
1 INTRODUCTION & BACKGROUND

Critical Infrastructure Protection (CIP) against
terrorism and any form or criminality has become a
major issue in modern society. CIP involves a set of
multidisciplinary activities, including Risk
Assessment and Management, together with the
adoption of proper protection mechanisms, usually
supervised by specifically designed Security
Management Systems (SMS)1 (see e.g. (LENEL
2008)).

Among the best ways to prevent attacks and
disruptions is to stop any perpetrators before they
strike. This paper presents the motivation, the
working principles and the software architecture of
DETECT (DEcision Triggering Event Composer &
Tracker), a new framework aimed at the automatic
detection of threats against critical infrastructures,
possibly before they evolve to disastrous
consequences. In fact, non trivial attack scenarios
are made up by a set of basic steps which have to be
executed in a predictable sequence (with possible
variants). Such scenarios must be precisely

1 In some cases, they are integrated in the traditional SCADA
(Supervisory Control & Data Acquisition) systems.

identified during Vulnerability Assessment which is
a fundamental aspect of Risk Analysis for critical
infrastructures (Lewis 2006). DETECT operates by
performing a model-based logical, spatial and
temporal correlation of basic events detected by
intelligent video-surveillance and/or sensor
networks, in order to “sniff” sequence of events
which indicate (as early as possible) the likelihood
of threats. In order to achieve this aim, DETECT is
based on a detection engine which is able to reason
about heterogeneous data, implementing a
centralized application of “data fusion” (a well-
known concept in the research field of cognitive /
intelligent autonomous systems (Tzafestas 1999)).
The framework can be interfaced with or integrated
in existing SMS/SCADA systems in order to
automatically trigger adequate countermeasures.

With respect to traditional approaches of
infrastructure surveillance, DETECT allows for:

• A quick, focused and fully automatic response to
emergencies, possibly independent from human
supervision and intervention (though manual
confirmation of detected alarms remains an
option). In fact, human management of critical
situations, possibly involving many simultaneous

DETECT: a novel framework for the detection of attacks to critical
infrastructures

F. Flammini1 2, A. Gaglione2, N. Mazzocca2 & C. Pragliola1

1 ANSALDO STS - Ansaldo Segnalamento Ferroviario S.p.A., Naples, Italy
2 Università di Napoli “Federico II” - Dipartimento di Informatica e Sistemistica, Naples, Italy

ABSTRACT: Critical Infrastructure Protection (CIP) against potential threats has become a major issue in
modern society. CIP involves a set of multidisciplinary activities and requires the adoption of proper
protection mechanisms, usually supervised by centralized monitoring systems. This paper presents the
motivation, the working principles and the software architecture of DETECT (DEcision Triggering Event
Composer & Tracker), a new framework aimed at the automatic and early detection of threats against critical
infrastructures. The framework is based on the fact that non trivial attack scenarios are made up by a set of
basic steps which have to be executed in a predictable sequence (with possible variants). Such scenarios are
identified during Vulnerability Assessment which is a fundamental phase of the Risk Analysis for critical
infrastructures. DETECT operates by performing a model-based logical, spatial and temporal correlation of
basic events detected by the sensorial subsystem (possibly including intelligent video-surveillance, wireless
sensor networks, etc.). In order to achieve this aim, DETECT is based on a detection engine which is able to
reason about heterogeneous data, implementing a centralized application of “data fusion”. The framework can
be interfaced with or integrated in existing monitoring systems as a decision support tool or even to
automatically trigger adequate countermeasures.

events, is a very delicate task, which can be error
prone as well as subject to forced inhibition.

• An early warning of complex attack scenarios
since their first evolution steps using the
knowledge base provided by experts during the
qualitative risk analysis process. This allows for
preventive reactions which are very unlikely to
be performed by human operators given the
limitation both in their knowledge base and
vigilance level. Therefore, a greater situational
awareness can be achieved.

• An increase in the Probability Of Detection
(POD) while minimizing the False Alarm Rate
(FAR), due to the possibility of logic as well as
temporal correlation of events. While some
SMS/SCADA software offer basic forms of
logic correlation of alarms, the temporal
correlation is not implemented in any nowadays
systems, to the best of our knowledge (though
some vendors provide basic options of on-site
configurable “sequence” correlation embedded
in their multi-technology sensors).

