
 1

On-line integration and reasoning of multi-sensor

data to enhance infrastructure surveillance

Francesco Flammini12, Andrea Gaglione2, Nicola Mazzocca2, Vincenzo Moscato2 and Concetta Pragliola1

1Ansaldo STS Italy

Innovation Unit

Via Argine 425, Naples, Italy

{francesco.flammini, concetta.pragliola}@ansaldo-sts.com

2University of Naples Federico II

Department of Computer and Systems Engineering

Via Claudio, 21, Naples, Italy

{frflammi, andrea.gaglione, nicola.mazzocca, vmoscato}@unina.it

Abstract: Modern security systems employed in infrastructure

surveillance applications include a set of different sensing

technologies integrated by appropriate management systems. Such

systems are still highly dependent from human operators for

supervision and intervention. One of the challenging goals of the

research community in this field is the automatic detection of both

natural and malicious threat scenarios. In this paper we describe a

framework for correlating events detected by sensor networks to

provide early warning and decision support capabilities. To this

aim, we propose an overall system architecture for the integration of

the DETECT and SeNsIM frameworks: DETECT (Decision

Triggering Event Composer & Tracker) is a new system which is

able to recognize complex events by a model-based correlation of

primitive events; SeNsIM (Sensor Networks Integration and

Management) is a middleware for the integration of heterogeneous

sensor networks. The paper also provides example application

scenarios in the railway domain.

Keywords: Sensor Networks, Smart Surveillance, Critical

Infrastructure Protection, Sensor Data Fusion, Soft Computing

1. Introduction

The best way to face threats is to stop them before they can

cause catastrophic consequences. Unfortunately, visual

surveillance of video streams and sensor alarms provided by

current security systems does not allow operators for a

satisfactory situational awareness when the sequence of

events is large, heterogeneous, geographically distributed and

rapidly evolving. Therefore, operators are hardly able to

recognize sequences of events which are indicative of

possible threats due to their limited alert threshold and

knowledge base. Furthermore, operators can be unable to

guide and coordinate alarm responses or emergency

interventions if they are not precisely aware of what is

happening or has happened. In order to cope with these

issues, early warning and decision support systems can be

adopted.

The aim of this work is to propose the architecture for a

decision support and early warning system used to effectively

face security threats (e.g. terrorist attacks) based on

heterogeneous distributed sensor networks. Therefore, this

work locates at the third stage (i.e. “Indications and

warning”) of the Critical Infrastructure Protection life-cycle

(see Figure 1).

In particular, smart-sensors used in Wireless Sensor

Networks (WSN) feature several advantages when applied to

critical infrastructure surveillance [23], as they are:

• Cheap, and this allows for fine grained and highly

redundant configurations;

• Resilient, due to their fault-tolerant mesh topology;

• Power autonomous, due to the possibility of battery and

photovoltaic energy supplies;

• Easily installable, due to their wireless nature and auto-

adapting multi-hop routing;

• Intelligent, due to the on-board processor and operating

systems which allow for some data elaborations being

performed locally.

All these features support the use of WSN in highly

distributed monitoring applications in critical environments.

The example applications we will refer to in this paper are in

the domain of rail-based transport infrastructures, which need

to be protected against external threats which can be natural

(fire, flooding, landslide, etc.) or human-made malicious

(sabotage, terrorism, etc.).

Examples of useful sensors in this domain are listed in the

following: smoke and heat – useful for fire detection;

moisture and water – useful for flooding detection; pressure –

useful for explosion detection; movement detection

(accelerometer or satellite based shifting measurement) –

useful for theft detection or structural integrity checks; gas

and explosive – useful for chemical or bombing attack

detection; vibration and sound – useful for earthquake or

crash detection. WSN could also be used for video

surveillance and on-board intelligent video-analysis, as

reported in [19].

The heterogeneity of network topologies and measured data

requires integration and analysis at different levels (see

Figure 2).

As first, the monitoring of wide geographical areas and the

diffusion of sensor networks managed by different

middlewares have highlighted the research problem of the

integrated management of data coming from the various

networks. Unfortunately such information is not available in

a unique container, but in distributed repositories and the

major challenge lies in the heterogeneity of repositories

which complicates data management and retrieval processes.

 2

This issue is addressed by the SeNsIM framework [5], as

described in Section 3.

Secondly, there is the need for an on-line reasoning about

the events captured by sensor nodes, in order to early detect

and properly manage security threats. The availability of

possibly redundant data allows for the correlation of basic

events in order to increase the probability of detection,

decrease the false alarm rate, warn the operators about

suspect situations, and even automatically trigger adequate

countermeasures by the Security Management System

(SMS). This issue is addressed by the DETECT framework

[10], as described in Section 4.

The rest of the paper is organized as follows: Section 5

discusses about the SeNsIM and DETECT software

integration; Section 6 introduces example railway security

applications; Section 7 draws conclusions and hints about

future developments.

