
A Reference Architecture for Sensor Networks
Integration and Management

Valentina Casola, Andrea Gaglione, Antonino Mazzeo

Dipartimento di Informatica e Sistemistica
Universita’ degli Studi di Napoli, Federico II

Naples, Italy
{casolav,andrea.gaglione,mazzeo}@unina.it

Abstract. Sensor networks have become a highly active research area
due to their potential for providing diverse new capabilities for a wide
variety of real world applications. Distributed applications require to col-
lect information from a lot of different sensor systems, retrieved data are
usually heterogeneous from many points of view and they need to be in-
tegrated to cooperate for a common objective. In this paper we present
the SeNsIM framework, a scalable software architecture for the integra-
tion of heterogeneous sensor systems. SeNsIM enables the deployment of
applications based on multiple sensor systems by providing a standard
way to manage, query, and interact with sensors. We propose the archi-
tectural and data model of the SeNsIM framework and provide a method
to describe sensor systems using XML as modeling language in order to
facilitate sharing of structured data across them.

1 Introduction

Sensor networks have become a highly active research area due to their potential
for providing diverse new capabilities for a wide variety of real world applications.
They have made many novel applications possible to emerge in the fields of
environmental monitoring [1], detection and classification of objects in military
settings [2] and health applications [3]. Moreover, in the last years a proliferation
of Wireless Sensor Networks (WSN) technologies is increasing. Such systems are
composed by low-cost and low-power sensor nodes (“motes”) able to measure
different parameters and to communicate over wireless channels [9].

The diffusion of sensor systems, together with their applications have led
to a large heterogeneity in the logic for interfacing and collecting data from
these systems. As for WSNs, ad hoc programming languages (e.g. nesC [4]) and
operating systems (e.g. TinyOS [20]) have been developed to support motes
programming and to express the application processing in terms of messages ex-
change among near nodes. Furthermore, different middleware platforms based
on macro-programming models have been proposed in order to bridge the gap
between the application and the underlying hardware and network platforms.
However they are commonly used when a single application operates over a



single WSN, while the application development for multiple WSNs is a rather
cumbersome work.

Nowadays the interaction with multiple sensor systems is required by a lot
of applications, as those typical in the emerging pervasive computing paradigm
adopted in several domains (e.g. telemedicine, crisis management, military [11]).
Moreover monitoring applications of wide geographical areas have highlighted
the research problem of the integrated management and correlation of data com-
ing from various networks that cooperate for a common objective [6]. In order
to embody sensing infrastructures into computing paradigms based on the ap-
plication development for multiple WSNs or sensor systems, specific integration
frameworks for accessing different data sources are needed.

This paper describes the design of the SeNsIM (Sensor Networks Integration
and Management) framework, it is not just a middleware for WSNs, but it is
a more general integration platforms for heterogeneous sensor systems. SeNsIM
(i) makes possible the deployment of applications based on multiple sensor sys-
tems/networks and (ii) allows a generic user or an application to easily access
data sensed by a network. Furthermore, SeNsIM is able to ensure scalability
since it is very easy to deploy new networks in the system.

The architectural model for the integration has been realized by exploiting a
wrapper-mediator paradigm: the mediator accesses the sensor data by means of
ad hoc connectors (wrappers), one for each networks, which strongly depend on
sensor network technologies. So the mediator is responsible to format and for-
ward user requests to the different networks, while the wrappers are responsible
to translate the incoming queries and forward them to the underlying sensors.

The remainder of this paper is organized as follows. In Section 2 an overview
of solution for WSN management is reported. In Section 3 we describe the pro-
posed architectural model to manage sensor networks integration and the pro-
posed data model for information exchange. In Section 4 some details on the
system architecture and implementation are provided. Final discussions are re-
ported in Section 5.

2 Related Works

In this section the most well known middleware solutions for WSN and some
integration platforms for heterogeneous sensor systems are presented.

Middlewares for WSNs refers to software and tools which provide a system
abstraction so that the application programmer can focus on the application
logic without having to deal with the lower level implementation details [5].
Different middleware solutions for WSN management have been proposed [13,
5, 16]; they differ in terms of querying and data aggregation models and for the
assumptions about the kind of sensor nodes, topology, size, and other features
of the network. It is important to point out that all middlewares platforms
are mainly focused on the possibility to access to a single WSN implemented
with a specific technology but they do not provide functionalities to access to
different heterogeneous networks. At this aim some interesting researches related



to integration techniques for heterogeneous sensor networks have taken place, but
nowadays only few architectures have been proposed.