The output of DETECT consists of:

• The identifier(s) of the detected/suspected
scenario(s).

• An alarm level, associated to scenario evolution
(only used in deterministic detection as a linear
progress indicator; otherwise, it can be set to
100%).

• A likelihood of attack, expressed in terms of
probability (only used as a threshold in heuristic
detection; otherwise, it can be set to 100%).

DETECT can be used as an on-line decision
support system, by alerting in advance SMS
operators about the likelihood and nature of the
threat, as well as an autonomous reasoning engine,
by automatically activating responsive actions,
including audio and visual alarms, emergency calls
to first responders, air conditioning flow inversion,
activation of sprinkles, etc.

The main application domain of DETECT is
homeland security, but its architecture is suited to
other application fields like environmental
monitoring and control, as well. The framework is
being experimented in railway transportation
systems, which have been demonstrated by the
recent terrorist strikes to be among the most
attractive and vulnerable targets. Example attack
scenarios include intrusion and drop of explosive in
subway tunnels, spread of chemical or radiological
material in underground stations, combined attacks
with simultaneous multiple train halting and railway
bridge bombing, etc. DETECT has proven to be

particularly suited for the detection of such
articulated scenarios using a modern SMS
infrastructure based on an extended network of
cameras and sensing devices. With regards to the
underlying security infrastructure, a set of interesting
technological and research issues can also be
addressed, ranging from object tracking algorithms
to wireless sensor network integration; however,
these aspects (mainly application specific) are not in
the scope of this work.

DETECT is a collaborative project carried out by
the Business Innovation Unit of Ansaldo STS Italy
and the Department of Computer and System
Science of the University of Naples “Federico II”.

The paper is organized as follows: Section 2
presents a brief summary of related works; Section 3
introduces the reference software architecture of the
framework; Section 4 presents the language used to
describe the composite events; Section 5 describes
the implementation of the model-based detection
engine; Section 6 contains a simple case-study
application; Section 7 draws conclusions and
provides some hints about future developments.

2 RELATED WORKS

Composite event detection plays an important
role in the active database research community,
which has long been investigating the application of
Event Condition Action (ECA) paradigm in the
context of using triggers, generally associated with
update, insert or delete operations. In HiPAC (Dayal
et al. 1988) active database project an event algebra
was firstly defined.

Our approach for composite event detection
follows the semantics of the Snoop (Chakravarthy &
Mishra 1994) event algebra. Snoop has been
developed at the University of Florida and its
concepts have been implemented in a prototype
called Sentinel (Chakravarthy et al. 1994,
Krishnaprasad 1994). Event trees are used for each
composite event and these are merged to form an
event graph for detecting a set of composite events.
An important aspect of this work lies in the notion of
parameter contexts, which augment the semantics of
composite events for computing their parameters
(parameters indicate “component events”).
CEDMOS (Cassandra et al. 1999) refers to the
Snoop model in order to encompass heterogeneity
problems which often appear under the heading of
sensor fusion. In (Alferes & Tagni 2006) the
implementation of an event detection engine that
detects composite events specified by expressions of
an illustrative sublanguage of the Snoop event
algebra is presented. The engine ha been
implemented as a Web Service, so it can also be

used by other services and frameworks if the markup
for the communication of results is respected.

Different approaches for composite event
detection are taken in Ode (Gehani et al. 1992a, b)
and Samos (Gatziu et al. 1994, Gatziu et al. 2003).
Ode uses an extended Finite Automata for composite
event detection while Samos defines a mechanism
based on Petri Nets for modeling and detection of
composite events for an Object Oriented Data-Base
Management System (OODBMS).

DETECT transfers to the physical security the
concept of Intrusion Detection System (IDS) which
is nowadays widespread in computer (or “logical”)
security, also borrowing the principles of Anomaly
Detection, which is applied when an attack pattern is
known a priori, and Misuse Detection, indicating the
possibility of detecting unknown attacks by
observing a significant statistical deviation from the
normality (Jones & Sielken 2000). The latter aspect
is strictly related to the field of Artificial Intelligence
and related classification methods.

