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Introduction

Introduction I

Unsupervised learning is often performed as part of an exploratory
data analysis.

It can be hard to assess the results obtained from unsupervised
learning methods: we have not a ”supervisor”. In unsupervised
learning, there is no way to check our work because we don’t know
the true answer.

There are several models and methods dealing with unsupervised
learning: factor analysis, principal component analysis,
correspondence analysis, multidimensional scaling, cluster
analysis....
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Introduction

Introduction II

We will focus our attention on Cluster analysis.
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Clustering methods

Clustering methods

Clustering refers to a very broad set of techniques for finding
subgroups, or clusters, in a data set.

The aim is seeking to partition statstical units into distinct groups
so that the observations within each group are quite similar to
each other, while observations in different groups are quite
different from each other.

There exist a great number of clustering methods. We will focus
on hierarchical cluster analysis, K -means, K -medoids, fuzzy
C -means, Probablistic Distance clustering, model-based clustering.
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Clustering methods Distance measures

Distance Measures
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Clustering methods Distance measures

Distance measures I

Let X be a data matrix with n rows and p columns. A distance
(metric) measure between the i-th and j-th unit is a quantity that
has the following properties:

identity: d(xi , xj) = 0 =⇒ i = j ;

non negativity: d(xi , xj) ≥ 0;

simmetry: d(xi , xj) = d(xj , xi );

triangular inequality: d(xi , xj) ≤ d(xi , xh) + d(xj , xh) ∀i , j , h.

7 / 93



Clustering methods Distance measures

Distance measures II

Class of Minowski distances:

d(xi , xj) =

[
p∑

s=1

|xis − xjs |k
] 1

k

.

If k = 1, the Minkowsky metric is the city-block distance. If k = 2,
then the Minkowsky metric is the Euclidean distance.

Canberra distance:

d(xi , xj) =

p∑
s=1

|xis − xjs |
(xis + xjs)
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Clustering methods Distance measures

Distance measures III

Mahalanobis distance:

d(xi , xj) = (xi − xj)S
−1(xi − xj)

T ,

where S is the covariance matrix.
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Clustering methods Distance measures

Distance measures IV

A dissimilarity measure has the following properties:

identity: d(xi , xj) = 0 =⇒ i = j ;

non negativity: d(xi , xj) ≥ 0;

simmetry: d(xi , xj) = d(xj , xi );

The squared Euclidean distance is a dissimilarity index, not a
distance (metric) measure.

To do clustering, it is necessary at least the use of a dissimilarity
measure. Better if the measure is a metric (distance).
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Clustering methods Hierarchical cluster analysis

Hierarchical Clustering
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Clustering methods Hierarchical cluster analysis

Hierarchical cluster analysis I

Let X be a data matrix with n rows and p columns. Choose a
distance measure of all the

(n
2

)
pairwise dissimilarities. At the

beginning each observation is a cluster.
for i = n, n − 1, . . . , 2

Examine all pairwise inter-cluster dissimilarities among the i
clusters and identify the pair of clusters that are least
dissimilar (that is, most similar), then fuse these two clusters;

Compute the new pairwise inter-cluster dissimilarities among
the i − 1 remaining clusters.
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Clustering methods Hierarchical cluster analysis

Hierarchical cluster analysis II

1 How fuse the clusters?

2 How visualize the solution?
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Clustering methods Hierarchical cluster analysis

Fusing clusters I

In order to fuse the clusters, we need to define (and choose) the
linkage method. In the following, we assume that r and s are two
clusters, xri (xsj) is the i-th (j-th) object in cluster r (s), nr (ns) is
the sample size within cluster r (s).

Single linkage, or nearest neighbor (smallest distance between
objects in the two clusters):
d(r , s) = min(d(xri , xsj)), i ∈ (1, . . . , nr ), j ∈ (1, . . . , ns).
It can be used with any dissimilarity measure.

Complete linkage, or furthest neighbor (largest distance
between objects in the two clusters):
d(r , s) = max(d(xri , xsj)), i ∈ (1, . . . , nr ), j ∈ (1, . . . , ns).
It can be used with any dissimilarity measure.
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Clustering methods Hierarchical cluster analysis

Fusing clusters II

Average linkage (or UPGMA -unweighted pair group method
with arithmetic mean - average distance between all pairs of
objects in any two clusters):
d(r , s) = 1

nrns

∑nr
i=1

∑ns
j=1 d(xri , xsj).

