
A Secure Architecture for Re-Taskable Sensing
Systems

Alessandra De Benedictis1, Andrea Gaglione1 and Nicola Mazzocca1

1University of Naples Federico II, Department of Computer Science and Systems,

Via Claudio, 21 80125 Napoli, Italy
{alessandra.debenedictis, andrea.gaglione, nicola.mazzocca}@unina.it

Abstract: Sensor Networks are considered a high-innovation
potential branch in the field of network computing and are
widely used in several application domains thanks to their cost
effectiveness, flexibility and ease of deployment. They are well
suited to a multitude of monitoring and surveillance applications
and are often involved in mission-critical tasks, thus making
security a primary concern. Many architectures and protocols
have been proposed to address this issue, mainly based on
cryptographic operations, but it still represents an open research
area: in fact, in order to be effective, such techniques often
require complex computations and a large amount of dedicated
resources, which are not available on sensor platforms according
to the existing technology. Nevertheless, if considering tiered
sensor networks, where tiny motes coexist with more powerful
nodes, it is possible to perform some complex and efficient
security schemes by exploiting the different capabilities of nodes.
In this paper we present a secure architectural proposal based on
the Tenet system, a tiered re-taskable sensor network
architecture. Specifically, we have integrated security features
into the Tenet architecture in order to implement a hybrid
cryptosystem. Such a cryptosystem combines symmetric and
asymmetric cryptographic schemes to benefit of the security
provided by asymmetric protocols and the better performance of
symmetric ones.

Keywords: Sensor network security, Secure communication

architecture, Tiered sensor networks.

I. Introduction

The increasing spread of sensor networks has led to the
diffusion of middleware platforms as well as sensor network
programming systems, aiming to bridge the gap between
applications and the underlying hardware platforms. These
systems provide high level programming abstractions and
implement services such as routing, transport, task
dissemination and execution and time synchronization, thus
simplifying application development. Tenet [1], [2] is an
example of such systems and the validity of its architecture has
been demonstrated in several application domains [3], [4].
The Tenet architecture has been conceived for tiered sensor
networks consisting of two classes of devices: motes are in the
lower tier, which enables flexible deployment of dense
instrumentation, while less constrained 32-bit nodes (named
masters) are in the upper tier and implement multi-node data
fusion and application logic.

One of the main open issues in such kind of systems is
related to the development of general purpose security
protocols. There is a large number of application scenarios

where data exchanged between sensor nodes is critical (e.g.
health or military applications), and providing security
services for such applications is a technical challenge, due to
hostile deployment environments and resource limitations.

The openness of wireless channels lets anyone be able to
sniff or participate in communications, undermining integrity
and confidentiality requirements of the system; moreover,
unattended physical access to the network infrastructure may
encourage node capture and redeployment or even the
placement of malicious nodes into the network causing an
unattended behavior (i.e. redirecting or interrupting
communication and service).

These specific challenges, together with the limited
energy, computation, and communication capabilities of
sensor devices, make it difficult to directly employ the existing
security approaches to the area of wireless sensor networks.

Most security protocols are based on cryptographic
operations as encryption and authentication; they massively
involve the adoption of keys and complex mathematical
functions that require dedicated computational resources.
Indeed, the adoption of such security mechanisms on so small
devices can be critical from a performance and power
consumption point of view. At this aim, in this paper, we
discuss the design and implementation of a hybrid
cryptosystem that combines symmetric and asymmetric
cryptographic schemes, in order to benefit from both the
higher level of security provided by asymmetric protocols and
the better performance of symmetric ones.

Such a cryptosystem can be more effectively implemented
in a tiered system like Tenet, where the advantage of having
different computational and energy constraints between the
motes and the base station can be exploited. As a matter of
fact, tiers are not only a fundamental condition to scale
network size and spatial extent, as the higher level nodes have
greater network capacity and larger spatial reach than a flat
network, but they also allow a computational load partition
between nodes in such a way that “master” nodes can perform
more complex cryptographic operations without affecting the
performance of the overall system.

The reminder of the paper is structured as follows: in
Section 2 a description of security issues in sensor networks is
provided, along with the discussion of the main solutions
known in literature. In Section 3 we will give a brief overview
of the Tenet architecture, while in Section 4 we will illustrate
our proposal as well as our aims. In Section 5 we will describe
our security enhanced Tenet architecture and also give some
implementation details; finally, in Section 7 some conclusions
and future work will be drawn.