Intelligent video-surveillance exploits Artificial
Vision algorithms in order to automatically track
object movements in the scene, detecting several
type of events, including virtual line crossing,
unattended objects, aggressions, etc. (Remagnino et
al. 2007).

Sensing devices include microwave / infrared /
ultrasound volumetric detectors/barriers, magnetic
detectors, vibration detectors, explosive detectors,
and advanced Nuclear Bacteriologic Chemical
Radiological (NBCR) sensors (Garcia 2001). They
can be connected using both wired and wireless
networks, including ad-hoc Wireless Sensor
Networks (WSN) (Lewis 2004, Roman et al. 2007).

3 THE SOFTWARE ARCHITECTURE

The framework is made up by the following main
modules (see Figure 1):

• Event History database, containing the list of
basic events detected by sensors or cameras,
tagged with a set of relevant attributes including

detection time, event type, sensor id, sensor type,
sensor group, object id, etc. (some of which can
be optional, e.g. “object id” is only needed when
video-surveillance supports inter-camera object
tracking).

• Attack Scenario Repository, providing a
database of known attack scenarios as predicted in
Risk Analysis sessions and expressed by means of
an Event Description Language (EDL) including
logical as well as temporal operators (derived
from (Chakravarthy et al. 1994)).

• Detection Engine, supporting both deterministic
(e.g. Event Trees, Event Graphs) and heuristic
(e.g. Artificial Neural Networks, Bayesian
Networks) models, sharing the primary
requirement of real-time solvability (which
excludes e.g. Petri Nets from the list of candidate
formalisms).

• Model Generator, which has the aim of building
the detection model(s) (structure and parameters)
starting from the Attack Scenario Repository by
parsing all the EDL files.

• Model Manager, constituted by four sub-
modules:

o Model Feeder (one for each model), which
instantiates the inputs of the detection engine
according to the nature of the models by
cyclically performing proper queries and data
filtering on the Event History (e.g. selecting
sensor typologies and zones, excluding
temporally distant events, etc.).

o Model Executor (one for each model), which
triggers the execution of the model, once it has
been instantiated, by activating the related
(external) solver. An execution is usually
needed at each new event detection.

o Model Updater (one for each model), which is
used for on-line modification of the model (e.g.
update of a threshold parameter), without

EDL
REPOSITORY

EVENT
HISTORY

DETECTION
ENGINE

DETECTION
MODEL k

MODEL k
FEEDER

MODEL(S)
GENERATOR

SMS / SCADA
ALARMS ->
<- CONFIG

QUERIES

INPUTS
MODEL k

EXECUTOR
MODEL k
SOLVER

COUNTERMEASURES

MODEL
UPDATER k

OUTPUT
MANAGER

Figure 1. The software architecture of DETECT

regenerating the whole model (whenever
supported by the modeling formalism).

o Output Manager (single), which stores the
output of the model(s) and/or passes it to the
interface modules.

• Model Solver, that is the existing or specifically
developed tool used to execute the model.

Model Generator and Model Manager are
dependent on the formalisms used to express the
models constituting the Detection Engine. In
particular, the Model Generator and Model Feeder
are synergic in implementing the detection of the
event specified in EDL files: in fact, while the
Detection Engine plays undoubtedly a central role in
the framework, many important aspects are
demanded to the way the query on the database is
performed (i.e. selection of proper events). As an
example, in case the Detection Engine is based on
Event Trees (a combinatorial formalism), the Model
Feeder should be able to pick the set of last N
consecutive events fulfilling some temporal
properties (e.g. total time elapsed since the first
event of the sequence < T), as defined in the EDL
file. In case of Event Graphs (a state-based
formalism), instead, the model must be fed by a
single event at a time.

Besides these main modules, there are others
which are also needed to complete the framework
with useful, though not always essential, features
(some of which can also be implemented by external
tools or in the SMS):

• Scenario GUI (Graphical User Interface) used to
draw attack scenarios using an intuitive formalism
and a user-friendly interface (e.g. specifically
tagged UML Sequence Diagrams stored in the
standard XMI2 format (Object Management
Group UML 2008)).

• EDL File Generator, translating GUI output into
EDL files.

• Event Log, in which storing information about
composite events, including detection time,
scenario type, alarm level and likelihood of attack
(whenever applicable).