It can be used with any dissimilarity measure.

Weighted average linkage (or WPGMA - Weighted Pair
Group Method with Arithmetic Mean -, or McQuitty,
recursive definition for the distance between two clusters):
Suppose r was created by combining clusters q and t: then
d(r , s) = (d(q,s)+d(t,s))

2 .
It can be used with any dissimilarity measure.
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Clustering methods Hierarchical cluster analysis

Fusing clusters III

Centroid linkage (Euclidean distance between the centroids of
the two clusters).
d(r , s) = ∥x̄r − x̄s∥2, where x̄r =

1
nr

∑nr
i=1 xri

Only with Euclidean distance:

Median linkage (Euclidean distance between weighted
centroids of the two clusters).
d(r , s) = ∥x̃r − x̃s∥2, where where x̃r and x̃s are weighted
centroids for the clusters r and s. Suppose cluster r was
created by merging clusters q and t, then recursively
x̃r =

1
2(x̃q + x̃t).

Only with Euclidean distance
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Clustering methods Hierarchical cluster analysis

Fusing clusters IV

Ward linkage (incremental sum of squares, the increase in the
total within-cluster sum of squares as a result of joining two
clusters).

d(r , s) =
√

2nrns
nr+ns

∥x̄r − x̄s∥2
Only with Euclidean distance

Minimax (Bien et al. (2011), Hierarchical Clustering with
Prototypes via Minimax Linkage).
First define radius of a group of points s around xi as
r(xi , s) = max(j∈s)dij . Then:

d(r , s) = mini∈s∪r r(xi , s ∪ r).
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Clustering methods Hierarchical cluster analysis

Visualize the solution

To visualize the solution, a graphical tool called dendrogram is
used.
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Clustering methods Hierarchical cluster analysis

Building the dendrogram I
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Clustering methods Hierarchical cluster analysis

Building the dendrogram II
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Clustering methods Hierarchical cluster analysis

Building the dendrogram III
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Clustering methods Hierarchical cluster analysis

Building the dendrogram IV
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Clustering methods Hierarchical cluster analysis

Building the dendrogram V
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Clustering methods Hierarchical cluster analysis

Building the dendrogram VI
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Clustering methods Hierarchical cluster analysis

There exist the ”right”dendrogram? I
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Clustering methods Hierarchical cluster analysis

There exist the ”right”dendrogram? II

Some linkage methods is ”dilating”with respect to the original
distance, others are ”contracting, still others are ”coservative”. How
evaluate it? A possible is give a look to the cophenetic distance
and corelation.
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Clustering methods Hierarchical cluster analysis

Cophenetic matrix

The cophenetic matrix (or distance) measures the degree of fit of a
partition with respect to the original data set, assessing how well
the dendrogramatic (ultrametric) distance preserve the original
distances.

The cophenetic matrix is obtained by filling the (original) lower
triangular distance matrix with the minimum merging distance
obtained with the linkage method used

Finally, the cophenetic distance is compared with the original
distances with a correlation coefficient: the larger the correlation,
the better is the dendrogram representation
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Clustering methods Hierarchical cluster analysis

Cophenetic correlation

The cophenetic correlation is given by

Coph =

∑n
i<j(dij − d̄)(cij − c̄)√∑

i<j(dij − d̄)2
∑

i<j(cij − c̄)2
,

where dij and cij are the pairwise distance and the pairwise
cophenetic value between units i and j , respectively.

The cophenetic correlation usually ranges between 0.6 and 0.95.
Cophenetic correlations above .75 are considered good.

Sometimes the cophenetic correlation is expressed in terms of the
Spearman correlation coefficient.
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Clustering methods Hierarchical cluster analysis

Inversion I

In both the centroid and median method the cophenetic measures
may not verify the ultrametric property, giving rise to
non-monotonic fusion distances with crossovers inversions in the
dendrogram.