Figure 1. Critical Infrastructure Protection life-cycle.

(a) (b)

Figure 2. (a) Distributed sensing in physical security; (b)

Overall monitoring architecture

2. Related works

In this section we present some integration platforms for

heterogeneous sensor systems as well as most well known

techniques for composite event detection.

2.1. Integration platform for sensor systems

The need for guaranteeing the interoperability among several

monitoring systems have highlighted the problem of the

integrated management of data coming from different

networks. Interesting researches related to integration

techniques for heterogeneous sensor networks have taken

place, but to date only a few architecture have been

proposed.

In [2] Ahn and Chong propose an intelligent bridge as an

interoperable architecture for messages exchange between

heterogeneous wireless sensor networks. They define a

general messages exchange mechanism that uses XML as

message style and SOAP as transmission protocol. They also

conducted a case study based on two WSNs with different

network protocols (ZigBee and Bluetooth).

Hourglass [24] provides an Internet-based infrastructure

for connecting sensor networks to applications. It offers

topic-based discovery and data-processing services, but

focuses on maintaining quality of service of data streams in

the presence of disconnections.

GSN (Global Sensor Networks) [1] facilitates the flexible

integration and discovery of sensor networks and hides

arbitrary stream data sources behind its virtual sensor

abstraction. It enables the user to specify XML-based

deployment descriptors in combination with the possibility to

integrate sensor network data through plain SQL queries over

local and remote sensor data sources.

The ESP framework [21] enables sensor systems to be

queried without having to deal with the low-level

implementation of specific access methods. It provides a

mechanism to describe and model sensor systems using

ESPml, an XML-based language, by which information

regarding the sensor deployment can be specified.

Furthermore, the ESP architecture is based on web services

as interoperability platform.

Eventually, IrisNet [15] can be considered a hybrid

approach to integration. It is a web infrastructure for easy

deployment of wide-area sensing services. The architecture

consists of sensing agents (SA) which collect and pre-

process sensor data and organizing agents (OA) which store

sensor data in a hierarchical, distributed XML database that

supports XPath queries.

Most of these approach are still in a design phase since

they lack a real implementation. Some try to define a

common exchange mechanism among different sensor

systems in order to facilitate the integration, but often they

are strongly related to the adopted standards and

technologies. Others are based on new technologies (i.e. web

services for ESP), but the impact on performances is not

discussed, yet. IrisNet does not consider constraints and

characteristics of WSNs: it has introduced the notion of

wide-area “sensor webs”, such as those comprising Internet

connected, widely-dispersed PC-class nodes with powerful

CPUs that can process rich sensor data sources.

In contrast to the examined approaches, the SeNsIM

system provides a general-purpose infrastructure for sensor

systems integration, and a more general way to express

queries by introducing a query visual language. It is a

complete data retrieval and management platform with a

simple user interface by which is possible to execute queries.

2.2. Composite event detection

Composite event detection plays an important role in the

active database research community, which has long been

investigating the application of Event Condition Action

(ECA) paradigm in the context of using triggers, generally

associated with update, insert or delete operations. In HiPAC

[9] active database project an event algebra was firstly

defined.

Our approach for composite event detection follows the

semantics of the Snoop [7] event algebra. Snoop has been

developed at the University of Florida and its concepts have

been implemented in a prototype called Sentinel ([8], [17]).
Event trees are used for each composite event and these are

merged to form an event graph for detecting a set of

composite events. An important aspect of this work lies in the

notion of parameter contexts, which augment the semantics

of composite events for computing their parameters

(parameters indicate “component events”). CEDMOS [6]

 3

refers to the Snoop model in order to encompass

heterogeneity problems which often appear under the heading

of sensor fusion. In [3] the implementation of an event

detection engine that detects composite events specified by

expressions of an illustrative sublanguage of the Snoop event

algebra is presented. The engine ha been implemented as a

Web Service, so it can also be used by other services and

frameworks if the markup for the communication of results is

respected.

Different approaches for composite event detection are

taken in Ode [14] and Samos [13]. Ode uses an extended

Finite Automata for composite event detection while Samos

defines a mechanism based on Petri Nets for modeling and

detection of composite events for an Object Oriented Data-

Base Management System (OODBMS).

DETECT transfers to the physical security the concept of

Intrusion Detection System (IDS) which is nowadays

widespread in computer (or “logical”) security, also

borrowing the principles of Anomaly Detection, which is

applied when an attack pattern is known a priori, and Misuse

Detection, indicating the possibility of detecting unknown

attacks by observing a significant statistical deviation from

the normality [16]. The latter aspect is strictly related to the

field of Artificial Intelligence and related classification

methods.

Intelligent video-surveillance exploits Artificial Vision

algorithms in order to automatically track object movements

in the scene, detecting several type of events, including

virtual line crossing, unattended objects, aggressions, etc.

