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Introduction

Introduction I

Unsupervised learning is often performed as part of an exploratory
data analysis.

It can be hard to assess the results obtained from unsupervised
learning methods: we have not a ”supervisor”. In unsupervised
learning, there is no way to check our work because we don’t know
the true answer.

There are several models and methods dealing with unsupervised
learning: factor analysis, principal component analysis,
correspondence analysis, multidimensional scaling, cluster
analysis....
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Introduction

Introduction II

We will focus our attention on Principal Component Analysis.
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PCA

Principal Component Analysis

Principal Component Analysis (PCA)

produces a low-dimensional representation of a dataset. It
finds a sequence of linear combinations of the variables that
have maximal variance, and are mutually uncorrelated.

Apart from producing derived variables for use in supervised
learning problems (PCR, do you remember?), PCA also serves
as a tool for data visualization.
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PCA
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Details

PCA: details I

Let X be a n × p numerical data matrix, with n statistical units
and p features.

The first principal component is the linear combination of the
features

Z1 = Xϕ1 = ϕ1,1X1 + ϕ2,1X2 + . . .+ ϕp,1Xp

sub condition that ϕT
1 ϕ1 =

∑p
j=1 ϕ

2
j ,1 = 1.

ϕ1 = (ϕ1,1, ϕ2,1, . . . , ϕp,1)
T is called principal component loading

vector, whose elements are the called loadings of the first principal
component.

We have to maximize the quantity ϕT
1 X

TXϕ1.
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Details

PCA: details II

We always center the variables to have 0 mean. The problem is:

max(ϕT
1 X

TXϕ1) subject to ϕT
1 ϕ1 = 1

. We have:

L = ϕT
1 X

TXϕ1 − λ1(ϕ
T
1 ϕ1 − 1) = max

∂

∂ϕ1

= 2XTX− 2λ1ϕ1 = 0

XTXϕ1 = λ1ϕ1
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Details

PCA: details III

from XTXϕ1 = λ1ϕ1 we see that λ1 = ϕT
1 X

TXϕ1, hence
this quantity is the sum of squares of the first principal
component.

as the variables are centered, also the first principal
component has 0 mean, hence λ1 is the variance of the first
component.

λ1 is one of the eigenvalues of the matrix XTX, hence ϕ1 is
the corresponding eigenvector

what is XTX? with centered variables, this matrix corresponds
to the covariance matrix of X (upon a scaling factor equal to√
n). With standardized variables, it is the correlation matrix.
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Details

PCA: details IV

given that XTX is a squared p × p (semi-positive defined)
matrix, we can compute p eigenvalues and p eigenvectors.
The trace of XTX is equal to the sum of the variances of all
the p variables.

it can be proved that
∑p

j=1 λj = tr(XTX)

by definition we have ϕT
j ϕj = 1 and ϕT

i ϕj = 0 for j ̸= i

hence, λ1 is the amount of the total variability represented by
the first principal component.

The loading vector ϕ1 (in other words, the eigenvector associated
to the eigenvalue λ1) defines a direction in feature space along
which the data vary the most. Hence, the projection of the n
points Z1 = Xϕ1 (the first principal component) is formed by the
principal component scores z1,1, z2,1, . . . , zn,1.

10 / 27



Details

How many components? I

From the eigen-decomposition of XTX we can compute p
eigenvalues and p eigenvectors. We sort the eigenvalues in
descending order in such a way that the first principal component
explains the most fraction of the variance (λ1/

∑p
j=1 λj), the

second principal component explains the second most fraction of
the variance (λ2/

∑p
j=1 λj) and so on.

There is not a formal rule to decide how many components take in
consideration. In general, the user can chose among three
strategies
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Details

How many components? II

the screeplot

bound on a given, a-priori chosen fraction of variability
explained

eigenvalue 1 (for standardized values: why?)
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Details

Points in Rn I

We see how represent the n points in the space of the variables
Rp. How represent variables in the space of individuals Rn?

We have to maximize

γT
1 XX

Tγ1 subject to γT
1 γ1 = 1

obtaining XXT = µ1γ1.

Here, µ1 is the largest eigenvalue of the matrix XXT , while γ1 is
the corresponding eigenvector.
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Details

Points in Rn II

It can be proved that XXT and XTX have the same eigenvalues,
so XXT = λ1γ1.

It follows that the coordinates of the variables in the first principal
component are

C1 = XTγ1

We do not need to do eigendecomposition of XXT . It can be
proved that

XTγ1 =
√
λ1ϕ1
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Details

Eigendecomposition and Singular Value Decomposition I

The same analysis can be done through a singular value
decomposition of the rectangular matrix X

In a nutshell, we have that

X = USVT ,

where

U is the matrix of the left singular vectors (corresponding to
the n × n matrix γ. Usually, n > p, hence γ has dimension
n × p.)

S is the diagonal matrix of the singular values (we have that
si =

√
λi × n and λi = s2i /n, where si is the ith element of

the matrix S)

V is the matrix of the right singular vectors (corresponding to
the p × p matrix ϕ)

15 / 27



Details

Eigendecomposition and Singular Value Decomposition II

It follows that:

Z = US

C = V(S/
√
n)

Let’s compute a PCA by hand
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PCA by hand

PCA by hand I

> data(USArrests)

> #center the variables

> UAc <- as.matrix(scale(USArrests,scale=FALSE))

> n <- dim(UAc)[1]

> #covariance matrix

> covm <- crossprod(UAc/sqrt(n))

> #compute eigenvalues of covm

> eigd <- eigen(covm)

> #compute the first principal component

> z1 <- UAc %*% (matrix(eigd$vectors[,1],ncol=1))

> #what is the variance of the first principal component?

