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Abstract. The design of physical security systems for critical infrastructures is a 
delicate task that requires a balance between the cost of protection mechanisms and 
their expected effect on risk mitigation. This paper presents an approach usable to 
support the design of security systems by automatically optimizing some 
parameters, basing on external constraints (e.g. limited available budget) and using 
quantitative risk assessment. Risk assessment is performed using a software tool 
that implements a quantitative methodology. The methodology accounts for the 
attributes of threats (frequency, system vulnerability, expected consequences) and 
protection mechanisms (cost, effectiveness, coverage, etc.). The optimization is 
performed by means of genetic algorithms with the objective of achieving the set of 
parameters that minimizes the risk while fitting external budget constraints, hence 
maximizing the return on investment. The paper also describes an example 
application of the approach to the design of physical security systems for metro 
railways. 

Keywords: infrastructure security, decision support systems, risk assessment, 
return on investment, rail-based mass transit systems. 

Reference to this paper should be made as follows: Flammini, F., Gaglione, A., Mazzocca 
N. and Pragliola C. (2011) ‘Optimisation of security system design through quantitative 
risk assessment and genetic algorithms’, Int. J. Risk Assessment and Management, Vol. 15, 
Nos. 2/3, pp.205-221. 

 



   

 

   

   
 

   

   

 

   

    F. Flammini, A. Gaglione, N. Mazzocca and C. Pragliola    
 

    
 
 

   

   
 

   

   

 

   

       
 

Biographical notes: Francesco Flammini  got with honors his laurea (July 2003) and doctorate 
(December 2006) degrees in Computer Engineering from the University Federico II of Naples. From 
October 2003 to January 2007, he has worked in Ansaldo STS as a Software Engineer in the RAMS 
unit on the verification and validation of real-time control systems. Since February 2007, he has 
worked in the Innovation unit on the protection of transportation infrastructures. He has been an 
Adjunct Professor of Software Engineering and Computer Science and currently serves as the Editor in 
Chief for the International Journal of Critical Computer-Based Systems. 
 
Andrea Gaglione received his B.S. degree and M.S. degree in Computer Engineering,  both summa 
cum laude, from the Second University of Naples in 2004 and 2006, respectively. He got a Ph.D. in 
Computer and Control Engineering from the University of Naples Federico II in 2009 and his research 
activities include Sensor Networks, Event Recognition, and Critical Infrastructure Protection. 
 
Nicola Mazzocca is a full professor of High-Performance and Reliable Computing at the Computer and 
System Engineering Department of the University of Naples Federico II, Italy. He owns an MS Degree 
in Electronic Engineering and a Ph.D. in Computer Engineering, both from the University of Naples 
Federico II. His research activities include methodologies and tools for design/analysis of distributed 
systems; secure and real-time systems and dedicated parallel architectures. 
 
Concetta Pragliola got her laurea and doctorate degrees in Electronic Engineering from the University 
Federico II of Naples in October 1985. From January 1987 to October 1992 she has worked in the 
Research Department of Ansaldo Transporti on Expert Systems and Simulation programs. From 
November 1992 to October 2001, she has worked in the Information Technology Department of 
Ansaldo Trasporti, being involved in PDM systems. From November 2001 to November 2006 she has 
worked in Elsag as an Account Manager. Since December 2006 she has worked in the Innovation unit 
of Ansaldo STS specializing on the design of security systems. 

 

1.  Introduction 

In the design of physical security systems for critical infrastructure protection, it is very 
important to demonstrate to the customer both the expected return on investment and the 
optimality of the proposed system design. The formal evidence of this is impossible to 
achieve without adopting quantitative risk assessment approaches. In particular, the 
operators of public transportation systems are very interested not only in being compliant 
to the security norms but also in mitigating the effect of criminality. In fact, criminal acts 
can damage the infrastructures and also have a negative impact on the usage rate of the 
system by the citizens. Since different protection mechanisms can be employed, each of 
them usually capable to face several types of threats, ranging from vandalism to 
terrorism, it is essential to quantify their effect on risk as accurately as possible. This is 
useful to fine tune design parameters in order to maximize the return on investment, 
which is especially important when the available budget is limited (which is generally 
true). 

