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Abstract: Modern security systems employed in infrastructure 

surveillance applications include a set of different sensing 

technologies integrated by appropriate management systems. Such 

systems are still highly dependent from human operators for 

supervision and intervention. One of the challenging goals of the 

research community in this field is the automatic detection of both 

natural and malicious threat scenarios. In this paper we describe a 

framework for correlating events detected by sensor networks to 

provide early warning and decision support capabilities. To this 

aim, we propose an overall system architecture for the integration of 

the DETECT and SeNsIM frameworks: DETECT (Decision 

Triggering Event Composer & Tracker) is a new system which is 

able to recognize complex events by a model-based correlation of 

primitive events; SeNsIM (Sensor Networks Integration and 

Management) is a middleware for the integration of heterogeneous 

sensor networks. The paper also provides example application 

scenarios in the railway domain. 
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1. Introduction 

The best way to face threats is to stop them before they can 

cause catastrophic consequences. Unfortunately, visual 

surveillance of video streams and sensor alarms provided by 

current security systems does not allow operators for a 

satisfactory situational awareness when the sequence of 

events is large, heterogeneous, geographically distributed and 

rapidly evolving. Therefore, operators are hardly able to 

recognize sequences of events which are indicative of 

possible threats due to their limited alert threshold and 

knowledge base. Furthermore, operators can be unable to 

guide and coordinate alarm responses or emergency 

interventions if they are not precisely aware of what is 

happening or has happened. In order to cope with these 

issues, early warning and decision support systems can be 

adopted. 

The aim of this work is to propose the architecture for a 

decision support and early warning system used to effectively 

face security threats (e.g. terrorist attacks) based on 

heterogeneous distributed sensor networks. Therefore, this 

work locates at the third stage (i.e. “Indications and 

warning”) of the Critical Infrastructure Protection life-cycle 

(see Figure 1). 

In particular, smart-sensors used in Wireless Sensor 

Networks (WSN) feature several advantages when applied to 

critical infrastructure surveillance [23], as they are:  

• Cheap, and this allows for fine grained and highly 

redundant configurations; 

• Resilient, due to their fault-tolerant mesh topology; 

• Power autonomous, due to the possibility of battery and 

photovoltaic energy supplies; 

• Easily installable, due to their wireless nature and auto-

adapting multi-hop routing; 

• Intelligent, due to the on-board processor and operating 

systems which allow for some data elaborations being 

performed locally. 

All these features support the use of WSN in highly 

distributed monitoring applications in critical environments. 

The example applications we will refer to in this paper are in 

the domain of rail-based transport infrastructures, which need 

to be protected against external threats which can be natural 

(fire, flooding, landslide, etc.) or human-made malicious 

(sabotage, terrorism, etc.). 

Examples of useful sensors in this domain are listed in the 

following: smoke and heat – useful for fire detection; 

moisture and water – useful for flooding detection; pressure – 

useful for explosion detection; movement detection 

(accelerometer or satellite based shifting measurement) – 

useful for theft detection or structural integrity checks; gas 

and explosive – useful for chemical or bombing attack 

detection; vibration and sound – useful for earthquake or 

crash detection. WSN could also be used for video 

surveillance and on-board intelligent video-analysis, as 

reported in [19]. 

The heterogeneity of network topologies and measured data 

requires integration and analysis at different levels (see 

Figure 2). 

As first, the monitoring of wide geographical areas and the 

diffusion of sensor networks managed by different 

middlewares have highlighted the research problem of the 

integrated management of data coming from the various 

networks. Unfortunately such information is not available in 

a unique container, but in distributed repositories and the 

major challenge lies in the heterogeneity of repositories 

which complicates data management and retrieval processes. 
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This issue is addressed by the SeNsIM framework [5], as 

described in Section 3. 