Information Assurance and Security Letters
ISSN 2150-7996 Volume 1 (2010) pp. 053-059
© MIR Labs, www.mirlabs.net/iasl/index.html

Dynamic Publishers, Inc., USA

II. Security issues in Sensor Networks and state
of the art

Recently there has been an intense research aimed at
developing security schemes for sensor network applications,
as they are well suited to a multitude of monitoring and
surveillance applications and are often involved in
mission-critical tasks, thus making security a primary concern.
In this section, we will discuss about the main security issues
in WSNs, presenting an overview of the state of the art and
focusing on the aspects that motivated our proposal.

In [5] the authors identify and summarize the main threats
to Wireless Sensor Networks (WSN) and their vulnerabilities,
and give a brief summary of security issues and defense
suggestions from the point of view of the OSI model.

On the basis of the Dolev-Yao threat model [6], an attacker
can spoof, intercept, alter and inject any message exchanged
between sensor nodes. According to that, main requirements
of secure sensor network architectures are authentication,
confidentiality, integrity, and freshness, meant as the property
of exchanged data to be recent, that is not replayed by an
adversary from an old message.

Security architectures for WSNs rely upon cryptography
operations as the basic method to achieve previously
mentioned security requirements. Cryptographic schemes
involve the adoption of one or more keys, used to encrypt and
decrypt exchanged data; the main problem to face with when
setting up a secure communication between nodes is key
agreement, that is the way such keys are established at each
node. There are two main well-known mechanisms to handle
the problem of key agreement: Symmetric Key Cryptography
(SKC) and Public Key Cryptography (PKC), the former
adopting a unique secret shared key for both encrypting and
decrypting messages, and the latter employing a couple of keys
for each node, one public and the other private, resulting in an
improvement of the security level of the system.
Several implementations of Symmetric Key Cryptography
algorithms have been proposed in literature (i.e. Skipjack,
DES, 3DES, AES, RC5, RC6), as they require in general a
reduced amount of computational resources and thus turn out
to be well suited for realization on sensor devices. Nowadays
some implementations of complete secure protocols based on
symmetric schemes are available, as TinySec [7], MiniSec [8],
ZigBee [9] and SNEP [10]; TinySec, a popular secure link
layer protocol, achieves low energy consumption and memory
usage, but it also sacrifices the level of security, not providing
protection against replay attacks and employing a single
network-wide key, such that every malicious node in the
network can masquerade as any other node. ZigBee provides a
higher level of security than TinySec since it is not restricted to
a network-wide key and it protects against replay attacks, but it
is an expensive protocol due to high communication overhead,
high energy consumption by the radio and large memory
utilization. MiniSec provides lower energy consumption than
TinySec, and a high level of security like ZigBee, while
requiring less packet overhead, and has been showed to
outperform other comparable systems under most real-world
scenarios[8].
Even if symmetric schemes are very attractive for their energy
and memory efficiency, they present a major drawback: key
distribution and management are a fundamental concern, as
they produce a heavy traffic in the network and often require
complex and not scalable architectures. Actually, there has
been a substantial amount of research on key distribution

schemes [11]-[14], and two main solutions have been
investigated: key pre-distribution, which involves assigning
keys to a set of nodes before deployment according to
deterministic or stochastic algorithms, and hierarchical
schemes, relying upon a trusted controller for key assignment
and exchange between nodes.

A further weakness of symmetric cryptography consists in
that it only fulfills confidentiality requirements, while not
considering other security issues such as authentication and
integrity.
 An important security requirement which arises within the
sensor network domain is the broadcast authentication, that is
the capacity of a sender to broadcast messages to multiple
nodes in an authenticated way. In the two-party
communication case, data authentication can be achieved
through a purely symmetric mechanism making use of a
Message Authentication Code (MAC), computed by the
sender over the payload and appended to the message, in such
a way that the packet is considered valid upon reception if the
MAC recomputed by the receiver matches with the received
one. This kind of solution is insecure in broadcast
communication scenarios. In fact, anyone of the receivers
knows the MAC key and could impersonate the sender.
Instead, asymmetric schemes are the natural way for providing
broadcast authentication.
 Despite that, Perrig et al. [10] propose a key-chain
distribution system for their µTESLA secure broadcast
protocol, part of the SPINS system. The basic idea of the
µTESLA system is that it constructs authenticated broadcast
messages from symmetric primitives, but introduces
asymmetry with delayed key disclosure and one-way function
key chains. One of the limitations of µTESLA is that some
initial information must be unicasted to each sensor node
before authentication of broadcast messages can begin. To
face with these constraints enhancements to the µTESLA
system have been proposed [15], [16]. However all of these
schemes use symmetric key techniques with an elaborate
design to add asymmetric properties to them and require loose
time synchronization between nodes.
 In summary, it can be stated that, like other main security
requirements, broadcast authentication can be naturally
achieved through asymmetric schemes. Such schemes do not
need time synchronization and allow the introduction of digital
signatures, by means of which a message can be quite easily
associated with an entity, thus enabling authentication
features.
The use of asymmetric schemes in sensor networks has been
usually considered as “nearly impossible” because they are
power consuming and require a large amount of computational
and storage resources. However, as previously said, such
schemes are very attractive, because they can ensure a higher
degree of security while guaranteeing a greater flexibility and
manageability than symmetric ones: thanks to them, any two
sensors can establish a secure channel between themselves to
distribute keys; moreover, as nodes do not share the same
common key for encrypting/decrypting messages, the
“capture” of some sensor devices will not affect the security of
others.