Flammini et al. (2008) have described a method and a tool (i.e. Q-RA) to 
automatically compute the expected annual benefit of a security system starting from 
quantitative attributes of threats and protection mechanisms. Among the attributes of 
protection mechanisms the authors have introduced the concept of “coverage” (COV), 
which can be used as an indication of the size of the protection mechanism with respect 
to the infrastructure to be protected. The COV parameter is the only free parameter of the 
optimization problem, since it is assumed that deterrent, protective and rationalizing 
effectiveness cannot be easily modified for any specific protection mechanism. The 
genetic algorithm presented in this paper is able to detect the optimal set of COV 
parameters for the protection mechanisms specified in the Q-RA input database. The 
results can be evaluated to guide the design of the security system. 
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Genetic algorithms (GA) are a biologically inspired heuristic search method (Whitley, 
1994). As their name suggests, GA mimic the evolution of living beings, according to the 
Darwinian theories. Solutions of a problem are thought of as individuals who reproduce 
according to the natural processes of selection, crossover and mutation. GA have been 
demonstrated to be a very general method capable to find approximate solutions for 
complex and non linear engineering problems where no specific algorithms exist, as in 
the case of the optimization problem (and its possible extensions) described in this paper. 

Several research papers are available dealing with automated risk assessment (Bang et 
al., 2004) or with the application of GAs to other classes of optimization problems, such 
as system reliability (Painton and Campbell, 2005 ). Lot of efforts have been devoted to 
physical protection systems design (Garcia, 2001), by also exploiting wireless sensor 
technology (Flammini et al., 2009). Some works have been devoted to the use of GAs for 
improving network security (Banković et al., 2007; Yao, 2010) and supporting sensor 
placement, sensor activation and network clustering for the optimization of sensor 
network design (Indu et al., 2009; Ferentinos and Tsiligiridis, 2007; Martins et al., 2010); 
however, to the best of our knowledge no prior work addresses the use of GA to support 
the choice of protection mechanisms in the design of physical security systems. Instead, 
some applications have been recently reported in the field of on-line risk evaluation 
(Abraham et al., 2009). 

The rest of this paper is organized as follows. Section 2 presents the method used for 
the analysis, that is the mathematical model used for risk assessment and mitigation. 
Section 3 describes the Q-RA toolkit and one example application. Section 4 defines the 
objective of the optimization, the genetic algorithm we have developed and the results of 
an example application. Finally, Section 5 draws conclusions and provides some hints 
about future developments. 

2.  The Q-RA methodology 

2.1 Risk assessment model 

With reference to a specific threat, the quantitative risk R can be formally defined as 
follows: 

DVPR ⋅⋅= / year][€   (1) 

Where: 

• P is the frequency of occurrence of the threat, which can be measured in [events 
/ year]; 

• V is the vulnerability of the system with respect to the threat, that is to say the 
probability that the threat will cause the expected consequences (damage); 

• D is an estimate of the measure of the expected damage occurring after a 
successful attack, which can be expressed in currency, e.g. Euros [€]. 

The vulnerability V is a dimensionless parameter, since it represents the conditional 
probability: 
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)|( threatsuccessP   (2) 

Therefore, a quantitative way to express the risk associated with a specific threat is to 
measure it in lost Euros per year: [€ / year]. The overall risk can be obtained as the sum 
of the risks associated with all threats, assuming all the contributions being independent 
(worst case): 

 

ii
i

iT DVPR ⋅⋅=∑year] / [€        ∀ threat i (3) 

 
Despite of the simplicity of (3), the involved parameters are not easy to obtain. The 
analysis involves both procedural and modeling aspects. Procedural aspects include 
brainstorming sessions, site surveys, design review, statistic data analysis, expert 
judgment, etc. Formal modeling languages which can be used to analytically compute P, 
V and D include Attack Trees, Bayesian Networks, Stochastic Petri Nets and possibly 
other formalisms which are able to take into account the uncertainty inherently associated 
with the risk as well as the possibility of strategic attacks (Nicol et al., 2004). In fact, 
sometimes the three parameters might feature an inter-dependence which should be taken 
into account by the model, too. 

2.2 Risk mitigation model 

Protection mechanisms are able to reduce the risk by having three main effects: 

• Protective, aimed at the reduction of V 

• Deterrent, aimed at the reduction of P 

• Rationalizing, aimed at the reduction of D 
 

In particular, the rationalizing effect allows a better management of the response force 
and/or an improved coordination of security personnel for counteracting the threats (e.g. 
by Closed Circuit TeleVision, CCTV). 

