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Abstract: Sensor Networks are considered a high-innovation 
potential branch in the field of network computing and are 
widely used in several application domains thanks to their cost 
effectiveness, flexibility and ease of deployment. They are well 
suited to a multitude of monitoring and surveillance applications 
and are often involved in mission-critical tasks, thus making 
security a primary concern. Many architectures and protocols 
have been proposed to address this issue, mainly based on 
cryptographic operations, but it still represents an open research 
area: in fact, in order to be effective, such techniques often 
require complex computations and a large amount of dedicated 
resources, which are not available on sensor platforms according 
to the  existing technology. Nevertheless, if considering tiered 
sensor networks, where tiny motes coexist with more powerful 
nodes, it is possible to perform some complex and efficient 
security schemes by exploiting the different capabilities of nodes. 
In this paper we present a secure architectural proposal based on 
the Tenet system, a tiered re-taskable sensor network 
architecture. Specifically, we have integrated security features 
into the Tenet architecture in order to implement a hybrid 
cryptosystem. Such a cryptosystem combines symmetric and 
asymmetric cryptographic schemes to benefit of the security 
provided by asymmetric protocols and the better performance of 
symmetric ones.  

 
Keywords: Sensor network security, Secure communication 

architecture, Tiered sensor networks.  

 

I. Introduction 

The increasing spread of sensor networks has led to the 
diffusion of middleware platforms as well as sensor network 
programming systems, aiming to bridge the gap between 
applications and the underlying hardware platforms. These 
systems provide high level programming abstractions and 
implement services such as routing, transport, task 
dissemination and execution and time synchronization, thus 
simplifying application development. Tenet [1], [2] is an 
example of such systems and the validity of its architecture has 
been demonstrated in several application domains [3], [4].  
The Tenet architecture has been conceived for tiered sensor 
networks consisting of two classes of devices: motes are in the 
lower tier, which enables flexible deployment of dense 
instrumentation, while less constrained 32-bit nodes  (named 
masters) are in the upper tier and implement multi-node data 
fusion and application logic. 

One of the main open issues in such kind of systems is 
related to the development of general purpose security 
protocols. There is a large number of application scenarios 

where data exchanged between sensor nodes is critical (e.g. 
health or military applications), and providing security 
services for such applications is a technical challenge, due to 
hostile deployment environments and resource limitations. 

The openness of wireless channels lets anyone be able to 
sniff or participate in communications, undermining integrity 
and confidentiality requirements of the system; moreover, 
unattended physical access to the network infrastructure may 
encourage node capture and redeployment or even the 
placement of malicious nodes into the network causing an 
unattended behavior (i.e. redirecting or interrupting 
communication and service).  

These specific challenges, together with the limited 
energy, computation, and communication capabilities of 
sensor devices, make it difficult to directly employ the existing 
security approaches to the area of wireless sensor networks. 

Most security protocols are based on cryptographic 
operations as encryption and authentication; they massively 
involve the adoption of keys and complex mathematical 
functions that require dedicated computational resources. 
Indeed, the adoption of such security mechanisms on so small 
devices can be critical from a performance and power 
consumption point of view. At this aim, in this paper, we 
discuss the design and implementation of a hybrid 
cryptosystem that combines symmetric and asymmetric 
cryptographic schemes, in order to benefit from both the 
higher level of security provided by asymmetric protocols and 
the better performance of symmetric ones. 

Such a cryptosystem can be more effectively implemented 
in a tiered system like Tenet, where the advantage of  having 
different computational and energy constraints between the 
motes and the base station can be exploited. As a matter of 
fact, tiers are not only a fundamental condition to scale 
network size and spatial extent, as the higher level nodes have 
greater network capacity and larger spatial reach than a flat 
network, but they also allow a computational load partition 
between nodes in such a way that “master” nodes can perform 
more complex cryptographic operations without affecting the 
performance of the overall system. 