[22].

3. The SeNsIM framework

The SeNsIM system is an integration platform for

heterogeneous sensor systems. It is not just a middleware for

sensor networks, but a more general software architecture

which makes possible the deployment of applications based

on multiple sensor systems/networks and allows a generic

user or an application to easily access data sensed by a

network.

SeNsIM provides a unique interface for local networks

that allow a generic user to express queries by means of an

intuitive query visual language. It was conceived with the aim

to bridge the gap between heterogeneous sensor systems and

to provide a generic user/application with a unique way to

manage, query and interact with them. Nowadays there is a

tremendous heterogeneity in the logic for interfacing and

collecting data from sensor systems. In most of them an

application can directly access to sensor hardware by means

of opportune drivers. In many different scenarios, as in WSN,

an operating system between the hardware platform and the

application allows an easier use of the available sensing

functions and often a further middleware layer between the

operating system and the user/application provides an easy

way to access sensor data. The major issue of an integrating

system lies in the heterogeneity of the hardware to sense data

and of the repositories, these make data management and

retrieval process a hard task to achieve.

Furthermore, sensor data may be differently structured

according to the specific representation of different sensor

systems. In order to face such problems SeNsIM defines:

• an architectural model able to support in an efficient

way the management of data even when sensed by

different networks;

• a data model capable of representing in a unique format

both sensor data and sensor systems.

SeNsIM architectural model has been designed by exploiting

the wrapper-mediator paradigm, a well-known technique to

integrate data from heterogeneous source [26], in which the

mediator component accesses different data sources by

means of ad hoc connectors (wrappers). In SeNsIM, each

wrapper explores and monitors the local sensor network and

sends to the mediator an appropriate description of the

related information according to the common data model. On

the other hand the mediator organizes such information and

keeps a unique view of all systems in order to satisfy user or

application queries.

SeNsIM architectural model is made of 4 logical layers (see

Figure 3):

Figure 3. SeNsIM architectural model

1. The Application or User Layer allows a generic user to

submit queries and elaborate the retrieved data; a generic

application can also access sensor data through system

API. The system provides support for monitoring queries

which return the corresponding responses in real-time as

well as for event queries. Many context aware

applications need to trigger adequate actions/

countermeasures after that some events have been

generated by sensor systems.

2. The Mediator Layer aims to classify networks features

as well as to format and forward queries to specific

wrappers; a DBMS is used to store data related to

networks with their sensors, user queries and related

results.

3. The Wrapper Layer aims to extract and manage

information about the underlying network and its sensors;

at this layer queries from mediator are received and

executed on the local system by using its API and the

local query language. A DBMS in each wrapper

component is kept to for storing network/sensors

information according to the data model and local queries

with related results.

4. The Sensor system Layer aims to extract network

features and carry out the retrieval process.

SeNsIM data model is able to represent a sensor node as well

as the whole network. According to the model a sensor node

is an object characterized by a tuple of information which

 4

combine both structural and behavioral features. Our model

is able to represent sensor global information (type, producer,

description, etc...) as well as the variables that a sensor can

measure (temperature, light, humidity, etc...), predicates that

a sensor can calculate (e.g. temperature greater than a

threshold) and sensor operating state/mode (i.e. continuous

monitoring, event-driven monitoring). Further, a network

object has to include global information such as type of

sensor system, middleware (if present), supported sensor

board as well as information related to sensor components

(list of sensors, possible list of clusters, topology matrix).

Moreover it is possible to specify network global predicates

(e.g. average temperature of the network).

XML has been used to represent the data model, since it

provides platform independence, interoperability and can be

easily parsed [25]. XML-based descriptors let have a

unifying grammar by which systems can describe their

abilities and define a standard language protocol with which

the different entities in the framework can communicate. In

SeNsIM XML descriptors are exchanged between mediator

and wrappers components. The communication between

wrappers and mediator is carried out by using TCP and UDP

sockets according to the SeNsIM proprietary communication

protocol. The reference architecture of the SeNsIM system is

shown in Figure 4.

Figure 4. SeNsIM architecture

4. The DETECT framework

The basic assumption behind the DETECT framework is that

threats can be detected by predicting the set of basic events

(i.e. the patterns) which constitute their “signature”. For

instance, Figure 2a shows the multi-layered asset protection

provided by modern security systems. In each layer a set of

sensors (i.e. video, motion, temperature, vibration, sound,

smoke, etc.) are installed. Threat scenarios must be precisely

identified during Vulnerability Assessment and Risk

Analysis. DETECT operates by performing a model-based

logical, spatial and temporal correlation of basic events

detected by different sensor subsystems, in order to recognize

sequence of events which indicate the likelihood of threats.