Secondly, there is the need for an on-line reasoning about 

the events captured by sensor nodes, in order to early detect 

and properly manage security threats. The availability of 

possibly redundant data allows for the correlation of basic 

events in order to increase the probability of detection, 

decrease the false alarm rate, warn the operators about 

suspect situations, and even automatically trigger adequate 

countermeasures by the Security Management System 

(SMS). This issue is addressed by the DETECT framework 

[10], as described in Section 4. 

The rest of the paper is organized as follows: Section 5 

discusses about the SeNsIM and DETECT software 

integration; Section 6 introduces example railway security 

applications; Section 7 draws conclusions and hints about 

future developments.  

 

 
 

Figure 1. Critical Infrastructure Protection life-cycle. 

 

(a) (b) 

 

Figure 2. (a) Distributed sensing in physical security; (b) 

Overall monitoring architecture 

2. Related works 

In this section we present some integration platforms for 

heterogeneous sensor systems as well as most well known 

techniques for composite event detection.  

2.1. Integration platform for sensor systems 

The need for guaranteeing the interoperability among several 

monitoring systems have highlighted the problem of the 

integrated management of data coming from different 

networks. Interesting researches related to integration 

techniques for heterogeneous sensor networks have taken 

place, but to date only a few architecture have been 

proposed. 

In [2] Ahn and Chong propose an intelligent bridge as an 

interoperable architecture for messages exchange between 

heterogeneous wireless sensor networks. They define a 

general messages exchange mechanism that uses XML as 

message style and SOAP as transmission protocol. They also 

conducted a case study based on two WSNs with different 

network protocols (ZigBee and Bluetooth). 

Hourglass [24] provides an Internet-based infrastructure 

for connecting sensor networks to applications. It offers 

topic-based discovery and data-processing services, but 

focuses on maintaining quality of service of data streams in 

the presence of disconnections. 

GSN (Global Sensor Networks) [1] facilitates the flexible 

integration and discovery of sensor networks and hides 

arbitrary stream data sources behind its virtual sensor 

abstraction. It enables the user to specify XML-based 

deployment descriptors in combination with the possibility to 

integrate sensor network data through plain SQL queries over 

local and remote sensor data sources.  

The ESP framework [21] enables sensor systems to be 

queried without having to deal with the low-level 

implementation of specific access methods. It provides a 

mechanism to describe and model sensor systems using 

ESPml, an XML-based language, by which information 

regarding the sensor deployment can be specified. 

Furthermore, the ESP architecture is based on web services 

as interoperability platform. 

Eventually, IrisNet [15] can be considered a hybrid 

approach to integration. It is a web infrastructure for easy 

deployment of wide-area sensing services. The architecture 

consists of sensing agents (SA) which collect and pre-

process sensor data and organizing agents (OA) which store 

sensor data in a hierarchical, distributed XML database that 

supports XPath queries. 

Most of these approach are still in a design phase since 

they lack a real implementation. Some try to define a 

common exchange mechanism among different sensor 

systems in order to facilitate the integration, but often they 

are strongly related to the adopted standards and 

technologies. Others are based on new technologies (i.e. web 

services for ESP), but the impact on performances is not 

discussed, yet. IrisNet does not consider constraints and 

characteristics of WSNs: it has introduced the notion of 

wide-area “sensor webs”, such as those comprising Internet 

connected, widely-dispersed PC-class nodes with powerful 

CPUs that can process rich sensor data sources. 

In contrast to the examined approaches, the SeNsIM 

system provides a general-purpose infrastructure for sensor 

systems integration, and a more general way to express 

queries by introducing a query visual language. It is a 

complete data retrieval and management platform with a 

simple user interface by which is possible to execute queries. 

2.2. Composite event detection 

Composite event detection plays an important role in the 

active database research community, which has long been 

investigating the application of Event Condition Action 

(ECA) paradigm in the context of using triggers, generally 

associated with update, insert or delete operations. In HiPAC 

[9] active database project an event algebra was firstly 

defined. 