The reminder of the paper is structured as follows: in 
Section 2 a description of security issues in sensor networks is 
provided, along with the discussion of the main solutions 
known in literature. In Section 3 we will give a brief overview 
of the Tenet architecture, while in Section 4 we will illustrate 
our proposal as well as our aims. In Section 5 we will describe 
our security enhanced Tenet architecture and also give some 
implementation details; finally, in Section 7 some conclusions 
and future work will be drawn.  
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II. Security issues in Sensor Networks and state 
of the art 

Recently there has been an intense research aimed at 
developing security schemes for sensor network applications, 
as they are well suited to a multitude of monitoring and 
surveillance applications and are often involved in 
mission-critical tasks, thus making security a primary concern. 
In this section, we will discuss about the main security issues 
in WSNs,  presenting an overview of the state of the art and 
focusing on the aspects that motivated our proposal. 

In [5] the authors identify and summarize the main threats 
to Wireless Sensor Networks (WSN) and their vulnerabilities, 
and give a brief summary of security issues and defense 
suggestions from the point of view of the OSI model.  

On the basis of the Dolev-Yao threat model [6], an attacker 
can spoof, intercept, alter and inject any message exchanged 
between sensor nodes. According to that, main requirements 
of secure sensor network architectures are authentication, 
confidentiality, integrity, and freshness, meant as the property 
of exchanged data to be recent, that is not replayed by an 
adversary from an old message. 

Security architectures for WSNs rely upon cryptography 
operations as the basic method to achieve previously 
mentioned security requirements. Cryptographic schemes 
involve the adoption of one or more keys, used to encrypt and 
decrypt exchanged data; the main problem to face with when 
setting up a secure communication between nodes is key 
agreement, that is the way such keys are established at each 
node. There are two main well-known mechanisms to handle 
the problem of key agreement: Symmetric Key Cryptography 
(SKC) and Public Key Cryptography (PKC), the former 
adopting a unique secret shared key for both encrypting and 
decrypting messages, and the latter employing a couple of keys 
for each node, one public and the other private, resulting in an 
improvement of the security level of  the system.  
Several implementations of Symmetric Key Cryptography 
algorithms have been proposed in literature (i.e. Skipjack, 
DES, 3DES, AES, RC5, RC6), as they require in general a 
reduced amount of computational resources and thus turn out 
to be well suited for realization on sensor devices. Nowadays 
some implementations of complete secure protocols based on 
symmetric schemes are available, as TinySec [7], MiniSec [8], 
ZigBee [9] and SNEP [10]; TinySec, a popular secure link 
layer protocol, achieves low energy consumption and memory 
usage, but it also sacrifices the level of security, not providing 
protection against replay attacks and employing a single 
network-wide key, such that every malicious node in the 
network can masquerade as any other node. ZigBee provides a 
higher level of security than TinySec since it is not restricted to 
a network-wide key and it protects against replay attacks, but it 
is an expensive protocol due to high communication overhead, 
high energy consumption by the radio and large memory 
utilization. MiniSec provides lower energy consumption than 
TinySec, and a high level of security like ZigBee, while 
requiring less packet overhead, and has been showed  to 
outperform other comparable systems under most real-world 
scenarios[8]. 
Even if symmetric schemes are very attractive for their energy 
and memory efficiency, they present a major drawback: key 
distribution and management are a fundamental concern, as 
they produce a heavy traffic in the network and often require 
complex and not scalable architectures. Actually, there has 
been a substantial amount of research on key distribution 

schemes [11]-[14], and two main solutions have been 
investigated: key pre-distribution, which involves assigning 
keys to a set of nodes before deployment according to 
deterministic or stochastic algorithms, and hierarchical 
schemes, relying upon a trusted controller for key assignment 
and exchange between nodes. 