Therefore, by quantifying the listed effects it is possible to estimate the risk mitigation, 
considering any combinations of threats and protection mechanisms. 

A possible way to compute risk mitigation is to associate threats and protection 
mechanisms by means of threat categories and geographical references, namely sites. A 
site can be considered as a particular kind of critical asset (actually, an aggregate asset), 
sometimes defined as “risk entity”. Each threat happens in at least one site and, 
homogeneously, each protection mechanism protects at least one site. For a railway 
infrastructure, a site can be an office, a bridge, a tunnel, a parking area, a platform, a 
control room, etc. 

In the assumption that: 

• Threat T belongs to category C;  

• Threat T happens in (or passes through) site S; 
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• Protection M is installed in site S; 

• Protection M is effective on threat category C; 
 

then it can be stated that M protects against T. Threat categories should be defined 
according to the specific application domain and used to classify threats upon the basis of 
relevant common factors (e.g. damaging the furniture of a station might fall in a threat 
category named vandalism). 

Based on the above definitions, it is possible to express the total mitigated risk, which 
the system is exposed to as follows: 

 

∑ ∏⋅=
i j

jiiTM MITRR year] / [€  (4) 

Where:  
• TMR is the total mitigated risk; 

• iR  is the initial risk associated with threat i (computed according to (1)); 

• jiMIT  is the mitigation effect provided by protection mechanism j on threat i, 
taking into account its coverage and effectiveness. 

 

Hence, the total mitigated risk is expressed as follows: 

∑ ∏ ⋅−⋅⋅−⋅⋅−⋅=
i j

jRjijDjijPjiiTM COVECOVECOVERR )1()1()1(year] / [€  

(5) 

Where: 
• PjiE  is an estimate of the protective effect of protection mechanism j on threat i; 

• DjiE  is an estimate of the deterrent effect of protection mechanism j on threat i; 

• RjiE  is an estimate of the rationalizing effect of protection mechanism j on 
threat i; 

• jCOV  is a measure of the coverage of protection mechanism j (e.g. percentage 
of the physical area or perimeter of the site). 

 

The values of parameters expressing coverage and effectiveness are in the range [0..1]. 
EPji, EDji and ERji can be obtained by historical datasets (e.g. average reduction of vandal 
attacks after CCTV installation in similar infrastructures), appropriate models and/or by 
the judgment of domain experts. The formula can be validated by attempts using sample 
data and boundary analysis: for instance, when both the coverage and one of the 
effectiveness parameters are set to 1, the risk is mitigated to 0, as expected; on the 
opposite, if either the coverage or all the effectiveness parameters are set to 0, the risk is 
not mitigated at all. Figure 1 reports an example risk evaluation based on (5) using 
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sample data. In such evaluation it is assumed that a single protection mechanism is used 
and all the other data is kept constant. 

 

 
Figure 1. Risk evaluation using sample data. 

 

The expected benefit can be defined simply as the balance between the annual 
investment on security (protection mechanisms) and the achieved risk mitigation: 

 

∑∑ −−=−=
j

jT  COST)(R security in   investment totalreduction risk year] / [€
i

iREB  . 

(6) 

Where: 

• EB is the Expected Benefit, which can be positive or negative; 

• jCOST  is the cost of the protection mechanism j, obtained considering all the 
significant costs (acquisition, installation, management, maintenance, etc.).  

Therefore, the return on investment can be obtained from the expected benefit EB 
considering the cost of the invested capital (which depends on the rate of interest, the 
years to pay-off, possible external funding, etc.). 

Expressions (5) and (6) need to be computed starting from a database of attack 
scenarios, sites, protection mechanisms and related significant attributes. The 
management of such data and the computation of results are performed by an automatic 
tool which will be described in detail in next section. 

3. The Q-RA toolkit 

3.1 Description 

A tool has been developed which automatically manages risk data and evaluates risk 
and benefit indices starting from input data. The tool has been named simply Q-RA 
(Quantitative Risk Analysis), to be pronounced as [kura] (sounding like the Italian for 
“cure”). 
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In particular, the inputs of the tool are: 

• A list of threats, characterized by: 

− Threat identifier; 

− Short description of the attack scenario (including the adversary category, 
required tools, etc.); 

− Threat category (e.g. vandalism, theft, sabotage, terrorism, flooding, etc.); 

− Initial estimated P, V and D; 

− Site (geographical reference). 

