences
- Main results
 - General properties
 - The case of Sturmian words
 - Algorithms
- Conclusions

Palermo, Jan 20, 2017

A finite word is closed if it has a factor which occurs exactly twice, as a prefix and a suffix.

A finite word is closed if it has a factor which occurs exactly twice, as a prefix and a suffix.

Example

- The words abaab and aaa are closed.

A finite word is closed if it has a factor which occurs exactly twice, as a prefix and a suffix.

Example

- The words abaab and aaa are closed.
- Single letters are closed too (ε being the relevant factor).

A finite word is closed if it has a factor which occurs exactly twice, as a prefix and a suffix.

Example

- The words abaab and aaa are closed.
- Single letters are closed too (ε being the relevant factor).

Also known as periodic-like words, or complete (first) returns to a factor.

4 / 18

A word $w \in \Sigma^*$ is open if it is not closed.

Example

The words ab and ababba are both open

Open/closed words admit several characterizations, e.g.:

Proposition

A word is open iff its longest repeated prefix is right special.

Palermo, Jan 20, 2017

A word $w \in \Sigma^*$ is open if it is not closed.

Example

The words ab and ababba are both open.

Open/closed words admit several characterizations, e.g.:

Proposition

A word is open iff its longest repeated prefix is right special.

A word $w \in \Sigma^*$ is open if it is not closed.

Example

The words ab and ababba are both open.

Open/closed words admit several characterizations, e.g.:

Proposition

A word is open iff its longest repeated prefix is right special.

A word $w \in \Sigma^*$ is open if it is not closed.

Example

The words *ab* and *ababba* are both open.

Open/closed words admit several characterizations, e.g.:

Proposition

A word is open iff its longest repeated prefix is right special.

Let w be a finite or infinite word. The *n*-th term of the sequence oc(w) is

- 1 if the prefix w[1...n] is closed,

Let w be a finite or infinite word. The *n*-th term of the sequence oc(w) is

- 1 if the prefix w[1...n] is closed,
- 0 otherwise.

Let w be a finite or infinite word.

The *n*-th term of the sequence oc(w) is

- 1 if the prefix w[1...n] is closed,
- 0 otherwise.

Example

Let w = abbababbb. Then oc(w) = 100110010.

Let w be a finite or infinite word.

The *n*-th term of the sequence oc(w) is

- 1 if the prefix w[1...n] is closed,
- 0 otherwise.

Example

```
Let w = abbababbb. Then
oc(w) = 100110010.
```

$$oc(f) = 10101100 \cdots 1^{F_n} 0^{F_n} 1^{F_{n+1}} 0^{F_{n+1}} \cdots$$

Let w be a finite or infinite word.

The *n*-th term of the sequence oc(w) is

- 1 if the prefix w[1...n] is closed,
- 0 otherwise.

Example

Let w = abbababbb. Then oc(w) = 100110010.

$$oc(f) = 10101100 \cdots 1^{F_n} 0^{F_n} 1^{F_{n+1}} 0^{F_{n+1}} \cdots$$

Let w be a finite or infinite word.

The *n*-th term of the sequence oc(w) is

- 1 if the prefix w[1...n] is closed,
- 0 otherwise.

Example

Let w = abbababbb. Then

$$oc(w) = 100110010.$$

$$oc(f) = 10101100 \cdots 1^{F_n} 0^{F_n} 1^{F_{n+1}} 0^{F_{n+1}} \cdots$$

6 / 18

Let w be a finite or infinite word.

The *n*-th term of the sequence oc(w) is

- 1 if the prefix w[1...n] is closed,
- 0 otherwise.

Example

Let w = abbababbb. Then oc(w) = 100110010.

Example (Bucci, De Luca, Fici 2013)

Let $f = abaababaabaabaabaabab\cdots$ be the Fibonacci word. Then

$$oc(f) = 10101100 \cdots 1^{F_n} 0^{F_n} 1^{F_{n+1}} 0^{F_{n+1}} \cdots$$

- By definition, the position of the n-th $\frac{1}{n}$ in oc(w) corresponds to the end of the second occurrence of w[1...n-1], for all n > 0.
- Hence, if w has a border of length ℓ , then $|\operatorname{oc}(w)|_1 > \ell$.
- In particular, the period of a closed w equals $1 + |oc(w)|_{0}$

Example

- By definition, the position of the n-th 1 in oc(w) corresponds to the end of the second occurrence of $w[1 \dots n-1]$, for all n > 0.
- Hence, if w has a border of length ℓ , then $|oc(w)|_1 > \ell$.