A further weakness of symmetric cryptography consists in 
that it only fulfills confidentiality requirements, while not 
considering other security issues such as authentication and 
integrity. 
     An important security requirement which arises within the 
sensor network domain is the broadcast authentication, that is 
the capacity of a sender to broadcast messages to multiple 
nodes in an authenticated way. In the two-party 
communication case, data authentication can be achieved 
through a purely symmetric mechanism making use of a 
Message Authentication Code (MAC), computed by the 
sender over the payload and appended to the message, in such 
a way that the packet is considered valid upon reception if the 
MAC recomputed by the receiver matches with the received 
one. This kind of solution is insecure in broadcast 
communication scenarios. In fact, anyone of the receivers 
knows the MAC key and could impersonate the sender. 
Instead, asymmetric schemes are the natural way for providing 
broadcast authentication.  
     Despite that, Perrig et al. [10] propose a key-chain 
distribution system for their µTESLA secure broadcast 
protocol, part of the SPINS system.  The basic idea of the 
µTESLA system is that it constructs authenticated broadcast 
messages from symmetric primitives, but introduces 
asymmetry with delayed key disclosure and one-way function 
key chains. One of the limitations of µTESLA is that some 
initial information must be unicasted to each sensor node 
before authentication of broadcast messages can begin. To 
face with these constraints enhancements to the µTESLA 
system have been proposed [15], [16]. However all of these 
schemes use symmetric key techniques with an elaborate 
design to add asymmetric properties to them and require loose 
time synchronization between nodes. 
     In summary, it can be stated that, like other main security 
requirements, broadcast authentication can be naturally 
achieved through asymmetric schemes. Such schemes do not 
need time synchronization and allow the introduction of digital 
signatures, by means of which a message can be quite easily 
associated with an entity, thus enabling authentication 
features. 
The use of asymmetric schemes in sensor networks has been 
usually considered as “nearly impossible” because they are 
power consuming and require a large amount of computational 
and storage resources. However, as previously said, such 
schemes are very attractive, because they can ensure a higher 
degree of security while guaranteeing a greater flexibility and 
manageability than symmetric ones: thanks to them, any two 
sensors can establish a secure channel between themselves to 
distribute keys; moreover, as nodes do not share the same 
common key for encrypting/decrypting messages, the 
“capture” of some sensor devices  will not affect the security of 
others. 

Rivest-Shamir-Adelman (RSA) algorithm [17] and Elliptic 
Curve Cryptography (ECC) [18] are amongst the most well 
known public key algorithms used in  security systems, the 
latter being an approach to public-key cryptography based on 
the algebraic structure of elliptic curves over finite fields. 
Many papers and articles discussed the efficiency of each of 
these protocols, and showed that ECC is more efficient than 
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RSA in terms of memory requirements because it requires 
much lower key size than RSA to achieve the same security 
level: it has been proved that ECC with 160-bit keys provides 
the currently accepted security level, and is equivalent in 
strength to RSA with 1024-bit keys (RSA-1024) [19]. 

At present some studies have demonstrated that with 
careful design, the Elliptic Curve Diffie-Hellman (ECDH) key 
agreement technique [18], based on Elliptic Curve 
Cryptography, can be deployed on even the most constrained 
of the current sensor network devices [20]-[23].  Moreover, 
Elliptic Curve Digital Signature Algorithm (ECDSA) [18], a 
variant of the Digital Signature Algorithm (DSA) that operates 
on elliptic curve groups, can be used for signature generation 
and verification.   
In order to overcome the drawbacks of both PKC and SKC 
schemes, a hybrid approach could be adopted, by combining 
the higher security level accomplished by the first ones  with 
the efficiency of the latter ones in terms of required resources. 
AL-Rousan et al. in [24] proposed a security system relying 
upon a symmetric key function for ensuring secure 
communication between in-network nodes, and a public key 
function for providing a secure data delivery between source 
nodes and the sink; the proposed scheme suits well to 
data-centric networks, in which only a subset of the fields in 
the exchanged packets is needed for aggregation at 
intermediate nodes, while the whole packet has to be seen only 
by the sink and the source. It suggests that a symmetric key 
algorithm should be used by the intermediate nodes to 
encrypt/decrypt the aggregation data portion (a common secret 
key shared by all nodes is used for this purpose), while the 
required data portion is encrypted/decrypted using a public 
key algorithm.  
      A hybrid approach, being slightly different by this one, can 
be considered for a tiered network composed of one master 
and many motes, each communicating only with the master: a 
public key function could be used to ensure authentication of 
the master and also to establish secret symmetric keys between 
the master and each of the motes, in order to ensure a higher 
level of security, while limiting as much as possible the 
cryptographic computational load. 
 