• A list of protection mechanisms, characterized by: 

− Protection mechanism identifier; 

− Short description of the protection mechanism; 

− List of threat categories on which the protection mechanism is effective; 

− Expected protective ( PjiE ), deterrent ( DjiE ) and rationalizing ( RjiE ) 
effectiveness; 

− Estimated coverage (COV); 

− Site (geographical reference); 

− Annual cost (acquisition, management, maintenance, etc.). 

A database is used in order to store and correlate the input data. Data referring to 
economic aspects is also managed (number of years to dismiss, rate of interest, etc.). The 
tool provides features allowing the user for inserting the inputs, updating them to modify 
some parameters (i.e. frequency of threats) and finally removing them.    

Parameters can be chosen using average or worst case considerations. Sensitivity 
analysis can be performed acting on input data ranges in order to evaluate the effect of 
uncertainty intervals upon the computed results and possibly defining lower and upper 
bounds. 

The tool elaborates data according to the relationships defined in the database (in 
particular, using the common attributes of site and threat category) and the mathematical 
models of (5) and (6), providing: 

• The risk associated with each threat ( iR ) and the overall risk ( TR ); 

• The total risk reduction considering all the threats; 

• Annual cost of the single protection mechanism and of the whole security system; 

• Expected Benefit (EB). 

  

The points listed above are part of the informal functional requirements specification. 
Application specific requirements have also been added, like the possibility of specifying 
a day/night attribute for both threats (some scenarios cannot happen when the service is 
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interrupted, e.g. a subway station is closed to the public) and protection mechanisms 
(some technologies, e.g. motion detection, can be activated only when the service is 
interrupted). Non functional requirements of the tool include user friendliness, data 
import / export facilities using standard formats (e.g. CSV, Comma Separated Values), 
platform independence and use of freeware software (possibly), user identification and 
rights management (still to be implemented). 

Some implementation details are reported in the following. The software design has 
been performed using an object-oriented approach based on the Unified Modeling 
Language (UML) and the Java programming language. In order to guarantee the 
persistence of objects (threats, protection mechanisms and sites), a relational database 
(based on MySQL) has been designed starting from Entity Relationship (E-R) diagrams. 
The GUI (Graphical User Interface) of the tool is web-based, exploiting JSP (Java Server 
Page) and Apache Tomcat technologies. 

As an example, the conceptual class diagram related to the specific domain is reported 
in Figure 2, where the attributes and interrelationships of the entities described in the 
previous section are graphically shown. 

 

-ID
-Description
-Frequency
-Category
-...

Threat

-ID
-Description
-...

Site

-ID
-Description
-Acquisition cost
-...

Protection Mechanism

-Protective
-Deterrent
-Rationalizing

Effectiveness

*

-Protects against

*

-Is counteracted by

-Can host*

-Can happen in

*

-Fraction
-Day/Night
-...

Coverage

* -Is installed/effective on

* -Is protected by

 
Figure 2. Conceptual class diagram. 

3.2. Example application 

Let us consider a case-study of a railway or subway station. The following threats 
against the infrastructure should be considered: 

• Damage to property and graffitism (vandalism); 

• Theft and aggressions to personnel and passengers (micro-criminality) 

• Tampering and forced service interruption (sabotage) 

• Bombing or spread of NBCR1 contaminators (terrorism) 

                                                             
1 Nuclear Biological Chemical Radiological. 
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Let us consider the example scenarios reported in Table 1 and the protection 
mechanisms listed in Table 2, both referring to a specific station. It is assumed that the 
values are obtained by analyzing historical data of successful and unsuccessful attacks 
before and after adopting specific countermeasures (such data is usually available for 
comparable installations). The expected damage relates to the single attack and it is 
computed by predicting the: 

• Expense needed to restore the assets 

• Consequences of service interruptions or degradations 

• Decreased usage of the transportation system by the passengers due to the 
feeling of insecurity 

• Human injuries or loss of lives 

The estimated annual cost of the protection mechanisms also accounts for maintenance 
and supervision, while acquisition and installation costs are accounted separately. Please 
note that the effect of protection mechanisms may vary according to threat category. 
Furthermore, all the specified values should not be considered as the results of specific 
analyses, but only as realistic pseudo-data; using real data would require an extensive 
justification, possibly via a model-based evaluation, which is not in the scope of this 
paper. 