- By definition, the position of the n-th 1 in oc(w) corresponds to the end of the second occurrence of $w[1 \dots n-1]$, for all n > 0.
- Hence, if w has a border of length ℓ , then $|oc(w)|_1 > \ell$.
- In particular, the period of a closed w equals $1 + |oc(w)|_0$.

7 / 18

- By definition, the position of the n-th 1 in oc(w) corresponds to the end of the second occurrence of w[1...n-1], for all n > 0.
- Hence, if w has a border of length ℓ , then $|\operatorname{oc}(w)|_1 > \ell$.
- In particular, the period of a closed w equals $1 + |oc(w)|_0$.

Example

- In w = abbababbb, the 3rd 1 in oc(w) = 100110010 is at position 5.
- Correspondingly, the 2nd occurrence of the prefix *ab* in *w* ends in the same position.

- By definition, the position of the n-th 1 in oc(w) corresponds to the end of the second occurrence of w[1...n-1], for all n > 0.
- Hence, if w has a border of length ℓ , then $|\operatorname{oc}(w)|_1 > \ell$.
- In particular, the period of a closed w equals $1 + |oc(w)|_0$.

Example

- In w = abbababbb, the 3rd 1 in oc(w) = 100110010 is at position 5.
- Correspondingly, the 2nd occurrence of the prefix ab in w ends in the same position.

7 / 18

- Open and closed words
 - Basic definitions
 - Open and closed prefixes: oc-sequences
- Main results
 - General properties
 - The case of Sturmian words
 - Algorithms
- Conclusions

Recurrence and Periodicity

Let $w \in \Sigma^{\omega}$ be an infinite word.

Proposition

$$oc(w)$$
 is recurrent $\iff w = x^{\omega}$ for some letter $x \in \Sigma$ $(\iff oc(w) = 1^{\omega})$.

Recurrence and Periodicity

Let $w \in \Sigma^{\omega}$ be an infinite word.

Proposition

$$oc(w)$$
 is recurrent $\iff w = x^{\omega}$ for some letter $x \in \Sigma$ $(\iff oc(w) = 1^{\omega})$.

Proposition

oc(w) is ultimately periodic \iff w is either periodic or non-recurrent.

- If w is periodic, oc(w) ends in 1^{ω} .
- If w is not recurrent, oc(w) ends in 0^{ω} .

Recurrence and Periodicity

Let $w \in \Sigma^{\omega}$ be an infinite word.

Proposition

$$oc(w)$$
 is recurrent $\iff w = x^{\omega}$ for some letter $x \in \Sigma$ $(\iff oc(w) = 1^{\omega})$.

Proposition

oc(w) is ultimately periodic $\iff w$ is either periodic or non-recurrent.

- If w is periodic, oc(w) ends in 1^{ω} .
- If w is not recurrent, oc(w) ends in 0^{ω} .

9 / 18

Run Structure in oc-sequences

Lemma

Let t, s > 0 be such that 1^t0^s1 occurs in oc(w). Then $t \le s$.

Run Structure in oc-sequences

Lemma

Let t, s > 0 be such that $1^t 0^s 1$ occurs in oc(w). Then $t \le s$.

- For example, if a word has 6 consecutive closed prefixes and the next one is open, then so are the next 5.
- Not so trivial...

Run Structure in oc-sequences

Lemma

Let t, s > 0 be such that $1^t 0^s 1$ occurs in oc(w). Then $t \le s$.

- For example, if a word has 6 consecutive closed prefixes and the next one is open, then so are the next 5.
- Not so trivial...

Determined Up to Isomorphisms

In general, unrelated words may share the same oc-sequence:

$$oc(aabba) = 11000 = oc(aabab).$$

Determined Up to Isomorphisms

In general, unrelated words may share the same oc-sequence:

$$oc(aabba) = 11000 = oc(aabab).$$

However,

Theorem

Sturmian words are determined (up to word isomorphism) by their oc-sequences.