Rivest-Shamir-Adelman (RSA) algorithm [17] and Elliptic
Curve Cryptography (ECC) [18] are amongst the most well
known public key algorithms used in security systems, the
latter being an approach to public-key cryptography based on
the algebraic structure of elliptic curves over finite fields.
Many papers and articles discussed the efficiency of each of
these protocols, and showed that ECC is more efficient than

054 De Benedictis, Gaglione and Mazzocca

RSA in terms of memory requirements because it requires
much lower key size than RSA to achieve the same security
level: it has been proved that ECC with 160-bit keys provides
the currently accepted security level, and is equivalent in
strength to RSA with 1024-bit keys (RSA-1024) [19].

At present some studies have demonstrated that with
careful design, the Elliptic Curve Diffie-Hellman (ECDH) key
agreement technique [18], based on Elliptic Curve
Cryptography, can be deployed on even the most constrained
of the current sensor network devices [20]-[23]. Moreover,
Elliptic Curve Digital Signature Algorithm (ECDSA) [18], a
variant of the Digital Signature Algorithm (DSA) that operates
on elliptic curve groups, can be used for signature generation
and verification.
In order to overcome the drawbacks of both PKC and SKC
schemes, a hybrid approach could be adopted, by combining
the higher security level accomplished by the first ones with
the efficiency of the latter ones in terms of required resources.
AL-Rousan et al. in [24] proposed a security system relying
upon a symmetric key function for ensuring secure
communication between in-network nodes, and a public key
function for providing a secure data delivery between source
nodes and the sink; the proposed scheme suits well to
data-centric networks, in which only a subset of the fields in
the exchanged packets is needed for aggregation at
intermediate nodes, while the whole packet has to be seen only
by the sink and the source. It suggests that a symmetric key
algorithm should be used by the intermediate nodes to
encrypt/decrypt the aggregation data portion (a common secret
key shared by all nodes is used for this purpose), while the
required data portion is encrypted/decrypted using a public
key algorithm.
 A hybrid approach, being slightly different by this one, can
be considered for a tiered network composed of one master
and many motes, each communicating only with the master: a
public key function could be used to ensure authentication of
the master and also to establish secret symmetric keys between
the master and each of the motes, in order to ensure a higher
level of security, while limiting as much as possible the
cryptographic computational load.

III. Tenet Overview

The Tenet system [25] is an architecture for tiered sensor
networks which provides a high-level programming
abstraction and allows applications to dynamically task and
re-task the sensor network. The Tenet architecture is
motivated by the observation that future large-scale sensor
network deployments will be tiered [25], [26]: in a tiered
architecture, nodes form a hierarchy in which each of them
performs a specific set of tasks at a given level on behalf of a
subset of nodes at the level below. This way they realize a
functional decomposition which can reflect physical or logical
differences among nodes [27]. Tiered architectures are
scalable and cost-effective, as they allocate resources where
they can be most efficiently utilized; moreover, organizing a
network in tiers can increase network lifetime by partitioning
different functions among specifically designed hardware
platforms.

The Tenet system splits a sensor network into two tiers
(Figure 1) : in the lower tier we can find simple sensor nodes,
called “motes”, which merely perform local processing on
sensed data, while in the upper tier we find the “masters”,
rather unconstrained nodes performing multi-node data fusion

and complex application logic, often provided with a
consistent source of energy.