DETECT is based on a real-time detection engine which

implements the concepts of data fusion and cognitive

reasoning by means of soft computing approaches. The

framework can be interfaced with or integrated in existing

SMS (Security Management Software). It can serve as an

early warning tool or even to automatically trigger adequate

countermeasures for emergency/crisis management. As such,

it may allow for a quick, focused and automatic response to

emergencies, though manual confirmation of detected alarms

remains an option. In fact, human management of critical

situations, possibly involving many simultaneous events, is a

very delicate task, which can be error prone as well as subject

to forced inhibition. Used as a warning system, it can alert

the operators about the likelihood and nature of the threat;

used as an autonomous reasoning engine, it can activate

responsive actions, including audio and visual alarms,

unblock of turnstiles, air conditioned flow inversion,

activation of sprinkles, emergency calls to first responders,

etc. Furthermore, the correlation among basic events detected

by diverse redundant sensors can also be employed to lower

the false alarm rate of the security system, thus improving the

overall reliability of the security system.

Threats are described in DETECT using a specific Event

Description Language (EDL) and stored in a Scenario

Repository. Starting from the Scenario Repository, one or

more detection models are automatically generated using a

suitable formalism (e.g. Event Graphs, Bayesian Networks,

Neural Networks, etc.). In the operational phase, a model

manager macro-module has the responsibility of performing

queries on the Event History database for the real-time

feeding of detection model according to predetermined

policies. When a composite event is recognized, the output of

DETECT consists of: the identifier(s) of the

detected/suspected scenario(s); an alarm level, associated to

scenario evolution (used as a progress indicator); a likelihood

of attack, expressed in terms of probability (used as a

threshold in heuristic detection). A high level architecture of

the framework is depicted in Figure 5.

Together with a sensor network integration framework,

DETECT can perform fusion and reasoning of data generated

by smart wireless sensors. To this aim, DETECT has to be

integrated on top of SeNsIM (Sensor Networks Integration

and Management), as depicted in Figure 2b.

Figure 5. The DETECT framework

2.3. Event Description and representation

The Detection Engine needs to recognize combination of

events, bound each other with appropriate operators in order

to form composite events of any complexity. Generally

speaking, an event is a happening that occurs in the system,

at some location and at some point in time. In our context,

events are related to sensor data variables (i.e. variable x

greater than a fixed threshold, variable y in a fixed range,

etc.). Events are classified as primitive events and composite

events.

A primitive event is a condition on a specific sensor which

is associated some parameters (i.e. event identifier, time of

occurrence, etc). Since the message transportation time is not

instantaneous, the event occurrence time can be different

 5

from the registration time. Several research works have

addressed the issue of clock synchronization in distributed

systems. Here we assume that a proper solution (e.g. time

shifting) has been adopted at a lower level.

A composite event is a combination of primitive events by

means of proper operators. The EDL of DETECT is derived

from the Snoop event algebra [7]. Every composite event

instance is a triple:

< IDec, parcont, te >

where:

• IDec is the composite event identifier;

• parcont is the parameter context, stating which

occurrences of primitive events need to be considered

during the composite event detection (as described

below);

• te is the temporal value related to the occurrence of the

composite event (corresponding to the tp of the last

component event).

Each event is denoted by an event expression, whose

complexity grows with the number of involved events. Given

the expressions E1, E2, …, En, every application on them

through any operator is still an expression. We use both

logical and temporal operators, for a formal specification of

their semantics, the reader can refer to [6]. Event expression

are represented by event tree, where primitive events are at

the leaves, while internal nodes represent EDL operators.

Figure 6 shows an example event tree representing a

composite event.

The engine also performs time correlation on events by

defining and exploiting temporal constraints. In fact, logic

correlation could loose meaningfulness when the time

interval between correlated events exceeds a certain

threshold. Temporal constraints can be defined on both

primitive and composite events with the aim of defining a

validity interval for the overall composite event. Such

constraints can be added to any operator in the formal

expression used for event description.

Figure 6. Event tree for composite event ((E1 OR E2)

AND (E2 SEQ (E4 AND E6)))

For instance, let us assume that in the composite event E =

(E1 AND E2) the time interval between the occurrence of

primitive events E1 and E2 must be at most T. The formal

expression is modified by adding the temporal constraint [T]

as follows:

(E1 AND E2) [T] = True

⇔

∃ t1< t | (E1(t) ∧ E2(t1) ∨ E1(t1) ∧ E2(t)) ∧ |t – t1| ≤ T

2.4. The software architecture

The framework is made up by the following main modules

(see Figure 7):

• Event History, that is database containing the list of

basic events detected by sensors or cameras, tagged

with a set of relevant attributes including detection

time, event type, sensor id, sensor type, sensor group,

object id, etc. (some of which can be optional, e.g.

“object id” is only needed when video-surveillance

supports inter-camera object tracking). A specific

external Events Adaptor Module aims to fill the

Event History with the primitive events coming from

a monitoring sensor network. The functionalities

offered by such a module can be accomplished the

SeNsIM system, as we will illustrate in the next

section.

