Unsupervised learning

Antonio D'Ambrosio

Outline I

(1) Introduction
(2) PCA
(3) Details
(4) PCA by hand

Introduction I

Unsupervised learning is often performed as part of an exploratory data analysis.

It can be hard to assess the results obtained from unsupervised learning methods: we have not a "supervisor". In unsupervised learning, there is no way to check our work because we don't know the true answer.

There are several models and methods dealing with unsupervised learning: factor analysis, principal component analysis, correspondence analysis, multidimensional scaling, cluster analysis....

Introduction II

We will focus our attention on Principal Component Analysis.

Principal Component Analysis

Principal Component Analysis (PCA)

- produces a low-dimensional representation of a dataset. It finds a sequence of linear combinations of the variables that have maximal variance, and are mutually uncorrelated.
- Apart from producing derived variables for use in supervised learning problems (PCR, do you remember?), PCA also serves as a tool for data visualization.

The population size (pop) and ad spending (ad) for 100 different cities are shown as purple circles. The green solid line indicates the first principal component direction, and the blue dashed line indicates the second principal component direction.

PCA: details I

Let \mathbf{X} be a $n \times p$ numerical data matrix, with n statistical units and p features.

The first principal component is the linear combination of the features

$$
\mathbf{Z}_{1}=\mathbf{X} \phi_{1}=\phi_{1,1} X_{1}+\phi_{2,1} X_{2}+\ldots+\phi_{p, 1} X_{p}
$$

sub condition that $\phi_{1}^{T} \phi_{1}=\sum_{j=1}^{p} \phi_{j, 1}^{2}=1$.
$\phi_{1}=\left(\phi_{1,1}, \phi_{2,1}, \ldots, \phi_{p, 1}\right)^{T}$ is called principal component loading vector, whose elements are the called loadings of the first principal component.
We have to maximize the quantity $\phi_{1}^{T} \mathbf{X}^{T} \mathbf{X} \phi_{1}$.

PCA: details II

We always center the variables to have 0 mean. The problem is:

$$
\max \left(\phi_{1}^{T} \mathbf{X}^{T} \mathbf{X} \phi_{1}\right) \text { subject to } \phi_{1}^{T} \phi_{1}=1
$$

. We have:

$$
\begin{aligned}
L & =\phi_{1}^{T} \mathbf{X}^{T} \mathbf{X} \phi_{1}-\lambda_{1}\left(\phi_{1}^{T} \phi_{1}-1\right)=\max \\
\frac{\partial}{\partial \phi_{1}} & =2 \mathbf{X}^{T} \mathbf{X}-2 \lambda_{1} \phi_{1}=0 \\
\mathbf{X}^{T} \mathbf{X} \phi_{1} & =\lambda_{1} \phi_{1}
\end{aligned}
$$

PCA: details III

- from $\mathbf{X}^{T} \mathbf{X} \phi_{1}=\lambda_{1} \phi_{1}$ we see that $\lambda_{1}=\phi_{1}^{T} \mathbf{X}^{T} \mathbf{X} \phi_{1}$, hence this quantity is the sum of squares of the first principal component.
- as the variables are centered, also the first principal component has 0 mean, hence λ_{1} is the variance of the first component.
- λ_{1} is one of the eigenvalues of the matrix $\mathbf{X}^{T} \mathbf{X}$, hence ϕ_{1} is the corresponding eigenvector
- what is $\mathbf{X}^{T} \mathbf{X}$? with centered variables, this matrix corresponds to the covariance matrix of \mathbf{X} (upon a scaling factor equal to \sqrt{n}). With standardized variables, it is the correlation matrix.

PCA: details IV

- given that $\mathbf{X}^{T} \mathbf{X}$ is a squared $p \times p$ (semi-positive defined) matrix, we can compute p eigenvalues and p eigenvectors. The trace of $\mathbf{X}^{T} \mathbf{X}$ is equal to the sum of the variances of all the p variables.
- it can be proved that $\sum_{j=1}^{p} \lambda_{j}=\operatorname{tr}\left(\mathbf{X}^{T} \mathbf{X}\right)$
- by definition we have $\phi_{j}^{T} \phi_{j}=1$ and $\phi_{i}^{T} \phi_{j}=0$ for $j \neq i$
- hence, λ_{1} is the amount of the total variability represented by the first principal component.
The loading vector ϕ_{1} (in other words, the eigenvector associated to the eigenvalue λ_{1}) defines a direction in feature space along which the data vary the most. Hence, the projection of the n points $\mathbf{Z}_{1}=\mathbf{X} \phi_{1}$ (the first principal component) is formed by the principal component scores $z_{1,1}, z_{2,1}, \ldots, z_{n, 1}$.