• Let C be the family of factorial languages whose elements are determined by their oc-sequences up to isomorphism:

$$C = \{X \subseteq \Sigma^* \mid \operatorname{Fact}(X) \subseteq X \text{ and } \forall u, v \in X, \operatorname{oc}(u) = \operatorname{oc}(v) \Rightarrow u \sim v\}.$$

- C is nonempty (e.g. $\{\varepsilon, a\} \in C$), and every ascending chain

• Let C be the family of factorial languages whose elements are determined by their oc-sequences up to isomorphism:

$$C = \{X \subseteq \Sigma^* \mid \operatorname{Fact}(X) \subseteq X \text{ and } \forall u, v \in X, \operatorname{oc}(u) = \operatorname{oc}(v) \Rightarrow u \sim v\}.$$

- C is nonempty (e.g. $\{\varepsilon, a\} \in C$), and every ascending chain $X_1 \subseteq X_2 \subseteq \cdots \subseteq X_n \subseteq \cdots$ of languages in C has the upper bound $\bigcup_{n>0} X_n \in C$.
- By Zorn's lemma, C has a maximal element.

Theorem

The set St of finite Sturmian words is a maximal element of C.

Palermo, Jan 20, 2017

• Let C be the family of factorial languages whose elements are determined by their oc-sequences up to isomorphism:

$$C = \{X \subseteq \Sigma^* \mid \operatorname{Fact}(X) \subseteq X \text{ and } \forall u, v \in X, \operatorname{oc}(u) = \operatorname{oc}(v) \Rightarrow u \sim v\}.$$

- C is nonempty (e.g. $\{\varepsilon, a\} \in C$), and every ascending chain $X_1 \subseteq X_2 \subseteq \cdots \subseteq X_n \subseteq \cdots$ of languages in \mathcal{C} has the upper bound $\bigcup_{n>0} X_n \in \mathcal{C}.$
- By Zorn's lemma, C has a maximal element.

• Let *C* be the family of factorial languages whose elements are determined by their oc-sequences up to isomorphism:

$$C = \{X \subseteq \Sigma^* \mid \operatorname{Fact}(X) \subseteq X \text{ and } \forall u, v \in X, \operatorname{oc}(u) = \operatorname{oc}(v) \Rightarrow u \sim v\}.$$

- C is nonempty (e.g. $\{\varepsilon, a\} \in C$), and every ascending chain $X_1 \subseteq X_2 \subseteq \cdots \subseteq X_n \subseteq \cdots$ of languages in C has the upper bound $\bigcup_{n>0} X_n \in C$.
- By Zorn's lemma, C has a maximal element.

Theorem

The set St of finite Sturmian words is a maximal element of C.

And This Makes St Special

• Let C be the family of factorial languages whose elements are determined by their oc-sequences up to isomorphism:

$$C = \{X \subseteq \Sigma^* \mid \operatorname{Fact}(X) \subseteq X \text{ and } \forall u, v \in X, \operatorname{oc}(u) = \operatorname{oc}(v) \Rightarrow u \sim v\}.$$

- C is nonempty (e.g. $\{\varepsilon, a\} \in C$), and every ascending chain $X_1 \subseteq X_2 \subseteq \cdots \subseteq X_n \subseteq \cdots$ of languages in C has the upper bound $\bigcup_{n>0} X_n \in C$.
- By Zorn's lemma, C has a maximal element.

Theorem

The set St of finite Sturmian words is a maximal element of C.

Recall that the characteristic Sturmian word of slope $\alpha \in (0, 1)$ can be defined as the limit of a standard sequence $(s_n)_{n \ge -1}$, where

- $s_{-1} = b$, $s_0 = a$
- $s_{n+1} = s_n^{d_n} s_{n-1}$ for $n \ge 0$,

and $[0; d_0 + 1, d_1, \dots, d_n, \dots]$ is the continued fraction expansion of α

Example

The Fibonacci word has slope $1/\varphi^2 = [0; 2, 1, 1, \ldots]$, i.e., $d_n = 1$ for $n \ge 0$, and the corresponding standard sequence is made of finite Fibonacci words.