• Detection Engine, supporting both deterministic

(e.g. Event Trees, Event Graphs) and heuristic (e.g.

Artificial Neural Networks, Bayesian Networks)

models, sharing the primary requirement of real-time

solvability (which excludes e.g. Petri Nets from the

list of candidate formalisms). For each Detection

Model there is a Model Feeder which instantiates

the inputs of the engine according to the nature of the

models by critically performing proper queries and

data filtering on the Event History (e.g. selecting

sensor typologies and zones, excluding temporally

distant events, etc.). At the moment, the detection

engine is only based on the deterministic model of

the event trees.

• Model Solver, that is the existing or specifically

developed tool used to execute the model. It

implements the logical assumptions to solve the

Detection Model, based on the inputs coming from

the Model Feeder, therefore it is the responsible

module for the composite event detection. We have

implemented our own Model Solver based on the

event trees Detection Model.

• Model Executor (one for each model), which

triggers the execution of the mode, once it has been

instantiated, by activating the related solver. An

execution is usually needed at each new event

detection.

• Model Updater (one for each model), which is used

for on-line modification of the model (e.g. update of

a threshold parameter), without regenerating the

whole model (whenever supported by the modeling

formalism).

• Output Manager (single), which stores the output of

the model(s) and/or passes it to the interface

modules.

 6

• Scenario GUI (Graphical User Interface), used to

draw attack scenarios using an intuitive formalism

and a user-friendly interface. Once a scenario has

been built, it will be converted in a XML document

by the XML File Generator module and then

indexed in the Attack Scenario Repository. In this

way we are able to store permanently all scenario

features in a formal way as well as to facilitate

possible subsequent data processing by other

applications. In the opposite way, when the user

selects the attack scenario he wants to detect from the

repository, the XML document which contains its

description has to be re-converted in the detection

model, which represents the composite event related

to the scenario. This task is carried out by the Model

Generator which recover the original graph and its

parameter by parsing the related XML document.

DETECT makes it possible to associate different alarm

levels to each composite event as well as to its component

sub-event which have to be signaled by the detection engine.

In this way the user can be aware of the attack scenarios since

their first evolution steps. Alarms could be sent to existing

SMS/SCADA systems in order to trigger adequate

countermeasures. However an Event Log is kept to gather all

information about detected events (detection time, alarm

level, instances of component events involved in the

composite event detection process).

5. Integration of SeNsIM and DETECT

The SeNsIM and DETECT frameworks need to be integrated

in order to obtain an on-line reasoning about the events

captured by different sensor systems. As mentioned above,

the aim is to early detect and manage security threats against

critical infrastructures. In this section we provide the

description of the sub-components involved in the software

integration of SeNsIM and DETECT.

Figure 7. DETECT software architecture

During the query processing task of SeNsIM, user queries

are first submitted by means of a User Interface; then, a

specific module (Query Builder) is used to build a query. The

user queries are finally processed by means of a Query

Processing module which sends the query to the appropriate

wrappers. The partial and global query results are then stored

in a database named Event History. All the results are

captured and managed by a Results Handler, which

implements the interface with wrappers.

The Model Feeder is the DETECT component which

performs periodic queries on the Event History to access

primitive event occurrences. The Model Feeder instantiates

the inputs of the Detection Engine according to the nature of

the model(s).

Therefore, the integration is straightforward and mainly

consists in the management of the Event History as a shared

database, written by the mediator and read by the Model

Feeder according to an appropriate concurrency protocol.

In Figure 8 we report software modules involved in the

integration process between SeNsIM and DETECT. The

figure also shows the modules of SeNsIM involved in the

retrieval process, in particular:

• Query Processing is a macro-module, containing several

sub-modules;

• GUI (Graphical User Interface) is used to edit

DETECT scenarios using a graphical formalism

translatable to EDL files. Moreover it allows the user to

define SeNsIM queries for sensor data retrieval. User

interaction is only needed in the configuration phase, to

define attack scenarios and query parameters. According

to the query strategy, both SeNsIM and DETECT can

access data from the lower layers using either a cyclic or

event driven retrieval process.

Figure 8. Query processing and software integration

6. Example application scenarios

In this section we report two example applications of the

overall framework to case-studies related to rail-based

transportation systems, which are attractive targets for

thieves, vandals and terrorists. Several application scenarios

can be thought exploiting the proposed architecture and

several sensors (intrusion detection, track line break

detection, on-track obstacle detection, etc.) and actuators

 7

(e.g. alarms, public address, virtual or light signalling

devices, etc.) could be installed to monitor system integrity

against external threats and notify anomalies. In the following

we describe how to detect some complex scenarios, including

terrorist strategic attacks.

6.1 Explosive in a subway tunnel

The first attack scenario consists of an intrusion and drop of

an explosive device in a subway tunnel. Let us suppose that

the dynamic of the scenario follows the steps reported below:

1. The attacker stays on the platform for the time needed to

prepare the attack, missing one or more trains.