How many components? I

From the eigen-decomposition of $\mathbf{X}^{T} \mathbf{X}$ we can compute p eigenvalues and p eigenvectors. We sort the eigenvalues in descending order in such a way that the first principal component explains the most fraction of the variance $\left(\lambda_{1} / \sum_{j=1}^{p} \lambda_{j}\right)$, the second principal component explains the second most fraction of the variance ($\lambda_{2} / \sum_{j=1}^{p} \lambda_{j}$) and so on.
There is not a formal rule to decide how many components take in consideration. In general, the user can chose among three strategies

Details

How many components? II

- the screeplot
- bound on a given, a-priori chosen fraction of variability explained
- eigenvalue 1 (for standardized values: why?)

Points in \mathcal{R}^{n} |

We see how represent the n points in the space of the variables \mathcal{R}^{p}. How represent variables in the space of individuals \mathcal{R}^{n} ?

We have to maximize

$$
\gamma_{1}^{T} \mathbf{X} \mathbf{X}^{T} \gamma_{1} \text { subject to } \gamma_{1}^{T} \gamma_{1}=1
$$

obtaining $\mathbf{X X}^{T}=\mu_{1} \gamma_{1}$.
Here, μ_{1} is the largest eigenvalue of the matrix $\mathbf{X} \mathbf{X}^{T}$, while γ_{1} is the corresponding eigenvector.

Points in \mathcal{R}^{n} II

It can be proved that $\mathbf{X} \mathbf{X}^{T}$ and $\mathbf{X}^{T} \mathbf{X}$ have the same eigenvalues, so $\mathbf{X} \mathbf{X}^{T}=\lambda_{1} \gamma_{1}$.
It follows that the coordinates of the variables in the first principal component are

$$
\mathbf{C}_{1}=\mathbf{X}^{T} \gamma_{1}
$$

We do not need to do eigendecomposition of $\mathbf{X} \mathbf{X}^{T}$. It can be proved that

$$
\mathbf{X}^{T} \gamma_{1}=\sqrt{\lambda_{1}} \phi_{1}
$$

Eigendecomposition and Singular Value Decomposition I

The same analysis can be done through a singular value decomposition of the rectangular matrix \mathbf{X}

In a nutshell, we have that

$$
\mathbf{X}=\mathbf{U S V}^{T},
$$

where

- \mathbf{U} is the matrix of the left singular vectors (corresponding to the $n \times n$ matrix γ. Usually, $n>p$, hence γ has dimension $n \times p$.)
- \mathbf{S} is the diagonal matrix of the singular values (we have that $s_{i}=\sqrt{\lambda_{i} \times n}$ and $\lambda_{i}=s_{i}^{2} / n$, where s_{i} is the i th element of the matrix \mathbf{S})
- \mathbf{V} is the matrix of the right singular vectors (corresponding to the $p \times p$ matrix ϕ)

Eigendecomposition and Singular Value Decomposition II

It follows that:

- $\mathbf{Z}=\mathbf{U S}$
- $\mathbf{C}=\mathbf{V}(\mathbf{S} / \sqrt{n})$

Let's compute a PCA by hand

PCA by hand I

> data(USArrests)
> \#center the variables
> UAc <- as.matrix(scale(USArrests,scale=FALSE))
$>\mathrm{n}<-\operatorname{dim}(\mathrm{UAC})[1]$
> \#covariance matrix
> covm <- crossprod(UAc/sqrt(n))
> \#compute eigenvalues of covm
> eigd <- eigen(covm)
> \#compute the first principal component
$>\mathrm{z} 1<-\mathrm{UAc} \% * \%$ (matrix(eigd\$vectors[,1],ncol=1))
> \#what is the variance of the first principal component?
$>\operatorname{sum}\left(z 1^{\wedge} 2\right) / 50$
[1] 6870.893
> \#the first eigenvalue is....
> eigd\$values[1]
[1] 6870.893

PCA by hand II

> \#let's check with a R functions
> require(FactoMineR)
> sol1 <- PCA(USArrests,scale.unit=FALSE, graph=FALSE)
> head(cbind(sol1\$ind\$coord[,1], z1))

$$
[, 1] \quad[, 2]
$$

Alabama $64.80216-64.80216$
Alaska 92.82745 -92.82745
Arizona 124.06822 -124.06822
Arkansas 18.34004-18.34004
California 107.42295-107.42295
Colorado 34.97599 -34.97599
> \#why there is a difference in sign?