In [8], Ahn and Chong propose an intelligent bridge as an interoperable archi-
tecture for messages exchange between heterogeneous wireless sensor networks.
They define a general messages exchange mechanism that uses XML as message
style and SOAP as transmission protocol. They also conducted a case study
based on two WSNs with different network protocols (ZigBee and Bluetooth).
Hourglass [18] provides an Internet-based infrastructure for connecting sensor
networks to applications. It offers topic-based discovery and data-processing
services, but focuses on maintaining quality of service of data streams in the
presence of disconnections. GSN (Global Sensor Networks) [7] facilitates the
flexible integration and discovery of sensor networks and hides arbitrary stream
data sources behind its virtual sensor abstraction. It enables the user to specify
XML-based deployment descriptors in combination with the possibility to in-
tegrate sensor network data through plain SQL queries over local and remote
sensor data sources. Other works try to define a middleware integration archi-
tecture that enables interoperability between sensor systems. For example the
ESP framework [15] enables sensor systems to be queried without having to
deal with the low-level implementation of specific access methods. It provides a
mechanism to describe and model sensor systems using ESPml, an XML-based
language, by which information regarding the sensor deployment can be speci-
fied. Finally, IrisNet [10] can be considered a hybrid approach to integration. It
is a web infrastructure for easy deployment of wide-area sensing services. The
architecture consists of sensing agents (SA) which collect and pre-process sensor
data and of organizing agents (OA) which store sensor data in a hierarchical,
distributed XML database that supports XPath queries.

Most of these approaches are still in a design phase since they lack of a
real implementation. Some try to define a common exchange mechanism among
different sensor systems in order to facilitate the integration, but often they are
strongly related to the adopted standards and technologies. Others are based on
new technologies (i.e. web services for ESP), but the impact on performances is
not discussed, yet.

In contrast to the examined approaches, we will illustrate a more general
architecture to provide a general-purpose infrastructure for sensor systems in-
tegration, and a more general way to express queries introducing a query vi-
sual language. Our system provides a complete data retrieval and management
platform with a simple user interface by which is possible to execute queries.
Moreover our architecture is flexible and can easily provide APIs by which an
application can easily interact with the different sensor systems.

3 Design principles

The need for deployment of applications based on multiple sensor systems and
the management of wide geographical areas have highlighted a new research is-
sue, i.e. the possibility of integrating and managing, in an integrate way, all data



coming from the various data sources. Unfortunately sensed data are not avail-
able in a unique container, but are distributed in heterogeneous repositories. So
the major issue for an integration system lies in the heterogeneity of repositories
that makes data management and retrieval processes hard tasks to achieve.

To face such problem, we need to define:

– an architectural model able to support in an efficient way the management
of such data even when sensed by different networks;

– a data model capable of representing in a unique logical view the “sensor
data”, and that can be used by any applications.

3.1 The architectural and data model

As already said, sensor systems are adopted in many application fields and their
proliferation has massively increased; due to these reasons there is a tremendous
heterogeneity in the logic for interfacing and collecting data from these systems.
In most sensor systems an application can directly access to sensor hardware by
means of opportune drivers. In the case of WSN, an operating system between
the hardware platform and the application allows an easier use of the available
sensing functions and often a further middleware layer between the operating
system and the application provides an easy way to access sensor data. Fur-
thermore sensed data may be differently structured according to the specific
representation of different sensor systems.

We propose a novel integration platform (SeNsIM, Sensor Networks Inte-
gration and Management) which aims to bridge the gap between heterogeneous
sensor systems and to provide a unique way to manage, query and interact with
them. SeNsIM is made of a mediator component which hides networks hetero-
geneity to end users or applications by means of ad hoc connectors (wrappers)
(one for each network). Each wrapper explores and monitors the local sensor
networks and sends to the mediator an appropriate description of the related
information according to a common data model. The mediator organizes such
information and keeps a unique view of all systems in order to satisfy user or
application queries.