III. Tenet Overview 

The Tenet system [25] is an architecture for tiered sensor 
networks which provides a high-level programming 
abstraction and allows applications to dynamically task and 
re-task the sensor network. The Tenet architecture is 
motivated by the observation that future large-scale sensor 
network deployments will be tiered [25], [26]: in a tiered 
architecture, nodes form a hierarchy in which each of them 
performs a specific set of tasks at a given level on behalf of a 
subset of nodes at the level below. This way they realize a 
functional decomposition which can reflect physical or logical 
differences  among nodes [27]. Tiered architectures are 
scalable and cost-effective, as they allocate resources where 
they can be most efficiently utilized; moreover, organizing a 
network in tiers can increase network lifetime by  partitioning 
different functions among specifically designed hardware 
platforms. 

The Tenet system splits a sensor network into two tiers 
(Figure 1) : in the lower tier we can find simple sensor nodes, 
called “motes”, which merely perform local processing on 
sensed data, while in the upper tier we find the “masters”, 
rather unconstrained nodes performing multi-node data fusion 

and complex application logic, often provided with a 
consistent source of energy.  

 
Figure 1. The Tenet architecture 

 
The Tenet project's guiding architectural principle asserts 

that multi-node data fusion functionality and complex 
application logic should be implemented only on the masters, 
while allowing motes to process locally-generated sensor data. 
All communication to the mote tier consists of tasks, and all 
communication from the mote tier consists of task responses 
(such as sensor data) destined for a master and delivered to the 
application program (Figure 2). The master node can then fuse 
the results, re-task motes or trigger other sensing 
functionalities.  

 
 

Figure 2. The Tenet programming model 
 
In Tenet, one or more applications run concurrently on the 

less constrained master tier, where programmers can use 
familiar programming interfaces (compiled, interpreted, visual 
ones) and different programming paradigms (functional, 
declarative, procedural ones), simplifying application 
development. At the same time, the mote tier networking 
functionality is generic, since Tenet's networking subsystem 
merely needs to robustly disseminate task descriptions to the 
motes and reliably return results to masters: this enables 
significant code reuse across applications and energy-efficient 
operations. 

Applications specify a task as a linear data flow program 
consisting of a sequence of tasklet implementing 
functionalities as timers, sampling, data compression, 
thresholding, statistical operations, and other forms of simple 
signal processing. For example, to construct a task that 
samples the temperature sensor every minute and sends the 
samples to its master, an application should construct the 
following task: 

 
periodic(1 min) -> sample(TEMPERATURE)  
-> Send() 
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Tenet is equipped with a networking sub-system which 
provides task dissemination, routing from motes to the master 
and end-to-end reliable transport. Any mote must be able to 
return a response to the tasking master: Tenet uses a novel 
tiered routing mechanism, where a mote's response is first 
routed to its nearest master, and is then routed on the master 
tier using an IP overlay. The routing system also enables 
point-to-point routing between masters and motes, necessary 
for example if a master has to adaptively re-task an individual 
mote or if a master has to directly send the task description to a 
specific mote instead of using Tenet task dissemination 
mechanism for efficiency purposes.  

Tenet supports three types of delivery mechanisms, which 
applications can select by using the corresponding tasklet in 
their task description: a best effort transport, useful for 
loss-tolerant periodic low rate applications, a transactional 
reliable transport for events, and a stream transport for 
high-data rate applications, all of which using a limited 
number of hop-by-hop retransmissions to counter the high 
wireless packet loss rates encountered in practice.  