This result occurs when the distance from the union of two
clusters, say r and s, to a third cluster is less than the distance
between r and s. In this case, the path from a leaf to the root
node takes some downward steps.
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Clustering methods Hierarchical cluster analysis

Inversion II
In this case, ”gene2”and

”gene 3”are joined into a

new cluster, and the

distance between this new

cluster and cluster formed

by ”gene 1”and ”gene 4”

is less than the distance

between ”gene2”and

”gene 3”. The result is a

nonmonotonic tree.

Sometimes changing the

distance can solve the

problem, sometimes it

does not. It is better to

change the linkage

method.
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Clustering methods Hierarchical cluster analysis

How many clusters? part 1

Look at the within cluster similarity (ultrametric) at each stage.
Cut the dendrogram at the level for which there is the maximum
increase in terms of between distance joined.
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Clustering methods Hierarchical cluster analysis

Hiererchical cluster analysis: pros

The dendrogram provides ”taxonomical information”on the
clusters

The number of clusters does not need to be defined a priori

Many methods rely on a proximity matrix allowing almost any
kind of resemblance notion
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Clustering methods Hierarchical cluster analysis

Hiererchical cluster analysis: cons

The aggregation of a point in a group at a given step cannot
be revised, even if the point is misplaced in that group

Computationally demanding for large data sets since keeps
track of a square matrix of order n (number of individuals)

Dendrogram difficult to visualize and interpret for large data
sets

33 / 93



Clustering methods Non-hierarchical clustering: K-means

Non-hierarchical clustering
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Clustering methods Non-hierarchical clustering: K-means

K-means I

Given a data set X, the clustering structure can be presented as a
set of non-empty K ≥ 2 subsets {C1, · · · ,Ck , · · · ,CK} such that:

X =
⋃K

k=1 Ck ,
Ck
⋂
Ck′ = ∅, for k ̸= k ′.

The idea behind K-means clustering is that a good clustering is
one for which the within-cluster variation is as small as possible.
This variation, for cluster Ck , is a measure W (Ck) of the amount
by which the observations within a cluster differ from each other.
The goal is

minimize
C1,...,CK

K∑
k=1

W (Ck)
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Clustering methods Non-hierarchical clustering: K-means

K-means II

The K -means algorithm uses as variation measure the squared
Euclidean distance. Other distance measures can be used, but in
this case the name should be K -means-like algorithm.

1 Randomly assign each observation to one of the K clusters

2 Until the clustering assignment stop changing

For each of the K clusters, compute the cluster centroid, or
bari-center, or cluster center.

Assign each observation to the cluster whose centroid is
closest.

36 / 93



Clustering methods Non-hierarchical clustering: K-means

K-means III

When the algorithm finds a solution, there is no guarantee that the
achieved solution is optimum. K -means algorithm can return a
local optimum. For this reason, usually the procedure is repeated
several time with different (random) starting points.
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Clustering methods Non-hierarchical clustering: K-means

K-means IV
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Clustering methods Non-hierarchical clustering: K-means

K-means: summary

The optimizing function (SSQw)within Sum of Squares) is
always monotonic decreasing

The number of iterations required to converge to an optimum
is usually small, but

Finding an optimal solution is NP-hard.

Tend to form convex clusters. In particular cannot detect
arbitrary cluster shapes.

Nearby points can end in distinct classes.

Assumes the squared Euclidean distance (Huygens theorem)

It is not correct calling ”k-means”algorithms that do not use
Euclidean distance. It is better call them ”k-means like”
algorithms.
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Clustering methods Non hierarchical clusteribg: K-medoids

Non-hierarchical clusterig: K-medoids I

K -medoids clustering is a partitioning method commonly used in
domains that require robustness to outlier data, arbitrary distance
metrics, or ones for which the mean or median does not have a
clear definition.

In the K -means algorithm, the center of the subset is the mean of
measurements in the subset, called centroid. In the K -medoids
algorithm, the center of the subset is a member of the subset,
called medoid.

The K -medoids algorithm returns medoids which are the actual
data points in the data set.
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Clustering methods Non hierarchical clusteribg: K-medoids

Non-hierarchical clusterig: K-medoids II

This allows you to use the algorithm in situations where the mean
of the data does not exist within the data set.