Our approach for composite event detection follows the 

semantics of the Snoop [7] event algebra. Snoop has been 

developed at the University of Florida and its concepts have 

been implemented in a prototype called Sentinel ([8], [17]). 
Event trees are used for each composite event and these are 

merged to form an event graph for detecting a set of 

composite events. An important aspect of this work lies in the 

notion of parameter contexts, which augment the semantics 

of composite events for computing their parameters 

(parameters indicate “component events”). CEDMOS [6] 
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refers to the Snoop model in order to encompass 

heterogeneity problems which often appear under the heading 

of sensor fusion. In [3] the implementation of an event 

detection engine that detects composite events specified by 

expressions of an illustrative sublanguage of the Snoop event 

algebra is presented. The engine ha been implemented as a 

Web Service, so it can also be used by other services and 

frameworks if the markup for the communication of results is 

respected. 

Different approaches for composite event detection are 

taken in Ode [14] and Samos [13]. Ode uses an extended 

Finite Automata for composite event detection while Samos 

defines a mechanism based on Petri Nets for modeling and 

detection of composite events for an Object Oriented Data-

Base Management System (OODBMS). 

DETECT transfers to the physical security the concept of 

Intrusion Detection System (IDS) which is nowadays 

widespread in computer (or “logical”) security, also 

borrowing the principles of Anomaly Detection, which is 

applied when an attack pattern is known a priori, and Misuse 

Detection, indicating the possibility of detecting unknown 

attacks by observing a significant statistical deviation from 

the normality [16]. The latter aspect is strictly related to the 

field of Artificial Intelligence and related classification 

methods. 

Intelligent video-surveillance exploits Artificial Vision 

algorithms in order to automatically track object movements 

in the scene, detecting several type of events, including 

virtual line crossing, unattended objects, aggressions, etc. 

[22]. 

3. The SeNsIM framework 

The SeNsIM system is an integration platform for 

heterogeneous  sensor systems. It is not just a middleware for 

sensor networks, but a more general software architecture 

which makes possible the deployment of applications based 

on multiple sensor systems/networks and allows a generic 

user or an application to easily access data sensed by a 

network.  

SeNsIM provides a unique interface for local networks 

that allow a generic user to express queries by means of an 

intuitive query visual language. It was conceived with the aim 

to bridge the gap between heterogeneous sensor systems and 

to provide a generic user/application with a unique way to 

manage, query and interact with them. Nowadays there is a 

tremendous heterogeneity in the logic for interfacing and 

collecting data from sensor systems. In most of them an 

application can directly access to sensor hardware by means 

of opportune drivers. In many different scenarios, as in WSN, 

an operating system between the hardware platform and the 

application allows an easier use of the available sensing 

functions and often a further middleware layer between the 

operating system and the user/application provides an easy 

way to access sensor data. The major issue of an integrating 

system lies in the heterogeneity of the hardware to sense data 

and of the repositories, these make data management and 

retrieval process a hard task to achieve. 

Furthermore, sensor data may be differently structured 

according to the specific representation of different sensor 

systems. In order to face such problems SeNsIM defines: 

• an architectural model able to support in an efficient 

way the management of data even when sensed by 

different networks; 

• a data model capable of representing in a unique format 

both sensor data and sensor systems. 

 

SeNsIM architectural model has been designed by exploiting 

the wrapper-mediator paradigm, a well-known technique to 

integrate data from heterogeneous source [26], in which the 

mediator component accesses different data sources by 

means of ad hoc connectors (wrappers). In SeNsIM, each 

wrapper explores and monitors the local sensor network and 

sends to the mediator an appropriate description of the 

related information according to the common data model. On 

the other hand the mediator organizes such information and 

keeps a unique view of all systems in order to satisfy user or 

application queries. 

SeNsIM architectural model is made of 4 logical layers (see 

Figure 3): 

 

 
 

Figure 3. SeNsIM architectural model 

 

1. The Application or User Layer allows a generic user to 

submit queries and elaborate the retrieved data; a generic 

application can also access sensor data through system 

API. The system provides support for monitoring queries 

which return the corresponding responses in real-time as 

well as for event queries. Many context aware 

applications need to trigger adequate actions/ 

countermeasures after that some events have been 

generated by sensor systems. 