IV. Proposal 

As previously seen, security issues are a central concern 
for sensor networks, as they are often adopted in critical 
applications despite having many characteristics that make 
them very vulnerable to malicious attacks. Because of their 
resource constraints, it is very difficult to implement strong 
security algorithms on sensor platforms and there’s still much 
work to do to address this matter. However, if we consider a 
tiered system such as Tenet, whose master layer nodes are 
supposed to have relatively more plentiful resources, we can 
assume that the most complex and power consuming 
operations are placed on such nodes: this way  it is possible for 
example to perform some complex cryptographic algorithms 
exploiting the different capabilities of network components.   

Hence, our proposal is the enhancement of the Tenet 
architecture by means of the introduction of a cryptosystem, in 
order to achieve some security requirements in a tiered 
network. As for now we will not cover aspects such as data 
fusion security, secure localization, secure time 
synchronization, secure routing and transport but we will keep 
such points as future works. Instead, our proposal aims at 
ensuring the following security properties: 

 
• achieve end-to-end encryption, integrity and freshness 

of response packets sent by motes to the master; 
 

• implement a mechanism for key exchanging (and 
storing) between the master and motes in such a way 
that different pairs of keys are kept between each mote 
and the master; 
 

• achieve broadcast authentication of messages sent by 
a master to the motes; 
 

As for the first point, we have adopted a symmetric scheme 
in order to efficiently ensure confidentiality, integrity and 
freshness of response packets sent by motes to the master: at 
this aim we have integrated the MiniSec architecture [8] with 
the Tenet system. As for the key exchanging and broadcast 
authentication protocols, they have been implemented by 
exploiting the TinyECC library [29], a publicly available 
software package for ECC operations including some 
optimization features which can be enabled/disabled through 
opportune software switches.         

The key exchanging protocol is naturally achieved via 
Tenet tasking system itself, while as for broadcast 
authentication the only constraint is that each mote has to be 
preloaded with the public key of the base station. This is 
slightly acceptable since a Public Key Infrastructure for sensor 
networks still does not exist at the moment. 

Current implementation of the cryptosystem has been 
realized by taking into account a single master Tenet 
architecture: we made no assumptions on master-to-master 
communication, but we have kept this point as a future work. 
In the following sections, we firstly give a brief overview of 
the adopted software packages (MiniSec and TinyECC) and 
then illustrate the design principles of our security scheme.  
We have implemented and tested the proposed architecture on 
TelosB motes and PC-class devices with Tenet-t1 running on 
top of TinyOS 1.x [28]. However a more complete evaluation 
of security features of our cryptosystem will be addressed in 
future works as well the porting of our code to Tenet-t2 
running on top of TinyOS 2.x. 
 

V. Security Enhanced Tenet Architecture 

The design of the cryptosystem for the Tenet architecture 
focuses on exploiting low level security primitives provided 
by publicly available software packages. In this section, we 
first give an overview of the adopted tools, and finally 
illustrate the design as well as some implementation details of 
our cryptosystem and its integration with the Tenet 
architecture. 

A. Adopted Technologies 

MiniSec is a secure network layer that provides a high security 
level in terms of data confidentiality, integrity and freshness, 
while keeping low energy consumption. Minisec’s source code 
is publicly available for Telos motes, but can be easily ported 
to other platforms. It has two operating modes, one tailored for 
single-source communication (unicast communication), and 
another tailored for multi-source broadcast communication.  
Both schemes employ OCB or Offset CodeBlock [30] as 
encryption mode, which is especially well-suited for the 
stringent energy constraints of sensor nodes and is able to 
provide secrecy and authenticity in one pass of the block 
cipher.  Data authentication is achieved by the sender by 
computing a Message Authentication Code (MAC) over the 
payload and appending that to the message, with the receiver 
having to recompute it and verify the matching with the 
received one. Also, MiniSec provides a mechanism to 
guarantee a “weak” level of freshness, based on the use of  a 
counter as a nonce, by which a receiver can determine a partial 
ordering over received messages without a local reference 
time point.  
Authors rewrote part of the TinyOS network stack, specifically 
the Active Message layer, responsible for managing the 
communication over the radio channel, in such a way all 
outgoing messages are encrypted, while all received packets 
are decrypted: this is done by appropriately modifying the 
GenericComm and AMStandard TinyOS core modules. 
MiniSec uses 80-bit symmetric keys, considered to be secure 
until 2012. When 80-bit keys become insecure, it will be 
possible to use 128-bit AES keys [31], secure for the next 20 
years. Minisec’s packet format is based on the current TinyOS 
packet header for Telos mote’s CC2420 radio, with the 
addition of a source address and a counter fields, resulting in 
an overall 3-byte overhead. In this way, MiniSec achieves the 
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lowest communication overhead among its major counterparts 
(i.e. TinySec), with respect to a standard TinyOS network 
stack.  
 

