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Introduction I

About supervised learning, we will talk about

Maximal margin classi�er;

Support Vector Classi�er;

Support Vector Machines.

People often loosely refer to the maximal margin classi�er, the

support vector classi�er, and the support vector machine as support

vector machines. To avoid confusion, we will carefully distinguish

between these three notions. Bit let's start from the concept of

hyperplane.
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Hyperplane I

A hyperplane in p dimensions is a �at a�ne (it needs not pass

through the origin) subspace of dimension p − 1.

f (X ) = β0 + β1X1 + . . .+ βpXp = 0

If f (xi ) > 0, then then xi is located on one side of the hyperplane.

If f (xi ) < 0, it ias located on the other side.
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Hyperplane II

Hyperplane 1+ 2X1 + 3X2 = 0.
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Separating hyperplane I

Suppose that we have a n × p data matrix X that consists of n
training observations in p-dimensional space falling into two classes,

y1, . . . , yn ∈ −1, 1. Suppose also to have a test set, denoted by X∗

The goal is develop a classi�er based on the training data that will

correctly classify the test observations.

A separating hyperplane is a hyperplane that separates the training

observations perfectly according to their class labels.
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Separating hyperplane II

Three possible separating hyperplanes.
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Maximal margin classi�er I

In order to construct a classi�er based upon a separating

hyperplane, we must have a reasonable way to decide which of the

in�nite possible separating hyperplanes to use.

The maximal (or optimal) margin hyperplane is the separating

hyperplane that is farthest from the training observations.
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Maximal margin classi�er II

In the �gure (left) there are three separating hyperplanes, out of many
possible, shown in black. On the right a separating hyperplane is shown,
together with the decision rule (in blue and purple)

Constrained optimizazion problem

Maximize
β0,β1,...,βp

M

subject to

p∑
j=1

β2j = 1

yi (β0 + β1xi1 + . . .+ βpxip) ≥ M
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Maximal margin classi�er III

The maximal margin hyperplane (or maximal optimal

separating hyperplane), is the separating hyperplane that is

farthest from the training observations.

Once we compute the (perpendicular) distance from each

training observation to a given separating hyperplane, the

margin is de�ned as the minimal distance from the

observations to the hyperplane.

The maximal margin hyperplane is the separating hyperplane

for which the margin is largest.

Classifying a test observation based on which side of the

maximal margin hyperplane it lies means that we're using the

maximal margin classi�er.
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Support vectors

Two classes of observations (blue and purple). The maximal margin
hyperplane is shown as a solid line. The margin is the distance from the
solid line to either of the dashed lines. The two blue points and the
purple point that lie on the dashed lines are the support vectors, and the
distance from those points to the hyperplane is indicated by arrows.

The three training observations

equidistant from the maximal

margin hyperplane and lying along

the dashed lines indicating the

width of the margin are called

support vectors, since they are

vectors in p-dimensional space.

They "support" the maximal

margin hyperplane in the sense

that if these points were moved

slightly then the maximal margin

hyperplane would move as well.

The maximal margin hyperplane

depends directly on the support

vectors, not on the other

observations.
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Non-separable cases I

If cases are not perfectly separable, separating hyperplanes do not

exist.
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Non-separable cases II
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Non-separable cases III

In this case, concept of a separating hyperplane can be extended to

develop a hyperplane that almost separates the classes, using a

so-called soft margin.

Antonio D'Ambrosio SVM



Introduction
Hyperplane

Maximal margin classi�er
Support Vector Classi�er
Support Vector Machines

Support vector classi�er I

We can consider a classi�er based on a hyperplane that does not

perfectly separate the two classes, in the interest of

Greater robustness to individual observations;

Better classi�cation of most of the training observations.
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Support vector classi�er II

Most of the observations are on the correct side of
the margin. However, a small subset of the
observations are on the wrong side of the margin.

Observations on the wrong side of the hyperplane
correspond to training observations that are
misclassi�ed by the support vector classi�er
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Formalization of maximal support classi�er

Maximize
β0,β1,...,βp ,ϵ1,...,ϵN ,M

M

subject to

p∑
j=1

β2
j = 1

yi (β0 + β1xi1 + . . .+ βpxip) ≥ M(1− ϵi )

ϵi ≥ 0,

n∑
i=1

ϵi ≤ C

C is a tuning parameter, M is the width of the margin, ϵ1, . . . , ϵn
are slack variables that allow individual observations to be on the

wrong side of the margin or the hyperplane
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Tuning parameter C

When C is large, then there is a high tolerance for observations being on the wrong side of the margin,
and so the margin will be large. As C decreases, the tolerance for observations being on the wrong side
of the margin decreases, and the margin narrows.
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Slack variables and Tuning parameter

If ϵi = 0 the ith observation is on the correct side of the margin. If

ϵi > 0 the ith observation is on the wrong side of the margin

(violated the margin). If ϵi > 1 the ith observation is on the wrong

side of the hyperplane.

C can be seen as a budget for the amount that the margin can be

violated by the n observations. If C = 0, then there is no budget

(hence, support vector support classi�er coincides with maximal

margin classi�er).

For C > 0 no more than C observations can be on the wrong side

of the hyperplane.