• Countermeasure Repository, associating to each
detected event or event class a set of operations to
be automatically performed by the SMS.

• Specific drivers and adapters needed to interface
external software modules, possibly including
anti-intrusion and video-surveillance subsystems.

2 XML (eXtended Markup Language) Metadata Interchange.

• Standard communication protocols (OPC3,
ODBC4, Web-Services, etc.) needed to
interoperate with open databases, SMS/SCADA,
or any other client/server security subsystems
which are compliant to such standards.

The last two points are necessary to provide
DETECT with an open, customizable and easily
upgradeable architecture. For instance, by adopting a
standard communication protocol like OPC, an
existing SMS supporting this protocol could
integrate DETECT as it was just a further sensing
device.

At the current development state of DETECT:

• A GUI has been developed to edit scenarios and
generate EDL files starting from the Event Tree
graphical formalism.

• A Detection Engine based on Event Graphs (Buss
1996) is already available and fully working,
using a specifically developed Model Solver.

• A Model Generator has been developed in order
to generate Event Graphs starting from the EDL
files in the Scenario Repository.

• A Web Services based interface has been
developed to interoperate with external SMS.

• The issues related to the use of ANN (Jain et al.
1996) for heuristic detection have been addressed
and the related modules are under development
and experimentation.

4 THE EVENT DESCRIPTION LANGUAGE

The Detection Engine needs to recognize
combination of events, bound each other with
appropriate operators in order to form composite
events of any complexity. Generally speaking, an
event is a happening that occurs in the system, at
some location and at some point in time. In our
context, events are related to sensor data variables
(i.e. variable x greater than a fixed threshold,
variable y in a fixed range, etc.). Events are
classified as primitive events and composite events.

A primitive event is a condition on a specific
sensor which is associated some parameters (i.e.
event identifier, time of occurrence, etc). Event
parameters can be used in the evaluation of
conditions. Each entry stored in the Event History is
a quadruple:

< IDev, IDs, IDg, tp >, where:

3 OLE (Object Linking & Embedding) for Process
Communication.
4 Open Data-Base Connectivity.

• IDev is the event identifier;

• IDs is the sensor identifier;

• IDg is the sensor group identifier (needed for
geographical correlation);

• tp is the event occurrence time which should be
a sensor timestamp (when a global clock is
available for synchronization) or the Event
History machine clock.

Since the message transportation time is not
instantaneous, the event occurrence time can be
different from the registration time. Several research
works have addressed the issue of clock
synchronization in distributed systems. Here we
assume that a proper solution (e.g. time shifting) has
been adopted at a lower level.

A composite event is a combination of primitive
events defined by means of proper operators. The
EDL of DETECT is derived from Snoop event
algebra (Chakravarthy & Mishra 1994). Every
composite event instance is a triple:

< IDec, parcont, te >, where:

• IDec is the composite event identifier;

• parcont is the parameter context, stating which
occurrences of primitive events need to be
considered during the composite event detection
(as described below);

• te is the temporal value related to the occurrence
of the composite event (corresponding to the tp
of the last component event).

Formally an event E (either primitive or
composite) is a function from the time domain onto
the boolean values, True and False:

E: T → {True, False}, given by:

 True, if E occurs at time t
E (t) =

 False, otherwise

The basic assumption of considering a boolean
function is quite general, since different events can
be associated to a continuous sensor output
according to a set of specified thresholds.
Furthermore, negate conditions (!E) can be used
when there is the need for checking that an event is
no longer occurring. This allows considering both
instantaneous (“occurs” = “has occurred”) and
continuous (“occurs” = “is occurring”) events.
However, in order to simplify EDL syntax, negate
conditions on events can be substituted by

complementary events. An event Ec is
complementary to E when:

Ec ⇒ !E

Each event is denoted by an event expression,
whose complexity grows with the number of
involved events. Given the expressions E1, E2, …,
En, every application on them through any operator
is still an expression. In the following, we briefly
describe the semantics of these operators. For a
formal specification of these semantics, the reader
can refer to (Chakravarthy et al. 1994).

OR. Disjunction of two events E1 and E2, denoted
(E1 OR E2). It occurs when at least one of its
components occurs.