2. The attacker goes down the tracks by crossing the limit

of the platform and moves inside the tunnel portal.

3. The attacker drops the bag containing the explosive

device inside the tunnel and leaves the station.

Obviously, it is possible to think of several variants of this

scenario. For instance, only one between step 1 and step 2

could happen. Please note that the detection of step 1 (person

not taking the train) would be very difficult to detect by a

human operator in a crowded station due to the people going

on and off the train.

Now, let us formally describe the scenario using wireless

sensors and detected events, using the notation “sensor

description (sensor ID) :: event description (event ID)”:

INTELLIGENT CAMERA (S1) ::

EXTENDED PRESENCE ON THE PLATFORM (E1)

INTELLIGENT CAMERA (S1) ::

TRAIN PASSING (E2)

INTELLIGENT CAMERA (S1) ::

PLATFORM LINE CROSSING (E3)

ACTIVE INFRARED BARRIERS (S2) ::

TUNNEL INTRUSION (E4)

EXPLOSIVE SNIFFER (S5) ::

EXPLOSIVE DETECTION (E5)

For the sake of brevity, further steps are omitted.

The composite event drop of explosive in tunnel can be

specified in EDL as follows:

(E1 AND E2) OR E3 SEQ (E4 AND E5)

A partial alarm can be associated to the scenario evolution

after step 1 (left AND in the EDL expression), in order to

warn the operator of a suspect abnormal behavior. In the

design phase, the scenario is represented using Event Trees

and stored in the Scenario Repository of DETECT. In the

operational phase, SeNsIM records the sequence of detected

events in the Event History. When the events corresponding

to the scenario occur, DETECT provides the scenario

identifier and the alarm level (with a likelihood index in case

of non deterministic detection models). Pre-configured

countermeasures can then be activated by the SMS on the

base of such information.

6.2 Attack of a high-speed railway line

Let us suppose a terrorist decides to attack a high-speed

railway line, which is completely supervised by a computer-

based control system. A possible scenario consisting in

multiple train halting and railway bridge bombing is reported

in the following:

1. Artificial occupation (e.g. by using a wire) of the track

circuits immediately after the location in which the trains

needs to be stopped (let us suppose a high bridge), in both

directions.

2. Interruption of the railway power line, in order to prevent

the trains from restarting using a staff responsible

operating mode.

3. Bombing of the bridge shafts by remotely activating the

already positioned explosive charges.

Variants of this scenarios exist: for instance, trains can be

(less precisely) stopped by activating jammers to disturb the

wireless communication channel used for radio signaling, or

starting the attack from point (2) (but this would be even less

precise). The described scenario could be early identified by

detecting the abnormal events reported in point (1) and

activating proper countermeasures. By using proper on-track

sensors it is possible to monitor the abnormal occupation of

track circuits and a possible countermeasure consists in

immediately sending an unconditional emergency stop

message to the train. This would prevent the terrorist from

stopping the train at the desired location and therefore halt

the evolution of the attack scenario. Even though the

detection of events in points (2) and (3) would happen too

late to prevent the disaster, it could be useful to achieve a

greater situational awareness about what is happening in

order to rationalize the intervention of first responders.

The formal description of the scenario is the following:

FENCE VIBRATION DETECTOR (S1) ::

POSSIBLE ON TRACK INTRUSION (E1)

TRACK CIRCUIT X (S2) ::

OCCUPATION (E2)

LINESIDE TRAIN DETECTOR (S3) ::

NO TRAIN DETECTED (E3)

TRACK CIRCUIT Y (S4) ::

OCCUPATION (E4)

LINESIDE TRAIN DETECTOR (S5) ::

NO TRAIN DETECTED (E5)

VOLTMETER (S6) ::

NO POWER (E6)

ON-SHAFT ACCELEROMETER (S7) ::

STRUCTURAL MOVEMENT (E7)

Due to the integration middleware made available by

SeNsIM, these events are not required to be detected on the

same physical WSN, but they just need to share the same

sensor group identifier at the DETECT level. Event (a) is not

mandatory, as the detection probability is not 100%. Please

not that each of the listed events taken singularly would not

imply a security anomaly or be a reliable indicator of it.

The EDL description of the above scenario is provided in

the following (in the assumption of unique event identifiers):

 8

(((E1 SEQ ((E2 AND E3) OR (E4 AND E5)))

OR

((E2 AND E3) AND (E4 AND E5)))

SEQ E6) SEQ E7

Top-down and left to right, using 4 levels of alarm severity:

a) E1 can be associated a level 1 warning (alert to the

security officer);

b) The composite events determined by the first group of 4

operators and the second group of 3 operators can be both

associated a level 2 warning (triggering the unconditional

emergency stop message);

c) The composite event terminating with E6 can be

associated a level 3 warning (switch on back-up power

supply, whenever available)

d) The composite event terminating with E7 (complete

scenario) can be associated a level 4 warning (emergency

call to first responders).