Recall that the characteristic Sturmian word of slope $\alpha \in (0,1)$ can be defined as the limit of a standard sequence $(s_n)_{n\geq -1}$, where

- \bullet $s_{-1} = b$, $s_0 = a$,
- $s_{n+1} = s_n^{d_n} s_{n-1}$ for $n \ge 0$,

Recall that the characteristic Sturmian word of slope $\alpha \in (0,1)$ can be defined as the limit of a standard sequence $(s_n)_{n\geq -1}$, where

- \bullet $s_{-1} = b$, $s_0 = a$,
- $s_{n+1} = s_n^{d_n} s_{n-1}$ for $n \ge 0$,

and $[0; d_0 + 1, d_1, \dots, d_n, \dots]$ is the continued fraction expansion of α .

Recall that the characteristic Sturmian word of slope $\alpha \in (0,1)$ can be defined as the limit of a standard sequence $(s_n)_{n>-1}$, where

- \bullet $s_{-1} = b$, $s_0 = a$,
- $s_{n+1} = s_n^{d_n} s_{n-1}$ for $n \ge 0$,

and $[0; d_0 + 1, d_1, \dots, d_n, \dots]$ is the continued fraction expansion of α .

Example

The Fibonacci word has slope $1/\varphi^2 = [0; 2, 1, 1, ...]$, i.e., $d_n = 1$ for $n \ge 0$, and the corresponding standard sequence is made of finite Fibonacci words.

Characterized by Their oc-sequences

Theorem

Let
$$oc(w) = 1^{k_0} 0^{k'_0} 1^{k_1} 0^{k'_1} \cdots 1^{k_n} 0^{k'_n} 1$$
.
Then w is prefix of a characteristic Sturmian word $\Leftrightarrow k_i = k'_i$ for $0 \le i \le n$.

- Moreover, in such a case k_i is the continuant $K[1, d_0, \ldots, d_{i-1}, d_i 1]$, for all i.
- Proof uses characterizations of "maximal" open & closed prefixes, in terms of the standard sequence.

Characterized by Their oc-sequences

Theorem

Let $oc(w) = 1^{k_0} 0^{k'_0} 1^{k_1} 0^{k'_1} \cdots 1^{k_n} 0^{k'_n} 1$. Then w is prefix of a characteristic Sturmian word $\Leftrightarrow k_i = k'_i$ for $0 \le i \le n$.

- Moreover, in such a case k_i is the continuant $K[1, d_0, \dots, d_{i-1}, d_i 1]$, for all i.
- Proof uses characterizations of "maximal" open & closed prefixes, in terms of the standard sequence.

Byproduct: a New Factorization

Theorem

Let w be a characteristic Sturmian word of slope $\alpha < 1/2$ (i.e., starting with a). Then

$$ba^{-1}w = \prod_{n>0} (\widetilde{s_n^{-1}s_{n+1}})^2.$$

That is, the word $ba^{-1}w$, obtained from w by changing its first letter, can be written by concatenating squares of reversed standard words.

Byproduct: a New Factorization

Theorem

Let w be a characteristic Sturmian word of slope $\alpha < 1/2$ (i.e., starting with a). Then

$$ba^{-1}w = \prod_{n>0} (\widetilde{s_n^{-1}s_{n+1}})^2.$$

That is, the word $ba^{-1}w$, obtained from w by changing its first letter, can be written by concatenating squares of reversed standard words.

- Let B(w) be the border array of w, whose *i*-th entry is the length of the longest border of w[1...i].
- Define B'(w) by $B'(w)[i] = \max_{i \le i} B(w)[i]$.

For
$$i > 1$$
, oc $(w)[i] = B'(w)[i] - B'(w)[i-1]$.

- Let B(w) be the border array of w, whose *i*-th entry is the length of the longest border of w[1...i].
- Define B'(w) by $B'(w)[i] = \max_{j \le i} B(w)[j]$.

For
$$i > 1$$
, oc $(w)[i] = B'(w)[i] - B'(w)[i-1]$.

- Let B(w) be the border array of w, whose *i*-th entry is the length of the longest border of w[1...i].
- Define B'(w) by $B'(w)[i] = \max_{j \le i} B(w)[j]$.

Proposition

For
$$i > 1$$
, oc $(w)[i] = B'(w)[i] - B'(w)[i-1]$.