The architectural model we propose is made of four logical layers (see figure
1):

1. an application or user layer to submit queries and elaborate the retrieved
data;

2. a mediator layer to format and forward queries to specific wrappers;
3. a wrapper layer to extract and manage network information and data;
4. the sensor system layer with or without a specific middleware or operating

system.

As for the data model, in the literature, sensors have been modeled by using
two kind of approaches [17, 19]: (i) structural approach focuses the attention



Fig. 1. Abstraction layers of the proposed architecture

on the sensor-structure in terms of hw/sw components, while (ii) data-oriented
approach schematizes a sensor using a behavioral description. The latter mainly
refers to sensor global information (type, producer, description, etc...) as well
as to variables that a sensor can measure (temperature, light, humidity, etc...),
predicates that a sensor can calculate (e.g. temperature greater than a threshold)
and sensor operating state/mode (On, Off, Sleep, etc...).

In our approach we define a sensor node as an object characterized by a tuple
of information which combine both structural and behavioral features. The state
of a sensor can be modified by means of classical getting/setting functions, while
the measured variables can be accessed using the sensing function. Collection of
sensor nodes, disposed according to clustering policies and to a given topology
form a sensor network. According to our model a network object has to include
global information such as type of sensor system, middleware (if present), sup-
ported sensor board as well as information related to sensor components (list
of sensors, possible list of clusters, topology matrix). Network global predicates
(e.g. average temperature of the network) also can be represented in our model.

For brevity sake we do not report all the details of the data model, we just
say that it has been represented in XML format, since XML provides platform
independence, interoperability and can be easily parsed [21]. XML-based descrip-
tors let have a unifying grammar by which systems can describe their abilities
and define a standard language protocol with which the different entities in the
framework can communicate. Our XML descriptor (structXML) is directly de-
rived from the data model and represents features of both networks and sensors.
Each wrapper builds a structXML descriptor after having injected a discovery
queries on the underlying system (generally at startup). If some parameters could
not been extract in an automatic manner (i.e. sensor producer, middleware for
WSN), a wrapper administrator can manually fill the structXML descriptor with
the missing information.

As an example, figure 2 shows a network (N ) and a pseudo-XML description
of it. For simplicity we do not show the real structXML descriptor, trying to point
out only the main features which can interest the reader. The network is a WSN
composed by 4 temperature sensor nodes (S1 and S3 are in the “On”state, while
S2 and S4 are in the “Sleep” state, being used as redundant units), grouped



Fig. 2. An example of network description

into two clusters (C1 and C2 ), and by one base station (S5 ). The base station,
also called sink, is a mote, in general connected with a PC-class device, which
acts as a gateway between the network and the end user.

4 The Reference Architecture

In this section, we firstly describe the two main components of the SeNsIM
system: the wrapper and the mediator. Then we illustrate interactions taking
place between a generic wrapper, the mediator, the user and the underlying
network during two main usage scenarios of SeNsIM.

As already said, wrapper components work as adapters between the mediator
layer and the sensing platforms. They should gather the features of the under-
lying network and of its sensors (e.g. discovering the network topology with its
clusters/groups of sensors, the state of single sensors, etc...) and, above all, they
should able to access sensor data by querying single sensors, clusters or the entire
network. The mediator should classify sensor information sent by wrappers and
should provide a simple way to users or applications for querying the networks.
In figure 3 the architecture of wrapper and mediator components is reported,
illustrating its main modules. The macro-modules of both components, which
are represented in dashed lines, carry out a the main features of the related
component.



Fig. 3. (a) Wrapper architecture; (b) Mediator architecture.

As for the wrapper, (i) it has to discover, extract and manage information
about the underlying network and its sensors (Network Classification); (ii) it has
receive user queries from the mediator and execute them on the system by using
its APIs and the local query language (Query Processing); (iii) it has to man-
age the communication process with the mediator (Mediator Communication).
Network Classification and Query Processing modules interact with DBMS for
storing and accessing information related to network/sensors (according to the
data model), queries and related results. Wrapper is also provided with a Con-
figuration Manager module, which the can be used by an administrator of the
system during the discovery phase of the system to set the state of sensors or to
define clustering/grouping policies.