7. Conclusions and future works

New smart-sensor technologies are being investigated by the

research community for infrastructure monitoring. These

technologies are highly different from each other, and this

can significantly contribute to raise detection reliability while

lowering the false alarm rate by diverse data correlation [4];

however, this also raises a problem in data integration and

reasoning. In this paper we have provided the description of a

framework which can be employed to collect and analyze

data measured by such heterogeneous sources in order to

enhance the protection of critical infrastructures.

One of the research threads we are addressing points at

seamlessly integrating sensors and application specific

devices which can serve as useful information sources for a

superior situational awareness in security critical

applications. Furthermore, we are currently extending the

EDL language with stochastic operators to allow for heuristic

detection model; to this aim, we are also implementing

Bayesian Network detection models to account for data and

parameter uncertainties.

The next operational step will be the interfacing of the

overall system with a real security management system for

the on-the-field experimentation. The integration will be

performed using web-services and/or the OPC (OLE for

Process Communication) standard protocol.

The verification of the overall system is also a delicate

issue which can be addressed using the methodology

described in [11].

References

[1] Aberer, K.; Hauswirth, M.; Salehi, A. 2006. The Global

Sensor Networks middleware for efficient and flexible

deployment and interconnection of sensor networks.

Technical Report.

[2] Ahn, S.; Chong, K. 2006. Building a Bridge for Heterogeneous

Sensor Networks. Proceedings of the Fourth IEEE Workshop

on SEUS-WCCIA 06.

[3] Alferes Gaston, J. J. & Tagni, E. 2006. Implementation of a

Complex Event Engine for the Web. In Proceedings of IEEE

Services Computing Workshops (SCW 2006). September 18-

22. Chicago, Illinois, USA.

[4] Bocchetti, G., Flammini, F., Pappalardo, A., Pragliola, C.:

Dependable integrated surveillance systems for the physical

security of metro railways. In: Proc. 3rd ACM/IEEE

International Conference on Distributed Smart Cameras

(ICDSC’09), 30 August - 2 September 2009, Como, Italy. To

appear.

[5] Casola, V.; Gaglione, A. & Mazzeo A. 2009. A Reference

Architecture for Sensor Networks Integration and

Management. To appear in Proc. of the 3rd International

Conference on Geosensor Networks (GSN 2009), 2009.

[6] Cassandra, A.R.; Baker, D. & Rashid, M. 1999. CEDMOS:

Complex Event Detection and Monitoring System. MCC

Tecnical Report CEDMOS-002-99, MCC, Austin, TX.

[7] Chakravarthy, S. & Mishra, D. 1994. Snoop: An expressive

event specification language for active databases. Data

Knowl. Eng., Vol. 14, No. 1, pp. 1–26.

[8] Chakravarthy, S.; Krishnaprasad, V.; Anwar, E. & Kim, S.

1994. Composite Events for Active Databases: Semantics,

Contexts and Detection. In Proceedings of the 20th

international Conference on Very Large Data Bases

(September 12 - 15, 1994).

[9] Dayal, U.; Blaustein, B.T.; Buchmann, A.P.; Chakravarthy, S.;

Hsu, M.; Ledin, R.; McCarthy, D.R.; Rosenthal, A.; Sarin,

S.K.; Carey, M.J.; Livny, M.; Jauhari, R. 1988. The HiPAC

Project: Combining Active Databases and Timing

Constraints. SIGMOD Record, Vol. 17, No. 1, pp. 51-70.

[10] Flammini, F.; Gaglione, A.; Mazzocca, N.; Pragliola, C.2008.

DETECT: a novel framework for the detection of attacks to

critical infrastructures. In: Safety, Reliability and Risk

Analysis: Theory, Methods and Applications - Martorell et al.

(eds), Taylor & Francis, Proc. of ESREL'08, Valencia, Spain,

22-25 September 2008: pp. 105-112

[11] Flammini, F; Mazzocca, N.; Orazzo, A. Automatic

instantiation of abstract tests to specific configurations for

large critical control systems. In: Journal of Software Testing,

Verification & Reliability (STVR), Wiley, Vol. 19, Issue 2,

pp. 91-110

[12] Garcia, M.L. 2001. The Design and Evaluation of Physical

Protection Systems. Butterworth-Heinemann, USA.

[13] Gatziu, S. & Dittrich, K.R. 1994. Detecting Composite Events

in Active Databases Using Petri Nets. In Proceedings of the

4th International Workshop on Research Issues in data

Engineering: Active Database Systems, pp. 2-9.

[14] Gerani, N.H.; Jagadish, H.V. & Shmueli, O. 1992. COMPOSE

A System For Composite Event Specification and Detection.

Technical report, AT&T Bell Laboratories, Murray Hill, NJ.