TinyECC is a configurable library for ECC operations in 
wireless sensor networks. Its primary objective is to provide a 
ready-to-use, publicly available software package for 
ECC-based PKC operations that can be flexibly configured 
and integrated into sensor network applications. TinyECC 
includes all the well-known ECC schemes, such as ECDH key 
agreement scheme and ECDSA digital signature scheme. It 
also includes a public key encryption scheme (ECIES) and 
some optimization features for ECC operations, which can be 
enabled/disabled by developers by means of apposite software 
switches. TinyECC has been tested on MICAz, TelosB, Tmote 
Sky, and Imote2 platforms running TinyOS. By default, 
TinyECC includes all 128-bit, 160-bit and 192-bit ECC 
parameters recommended by SECG (Standards for Efficient 
Cryptography Group) [18].  

B. Design Overview 

Figure 3 shows the security enhanced Tenet architecture, 
having been realized from the current Tenet prototype. Red 
dashed lines indicate new modules added to the system as well 
as extensions of existing ones with new components. 

 
 
 
 
 
 
 
 
 

 
                           a              b     
                         a             b   

 
Figure 3.  Modified Tenet stack on (a) master side and (b) 
mote side 

 
The Tenet system can be considered as composed of 2 main 
software layers: an application layer and a OS layer, the latter 
being implemented by TinyOS [28], the most commonly used 
free and open source Operating System for wireless sensor 
networks; in order to enhance Tenet with security capabilities, 
we have integrated into this structure the libraries described 
above. 
Let us first consider the master side (Figure 3.a), where we 
have modified its application layer structure by introducing  an 
ECC Library based on the TinyECC distribution, and by 
adding the pubKeyExchange element to the Tasking Library, 
in order to let the Tenet system correctly interpret a task 
containing the pubKeyExchange tasklet. We have also 
modified the TenetAPI in order to implement the digital 
signature of task messages sent by master to motes. 
The OS layer has been modified by integrating TinyOS with 
Minisec, responsible for cryptographic operations and 
management of the shared keys between the master and each 
of the motes.  
On the mote side (Figure 3.b)  the we have improved the Mote 
Tasking Library by defining and implementing the 
pubKeyExchange tasklet, aimed to carry out security 
operations according to the ECDH key agreement technique.  

Motes OS layer has also been modified in order to opportunely 
integrate the Minisec system. 

 

C. Implementation details 

Let us now describe more in detail the implementation of 
key agreement, broadcast authentication and end-to-end 
encryption operations in our system. 

As previously said, as for key establishment we have 
implemented the ECDH key agreement protocol by exploiting 
the Tenet tasking system and TinyECC primitives. In a key 
establishment scenario the master sends to each mote the 
following task: 

 
pubKeyExchange(PPx, PPy) -> Send() 
 
where pubKeyExchange is a new tasklet added to the Mote 
Tasking Library, that aims to perform ECC security operations 
according to the ECDH key agreement technique, and PPx and 
PPy are the coordinates of master’s Public Point. 
As applications running on the master are written in the C 
language, we ported TinyECC code from nesC to C, thus 
constructing the ECC Library exploited by the master in order 
to perform ECC security operations. Also, we added the 
pubKeyExchange element to the Tasking Library on master 
side, in order to let the Tenet system correctly interpret a task 
containing the pubKeyExchange tasklet.   
The ECDH protocol has been implemented according to the 
following steps, illustrated in Figure 4: 
 