AND. Conjunction of two events E1 and E2,
denoted (E1 AND E2). It occurs when both E1 and E2
occur (the temporal sequence is ignored).

ANY. A composite event, denoted ANY (m, E1,
E1, …, En), where m ≤ n. It occurs when m out of n
distinct events specified in the expression occur (the
temporal sequence is ignored).

SEQ. Sequence of two events E1 and E2, denoted
(E1 SEQ E2). It occurs when E2 occurs provided that
E1 has already occurred. This means that the time of
occurrence of E1 has to be less than the time of
occurrence of E2.

The sequence operator is used to define
composite events when the order of its component
events is relevant. Another way to perform a time
correlation on events is by exploiting temporal
constraints.

The logic correlation could loose meaningfulness
when the time interval between component events
exceeds a certain threshold. Temporal constraints
can be defined on primitive events with the aim of
defining a validity interval for the composite event.
Such constraints can be added to any operator in the
formal expression used for event description.

For instance, let us assume that in the composite
event E = (E1 AND E2) the time interval between the
occurrence of primitive events E1 and E2 must be at

Figure 2. Event tree for composite event ((E1 OR E2) AND
(E2 SEQ (E4 AND E6)))

most T. The formal expression is modified by
adding the temporal constraint [T] as follows:

(E1 AND E2) [T] = True
⇔

∃ t1< t | (E1(t) ∧ E2(t1) ∨ E1(t1) ∧ E2(t)) ∧ |t – t1| ≤ T

5 THE SOFTWARE IMPLEMENTATION

This section describes some implementation
details of DETECT, referring to the current
development state of the core modules of the
framework, including the Detection Engine. The
modules have been fully implemented using the Java
programming language. JGraph has been employed
for the graphical construction of the Event Trees
used in the Scenario GUI. Algorithms have been
developed for detecting composite events in all
parameter contexts.

Attack scenarios are currently described by Event
Trees, where leaves represent primitive events while
internal nodes (including the root) represent EDL
language operators. Figure 2 shows an example
Event Tree representing a composite event.

After the user has sketched the Event Tree, the
Scenario GUI module parses the graph and provides
the EDL expression to be added to the EDL
Repository. The parsing process starts from the leaf
nodes representing the primitive events and ends at
the root node. Starting from the content of the EDL
Repository, the Model Generator module builds and
instantiates as many Event Detector objects as many
composite events stored in the database. The
detection algorithm implemented by such objects is
based on Event Graphs and the objects include the
functionalities of both the Model Solver and the
Detection Engine.

In the current prototype, after the insertion of
attack scenarios, the user can start the detection
process on the Event History using a stub front-end
(simulating the Model Executor and the Output
Manager modules). A primitive event is accessed
from the database by a specific Model Feeder
module, implemented by a single Event Dispatcher
object which sends primitive event instances to all
Event Detectors responsible for the detection
process.

The Event Dispatcher requires considering only
some event occurrences, depending on a specific
policy defined by the parameter context. The policy
is used to define which events represent the
beginning (initiator) and the end (terminator) of the
scenario. The parameter context states which
component event occurrences play an active part in
the detection process. Four contexts for event
detection can be defined:

• Recent: only the most recent occurrence of
the initiator is considered.

• Chronicle: the (initiator, terminator) pair is
unique. The oldest initiator is paired with the
oldest terminator.

• Continuous: each initiator starts the detection
of the event.

• Cumulative: all occurrences of primitive
events are accumulated until the composite
event is detected.

The effect of EDL operators is then conditioned
by the specific context, which is implemented in the
Event Dispatcher. Theoretically, in the construction
of the model a different node should be defined for
each context. Whilst a context could be associated to
each operator, currently a single context is
associated to each detection model. Furthermore, a
different node object for each context has been
implemented.

In the current implementation, Event Graphs are
used to detect the scenarios defined by Event Trees,
which are only used as a descriptive formalism. In
fact, scenarios represented by more Event Trees can
be detected by a single Event Graph produced by the
Model Generator. When an Event Detector receives
a message indicating that an instance of a primitive
event Ei has occurred, it stores the information in the
node associated with Ei. The detection of composite
events follows a bottom-up process that starts from
primitive event instances and flows up to the root
node. So the composite event is detected when the
condition related to the root node operator is
verified. The propagation of the events is determined
by the user specified context. After the detection of a
composite event, an object of a special class (Event
Detected) is instantiated with its relevant
information (identifier, context, component event
occurrences, initiator, terminator).