[15] Gibbons, P. B.; Karp, B.; Ke, Y.; Nath, S.; Seshan, S. 2003.

IrisNet: An Architecture for a World-Wide Sensor Web. IEEE

Pervasive Computing, 2(4).

[16] Jones, A.K. & Sielken, R.S. 2000. Computer System Intrusion

Detection: A Survey. Technical Report, Computer Science

Dept., University of Virginia.

[17] Krishnaprasad, V. 1994. Event Detection for Supporting

Active Capability in an OODBMS: Semantics, Architecture

and Implementation. Master’s Thesis. University of Florida.

[18] Lewis, T.G. 2006. Critical Infrastructure Protection in

Homeland Security: Defending a Networked Nation. John

Wiley, New York.

[19] M. Rahimi, M.; R. Baer, R. & et al. 2005. Cyclops: In situ

image sensing and interpretation in wireless sensor networks.

In Proc. 3rd ACM Conference on Embedded Networked

Sensor Systems (SenSys'05), 2005.

[20] Perrig, A.; Stankovic, J. & Wagner, D. 2004. Security in

Wireless Sensor Networks. In Communications of the ACM,

Vol. 47, No. 6, pp. 53-57

[21] Reddy, S.; Schmid, T.; Yau, N.; Chen, G.; Estrin, D.;

Hansen, M.; Srivastava, M. B. 2006. ESP Framework: A

 9

middleware architecture for heterogeneous sensing systems.

December 2006.

[22] Remagnino, P.; Velastinm S. A.; Foresti G. L. & Trivedi M.

2007. Novel concepts and challenges for the next generation

of video surveillance systems. In Machine Vision and

Applications (Springer), Vol. 18, Issue 3-4, pp. 135-137.

[23] Roman, R.; Alcaraz, C. & Lopez, J. 2007. The role of

Wireless Sensor Networks in the area of Critical Information

Infrastructure Protection. Inf. Secur. Tech. Rep., Vol. 12, No.

1 (Jan. 2007), pp. 24-31.

[24] Shneidman, J.; Pietzuch, P.; Ledlie, J.; Roussopoulos, M.;

Seltzer, M.; Welsh, M. 2004. Hourglass: An Infrastructure

for Connecting Sensor Networks and Applications. Technical

Report TR-21-04, Harvard University, EECS.

[25] W3C Architecture Domain, Extensible Markup Language

(XML). URL: http://www.w3.org/XML/.

[26] Wiederhold, G. 1992. Mediators in the architecture of future

information systems. In IEEE Computer, 25(3).

Author Biographies

Francesco Flammini got with honors his laurea (July 2003) and doctorate

(December 2006) degrees in Computer Engineering from the University

Federico II of Naples. From October 2003 to January 2007, he has worked

in Ansaldo STS as a Software Engineer in the RAMS unit on the

verification and validation of real-time control systems. Since February

2007, he has worked in the Innovation unit on the protection of

transportation infrastructures. He has been an Adjunct Professor of Software

Engineering and Computer Science and currently serves as the Editor in

Chief for the International Journal of Critical Computer-Based Systems.

Andrea Gaglione got a B.S. degree and an M.S. degree in Computer

Science and Engineering, both summa cum laude, from the Second

University of Naples, in 2004 and 2006 respectively. He is currently

pursuing a Ph.D. in Computer and Control Engineering at the University of

Naples Federico II, since he was awarded a Ph.D. fellowship from

AnsaldoSTS in 2006. His research activities are both theoretical and

experimental and include sensor networks integration, sensor security and

critical infrastructure protection.

Nicola Mazzocca is a full professor of High-Performance and Reliable

Computing at the Computer and System Engineering Department of the

University of Naples Federico II, Italy. He owns an MSc Degree in

Electronic Engineering and a Ph.D. in Computer Engineering, both from the

University of Naples Federico II. His research activities include

methodologies and tools for design/analysis of distributed systems, secure

and real-time systems and dedicated parallel architectures.

Vincenzo Moscato is an assistant professor at the University of Naples
Federico II. He received the Laurea degree in Computer Science and

Engineering from the University of Naples ”Federico II”, Naples, Italy, in

2002. His research interests are in the area of image processing (active

vision) and multimedia database systems (image databases, video databases,

and architectures for multimedia data source integration).

Concetta Pragliola got her laurea and doctorate degrees in Electronic

Engineering from the University Federico II of Naples in October 1985.

From January 1987 to October 1992 she has worked in the Research

Department of Ansaldo Transporti on Expert Systems and Simulation

programs. From November 1992 to October 2001, she has worked in the

Information Technology Department of Ansaldo Trasporti, being involved

in PDM systems. From November 2001 to November 2006 she has worked

in Elsag as an Account Manager. Since December 2006 she has worked in

the Innovation unit of Ansaldo STS specializing on the design of security

systems.