- Let B(w) be the border array of w, whose *i*-th entry is the length of the longest border of w[1...i].
- Define B'(w) by $B'(w)[i] = \max_{i \le i} B(w)[j]$.

Proposition

For
$$i > 1$$
, oc $(w)[i] = B'(w)[i] - B'(w)[i-1]$.

- This gives a linear-time algorithm for calculating oc-sequences.
- We also provide a linear-time algorithm for constructing the finite

Palermo, Jan 20, 2017

- Let B(w) be the border array of w, whose *i*-th entry is the length of the longest border of w[1...i].
- Define B'(w) by $B'(w)[i] = \max_{i \le i} B(w)[j]$.

Proposition

For
$$i > 1$$
, oc $(w)[i] = B'(w)[i] - B'(w)[i-1]$.

- This gives a linear-time algorithm for calculating oc-sequences.
- We also provide a linear-time algorithm for constructing the finite Sturmian word starting with a and having a given oc-sequence.

- Open and closed words
 - Basic definitions
 - Open and closed prefixes: oc-sequences
- Main results
 - General properties
 - The case of Sturmian words
 - Algorithms
- Conclusions

- We have considered open and closed prefixes of words, and studied the corresponding oc-sequence in general;
- Sturmian words are determined by their oc-sequences up to isomorphism, and make up a maximal factorial language with this property;
- Characteristic Sturmian words are characterized by their simple oc-sequence;
- Linear-time algorithms for calculating oc-sequences, or finite Sturmian word from given oc-sequence.
- Open questions:

- We have considered open and closed prefixes of words, and studied the corresponding oc-sequence in general;
- Sturmian words are determined by their oc-sequences up to isomorphism, and make up a maximal factorial language with this property;
- Characteristic Sturmian words are characterized by their simple

- We have considered open and closed prefixes of words, and studied the corresponding oc-sequence in general;
- Sturmian words are determined by their oc-sequences up to isomorphism, and make up a maximal factorial language with this property;
- Characteristic Sturmian words are characterized by their simple oc-sequence;
- Linear-time algorithms for calculating oc-sequences, or

- We have considered open and closed prefixes of words, and studied the corresponding oc-sequence in general;
- Sturmian words are determined by their oc-sequences up to isomorphism, and make up a maximal factorial language with this property;
- Characteristic Sturmian words are characterized by their simple oc-sequence;
- Linear-time algorithms for calculating oc-sequences, or finite Sturmian word from given oc-sequence.
- Open questions:

- We have considered open and closed prefixes of words, and studied the corresponding oc-sequence in general;
- Sturmian words are determined by their oc-sequences up to isomorphism, and make up a maximal factorial language with this property;
- Characteristic Sturmian words are characterized by their simple oc-sequence;
- Linear-time algorithms for calculating oc-sequences, or finite Sturmian word from given oc-sequence.
- Open questions:
 - Other classes of words?
 - What binary sequences are valid oc-sequences?

- We have considered open and closed prefixes of words, and studied the corresponding oc-sequence in general;
- Sturmian words are determined by their oc-sequences up to isomorphism, and make up a maximal factorial language with this property;
- Characteristic Sturmian words are characterized by their simple oc-sequence;
- Linear-time algorithms for calculating oc-sequences, or finite Sturmian word from given oc-sequence.
- Open questions:
 - Other classes of words?
 - What binary sequences are valid oc-sequences?

- We have considered open and closed prefixes of words, and studied the corresponding oc-sequence in general;
- Sturmian words are determined by their oc-sequences up to isomorphism, and make up a maximal factorial language with this property;
- Characteristic Sturmian words are characterized by their simple oc-sequence;
- Linear-time algorithms for calculating oc-sequences, or finite Sturmian word from given oc-sequence.
- Open questions:
 - Other classes of words?
 - What binary sequences are valid oc-sequences?

- We have considered open and closed prefixes of words, and studied the corresponding oc-sequence in general;
- Sturmian words are determined by their oc-sequences up to isomorphism, and make up a maximal factorial language with this property;
- Characteristic Sturmian words are characterized by their simple oc-sequence;
- Linear-time algorithms for calculating oc-sequences, or finite Sturmian word from given oc-sequence.
- Open questions:
 - Other classes of words?
 - What binary sequences are valid oc-sequences?