Figure 3 reports a screenshot of the GUI representing the input mask for the attributes 
of protection mechanisms, while Figure 4 reports the results of the example application 
computed by the tool. In the assumptions of the example, the positive expected benefit 
resulting from the adoption of the protection mechanisms and being 36722 €/year clearly 
justifies the investment. 

Table 1. Attack scenarios considered in the example application. 

THREA
T ID 

THREAT 
DESCRIPTION 

THREAT 
CATEGOR

Y 
SITE EST. P 

[# / YEAR] 
EST. 
VINIT 

EXP. D 
[K€] 

1 GRAFFITISM VANDALIS
M STATION EXT. 60 0.9 0.5 

2 THEFT OF PCS THEFT TECH. ROOM 4 0.8 14 

3 GLASS BREAK VANDALIS
M STATION EXT. 12 1 0.5 

4 BOMBING TERRORISM 
EXPL. PLATFORM 0.01 1 900 

5 HACKING SABOTAGE TLC SERVER 2 0.8 10 

6 GAS ATTACK TERRORISM 
CHEM. PLATFORM 0.01 1 160 

7 FURNITURE 
DAMAGE 

VANDALIS
M 

HALL 

PLATFORM  

70 

50 

1 

1 

0.1 

0.1 

8 INFRASTRUCT.
DAMAGE 

PHYSICAL 
SABOTAGE PLATFORM 4 0.9 5 
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Table 2. Protection mechanisms considered in the example application. 

PROT. 
ID 

COUNTERMEASURE 
DESCRIPTION 

ACQ. 
COST 
[K€] 

MANAG. 
COST 
[K€ / 

YEAR] 

SITE COV THREAT 
CATEGORIES 

EP ED ER 

1 ALARMED FENCE 10 1 STATION 
EXT. 

STATION 
INT. 

(NIGHT) 

0.9 VANDALISM 

THEFT 

P. SABOTAGE 

0.9 

0.9 

0.9 

0.3 

0.3 

0.3 

0.2 

0.2 

0.2 

2 VOLUMETRIC 
DETECTOR 

5 1 TECH. 
ROOM 

1 THEFT 0.8 0.6 0.2 

3 VIDEO-
SURVEILLANCE 

(INTERNAL) 

150 20 HALL, 
PLATFORM 

0.95 VANDALISM 

THEFT 

SABOTAGE 

TERRORISM 
EXPL. 

TERRORISM 
CHEM. 

0.4 

0.6 

0.6 

0.4 

 

0.4 

0.6 

0.6 

0.6 

0.3 

 

0.3 

0.3 

0.3 

0.8 

0.6 

 

0.6 

4 CHEM. DETECTOR 50 2 PLATFORM 0.9 TERRORISM 
CHEM. 

0.6 0.2 0.4 

5 INTRUSION 
DETECTION SYSTEM 

1 0.5 TLC 
SERVER 

1 L. SABOTAGE 0.9 0 0 

6 EXPLOSIVE 
DETECTOR 

50 2 STATION 
INT. (*) 

1 SABOTAGE 

TERRORISM 
EXPL. 

0.8 

0.8 

0.4 

0.1 

0.1 

0.1 

(*): detectors are physically installed near turnstiles, but the protection is effective on the whole station internal. 
 

 
Figure 3. The Q-RA input data mask for protection mechanisms. 
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Figure 4. Q-RA output data presentation for the example application. 

4. Optimization approach 

4.1 Definition of the optimization problem 

The objective of the optimization problem is to maximize the expected benefit (EB) of 
the security system. EB is automatically computed by the Q-RA by means of expression 
(6).  

The constraint of the optimization problem is to fulfil an externally set annual budget 
limit; that is, to verify that the sum of costs associated with the set of protection 
mechanisms is less than a specified amount (problem input). 

We assume here that the only free parameters of the problems are the coverage levels 
of the protection mechanisms. This is not a restrictive assumption, since the method 
works with any number of parameters and its utility is even higher when the number of 
variables increases. Of course, a COV value set to 0 means that the related protection 
mechanism is excluded from the solution; in that case, it should not be selected. 