2. The Mediator Layer aims to classify networks features 

as well as to format and forward queries to specific 

wrappers; a DBMS is used to store data related to 

networks with their sensors, user queries and related 

results. 

3. The Wrapper Layer aims to extract and manage 

information about the underlying network and its sensors; 

at this layer queries from mediator are received and 

executed on the local system by using its API and the 

local query language. A DBMS in each wrapper 

component is kept to for storing network/sensors 

information according to the data model and local queries 

with related results. 

4. The Sensor system Layer aims to extract network 

features and carry out the retrieval process. 

 

SeNsIM data model is able to represent a sensor node as well 

as the whole network. According to the model a sensor node 

is an object characterized by a tuple of information which 
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combine both structural and behavioral features. Our model 

is able to represent sensor global information (type, producer, 

description, etc...) as well as the variables that a sensor can 

measure (temperature, light, humidity, etc...), predicates that 

a sensor can calculate (e.g. temperature greater than a 

threshold) and sensor operating state/mode (i.e. continuous 

monitoring, event-driven monitoring). Further, a network 

object has to include global information such as type of 

sensor system, middleware (if present), supported sensor 

board as well as information related to sensor components 

(list of sensors, possible list of clusters, topology matrix). 

Moreover it is possible to specify network global predicates 

(e.g. average temperature of the network).  

XML has been used to represent the data model, since it 

provides platform independence, interoperability and can be 

easily parsed [25]. XML-based descriptors let have a 

unifying grammar by which systems can describe their 

abilities and define a standard language protocol with which 

the different entities in the framework can communicate. In 

SeNsIM XML descriptors are exchanged between mediator 

and wrappers components. The communication between 

wrappers and mediator is carried out by using TCP and UDP 

sockets according to the SeNsIM proprietary communication 

protocol. The reference architecture of the SeNsIM system is 

shown in Figure 4.  

 

 
 

Figure 4. SeNsIM architecture 

4. The DETECT framework 

The basic assumption behind the DETECT framework is that 

threats can be detected by predicting the set of basic events 

(i.e. the patterns) which constitute their “signature”. For 

instance, Figure 2a shows the multi-layered asset protection 

provided by modern security systems. In each layer a set of 

sensors (i.e. video, motion, temperature, vibration, sound, 

smoke, etc.) are installed. Threat scenarios must be precisely 

identified during Vulnerability Assessment and Risk 

Analysis. DETECT operates by performing a model-based 

logical, spatial and temporal correlation of basic events 

detected by different sensor subsystems, in order to recognize 

sequence of events which indicate the likelihood of threats. 

DETECT is based on a real-time detection engine which 

implements the concepts of data fusion and cognitive 

reasoning by means of soft computing approaches. The 

framework can be interfaced with or integrated in existing 

SMS (Security Management Software). It can serve as an 

early warning tool or even to automatically trigger adequate 

countermeasures for emergency/crisis management. As such, 

it may allow for a quick, focused and automatic response to 

emergencies, though manual confirmation of detected alarms 

remains an option. In fact, human management of critical 

situations, possibly involving many simultaneous events, is a 

very delicate task, which can be error prone as well as subject 

to forced inhibition. Used as a warning system, it can alert 

the operators about the likelihood and nature of the threat; 

used as an autonomous reasoning engine, it can activate 

responsive actions, including audio and visual alarms, 

unblock of turnstiles, air conditioned flow inversion, 

activation of sprinkles, emergency calls to first responders, 

etc. Furthermore, the correlation among basic events detected 

by diverse redundant sensors can also be employed to lower 

the false alarm rate of the security system, thus improving the 

overall reliability of the security system. 