K -medoids is useful for clustering categorical data where a mean is
impossible to define or interpret.

K -medoids is useful when the distance among data points is really
hard to compute and computationally time consuming (i.e.,
Dinamic Warping Distance for time series).
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Clustering methods Non hierarchical clusteribg: K-medoids

K-medoids: PAM algorithm

Figure from https://slidewiki.org/deck/1374-1/

partitioning-methods/slide/11560-2/1376-1:3;1372-1:

2;11560-2:2/view
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Clustering methods Bob hierarchical clustering: Fuzzy C-means

Fuzzy partitions I

Fuzzy clustering methods determine a degree of membership,
which indicates the degree to which objects belong to each cluster.
In this way, objects that are on the boundary between different
clusters are not forced to belong to one specific cluster, but they
present a different degree of membership in each cluster.
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Clustering methods Bob hierarchical clustering: Fuzzy C-means

Fuzzy partitions II

More formally, these methods partition the elements of X in K
fuzzy clusters, with respect to some defined criterion, and they
return both a set of cluster centers and a partition matrix of the
following form

W = {wi ,k}(n×K) ∈ [0, 1];
K∑

k=1

wi ,k = 1 ∀i ∈ {1, . . . , n} ,

where wi ,k represents the degree to which the element xi belongs
to the cluster Ck .
The most popular algorithm for performing fuzzy clustering is the
fuzzy C -means algorithm
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Clustering methods Bob hierarchical clustering: Fuzzy C-means

Fuzzy C-means I

The Fuzzy C-means algorithm aims to

minimize
C1,...,CC

n∑
i=1

C∑
j=1

wm
ic ∥Xi − Cc∥2,

where wic =

(∑C
k=1

(
∥Xi−Cc∥
∥Xi−Ck∥

) 2
m−1

)−1

and m ≥ 1.
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Clustering methods Bob hierarchical clustering: Fuzzy C-means

Fuzzy C-means II

The quantity m is called fuzzyfier and governs the degree of
fuzzyness.

If m = 1, then wic converges to zero or one. In this case crisp
partitions are achieved.

If m is large, then wic will contain small membership values.

In general, m is set equal to 2.
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Clustering methods Bob hierarchical clustering: Fuzzy C-means

Fuzzy C-means III

1 Assign randomly to each point coefficients for being in the C
clusters

2 Repeat until convergence

Compute the cluster centers Cc =
(∑n

i=1 w
m
ic xi
)
/
(∑n

i=1 w
m
ic

)
Update wic
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Clustering methods Non hierarchical clustering: PD clustering

Probabilistic-distance clustering I

The Probabilistic-Distance (PD) clustering allows for a
probabilistic allocation of cases to classes or clusters. It is a form
of fuzzy clustering that is independent on the specification of
fuzzifiers. It is based on the principle that probability and distance
are inversely related

pk(x)dk(x) = constant, depending on x,

in which dk(x) = d(xj , ck) is a distance measure between the j-th
individual and the k-th cluster center and pk(x) = p(xj ∈ k)
denotes the probability of the j-th individual to belong to the k-th
cluster, for k = 1, . . . ,K .

48 / 93



Clustering methods Non hierarchical clustering: PD clustering

Probabilistic-distance clustering II

The membership probabilities are defined as

pk(x) =

∏
j ̸=k d(xj , ck)∑K

t=1

∏
j ̸=t d(xj , ct)

, k = 1, · · · ,K .
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Clustering methods Non hierarchical clustering: PD clustering

Probabilistic-distance clustering III

Given a data matrix X and K clusters. The problem is summarized
as

minimize
∑K

k=1 dk(X)p
2
k

subject to
∑k

k=1 Pk = 1
Pk ≥ 0 ∀k = 1, . . . ,K
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Clustering methods Non hierarchical clustering: PD clustering

Probabilistic-distance clustering IV

Repeat until convergence:

1 compute the the n × K matrix of distances d(X) of each
individuals from each cluster center;

2 update the cluster centers in this way:

ck =
∑n

i=1

(
uk (xi )∑n
j=1 uk (xj )

)
xi

where uk(xi ) =
(
pk(xi )

2
)
/ (dk(xi , ck)).
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Clustering methods Model-based clustering in a nutshell

Model-based clustering
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Clustering methods Model-based clustering in a nutshell

Model-based clustering in a nutshell

Model-based clustering assumes that the data were generated by a
model and tries to recover the original model from the data (the
original mixture of distributions generating the data).