Figure 1. The Tenet architecture

The Tenet project's guiding architectural principle asserts

that multi-node data fusion functionality and complex
application logic should be implemented only on the masters,
while allowing motes to process locally-generated sensor data.
All communication to the mote tier consists of tasks, and all
communication from the mote tier consists of task responses
(such as sensor data) destined for a master and delivered to the
application program (Figure 2). The master node can then fuse
the results, re-task motes or trigger other sensing
functionalities.

Figure 2. The Tenet programming model

In Tenet, one or more applications run concurrently on the

less constrained master tier, where programmers can use
familiar programming interfaces (compiled, interpreted, visual
ones) and different programming paradigms (functional,
declarative, procedural ones), simplifying application
development. At the same time, the mote tier networking
functionality is generic, since Tenet's networking subsystem
merely needs to robustly disseminate task descriptions to the
motes and reliably return results to masters: this enables
significant code reuse across applications and energy-efficient
operations.

Applications specify a task as a linear data flow program
consisting of a sequence of tasklet implementing
functionalities as timers, sampling, data compression,
thresholding, statistical operations, and other forms of simple
signal processing. For example, to construct a task that
samples the temperature sensor every minute and sends the
samples to its master, an application should construct the
following task:

periodic(1 min) -> sample(TEMPERATURE)
-> Send()

055

A Secure Architecture for Re-Taskable Sensing Systems

Tenet is equipped with a networking sub-system which
provides task dissemination, routing from motes to the master
and end-to-end reliable transport. Any mote must be able to
return a response to the tasking master: Tenet uses a novel
tiered routing mechanism, where a mote's response is first
routed to its nearest master, and is then routed on the master
tier using an IP overlay. The routing system also enables
point-to-point routing between masters and motes, necessary
for example if a master has to adaptively re-task an individual
mote or if a master has to directly send the task description to a
specific mote instead of using Tenet task dissemination
mechanism for efficiency purposes.

Tenet supports three types of delivery mechanisms, which
applications can select by using the corresponding tasklet in
their task description: a best effort transport, useful for
loss-tolerant periodic low rate applications, a transactional
reliable transport for events, and a stream transport for
high-data rate applications, all of which using a limited
number of hop-by-hop retransmissions to counter the high
wireless packet loss rates encountered in practice.

IV. Proposal

As previously seen, security issues are a central concern
for sensor networks, as they are often adopted in critical
applications despite having many characteristics that make
them very vulnerable to malicious attacks. Because of their
resource constraints, it is very difficult to implement strong
security algorithms on sensor platforms and there’s still much
work to do to address this matter. However, if we consider a
tiered system such as Tenet, whose master layer nodes are
supposed to have relatively more plentiful resources, we can
assume that the most complex and power consuming
operations are placed on such nodes: this way it is possible for
example to perform some complex cryptographic algorithms
exploiting the different capabilities of network components.

Hence, our proposal is the enhancement of the Tenet
architecture by means of the introduction of a cryptosystem, in
order to achieve some security requirements in a tiered
network. As for now we will not cover aspects such as data
fusion security, secure localization, secure time
synchronization, secure routing and transport but we will keep
such points as future works. Instead, our proposal aims at
ensuring the following security properties:

• achieve end-to-end encryption, integrity and freshness

of response packets sent by motes to the master;

• implement a mechanism for key exchanging (and
storing) between the master and motes in such a way
that different pairs of keys are kept between each mote
and the master;

• achieve broadcast authentication of messages sent by
a master to the motes;

As for the first point, we have adopted a symmetric scheme
in order to efficiently ensure confidentiality, integrity and
freshness of response packets sent by motes to the master: at
this aim we have integrated the MiniSec architecture [8] with
the Tenet system. As for the key exchanging and broadcast
authentication protocols, they have been implemented by
exploiting the TinyECC library [29], a publicly available
software package for ECC operations including some
optimization features which can be enabled/disabled through
opportune software switches.

The key exchanging protocol is naturally achieved via
Tenet tasking system itself, while as for broadcast
authentication the only constraint is that each mote has to be
preloaded with the public key of the base station. This is
slightly acceptable since a Public Key Infrastructure for sensor
networks still does not exist at the moment.

Current implementation of the cryptosystem has been
realized by taking into account a single master Tenet
architecture: we made no assumptions on master-to-master
communication, but we have kept this point as a future work.
In the following sections, we firstly give a brief overview of
the adopted software packages (MiniSec and TinyECC) and
then illustrate the design principles of our security scheme.
We have implemented and tested the proposed architecture on
TelosB motes and PC-class devices with Tenet-t1 running on
top of TinyOS 1.x [28]. However a more complete evaluation
of security features of our cryptosystem will be addressed in
future works as well the porting of our code to Tenet-t2
running on top of TinyOS 2.x.