Threats are described in DETECT using a specific Event 

Description Language (EDL) and stored in a Scenario 

Repository. Starting from the Scenario Repository, one or 

more detection models are automatically generated using a 

suitable formalism (e.g. Event Graphs, Bayesian Networks, 

Neural Networks, etc.). In the operational phase, a model 

manager macro-module has the responsibility of performing 

queries on the Event History database for the real-time 

feeding of detection model according to predetermined 

policies. When a composite event is recognized, the output of 

DETECT consists of: the identifier(s) of the 

detected/suspected scenario(s); an alarm level, associated to 

scenario evolution (used as a progress indicator); a likelihood 

of attack, expressed in terms of probability (used as a 

threshold in heuristic detection). A high level architecture of 

the framework is depicted in Figure 5. 

Together with a sensor network integration framework, 

DETECT can perform fusion and reasoning of data generated 

by smart wireless sensors. To this aim, DETECT has to be 

integrated on top of SeNsIM (Sensor Networks Integration 

and Management), as depicted in Figure 2b.  

 

 
 

Figure 5. The DETECT framework 

 

2.3. Event Description and representation  

The Detection Engine needs to recognize combination of 

events, bound each other with appropriate operators in order 

to form composite events of any complexity. Generally 

speaking, an event is a happening that occurs in the system, 

at some location and at some point in time. In our context, 

events are related to sensor data variables (i.e. variable x 

greater than a fixed threshold, variable y in a fixed range, 

etc.). Events are classified as primitive events and composite 

events. 

A primitive event is a condition on a specific sensor which 

is associated some parameters (i.e. event identifier, time of 

occurrence, etc). Since the message transportation time is not 

instantaneous, the event occurrence time can be different 
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from the registration time. Several research works have 

addressed the issue of clock synchronization in distributed 

systems. Here we assume that a proper solution (e.g. time 

shifting) has been adopted at a lower level. 

A composite event is a combination of primitive events by 

means of proper operators. The EDL of DETECT is derived 

from the Snoop event algebra [7]. Every composite event 

instance is a triple: 

< IDec, parcont,  te > 

where: 

• IDec is the composite event identifier; 

• parcont is the parameter context, stating which 

occurrences of primitive events need to be considered 

during the composite event detection (as described 

below); 

• te is the temporal value related to the occurrence of the 

composite event (corresponding to the tp of the last 

component event). 

 

Each event is denoted by an event expression, whose 

complexity grows with the number of involved events. Given 

the expressions E1, E2, …, En, every application on them 

through any operator is still an expression. We use both 

logical and temporal operators, for a formal specification of 

their semantics, the reader can refer to [6]. Event expression 

are represented by event tree, where primitive events are at 

the leaves, while internal nodes represent EDL operators. 

Figure 6 shows an example event tree representing a 

composite event.  

The engine also performs time correlation on events by 

defining and exploiting temporal constraints. In fact, logic 

correlation could loose meaningfulness when the time 

interval between correlated events exceeds a certain 

threshold. Temporal constraints can be defined on both 

primitive and composite events with the aim of defining a 

validity interval for the overall composite event. Such 

constraints can be added to any operator in the formal 

expression used for event description. 

 

 
 
Figure 6. Event tree for composite event ((E1 OR E2) 

AND (E2 SEQ (E4 AND E6))) 

 

For instance, let us assume that in the composite event E = 

(E1 AND E2) the time interval between the occurrence of 

primitive events E1 and E2 must be at most T. The formal 

expression is modified by adding the temporal constraint [T] 

as follows: 

( E1 AND E2 ) [T] = True 

⇔  

∃ t1< t | ( E1(t) ∧ E2(t1) ∨ E1(t1) ∧ E2(t) ) ∧ |t – t1| ≤ T 

 

2.4. The software architecture  

The framework is made up by the following main modules 

(see Figure 7):  

• Event History, that is database containing the list of 

basic events detected by sensors or cameras, tagged 

with a set of relevant attributes including detection 

time, event type, sensor id, sensor type, sensor group, 

object id, etc. (some of which can be optional, e.g. 