It is assumed that the distribution in the population in known.

Most of the time the EM (Expectation-Maximization) algorithm is
used
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Clustering methods Model-based clustering in a nutshell

EM approach I

Let X be the data set, let Z be the latent variables (the clusters),
let Θ be a set of parameters. We have that

lnp(X |Θ) = ln

(∑
Z

p(X ,Z |Θ)

)
.

Theoretically, the ”complete”data set is X ,Z , but we observe only
X . The knowledge of Z is possible only through the posterior
probability

p(Z |X ,Θ).
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Clustering methods Model-based clustering in a nutshell

EM approach II

We can compute the expectation of the likelihood of the complete
data set under the posterior (E step), and then maximize this value
(M step).

E step
Use the current parameter Θ∗ to compute the posterior
P (Z |X ,Θ∗), then find the expectation of the complete
log-likelihood

Q(Θ∗,Θ) =
∑
Z

p (Z |X ,Θ∗) ln(p(X ,Z |Θ)).

M-step
Update the estimate of Θ∗

Θnew = argmax
Θ

Q(Θ,Θ∗)

55 / 93



Clustering methods Mix of categorical and numerical data

Mix of categorical and numerical data
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Clustering methods Mix of categorical and numerical data

Mix of categorical and numerical data

Hierarchical cluster analysis, K-medoids, K-means-like algorithms
and PD clustering can be used also for data bearing both
categorical and numerical data.

When it is not possible (or it is not convenient) recode categorical
variables or discretize numerical variables, dissimilarity measures for
mixed variables can be adopted.
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Clustering methods Mix of categorical and numerical data

Gower similarity index (Gower, 1971) I

Let X a data set with n objects and p variables of mixed type. The
Gower similarity index is

g(xi , xj) =

∑p
v=1 wv (xi , xj)sv (xi , xj)∑p

v=1 wv (xi , xj)
,

where wv (xi , xj) is the weight of the vth variable for the pair xi , xj
and sv (xi , xj) is the similarity between xi and xj in v .
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Clustering methods Mix of categorical and numerical data

Gower similarity index (Gower, 1971) II

For continuous variables, sv (xi , xj) =
|xi−xj |
Rv

, where Rv is the
sample range of variable v .

For categorical variables, sv (xi , xj) is the simple matching
coefficient.

For ordinal categorical variables, the original values are replaced by
their associated rank values.

Once sv is converted to dissimilarity with the option 1− sv , any
feasible clustering algorithms can be used.
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Clustering methods Mix of categorical and numerical data

K-prototypes (Huang, 1998) I

K-prototypes is a variant of K-means that is based on the weighted
combination of the squared Euclidean distance for continuous
variables and the matching distance for categorical variables.
The distance measure is defined as

d(xi ,Qk) = dcont(xi ,Qk) + λdcat(xi ,Qk),

where Qk is the centroid (or prototype) of cluster k, dcont is the
Euclidean distance to be computed for the numerical part of the
data matrix, dcat is the distance associated to the categorical part
of the data matrix (1-simple matching coefficient), and λ is a
user-defined weight of the significance of the entire group of
categorical variables in cluster k.
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Clustering methods Mix of categorical and numerical data

K-prototypes (Huang, 1998) II

The cost function to be minimized is

K∑
k=1

n∑
i=1

zikd(xi ,Qk),

where zik is an element of the n × K partition membership matrix
Z.
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Clustering methods Mix of categorical and numerical data

Convex K-means (Modha and Spangler, 2003)

The convex K-means algorithm which considers a weighted
combination of the squared Euclidean distance and the cosine
distance for continuous and dummy-coded categorical variables,
respectively.