PCA by hand III

> \#Now compute the projection of the variables on
> \#the first principal component
> c1 <- sqrt(eigd\$values[1])*eigd\$vectors[,1]
> \#check with the result of PCA
> cbind(sol1\$var\$coord[,1], c1)
c1

Murder	3.456906	-3.456906
Assault	82.494735	-82.494735
UrbanPop	3.840809	-3.840809
Rape	6.229703	-6.229703
> \#co	mpute all	our stuffs
> z <	- UAc\% $\%$ \%	gd\$vectors
> $\mathrm{c}<$	- eigd\$ve	tors\%*\%dia

PCA by hand IV

> \#Let's check
$>$ head (z)

	$[, 1]$	[,2]	[,3]	[,4]
Alabama	-64.80216	11.448007	-2.4949328	2.4079009
Alaska	-92.82745	17.982943	20.1265749	-4.0940470
Arizona	-124.06822	-8.830403	-1.6874484	-4.3536852
Arkansas	-18.34004	16.703911	0.2101894	-0.5209936
California	-107.42295	-22.520070	6.7458730	-2.8118259
Colorado	-34.97599	-13.719584	12.2793628	-1.7214637

> head(sol1\$ind\$coord)

$$
\text { Dim. } 1 \text { Dim. } 2 \quad \text { Dim. } 3 \quad \text { Dim. } 4
$$

Alabama $\quad 64.80216-11.448007-2.4949328 \quad 2.4079009$
Alaska $92.82745-17.98294320 .1265749$-4.0940470

Arizona 124.06822 8.830403 -1.6874484 -4.3536852
Arkansas $18.34004-16.7039110 .2101894$-0.5209936
California 107.42295 22.520070 6.7458730 -2.8118259
Colorado $34.97599 \quad 13.71958412 .2793628$-1.7214637

PCA by hand V

PCA by hand

PCA by hand VI

> \#now, proceed with the svd
> sv <- svd(UAc)
$>$ names(sv)
[1] "d" "u" "v"
> \#d= singular values, u=left singuar vectors,
> \#v=right singular vectors
> zz <- sv\$u \%*\% diag (sv\$d)
$>\mathrm{cc}<-\mathrm{sv} \$ \mathrm{v} \% * \% \operatorname{diag}($ sqrt $(1 / \mathrm{n}) *$ sv\$d)
> \#we check again

PCA by hand VII

> head(zz)
[,1] [,2] [,3] [,4]
[1,] $64.80216-11.448007-2.4949328-2.4079009$
$\begin{array}{lllll}{[2,]} & 92.82745 & -17.982943 & 20.1265749 & 4.0940470\end{array}$
$[3] 124.06822 \quad 8.830403-,1.6874484 \quad 4.3536852$
$[4] \quad 18.34004-,16.703911 \quad 0.2101894 \quad 0.5209936$
$\begin{array}{lllll}{[5,]} & 107.42295 & 22.520070 & 6.7458730 & 2.8118259\end{array}$
$\begin{array}{llllll}{[6,]} & 34.97599 & 13.719584 & 12.2793628 & 1.7214637\end{array}$
> head(sol1\$ind\$coord)
Dim. 1 Dim. 2 Dim. 3 Dim. 4
Alabama $64.80216-11.448007-2.4949328 \quad 2.4079009$
Alaska $92.82745-17.98294320 .1265749$-4.0940470
Arizona $124.06822 \quad 8.830403-1.6874484-4.3536852$
Arkansas $18.34004-16.7039110 .2101894$-0.5209936
California 107.42295 22.520070 6.7458730 -2.8118259
Colorado $34.97599 \quad 13.71958412 .2793628$-1.7214637

PCA by hand

PCA by hand VIII

$>\mathrm{cc}$

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	3.456906	-0.6306210	0.5132339	-2.44535515
$[2]$,	82.494735	-0.8267277	-0.4340818	0.09570398
$[3]$,	3.840809	13.7439549	-1.2883503	-0.14297025
$[4]$,	6.229703	2.8240149	6.2576925	0.17776309
$>$	sol1 \$var\$coord			
Dim.1				
Murder	3.456906	-0.6306210	0.5132339	2.44535515
Assault	82.494735	-0.8267277	-0.4340818	-0.09570398
UrbanPop	3.840809	13.7439549	-1.2883503	0.14297025
Rape	6.229703	2.8240149	6.2576925	-0.17776309

Covariance matrix or correlation matrix?

- If the variables are in different units, scaling each to have standard deviation equal to one is recommended.
- If they are in the same units, you might or might not scale the variables.

Screeplot and variance explained

PCA and clustering

- Sometimes a cluster analysis is performed on a reduced data set after a PCA analysis. In fact, it is a clustering on the most important principal components. Don't forget that:
(1) PCA looks for a low-dimensional representation of the observations that explains a good fraction of the variance
(2) Clustering looks for homogeneous subgroups among the observations.