“object id” is only needed when video-surveillance 

supports inter-camera object tracking). A specific 

external Events Adaptor Module aims to fill the 

Event History with the primitive events coming from 

a monitoring sensor network. The functionalities 

offered by such a module can be accomplished the 

SeNsIM system, as we will illustrate in the next 

section. 

• Detection Engine, supporting both deterministic 

(e.g. Event Trees, Event Graphs) and heuristic (e.g. 

Artificial Neural Networks, Bayesian Networks) 

models, sharing the primary requirement of real-time 

solvability (which excludes e.g. Petri Nets from the 

list of candidate formalisms). For each Detection 

Model there is a Model Feeder which instantiates 

the inputs of the engine according to the nature of the 

models by critically performing proper queries and 

data filtering on the Event History (e.g. selecting 

sensor typologies and zones, excluding temporally 

distant events, etc.). At the moment, the detection 

engine is only based on the deterministic model of 

the event trees.  

• Model Solver, that is the existing or specifically 

developed tool used to execute the model. It 

implements the logical assumptions to solve the 

Detection Model, based on the inputs coming from 

the Model Feeder, therefore it is the responsible 

module for the composite event detection. We have 

implemented our own Model Solver based on the 

event trees Detection Model. 

• Model Executor (one for each model), which 

triggers the execution of the mode, once it has been 

instantiated, by activating the related solver. An 

execution is usually needed at each new event 

detection. 

• Model Updater (one for each model), which is used 

for on-line modification of the model (e.g. update of 

a threshold parameter), without regenerating the 

whole model (whenever supported by the modeling 

formalism). 

• Output Manager (single), which stores the output of 

the model(s) and/or passes it to the interface 

modules. 
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• Scenario GUI (Graphical User Interface), used to 

draw attack scenarios using an intuitive formalism 

and a user-friendly interface. Once a scenario has 

been built, it will be converted in a XML document 

by the XML File Generator module and then 

indexed in the Attack Scenario Repository. In this 

way we are able to store permanently all scenario 

features in a formal way as well as to facilitate 

possible subsequent data processing by other 

applications. In the opposite way, when the user 

selects the attack scenario he wants to detect from the 

repository, the XML document which contains its 

description has to be re-converted in the detection 

model, which represents the composite event related 

to the scenario.  This task is carried out by the Model 

Generator which recover the original graph and its 

parameter by parsing the related XML document. 

 

DETECT makes it possible to associate different alarm 

levels to each composite event as well as to its component 

sub-event which have to be signaled by the detection engine. 

In this way the user can be aware of the attack scenarios since 

their first evolution steps. Alarms could be sent to existing  

SMS/SCADA systems in order to trigger adequate 

countermeasures. However an Event Log is kept to gather all 

information about detected events (detection time, alarm 

level, instances of component events involved in the 

composite event detection process). 

5. Integration of SeNsIM and DETECT 

The SeNsIM and DETECT frameworks need to be integrated 

in order to obtain an on-line reasoning about the events 

captured by different sensor systems. As mentioned above, 

the aim is to early detect and manage security threats against 

critical infrastructures. In this section we provide the 

description of the sub-components involved in the software 

integration of SeNsIM and DETECT. 

 

 

 

Figure 7. DETECT software architecture 

 

During the query processing task of SeNsIM, user queries 

are first submitted by means of a User Interface; then, a 

specific module (Query Builder) is used to build a query. The 

user queries are finally processed by means of a Query 

Processing module which sends the query to the appropriate 

wrappers. The partial and global query results are then stored 

in a database named Event History. All the results are 

captured and managed by a Results Handler, which 

implements the interface with wrappers. 

The Model Feeder is the DETECT component which 

performs periodic queries on the Event History to access 

primitive event occurrences. The Model Feeder instantiates 

the inputs of the Detection Engine according to the nature of 

the model(s). 

Therefore, the integration is straightforward and mainly 

consists in the management of the Event History as a shared 

database, written by the mediator and read by the Model 

Feeder according to an appropriate concurrency protocol. 