V. Security Enhanced Tenet Architecture

The design of the cryptosystem for the Tenet architecture
focuses on exploiting low level security primitives provided
by publicly available software packages. In this section, we
first give an overview of the adopted tools, and finally
illustrate the design as well as some implementation details of
our cryptosystem and its integration with the Tenet
architecture.

A. Adopted Technologies

MiniSec is a secure network layer that provides a high security
level in terms of data confidentiality, integrity and freshness,
while keeping low energy consumption. Minisec’s source code
is publicly available for Telos motes, but can be easily ported
to other platforms. It has two operating modes, one tailored for
single-source communication (unicast communication), and
another tailored for multi-source broadcast communication.
Both schemes employ OCB or Offset CodeBlock [30] as
encryption mode, which is especially well-suited for the
stringent energy constraints of sensor nodes and is able to
provide secrecy and authenticity in one pass of the block
cipher. Data authentication is achieved by the sender by
computing a Message Authentication Code (MAC) over the
payload and appending that to the message, with the receiver
having to recompute it and verify the matching with the
received one. Also, MiniSec provides a mechanism to
guarantee a “weak” level of freshness, based on the use of a
counter as a nonce, by which a receiver can determine a partial
ordering over received messages without a local reference
time point.
Authors rewrote part of the TinyOS network stack, specifically
the Active Message layer, responsible for managing the
communication over the radio channel, in such a way all
outgoing messages are encrypted, while all received packets
are decrypted: this is done by appropriately modifying the
GenericComm and AMStandard TinyOS core modules.
MiniSec uses 80-bit symmetric keys, considered to be secure
until 2012. When 80-bit keys become insecure, it will be
possible to use 128-bit AES keys [31], secure for the next 20
years. Minisec’s packet format is based on the current TinyOS
packet header for Telos mote’s CC2420 radio, with the
addition of a source address and a counter fields, resulting in
an overall 3-byte overhead. In this way, MiniSec achieves the

056 De Benedictis, Gaglione and Mazzocca

lowest communication overhead among its major counterparts
(i.e. TinySec), with respect to a standard TinyOS network
stack.

TinyECC is a configurable library for ECC operations in
wireless sensor networks. Its primary objective is to provide a
ready-to-use, publicly available software package for
ECC-based PKC operations that can be flexibly configured
and integrated into sensor network applications. TinyECC
includes all the well-known ECC schemes, such as ECDH key
agreement scheme and ECDSA digital signature scheme. It
also includes a public key encryption scheme (ECIES) and
some optimization features for ECC operations, which can be
enabled/disabled by developers by means of apposite software
switches. TinyECC has been tested on MICAz, TelosB, Tmote
Sky, and Imote2 platforms running TinyOS. By default,
TinyECC includes all 128-bit, 160-bit and 192-bit ECC
parameters recommended by SECG (Standards for Efficient
Cryptography Group) [18].

B. Design Overview

Figure 3 shows the security enhanced Tenet architecture,
having been realized from the current Tenet prototype. Red
dashed lines indicate new modules added to the system as well
as extensions of existing ones with new components.

 a b
 a b

Figure 3. Modified Tenet stack on (a) master side and (b)
mote side

The Tenet system can be considered as composed of 2 main
software layers: an application layer and a OS layer, the latter
being implemented by TinyOS [28], the most commonly used
free and open source Operating System for wireless sensor
networks; in order to enhance Tenet with security capabilities,
we have integrated into this structure the libraries described
above.
Let us first consider the master side (Figure 3.a), where we
have modified its application layer structure by introducing an
ECC Library based on the TinyECC distribution, and by
adding the pubKeyExchange element to the Tasking Library,
in order to let the Tenet system correctly interpret a task
containing the pubKeyExchange tasklet. We have also
modified the TenetAPI in order to implement the digital
signature of task messages sent by master to motes.
The OS layer has been modified by integrating TinyOS with
Minisec, responsible for cryptographic operations and
management of the shared keys between the master and each
of the motes.
On the mote side (Figure 3.b) the we have improved the Mote
Tasking Library by defining and implementing the
pubKeyExchange tasklet, aimed to carry out security
operations according to the ECDH key agreement technique.

Motes OS layer has also been modified in order to opportunely
integrate the Minisec system.

C. Implementation details

Let us now describe more in detail the implementation of
key agreement, broadcast authentication and end-to-end
encryption operations in our system.