Given M protection mechanisms and using a granularity of 1% in the variation of the 
coverage, the search space (SS) of the possible solutions to the problem has the following 
cardinality: 

M
SSC 100=  

It could be shown that if M = 10 and the EB evaluation of a single solution by Q-RA 
requires just one second, then several geological eras would be needed to exhaustively 
explore the search space to find the optimal solution. 

For non linear optimization problems featuring such a huge search space, Genetic 
Algorithms (GA) represent one of the viable methods to try finding solutions which at 
least approach the best one. 

Figure 5 provides an at-a-glance representation of input and outputs of the 
optimization problem. 
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4.2 Description of the Genetic Algorithm 

In a classical GA all the optimization parameters have to be coded into a binary system 
(Holland 1975, 1992). Typically, the Gray code is used where a small distance in the 
problem correspond to a small distance in the representation space as well. The number 
of bits used is usually problem dependent. All these bit strings are then combined to form 
a chromosome leading to a genotypic representation of the optimization parameters. In 
the following of this section we will explain how the general algorithm can be applied to 
our optimization problem. 

The general structure of a canonical genetic algorithm with its pseudo-code is reported 
in Figure 6 (Alotto et al., 1998). The initialization procedure (line 1) creates a random 
population of individuals by associating a coverage percentage to any protection 
mechanisms obtaining a vector of M elements, the so-called “chromosomes”. The 
population size N (usually a few hundred individuals) can be considered as fixed, since 
the convergence of the algorithm has little dependence on such a parameter. The process 
is repeated until the number of the individuals equals the specified population size.  

The fitness function, applied to each individual of the population, is then calculated 
(line 5) by using the following formula: 

∑
=

= N

j
j

i
i

EB
N

EBF

1

1
 

Where: 

● Fi is the computed fitness of individual i 

● EBj is the expected benefit associated with solution j 
 
The suitability of each individual is also checked with respect to the problem specific 

constraint. If the cost of an individual exceeds the budget limitation that indicates an 
unfeasible solution, hence (instead of discarding the individual) a penalty term is added to 
its fitness value as follows: 

i
ii COST

BUDGETkFF ⋅⋅='  

Where: 
 

 
GA OPTIMIZER 

Q-RA DB 

BUDGET 

OPTIMAL COVERAGE 
OF PROTECTION  
MECHANISMS 

Figure 5. Input and output of the GA-based optimizer. 
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● '
iF is the new computed fitness of the individual i 

● COSTi is the cost of the individual i 
● k is a constant in [0,1], which can be conveniently tuned 

 
A selection process (line 6) is then applied in such a way that configurations with 

better fitness values are chosen for breeding with a probability higher than the other ones 
(the so called “roulette wheel sampling” approach has been adopted, see Goldberg, 
1989). 
In the classical binary implementation, recombination and reproduction are performed in 
parallel (line 7) with a certain probability (p(C) and p(R), respectively). Recombination is 
usually performed by some kind of crossover: in particular, we used the “one point 
crossover” (see Figure 7), according to which a point within the chromosomes of two 
parent configurations is selected randomly and all the bits following this position until the 
end of the bit-strings are mutually exchanged to produce two new configurations. Instead, 
reproduction allows to propagate one parent configuration to a descendant without any 
change. Finally, the new individuals undergo a bitwise mutation (line 9) according to 
which a few bits within the chromosomes are inverted with a very low probability p(M). 
This helps avoiding some problems inherently associated with the genetic process (e.g. 
predominant individuals leading to premature convergence and local optima). 

The process continues executing the same steps on the new generations until some 
stopping criterion is met (line 3). There are two possible stopping criteria for the 
algorithm: 

 
1. the quadratic norm of the population with respect to the mean value of the 

population is less than a prescribed ε; 
 
2. the maximum number of possible generations has been reached (that is, the 

algorithm has not converged, yet an usable solution could have been found). 
 
Usually, the convergence of the algorithm is rather quick regardless of the specific 

values assigned to each parameter. The best individual of the last population can then be 
selected according to an appropriate criterion (e.g. minimum cost). 
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 (a)     (b) 
Figure 6. The basic structure of the Genetic Algorithm (a) and its pseudo-code (b). 

 

1 0 0 1 1 1 0 0 1 0 1 1

1 1 0 0 1 0 0 1 0 1 0 1

1 0 0 1 1 1 0 0 0 1 0 1

1 1 0 0 1 0 0 1 1 0 1 1

Parent configurations
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Figure 7. One point crossover. 