In Figure 8 we report software modules involved in the 

integration process between SeNsIM and DETECT. The 

figure also shows the modules of SeNsIM involved in the 

retrieval process, in particular:  

 

• Query Processing is a macro-module, containing several 

sub-modules; 

 

• GUI (Graphical User Interface) is used to edit 

DETECT scenarios using a graphical formalism 

translatable to EDL files. Moreover it allows the user to 

define SeNsIM queries for sensor data retrieval. User 

interaction is only needed in the configuration phase, to 

define attack scenarios and query parameters. According 

to the query strategy, both SeNsIM and DETECT can 

access data from the lower layers using either a cyclic or 

event driven retrieval process. 

 

 
 

Figure 8. Query processing and software integration 

 

6. Example application scenarios 

In this section we report two example applications of the 

overall framework to case-studies related to rail-based 

transportation systems, which are attractive targets for 

thieves, vandals and terrorists. Several application scenarios 

can be thought exploiting the proposed architecture and 

several sensors (intrusion detection, track line break 

detection, on-track obstacle detection, etc.) and actuators 
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(e.g. alarms, public address, virtual or light signalling 

devices, etc.) could be installed to monitor system integrity 

against external threats and notify anomalies. In the following 

we describe how to detect some complex scenarios, including 

terrorist strategic attacks. 

 

6.1 Explosive in a subway tunnel 

The first attack scenario consists of an intrusion and drop of 

an explosive device in a subway tunnel. Let us suppose that 

the dynamic of the scenario follows the steps reported below:  

1. The attacker stays on the platform for the time needed to 

prepare the attack, missing one or more trains. 

2. The attacker goes down the tracks by crossing the limit 

of the platform and moves inside the tunnel portal. 

3. The attacker drops the bag containing the explosive 

device inside the tunnel and leaves the station. 

Obviously, it is possible to think of several variants of this 

scenario. For instance, only one between step 1 and step 2 

could happen. Please note that the detection of step 1 (person 

not taking the train) would be very difficult to detect by a 

human operator in a crowded station due to the people going 

on and off the train. 

Now, let us formally describe the scenario using wireless 

sensors and detected events, using the notation “sensor 

description (sensor ID) :: event description (event ID)”: 

 

INTELLIGENT CAMERA (S1) ::  

EXTENDED PRESENCE ON THE PLATFORM  (E1) 

INTELLIGENT CAMERA (S1) ::  

TRAIN PASSING (E2) 

INTELLIGENT CAMERA (S1) ::  

PLATFORM LINE CROSSING (E3) 

ACTIVE INFRARED BARRIERS (S2) ::  

TUNNEL INTRUSION (E4) 

EXPLOSIVE SNIFFER (S5) ::  

EXPLOSIVE DETECTION (E5) 

For the sake of brevity, further steps are omitted. 

 

The composite event drop of explosive in tunnel can be 

specified in EDL as follows: 

(E1 AND E2) OR E3 SEQ (E4  AND E5)  

A partial alarm can be associated to the scenario evolution 

after step 1 (left AND in the EDL expression), in order to 

warn the operator of a suspect abnormal behavior. In the 

design phase, the scenario is represented using Event Trees 

and stored in the Scenario Repository of DETECT. In the 

operational phase, SeNsIM records the sequence of detected 

events in the Event History. When the events corresponding 

to the scenario occur, DETECT provides the scenario 

identifier and the alarm level (with a likelihood index in case 

of non deterministic detection models). Pre-configured 

countermeasures can then be activated by the SMS on the 

base of such information. 

 

6.2 Attack of a high-speed railway line 

Let us suppose a terrorist decides to attack a high-speed 

railway line, which is completely supervised by a computer-

based control system. A possible scenario consisting in 

multiple train halting and railway bridge bombing is reported 

in the following: 

1. Artificial occupation (e.g. by using a wire) of the track 

circuits immediately after the location in which the trains 

needs to be stopped (let us suppose a high bridge), in both 

directions.  

2. Interruption of the railway power line, in order to prevent 

the trains from restarting using a staff responsible 

operating mode. 