As previously said, as for key establishment we have
implemented the ECDH key agreement protocol by exploiting
the Tenet tasking system and TinyECC primitives. In a key
establishment scenario the master sends to each mote the
following task:

pubKeyExchange(PPx, PPy) -> Send()

where pubKeyExchange is a new tasklet added to the Mote
Tasking Library, that aims to perform ECC security operations
according to the ECDH key agreement technique, and PPx and
PPy are the coordinates of master’s Public Point.
As applications running on the master are written in the C
language, we ported TinyECC code from nesC to C, thus
constructing the ECC Library exploited by the master in order
to perform ECC security operations. Also, we added the
pubKeyExchange element to the Tasking Library on master
side, in order to let the Tenet system correctly interpret a task
containing the pubKeyExchange tasklet.
The ECDH protocol has been implemented according to the
following steps, illustrated in Figure 4:

1. the master runs the ECDH application and initializes
the Elliptic Curve;

2. the master calculates its Public Point on that curve and

3. sends the previously mentioned task to the mote with
the two coordinates (PPx, PPy) of its Public Point;

4. the mote initializes the Elliptic Curve and

5. calculates its public point on that curve;

6. the mote calculates the shared secret, that is its own

private key shared with the master, and stores it in the
MiniSec keyfile;

7. the mote sends the task response with the two

coordinates of its Public Point

8. finally, the master calculates the shared secret and
stores it in the MiniSec keyfile. The master keeps a list
of as many keyfiles as the number of motes.

The procedure is iterated for all motes, in such a way that each
of them shares a different private key with the master.
The calculated shared secret is a 160-bit key, however only the
first 80 bits will be stored in the keyfiles, composing the
cryptographic symmetric key employed by the Skipjack cipher
within MiniSec.

057

A Secure Architecture for Re-Taskable Sensing Systems

Figure 4. ECDH key agreement protocol using the Tenet
tasking system

As for broadcast authentication, we assumed that
broadcast tasking messages from master to motes must be
authenticated in such a way each mote can verify the identity
of the master node. Hence, we have implemented the ECDSA
scheme by using again the primitives provided by TinyECC.
The only constraint is that during the initialization phase of the
system the master should generate a key pair (private key –
public key) and store its private key in the ECC Library.
On the other side, each mote should be preloaded with the
public key of the master, opportunely stored in the TinyECC
Library. That assumption can be accepted since there is not yet
a Public Key Infrastructure for public key distribution in
sensor networks. On master side, tasking messages are signed
with the master private key in the TenetAPI module and sent to
motes together with the signature. On mote side the signature
is verified in the TaskInstaller component with the master
public key. The high modularity of the Tenet system allowed
us to easily add security operations into the above mentioned
opportune elements.

Finally, as for confidentiality, integrity and freshness of
task response messages from motes to the master, we have
opportunely integrated the MiniSec security layer into the
Tenet system. As previously mentioned, MiniSec’s authors
simply rewrote the ActiveMessage layer of the TinyOS
network stack for encrypting all outgoing messages and
decrypting all received ones. Since we are just interested in
securing task response messages, on mote side we integrated
the MiniSec AMStandard module and modified it in such a
way it only does encryption of outgoing task response
messages which are identified with a specific tag; on master
side we added MiniSec decrypting operation into the
AMFiltered component running on the base station in order
that it just decrypts incoming task response messages
identified with the above mentioned specific tag. Obviously,
those operations are performed by using previous exchanged
private keys between the master and each mote..

VI. Conclusion and Future Works

In this paper, we have proposed the design of a hybrid
cryptosystem aimed to secure the Tenet architecture. We have
combined symmetric and asymmetric cryptographic schemes
in order to achieve key exchange mechanisms (through the
definition of a specific tasklet added to the Tenet Tasking
Library), end-to-end encryption, integrity and freshness of
response packets sent from motes to the master, and broadcast
authentication of tasking messages coming from the master to

motes. These goals have been reached by opportunely
integrating the TinyEcc library and the Minisec security layer
with the Tenet architecture.

We have implemented and tested our schemes for Telos
motes running Tenet-t1 on top of TinyOS 1.1.x. Future works
will be devoted to port our code to TinyOS 2.x in order to be
compliant with Tenet-t2 release as well as to port it to other
sensor platforms.

Actually, the development of a cryptosystem based on the
Tenet architecture is not an end in itself: our main goal is to set
up different security protocols and architectures based on
well-known or novel solutions, in order to develop a general
design methodology for wireless sensor networks having strict
security requirements. At this aim, we plan to try out different
security schemes on more complete testbeds in order to be able
to evaluate such solutions in terms of the tradeoff between the
achieved security level and the resulting performances.