> sum(z1^2)/50

[1] 6870.893

> #the first eigenvalue is....

> eigd$values[1]

[1] 6870.893
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PCA by hand

PCA by hand II

> #let's check with a R functions

> require(FactoMineR)

> sol1 <- PCA(USArrests,scale.unit=FALSE, graph=FALSE)

> head(cbind(sol1$ind$coord[,1], z1 ) )

[,1] [,2]

Alabama 64.80216 -64.80216

Alaska 92.82745 -92.82745

Arizona 124.06822 -124.06822

Arkansas 18.34004 -18.34004

California 107.42295 -107.42295

Colorado 34.97599 -34.97599

> #why there is a difference in sign?
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PCA by hand

PCA by hand III

> #Now compute the projection of the variables on

> #the first principal component

> c1 <- sqrt(eigd$values[1])*eigd$vectors[,1]

> #check with the result of PCA

> cbind(sol1$var$coord[,1], c1 )

c1

Murder 3.456906 -3.456906

Assault 82.494735 -82.494735

UrbanPop 3.840809 -3.840809

Rape 6.229703 -6.229703

> #compute all our stuffs

> z <- UAc%*%eigd$vectors

> c <- eigd$vectors%*%diag(sqrt(eigd$values))
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PCA by hand

PCA by hand IV

> #Let's check

> head(z)

[,1] [,2] [,3] [,4]

Alabama -64.80216 11.448007 -2.4949328 2.4079009

Alaska -92.82745 17.982943 20.1265749 -4.0940470

Arizona -124.06822 -8.830403 -1.6874484 -4.3536852

Arkansas -18.34004 16.703911 0.2101894 -0.5209936

California -107.42295 -22.520070 6.7458730 -2.8118259

Colorado -34.97599 -13.719584 12.2793628 -1.7214637

> head(sol1$ind$coord)

Dim.1 Dim.2 Dim.3 Dim.4

Alabama 64.80216 -11.448007 -2.4949328 2.4079009

Alaska 92.82745 -17.982943 20.1265749 -4.0940470

Arizona 124.06822 8.830403 -1.6874484 -4.3536852

Arkansas 18.34004 -16.703911 0.2101894 -0.5209936

California 107.42295 22.520070 6.7458730 -2.8118259

Colorado 34.97599 13.719584 12.2793628 -1.7214637
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PCA by hand

PCA by hand V

> c

[,1] [,2] [,3] [,4]

[1,] -3.456906 0.6306210 0.5132339 2.44535515

[2,] -82.494735 0.8267277 -0.4340818 -0.09570398

[3,] -3.840809 -13.7439549 -1.2883503 0.14297025

[4,] -6.229703 -2.8240149 6.2576925 -0.17776309

> sol1$var$coord

Dim.1 Dim.2 Dim.3 Dim.4

Murder 3.456906 -0.6306210 0.5132339 2.44535515

Assault 82.494735 -0.8267277 -0.4340818 -0.09570398

UrbanPop 3.840809 13.7439549 -1.2883503 0.14297025

Rape 6.229703 2.8240149 6.2576925 -0.17776309
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PCA by hand

PCA by hand VI

> #now, proceed with the svd

> sv <- svd(UAc)

> names(sv)

[1] "d" "u" "v"

> #d= singular values, u=left singuar vectors,

> #v=right singular vectors

> zz <- sv$u %*% diag(sv$d)

> cc <- sv$v %*% diag(sqrt(1/n)*sv$d)

> #we check again
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PCA by hand

PCA by hand VII

> head(zz)

[,1] [,2] [,3] [,4]

[1,] 64.80216 -11.448007 -2.4949328 -2.4079009

[2,] 92.82745 -17.982943 20.1265749 4.0940470

[3,] 124.06822 8.830403 -1.6874484 4.3536852

[4,] 18.34004 -16.703911 0.2101894 0.5209936

[5,] 107.42295 22.520070 6.7458730 2.8118259

[6,] 34.97599 13.719584 12.2793628 1.7214637

> head(sol1$ind$coord)

Dim.1 Dim.2 Dim.3 Dim.4

Alabama 64.80216 -11.448007 -2.4949328 2.4079009

Alaska 92.82745 -17.982943 20.1265749 -4.0940470

Arizona 124.06822 8.830403 -1.6874484 -4.3536852

Arkansas 18.34004 -16.703911 0.2101894 -0.5209936

California 107.42295 22.520070 6.7458730 -2.8118259

Colorado 34.97599 13.719584 12.2793628 -1.7214637
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PCA by hand

PCA by hand VIII

> cc

[,1] [,2] [,3] [,4]

[1,] 3.456906 -0.6306210 0.5132339 -2.44535515

[2,] 82.494735 -0.8267277 -0.4340818 0.09570398

[3,] 3.840809 13.7439549 -1.2883503 -0.14297025

[4,] 6.229703 2.8240149 6.2576925 0.17776309

> sol1$var$coord

Dim.1 Dim.2 Dim.3 Dim.4

Murder 3.456906 -0.6306210 0.5132339 2.44535515

Assault 82.494735 -0.8267277 -0.4340818 -0.09570398

UrbanPop 3.840809 13.7439549 -1.2883503 0.14297025

Rape 6.229703 2.8240149 6.2576925 -0.17776309
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PCA by hand

Covariance matrix or correlation matrix?
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PCA by hand

Screeplot and variance explained
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PCA by hand

PCA and clustering

Sometimes a cluster analysis is performed on a reduced data
set after a PCA analysis. In fact, it is a clustering on the most
important principal components. Don’t forget that:

1 PCA looks for a low-dimensional representation of the
observations that explains a good fraction of the variance

2 Clustering looks for homogeneous subgroups among the
observations.
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