6 AN EXAMPLE SCENARIO

In this section we provide an application of
DETECT to the case-study of a subway station. We
consider a composite event corresponding to a
terrorist threat. The classification of attack scenarios
is performed by security risk analysts in the
vulnerability assessment process.

The attack scenario consists of an intrusion and
drop of an explosive device in a subway tunnel. Let
us suppose that the dynamic of the scenario follows
the steps reported below:

1. The attacker stays on the platform for the time
needed to prepare the attack, missing one or
more trains.

2. The attacker goes down the tracks by crossing
the limit of the platform and moves inside the
tunnel portal.

3. The attacker drops the bag containing the
explosive device inside the tunnel and leaves the
station.

Obviously, it is possible to think of several
variants of this scenario. For instance, only one
between step 1 and step 2 could happen. Please note
that the detection of step 1 (person not taking the
train) would be very difficult to detect by a human
operator in a crowded station due to the people
going on and off the train.

Le us suppose that the station is equipped with a
security system including intelligent cameras (S1),
active infrared barriers (S2) and explosive sniffers
(S3) for tunnel portal protection. The formal
description of the attack scenario consists of a
sequence of events which should be detected by the
appropriate sensors and combined in order to form
the composite event.

The formal specification of primitive events
constituting the scenario is provided in following:

a) extended presence on the platform (E1 by S1);

b) train passing (E2 by S1);

c) platform line crossing (E3 by S1);

d) tunnel intrusion (E4 by S2);

e) explosive detection (E5 by S3).

For the sake of brevity, further steps are omitted.

The composite event drop of explosive in tunnel
can be specified in EDL as follows:

(E1 AND E2) OR E3 SEQ (E4 AND E5)

Figure 3 provides a GUI screenshot showing the
Event Tree for the composite event specified above.

The user chooses the parameter context and builds
the tree (including primitive events, operators and
interconnection edges) by the user-friendly interface.
If a node represents a primitive event, the user has to
specify event (Ex) and sensor (Sx) identifiers. If a
node is an operator, the user can optionally specify
other parameters such as a temporal constraint, the
partial alarm level and the m parameter (ANY
operator). Also, the user can activate / deactivate the
composite events stored in the repository carrying
out the detection process.

A partial alarm can be associated to the scenario
evolution after step 1 (left AND in the EDL
expression), in order to warn the operator of a
suspect abnormal behavior.

In order to activate the detection process, a
simulated Event History has been created ad-hoc.
An on-line integration with a real working SMS will
be performed in the near future for experimentation
purposes.

7 CONCLUSIONS & FUTURE WORKS

In this paper we have introduced the working
principles and the software architecture of DETECT,
an expert system allowing for early warnings in
security critical domains.

DETECT can be used as a module of a more
complex hierarchical system, possibly involving
several infrastructures. In fact, most critical
infrastructures are organized in a multi-level
fashion: local sites, grouped into regions and then
monitored centrally by a national control room,
where all the (aggregated) events coming from lower
levels are routed. When the entire system is
available, each site at each level can benefit from the
knowledge of significant events happening in other
sites. When some communication links are
unavailable, it is still possible to activate
countermeasures basing on the local knowledge.

We are evaluating the possibility of using a single
automatically trained multi-layered ANN to
complement deterministic detection by: 1)
classification of suspect scenarios, with a low FAR;
2) automatic detection of abnormal behaviors, by
observing deviations from normality; 3) on-line
update of knowledge triggered by the user when a
new anomaly has been detected. The ANN model
can be trained to understand normality by observing
the normal use of the infrastructure, possibly for
long periods of time. The Model Feeder for ANN
operates in a way which is similar to the Event Tree
example provided above. A ANN specific Model
Updater allows for on-line learning facility. Future
developments will be aimed at a more cohesive
integration between deterministic and heuristic
detection, by making the models interact one with

Figure 3. Insertion of the composite event using the GUI

each other.