Acknowledgments

We thank Ramesh Govindan for having inspired and
followed out this work. We also thank all members of the
Embedded Networks Laboratory of the University of Southern
California, above all Omprakash Gnawali, Jeongyeup Paek
and Marcos Vieira for their advice and collaboration.

References
[1] J. Paek, B. Greenstein, O. Gnawali, K.-Y. Jang, A. Joki, M. Vieira, J.

Hicks, D. Estrin, R. Govindan, E. Kohler, “The Tenet Architecture for
Tiered Sensor Networks”, ACM Transactions on Sensor Networks
(TOSN), Vol. 6, No. 4, 2010.

[2] O. Gnawali, B. Greenstein, K.-Y. Jang, A. Joki, J. Paek, M. Vieira, D.
Estrin, R. Govindan, and E. Kohler, “ The TENET Architecture for
Tiered Sensor Networks”, Proc. ACM SenSys ’06, Boulder, Colorado,
USA, November 2006.

[3] J. Hicks, J. Paek, S. Coe, R. Govindan, and D. Estrin, “An Easily
Deployable Wireless Imaging System”, Proc. ImageSense 2008, 2008.

[4] J. Paek, O. G. K.-Y. Jang, D. Nishimura, R. Govindan, J. Caffrey, M.
Wahbeh, and S. Masri, “A Programmable Wireless Sensing System for
Structural Monitoring”, Proc. 4th World Conference on Structural
Control and Monitoring (4WCSCM), San Diego, CA, July 2006.

[5] X. Chen, K. Makki, K. Yen, and N. Pissinou, “Sensor Network
Security: A Survey”, IEEE COMMUNICATIONS SURVEYS &
TUTORIALS, VOL. 11, NO. 2, SECOND QUARTER 2009

[6] D. Dolev and A.C. Yao, “On the security of public key protocols”, Proc.
IEEE 22nd Annual Symposium on Foundations of Computer Science,
pp. 350-357, 1981.

[7] C. Karlof, N. Sastry, and D. Wagner, “TinySec: A Link Layer Security
Architecture for Wireless Sensor Networks”, Proc. Second ACM
Conference on Embedded Networked Sensor Systems (SenSys 2004),
Baltimore, MD, November 2004.

[8] M. Luk, G. Mezzour, A. Perrig, and V. Gligor, “MiniSec: A Secure
Sensor Network Communication Architecture”, Proc. Sixth
International Conference on Information Processing in Sensor
Networks (IPSN 2007), April 2007.

[9] ZigBee Alliance, “Zigbee specification”, Technical Report Document
053474r06, Version 1.0, ZigBee Alliance, June 2005.

[10] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler, “Spins:
security protocols for sensor networks”, Wireless Networking,
8(5):521–534, 2002.

[11] H. Chan, A. Perrig, and D. Song, “Random key predistribution schemes
for sensor networks”, IEEE Symposium on Research in Security and
Privacy, pages 197–213, 2003.

[12] W. Du, J. Deng, Y. S. Han, and P. Varshney, “A pairwise key
pre-distribution scheme for wireless sensor networks”,Proc. 10th ACM
Conference on Computer and Communications Security (CCS’03),
pages 42–51, October 2003.

058 De Benedictis, Gaglione and Mazzocca

[13] W. Zhang, S.Zhu, and G. Cao, “Predistribution and local
collaboration-based group rekeying for wireless sensor networks”, Ad
Hoc Networks 7 (2009)

[14] H. T. T. Nguyen, M. Guizani, M. Jo, and E. Huh, “An Efficient
Signal-Range-Based Probabilistic Key Predistribution Scheme in a
Wireless Sensor Network”, IEEE TRANSACTIONS ON VEHICULAR
TECHNOLOGY, VOL. 58, NO. 5, JUNE 2009

[15] D. Liu and P. Ning, “Multi-level mTESLA: Broadcast authentication
for distributed sensor networks”, ACM Transactions in Embedded
Computing Systems (TECS), 3(4):800–836, 2004.

[16] D. Liu, P. Ning, S. Zhu, and S. Jajodia, “Practical broadcast
authentication in sensor networks”, Proc. 2nd Annual International
Conference on Mobile and Ubiquitous Systems: Networking and
Services (MobiQuitous 2005), July 2005.