C is generally chosen via cross-validation.
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From Support vector classi�ers to SVM I

The support vector machine (SVM) is an extension of the support

vector support vector classi�er resulting from enlarging the feature

space in a speci�c way, using kernels.
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From Support vector classi�ers to SVM II

When there is a
non-linear boundary
between classes, the
support vector classi�er
seeks a linear boundary,
and consequently
performs very poorly
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From Support vector classi�ers to SVM III

Enlarge the space of features by including transformations;

e.g. X 2
1 , X

3
1 , X1X2, X1X

2
2 , . . .. Hence go from a p-dimensional

space to a M > p dimensional space.

Fit a support-vector classi�er in the enlarged space.

This results in non-linear decision boundaries in the original

space.
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Inner products I

The solution to the support vector classi�er problem involves only

the inner products of the observations ⟨xi , xi ′⟩ (as opposed to the

observations themselves).
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Inner products II

The linear support vector classi�er can be represented as

f (x) = β0 +
∑n

i=1 αi ⟨x , xi ⟩, where there are n parameters αi ,

one per training observation.

To estimate the parameters we need the n(n − 1)/2 inner

products ⟨xi , xi ′⟩ between all pairs of training observations.

It turns out that αi is nonzero only for the support vectors in

the solution, so we obtain f (x) = β0 +
∑

i∈S αi ⟨x , xi ⟩, with S
equal to the set of support vectors.
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Kernels I

In representing the linear classi�er f (x), and in computing its

coe�cients, all we need are inner products.

We replace any inner product with a generalization of the inner

product of the form K (xi , xi ′), where K is a function called kernel,

which is a function that quanti�es the similarity of two observations.
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Kernels II

Linear kernel:

K (xi , xi ′) =

p∑
j=1

xijxi ′j

The linear kernel essentially quanti�es the similarity of a pair

of observations using Pearson correlation

Polynomial kernel:

K (xi , xi ′) =

p∑
j=1

(1+ xijxi ′j)
d

where d is the degree of the polynomial.
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Kernels III

Radial kernel:

K (xi , xi ′) = exp

−γ

p∑
j=1

(xij − xi ′j)
2


with γ being a positive constant.
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Example 1 I

> #load the package performing SVM

> require(e1071)

> #load source for making nice plot

> source("funzione_plot_svm.R")

> #generate a data set

> set.seed(1) #for reproducibility

> x <- matrix(rnorm(20 * 2), ncol = 2)

> y <- c(rep(-1, 10), rep(1, 10))

> x[y == 1, ] <- x[y == 1, ] + 1

> #arrange data as a data frame

> dat <- data.frame(x = x, y = as.factor(y))
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Example 1 II

> #SVM with linear kernel, with

> #cost of constraints violation = 10

> svmfit <- svm(y ~ ., data = dat,

+ kernel = "linear",cost = 10,

+ scale = FALSE)

> #let's make the plot

> plot(svmfit, dat)
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Example 1 III

> #let's make a better plot

> plsvm <- plot_svm_jk(dat,svmfit)

> #type plsvm to see the plot.

> #it's better highlights the support vectors

> #by exploiting the output of svm()

> plsvm+geom_point(data=as.data.frame(

+ svmfit$SV),colour="red")
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Example 1 IV
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SVM − Visualization

The plot on the left inverts the axis (x2 is on the horizontal axis, x1
on the vertical one.) There are 7 support vectors (type
summary(svmfit))
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More than two classes

The SVM as de�ned works for k = 2 classes. What do we do if we

have k > 2 classes?

OVA One versus All. Fit k di�erent 2-class SVM classi�ers,

each class versus the rest. Classify x∗ to the class for which

f̂k(x
∗) is largest.

OVO One versus One. Fit all k(k − 1)/2 pairwise classi�ers.

Classify x∗ to the class that wins the most pairwise

competitions.

Which to choose? If K is not too large, use OVO.
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Example 2 I

> #Three classes example

> #generate a data set

> set.seed(1) #for reproducibility

> x <- rbind(x, matrix(rnorm(50 * 2), ncol = 2))

> y <- c(y, rep(0, 50))

> x[y == 0, 2] <- x[y == 0, 2] + 2

> #arrange data as a data frame

> dat <- data.frame(x = x, y = as.factor(y))

> svmfit <- svm(y ~ ., data = dat,

+ kernel = "radial",cost = 10,

+ gamma = 1)

> #from the help of svm: "For multiclass
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Example 2 II

> #classification, libsvm uses the `one-against-

> #one' approach

> plot(svmfit, dat)
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Example 2 III
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Which classi�er we should use I

We studied several supervised learning methods: Linear models,

Logit regression, Naive Bayes, Linear (and Quadratic) Discriminant

Analysis, GLMs' family, KNN, tree-based methods, Ensemble

Methods, SVM....

Prediction accuracy or Model interpretation?
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Which classi�er we should use II

Tradeo� between �exibility and interpretability
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Which classi�er we should use III

If we are mainly interested in inference, then restrictive models

are much more interpretable

Fully non-linear methods such as bagging, boosting, support

vector machines are highly �exible approaches that are harder

to interpret.

If we are only interested in prediction, and the interpretability

of the predictive model is simply not of interest, it will be best

to use the most �exible model available

Not always it is the case: potential over�tting in highly �exible

methods is highly probable.
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