The mediator, on the other side, (i) has to classify and manage metwork/sensor
information sent by wrapper (Network Classification); (ii) it has to manage user
queries (Query Processing); (iii) it has to manage the communication with wrap-
pers (Wrapper Communication); (iv) it has to interact with the user, by taking
his queries and showing him the related results (User Communication). Also in
this case Network Classification and Query Processing modules interact with a
DBMS which stores data related to networks with their sensors (intensional part
of the data model), user queries and related results. Finally, mediator is provided
with a Configuration Manager module: it is used during the initialization phase
of the system to define the admissible information for a network and its sensors
according to the data model.

Figure 4 shows the interactions that take place among main system compo-
nents in the two main usage scenarios, registration and querying :

– Registration Any wrapper needs to register itself before communicating with
a mediator. At first, each wrapper creates an XML document describing



the system as a whole; this is done by analyzing the sensor system (i.e.
by injecting a discovery query), and generating the appropriate XML to
represent the system. Then a wrapper sends a registration request message
to the mediator, that verifies the possibility of including a new system in the
framework and sends a response message to the wrapper. If the registration
request is accepted, the wrapper sends the XML document to the mediator,
which stores the related information in a DB.

– Querying The querying process starts when a user sends a query request
through the mediator user interface after having selected the destination of
the query (a network or a specific sensor, among those connected to the
framework trough the wrappers). The mediator takes the query parameters
and creates an XML document which sends to the appropriate wrapper.
The wrapper extracts the parameters by parsing the XML document and
executes the query on the local system. The query results are grouped by
the wrapper, which also creates another XML document, and periodically
send it to the mediator. Finally the mediator extracts the results from the
XML and shows them to the user.

Fig. 4. The communication protocols in the Registration and Querying scenarios

The system provides support for monitoring queries that retrieve the re-
quested data from the sensor systems and return the corresponding responses



in real-time as well as for event queries. Many context-aware applications need
to trigger some actions after that some events have been generated from sensor
systems.

Fig. 5. Network querying screen

4.1 Implementation details

In the current implementation of SeNsIM, the mediator component and all its
modules have been fully realized. Furthermore, we have implemented the wrap-
per component for TinyDB based networks. TinyDB [14] is a middleware for
WSN which provides a query processing system for extracting information from
a network of TinyOS sensors. Unlike existing solutions for data processing in
TinyOS, TinyDB does not require users to write embedded C code for sensors.
Instead, it provides a simple SQL-like interface to specify the data to extract,
along with additional parameters as, for example, the data refreshing rate. Given
a query, TinyDB collects that data from motes in the environment, filters it, ag-
gregates it together, and routes it out to a PC, it also implements power-efficient
in-network processing algorithms.

All SeNsIM components are written in the Java programming language ex-
ploiting its libraries for networking (java.net), multithreading (java.lang.Thread),



managing DBMS (JDBC) and manipulating XML files (DOM). The communi-
cation protocol between wrappers and mediator has been implemented by ex-
ploiting both UDP and TCP sockets: in particular we used UDP sockets to
exchange simple messages (e.g. registration request in the registration scenario),
while TCP sockets were used to exchange XML data files (networks structure,
queries and results). An ORACLE 10g DBMS has been adopted to store data
in the wrapper and mediator repositories and a graphical interface has been re-
alized to simplify the interaction of SeNsIM with users. Finally we set up a first
experimental testbed with two TinyDB based networks in order to demonstrate
the validity of our approach. Figure 5 provides a GUI screenshot showing the
panel for querying a network after it has been selected by the user from the
networks list.

5 Conclusions and Future Works

We have presented a system for the integration and management of sensor net-
works. It allows a single unified view of a lot of systems and enables a flexi-
ble deployment and interconnection between them, even if located in different
places. The architecture is based on the Mediator/Wrapper paradigm in order
to provide a layered and scalable architecture. The Wrapper is responsible for
managing hardware and systems heterogeneity while the Mediator is responsible
of managing the communication with the wrappers and provides a uniform in-
terface for queries on sensed data and network features to user and applications.
Future works will be devoted to evaluate system scalability and performances
and to develop service oriented interfaces in order to integrate our system with
recent standards proposed by the OGC and W3C consortium to model sensors
and sensor networks.