REFERENCES

Buss, A.H. 1996. Modeling with Event Graphs. In Proc.
Winter Simulation Conference, pp. 153-160.

Cassandra, A.R.; Baker, D. & Rashid, M. 1999. CEDMOS:
Complex Event Detection and Monitoring System. MCC
Tecnical Report CEDMOS-002-99, MCC, Austin, TX.

Chakravarthy, S. & Mishra, D. 1994. Snoop: An expressive
event specification language for active databases. Data
Knowl. Eng., Vol. 14, No. 1, pp. 1–26.

Chakravarthy, S.; Krishnaprasad, V.; Anwar, E. & Kim, S.
1994. Composite Events for Active Databases: Semantics,
Contexts and Detection. In Proceedings of the 20th
International Conference on Very Large Data Bases.
Morgan Kaufmann Publishers, San Francisco, CA, pp. 606-
617.

Dayal, U.; Blaustein, B.T.; Buchmann, A.P.; Chakravarthy, S.;
Hsu, M.; Ledin, R.; McCarthy, D.R.; Rosenthal, A.; Sarin,
S.K.; Carey, M.J.; Livny, M. & Jauhari, R. 1988. The
HiPAC Project: Combining Active Databases and Timing
Constraints. SIGMOD Record, Vol. 17, No. 1, pp. 51-70.

Garcia, M.L. 2001. The Design and Evaluation of Physical
Protection Systems. Butterworth-Heinemann, USA.

Gatziu, S. & Dittrich, K.R. 1994. Detecting Composite Events
in Active Databases Using Petri Nets. In Proc. of the 4th
International Workshop on Research Issues in data
Engineering: Active Database Systems, pp. 2-9.

Gatziu, S. & Dittrich, K.R. 2003. Events in an Object-Oriented
Database System. In Proc. of the 1st International
Conference on Rules in Database Systems, pp. 23-39.

Gehani, N.H.; Jagadish, H.V. & Shmueli, O. 1992a. Event
Specification in an Object-Oriented Database. In
Proc. of the ACM SIGMOD International Conference on
Management of Data, pp. 81-90.

Gehani, N.H.; Jagadish, H.V. & Shmueli, O. 1992b.
COMPOSE A System For Composite Event Specification
and Detection. Technical report, AT&T Bell Laboratories,
Murray Hill, NJ.

J.J. Alferes, G & Tagni, E. 2006. Implementation of a Complex
Event Engine for the Web. In Proc. of IEEE Services
Computing Workshops (SCW 2006). September 18-22.
Chicago, Illinois, USA.

Jain, A.K.; Mao, J. & Mohiuddin, K.M. 1996. Artificial Neural
Networks: A tutorial. In IEEE Computer, Vol. 29, No. 3, pp.
56-63.

Jones, A.K. & Sielken, R.S. 2000. Computer System Intrusion
Detection: A Survey. Technical Report, Computer Science
Dept., University of Virginia.

Krishnaprasad, V. 1994. Event Detection for Supporting Active
Capability in an OODBMS: Semantics, Architecture and
Implementation. Master’s Thesis. University of Florida.

LENEL OnGuard 2008. http://www.lenel.com.
Lewis, F.L. 2004. Wireless Sensor Networks. In Smart

Environments: Technologies, Protocols, and Applications,
ed. D.J. Cook and S.K. Das. John Wiley, New York.

Lewis, T.G. 2006. Critical Infrastructure Protection in
Homeland Security: Defending a Networked Nation. John
Wiley, New York.

Object Management Group UML, 2008.
http://www.omg.org/uml.

OLE for Process Communication. http://www.opc.org.
Remagnino, P.; Velastinm S. A.; Foresti G.L. & Trivedi M.

2007. Novel concepts and challenges for the next generation

of video surveillance systems. Machine Vision and
Applications (Springer), Vol. 18, Issue 3-4, pp. 135-137.

Roman, R.; Alcaraz, C. & Lopez, J. 2007. The role of Wireless
Sensor Networks in the area of Critical Information
Infrastructure Protection. Information Security Technical
Report, Vol. 12, Issue 1, pp. 24-31.

Tzafestas, S.G. 1999. Advances in Intelligent Autonomous
Systems. Kluwer.