4.3 Example experimental results 

Let us consider the example scenarios reported in Table 1 and the protection 
mechanisms listed in Table 2, both referring to a specific station. 

After a certain amount of evaluations, the strategy parameters have been assigned the 
following values: 

• N  = 100 

• p(C) = 0.7 

• p(R) = 0.3 

  

 1 generation = 0 

 2 initialize population (N) 

 3 while not(stopping criteria) 

 4   generation = generation + 1 

 5   compute fitness for each  
    individual 

 6   selection 

 7   recombination [p(C)] OR  
     reproduction [p(R)] 

 8   mutation [p(M)] 

 9 end while 
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• p(M)  = 0.1 

• ε = 0.01 

• max number of generations = 500 

 
By assuming an available budget of 25 K€, the optimal coverage set (percentage 

values) of protection mechanisms found by the algorithm is [98, 0, 21, 58, 61, 37]. The 
related total cost of the optimal set of protection mechanisms is 22891 €, while the 
expected benefit is 31867 €. The null value of the second coverage parameter of the 
solution means that the related protection mechanism should not be considered in the 
design of the security system, while the 98% of the first means that a complete coverage 
is the best solution (the result should be interpreted as an approximation of the “ideal” 
solution). The other values which are not 0 nor 100 demonstrate the non linearity of the 
optimization problem: since the “effectiveness” relationships between protection 
mechanisms and threats are “many-to-many” (and not straightforward), once a certain 
level of coverage is reached for a protection mechanism, its cost-effectiveness can be 
lower than the competing protection mechanisms. In other words, the cost-effectiveness 
of protection mechanisms is dynamic and it changes together with the values of the other 
coverage parameters. In other words, the input parameters are “interacting”. 

Different executions of the algorithm have shown a convergence to the result reported 
above, which has been obtained after 40 generations and 500 ms (average values). In 
some cases, the algorithm has converged to sub-optimal coverage sets: a typical issue 
with genetic algorithms which can be solved by adjusting strategy parameters (such as 
p(M)). 

We have assumed that the cost of a protection mechanism has a fixed contribution (i.e. 
licensing, integration, etc.) and variable part which is proportional to its coverage level. 
That is realistic in many situations, but please note that any more complex cost function 
could be adopted. 

Finally, we point out that in the result the total cost of the protection mechanisms 
exploits the most part of the available budget, but not the whole. That is a normal result 
and not a sign of a suboptimal solution, since the convergence criterion does not involve 
any “budget exploitation” check and, furthermore, we have designed the algorithm to 
choose the less costly individual of the last population, that is the one for which the 
convergence criteria are met. 

5. Conclusions and future developments 

In this paper we have presented an approach to support the design of physical security 
systems by automatically optimizing the coverage of protection mechanisms. The 
possibility of optimization of the return on investment (with a budget constraint) is 
enabled by the availability of a quantitative risk management tool. Due to the nature of 
the problem and to the very large search space of possible solutions, the optimization 
technique has been chosen to be based on genetic algorithms. 

The optimizer inherits the limitations of the analytical model used for risk 
management, e.g. neglecting possible interdependencies between risk parameters. 
However, since it works independently from the specific method used to compute the 
total annual benefit (which is simply invocated as an external function), new models can 
be used in the analysis without any modification to the genetic algorithm. 
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Furthermore, since the optimization approach is viable regardless of problem size, it is 
possible to extend the set of free parameters by including effectiveness related ones. In 
fact, while it is reasonable that effectiveness parameters are fixed for a given protection 
mechanism, it is always possible to combine more devices of different nature to improve 
detection reliability (and thus the so called “protective effectiveness”) or reduce the false 
alarm rate, the latter having a negative impact on the objective function.  

The optimization approach is based on a quantitative model based methodology for 
risk management. A good modeling of the system in terms of identified threats, threat 
categories, assets, protection mechanisms together with their parameters is the necessary 
condition for a good risk assessment and an acceptable solution of the optimization. 

Finally, it should be noticed that due to the many variables involved in the decision 
process, a complete security design automation is far from being obtainable; nevertheless, 
the results of the toolkit described in this paper serve as a useful indication, which is one 
step towards such a challenging goal. 
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