References

1. D. Steere, A. Baptista, D. McNamee, C. Pu, J. Walpole, “Research challenges in en-
vironmental observation and forecasting systems”, in Proc. ACM/IEEE MOBICOM
’00, Boston, August 2000.

2. Y. Hu D. Li, K. Wong and A. Sayeed, “Detection, classification, and tracking in
distributed sensor networks”, In IEEE Signal Processing Magazine, pages 17-29.
IEEE, March 2002.

3. L. Schwiebert, S. K. S. Gupta, and J. Weinmann, “Research challenges in wireless
networks of biomedical sensors”, in Proc. ACM/IEEE MOBICOM ’01, pp. 151-165,
2001.

4. D. Gay, P. Levis, D. Culler, E. Brewer, “nesC 1.1 Language Reference Manual,
http://nescc.sourceforge.net/papers/nesc-ref.pdf”, March 2003.

5. S. Hadim, N. Mohamed, “Middleware for wireless sensor networks: A survey”, in
Proc. 1st Int. Conf. Comm. System Software and Middleware (Comsware06), New
Delhi, India, Jan. 8-12, 2006.

6. F. Flammini, A. Gaglione, N. Mazzocca, V. Moscato, C. Pragliola, “Wireless Sensor
Data Fusion for Critical Infrastructure Security”, Proceedings of the International



Workshop on Computational Intelligence in Security for Information Systems CI-
SIS’08 - Advances in Soft Computing, pp. 92-99, 2008.

7. K. Aberer, M. Hauswirth, A. Salehi, “The Global Sensor Networks middleware for
efficient and flexible deployment and interconnection of sensor networks”, Technical
Report, 2006.

8. S. Ahn, K. Chong, “Building a Bridge for Heterogeneous Sensor Networks”, Pro-
ceedings of the Fourth IEEE Workshop on SEUS-WCCIA 06.

9. I.F. Akyildiz, M.C. Vuran, O.B. Akan, W. Su, “Wireless Sensor Network: A survey
REVISITED”, Computer Networks Journal, 2005.

10. P.B. Gibbons, B. Karp, Y. Ke, S. Nath, S. Seshan, “IrisNet: An Architecture for
a World- Wide Sensor Web”, IEEE Pervasive Computing 2(4) (2003).

11. S. Hadim, N. Mohamed, “Middleware: Middleware Challenges and Approaches for
Wireless Sensor Networks”, IEEE Distributed Systems Online, March 2006.

12. W.B. Heinzelman, A.L. Murphy, H.S. Carvalho, and M.A. Perillo, “Middleware to
support sensor network applications”, IEEE Network, 18(1):6-14, 2004.

13. K. Henricksen, R. Robinson, “A Survey of Middleware for Sensor Networks: State-
of-the-Art and Future Directions”, MidSens ’06: Proceedings of the international
workshop on Middleware for sensor networks, ACM Press, Melbourne, Australia,
p.60-65 (2006).

14. S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TinyDB: An ac-
quisitional query processing system for sensor networks”, ACM Transactions on
Database Systems, 30(1):122-173, 2005.

15. S. Reddy, T. Schmid, N. Yau, G. Chen, D. Estrin, M. Hansen, M. B. Srivastava,
“ESP Framework: A middleware architecture for heterogeneous sensing systems”,
December 2006.

16. K. Romer, “Programming Paradigms and Middleware for Sensor Networks”,
GI/ITG Fachgespraech Sensornetze, Karlsruhe, 26-27 Feb 2004.

17. SensorML Project. URL: http://vast.uah.edu/ SensorML/
18. J. Shneidman, P. Pietzuch, J. Ledlie, M. Roussopoulos, M. Seltzer, M.

Welsh, “Hourglass: An Infrastructure for Connecting Sensor Networks and
Applications”, Technical Report TR-21-04, Harvard University, EECS (2004)
http://www.eecs.harvard.edu/U syrah/ hourglass/papers/tr2104.pdf.

19. T. Skov, R. Bro, “A new approach for modelling sensor based data”, Sensor and
Actuators B: Chemical, vol. 106 (2), 2005, 719-729.

20. TinyOS Project. URL: http://www.tinyos.net.
21. W3C Architecture Domain, Extensible Markup Language (XML). URL:

http://www.w3.org/XML/.