1. the master runs the ECDH application and initializes 
the Elliptic Curve; 
 

2. the master calculates its Public Point on that curve and 
 

3. sends the previously mentioned task to the mote with 
the two coordinates (PPx, PPy) of its Public Point; 

 
4. the mote initializes the Elliptic Curve and 

 
5. calculates its public point on that curve; 

 
6. the mote calculates the shared secret, that is its own 

private key shared with the master, and stores it in the 
MiniSec keyfile; 

 
7. the mote sends the task response with the two 

coordinates of its Public Point 
 

8. finally, the master calculates the shared secret and 
stores it in the MiniSec keyfile. The master keeps a list 
of as many keyfiles as the number of motes. 

 
The procedure is iterated for all motes, in such a way that each 
of them shares a different private key with the master.   
The calculated shared secret is a 160-bit key, however only the 
first 80 bits will be stored in the keyfiles, composing the 
cryptographic symmetric key employed by the Skipjack cipher 
within MiniSec. 
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Figure 4.  ECDH key agreement protocol using the Tenet 
tasking system 
 

As for broadcast authentication, we assumed that 
broadcast tasking messages from master to motes must be 
authenticated in such a way each mote can verify the identity 
of the master node. Hence, we have implemented the ECDSA 
scheme by using again the primitives provided by TinyECC. 
The only constraint is that during the initialization phase of the 
system the master should generate a key pair (private key – 
public key) and store its private key in the ECC Library.  
On the other side, each mote should be preloaded with the 
public key of the master, opportunely stored in the TinyECC 
Library. That assumption can be accepted since there is not yet 
a Public Key Infrastructure for public key distribution in 
sensor networks. On master side, tasking messages are signed 
with the master private key in the TenetAPI module and sent to 
motes together with the signature. On mote side the signature 
is verified in the TaskInstaller component with the master 
public key. The high modularity of the Tenet system allowed 
us to easily add security operations into the above mentioned 
opportune elements. 

Finally, as for confidentiality, integrity and freshness of 
task response messages from motes to the master, we have 
opportunely integrated the MiniSec security layer into the 
Tenet system. As previously mentioned, MiniSec’s authors 
simply rewrote the ActiveMessage layer of the TinyOS 
network stack for encrypting all outgoing messages and 
decrypting all received ones. Since we are just interested in 
securing task response messages, on mote side we integrated 
the MiniSec AMStandard module and modified it in such a 
way it only does encryption of outgoing task response 
messages which are identified with a specific tag; on master 
side we added MiniSec decrypting operation into the 
AMFiltered component running on the base station in order 
that it just decrypts incoming task response messages 
identified with the above mentioned specific tag. Obviously, 
those operations are performed by using previous exchanged 
private keys between the master and each mote..   
 

VI. Conclusion and Future Works 

In this paper, we have proposed the design of a hybrid 
cryptosystem aimed to secure the Tenet architecture. We have 
combined symmetric and asymmetric cryptographic schemes 
in order to achieve key exchange mechanisms (through the 
definition of a specific tasklet added to the Tenet Tasking 
Library), end-to-end encryption, integrity and freshness of 
response packets sent from motes to the master, and broadcast 
authentication of tasking messages coming from the master to 

motes. These goals have been reached by opportunely 
integrating the TinyEcc library and the Minisec security layer 
with the Tenet architecture.  

We have implemented and tested our schemes for Telos 
motes running Tenet-t1 on top of TinyOS 1.1.x. Future works 
will be devoted to port our code to TinyOS 2.x in order to be 
compliant with Tenet-t2 release as well as to port it to other 
sensor platforms.  

Actually, the development of a cryptosystem based on the 
Tenet architecture is not an end in itself: our main goal is to set 
up different security protocols and architectures based on 
well-known or novel  solutions, in order to develop a general 
design methodology for wireless sensor networks having strict 
security requirements. At this aim, we plan to try out different 
security schemes on more complete testbeds in order to be able 
to evaluate such solutions in terms of the tradeoff between the 
achieved security level and the resulting performances. 
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