[17] R.L. Rivest, A. Shamir, and L.A. Adleman, "A method for obtaining
digital signatures and public-key cryptosystems", Communications of
the ACM 21(2), pages 120–126, 1998

[18] Certicom Research, “Standards for efficient cryptography, SEC 1:
Elliptic Curve Cryptography”, Version 1.0, September 20, 2000.

[19] N. Gura, A. Patel, A. Wander, H. Eberle, and S. Shantz “Comparing
elliptic curve cryptography and RSA on 8-bit CPUs”, In Proceedings of
the 6th International Workshop on Cryptographic Hardware and
Embedded Systems (CHES 2004), Cambridge, MA, pages 119-132,
2004.

[20] J. Lopez, “Unleashing Public-Key Cryptography in Wireless Sensor
Networks”, Journal of Computer Security, vol 14, no. 5, pp 469-482,
2006.

[21] G. Gaubatz, J. Kaps, and B. Sunar, “Public keys cryptography in sensor
networks” , In Proceedings of the 1st European Workshop on Security
in Ad-Hoc and Sensor Networks (ESAS), 2004.

[22] E.O. Blaß and M. Zitterbart, “Towards acceptable public-key
encryption in sensor networks”, Proc. ACM 2nd International
Workshop on Ubiquitous Computing, pp.88–93, INSTICC Press,
Miami, USA, May 2005.

[23] R. Watro, D. Kong S. Cuti, C. Gardiner, C. Lynn and P. Kruus,
“TinyPK: Securing Sensor Networks with Public Key Technology”,
Proc. 2nd ACM Workshop on Security of ad hoc and Sensor Networks,
SASN 2004, Washington, DC, USA, October 25, 2004.

[24] M. AL-Rousan, A. Rjoub, and Ahmad Baset, "A Low-Energy Security
Algorithm for Exchanging Information in Wireless Sensor Networks",
Journal of Information Assurance and Security 4 (2009) pages 48-59

[25] A. Arora et al, “ExScal: Elements of an extreme scale wireless sensor
network”, Proc. 11th IEEE International Conference on Real-Time and
Embedded Computing Systems and Applications (RTCSA '05), August
2005.

[26] R. Guy, B. Greenstein, J. Hicks, R. Kapur, N. Ramanathan, T.
Schoellhammer, T. Stathopoulos, K. Weeks, K. Chang, L. Girod, and D.
Estrin, “Experiences with the Extensible Sensing System ESS”,
Technical Report 61, CENS, Mar. 29 2006.

[27] Handbook of Sensor Networks: Compact Wireless and Wired Sensing
Systems. Edited by Mohammad Ilyas and Imad Mahgoub.CRC Press
2005.Print ISBN: 978-0-8493-1968-6

[28] TinyOS Project, URL: http://www.tinyos.net.

[29] A. Liu, P. Kampanakis, and P. Ning. "TinyECC: Elliptic curve
cryptography for sensor networks", Proc. 7th International Conference
on Information Processing in Sensor Networks, IPSN 2008, St. Louis,
Missouri, USA, April 22-24, 2008.

[30] P. Rogaway, M. Bellare, J. Black, “OCB: A block-cipher mode of
operation for efficient authenticated encryption”, Proc. ACM
Transactions on Information and System Security (TISSEC), Volume 6,
Issue 3, pp.365-403. August 2003.

[31] http://csrc.nist.gov/archive/aes/rijndael/wsdindex.html

Author Biographies
Alessandra De Benedictis is currently a Ph.D. student in Computer and
Control Engineering at the University of Naples Federico II. She received a
B.S. degree and an M.S. degree in Computer Engineering, both summa cum
laude, from the University of Naples Federico II in March 2009. Her research
activities include security in Wireless Sensor Networks, Embedded System
Design and performance evaluation.

Andrea Gaglione received a B.S. degree and an M.S. degree in Computer
Engineering, both summa cum laude, from the Second University of Naples
in 2004 and 2006, respectively. He got a Ph.D. in Computer and Control
Engineering from the University of Naples Federico II in 2009 and his
research activities include Sensor Networks, Event Recognition, and Critical
Infrastructure Protection.

Nicola Mazzocca is a full professor of High-Performance and Reliable
Computing at the Computer and System Engineering Department of the
University of Naples Federico II, Italy. He owns an MS Degree in Electronic
Engineering and a Ph.D. in Computer Engineering, both from the University
of Naples Federico II. His research activities include methodologies and tools
for design/analysis of distributed systems; secure and real-time systems and
dedicated parallel architectures.

059

A Secure Architecture for Re-Taskable Sensing Systems