3. Bombing of the bridge shafts by remotely activating the 

already positioned explosive charges.  

 

Variants of this scenarios exist: for instance, trains can be 

(less precisely) stopped by activating jammers to disturb the 

wireless communication channel used for radio signaling, or 

starting the attack from point (2) (but this would be even less 

precise). The described scenario could be early identified by 

detecting the abnormal events reported in point (1) and 

activating proper countermeasures. By using proper on-track 

sensors it is possible to monitor the abnormal occupation of 

track circuits and a possible countermeasure consists in 

immediately sending an unconditional emergency stop 

message to the train. This would prevent the terrorist from 

stopping the train at the desired location and therefore halt 

the evolution of the attack scenario. Even though the 

detection of events in points (2) and (3) would happen too 

late to prevent the disaster, it could be useful to achieve a 

greater situational awareness about what is happening in 

order to rationalize the intervention of first responders. 

The formal description of the scenario is the following: 

 

FENCE VIBRATION DETECTOR (S1) ::  

POSSIBLE ON TRACK INTRUSION (E1) 

TRACK CIRCUIT X (S2) ::  

OCCUPATION (E2) 

LINESIDE TRAIN DETECTOR (S3) ::  

NO TRAIN DETECTED (E3) 

TRACK CIRCUIT Y (S4) ::  

OCCUPATION (E4) 

LINESIDE TRAIN DETECTOR (S5) ::  

NO TRAIN DETECTED (E5) 

VOLTMETER (S6) ::  

NO POWER (E6) 

ON-SHAFT ACCELEROMETER (S7) ::  

STRUCTURAL MOVEMENT (E7) 

 

Due to the integration middleware made available by 

SeNsIM, these events are not required to be detected on the 

same physical WSN, but they just need to share the same 

sensor group identifier at the DETECT level. Event (a) is not 

mandatory, as the detection probability is not 100%. Please 

not that each of the listed events taken singularly would not 

imply a security anomaly or be a reliable indicator of it. 

The EDL description of the above scenario is provided in 

the following (in the assumption of unique event identifiers): 
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(((E1 SEQ ((E2 AND E3) OR (E4 AND E5))) 

OR 

((E2 AND E3) AND (E4 AND E5))) 

SEQ E6 ) SEQ E7 

 

Top-down and left to right, using 4 levels of alarm severity: 

a) E1 can be associated a level 1 warning (alert to the 

security officer);  

b) The composite events determined by the first group of 4 

operators and the second group of 3 operators can be both 

associated a level 2 warning (triggering the unconditional 

emergency stop message); 

c) The composite event terminating with E6 can be 

associated a level 3 warning (switch on back-up power 

supply, whenever available) 

d) The composite event terminating with E7 (complete 

scenario) can be associated a level 4 warning (emergency 

call to first responders). 

 

7. Conclusions and future works 

New smart-sensor technologies are being investigated by the 

research community for infrastructure monitoring. These 

technologies are highly different from each other, and this 

can significantly contribute to raise detection reliability while 

lowering the false alarm rate by diverse data correlation [4]; 

however, this also raises a problem in data integration and 

reasoning. In this paper we have provided the description of a 

framework which can be employed to collect and analyze 

data measured by such heterogeneous sources in order to 

enhance the protection of critical infrastructures. 

One of the research threads we are addressing points at 

seamlessly integrating sensors and application specific 

devices which can serve as useful information sources for a 

superior situational awareness in security critical 

applications. Furthermore, we are currently extending the 

EDL language with stochastic operators to allow for heuristic 

detection model; to this aim, we are also implementing 

Bayesian Network detection models to account for data and 

parameter uncertainties.  

The next operational step will be the interfacing of the 

overall system with a real security management system for 

the on-the-field experimentation. The integration will be 

performed using web-services and/or the OPC (OLE for 

Process Communication) standard protocol. 

The verification of the overall system is also a delicate 

issue which can be addressed using the methodology 

described in [11]. 
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