The overall dissimilarity between an object and a cluster centroid is
defined similar to K-prototypes, with the important difference that
the weight λ is automatically determined inside the algorithm.
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Clustering methods Mix of categorical and numerical data

K-means for mixed data (Ahmad and Dey, 2007)

K-means for mixed data combines the squared Euclidean distance
for continuous with a special distance for categorical variables,
where the distance between two categories is computed as a
function of their co-occurrence with other categories.

The overall dissimilarity between an object and a cluster centroid is
defined similar to K-prototypes
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Clustering methods Tandem analysis

Dimension reduction and cluster analysis I

Extant dimension reduction techniques all result in new numerical
scores (coordinates) for the observations. Hence, an obvious
approach is to perform a two-step analysis where cluster 9analysis
is applied to the results of dimension reduction. Such an approach
is often referred to as a ”tandem analysis” (Hubert and Arabie,
1985).

Principal Component Analysis, only numerical variables

(Multiple) Correspondence analysis, only categorical variables

For data reduction of mixed data, FAMD/PCAMIX, was
originally proposed independently by several authors (de
Leeuw and van Rijckevorsel, 1980; Hill and Smith, 1976;
Kiers, 1991; Pagés, 2004). It can be seen as a compromise
between PCA and Multiple Correspodence Analysis.
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Clustering methods Tandem analysis

Dimension reduction and cluster analysis II

Reduced K-means clustering (RKM) (De Soete and Carroll,
1994). In RKM the simultaneous dimension reduction and
cluster analysis problem is tackled in such a way that the
cluster allocation and dimension reduction maximizes the
between variance of the clusters in the reduced space.

Factorial K-means (FKM) (Vichi and Kiers, 2001).

...
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Cluster validation Internal validation criteria

Internal Validation Criteria
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Cluster validation Internal validation criteria

How many clusters? part 2 I

The number K of clusters must be known a-priori. If we do not
know it, we can proceed with some tools, such as

Silhouette

GAP

Scree-plot

Calinski-Harabasz index

Davies-Boudin criterion
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Cluster validation Internal validation criteria

Silhouette
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Cluster validation Internal validation criteria

Silhouette I

The silhouette value for each point is a measure of how similar
that point is to points in its own cluster, when compared to points
in other clusters. The silhouette value for the i-th point, Si , is
defined as

Si = (bi − ai )/max(bi , ai )

where ai is the average distance from the i-th point to the other
points in the same cluster as i , and bi is the minimum average
distance from the i-th point to points in a different cluster,
minimized over clusters.
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Cluster validation Internal validation criteria

Silhouette II

The silhouette value ranges from −1 to +1. A high silhouette
value indicates that i is well-matched to its own cluster, and
poorly-matched to neighboring clusters.
If most points have a high silhouette value, then the clustering
solution is appropriate.
If many points have a low or negative silhouette value, then the
clustering solution may have either too many or too few clusters.
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Cluster validation Internal validation criteria

Silhouette III

A way to choose the ”optimal”K is perform the K -means with
different levels of K , then compute the clusters silhouette for each
solution and choose the clustering solution with the largest
averaged silhouette.

The silhouette clustering evaluation criterion can be used with any
distance metric.
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Cluster validation Internal validation criteria

Silhouette IV
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Cluster validation Internal validation criteria

GAP
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Cluster validation Internal validation criteria

GAP I

A common graphical approach to cluster evaluation involves
plotting an error measurement versus several proposed numbers of
clusters, and locating the elbow of this plot. The gap criterion
formalizes this approach by estimating the ”elbow” location as the
number of clusters with the largest gap value. Therefore, under the
gap criterion, the optimal number of clusters occurs at the solution
with the largest local or global gap value within a tolerance range.
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Cluster validation Internal validation criteria

GAP II

The Gap statistic is

Gapn(k) = E ∗
n {log(Wk)} − log(Wk),

where E ∗
n denotes the expected value under a sample size n from

the reference distribution and Wk is the pooled within-cluster
dispersion measurement

Wk =
k∑

r=1

1

2nr
Dr .

Above, nr is the number of data points in cluster r , and Dr is the
sum of the pairwise distances for all points in cluster r .
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Cluster validation Internal validation criteria

GAP III

The expected value E ∗
n {log(Wk)} is determined by Monte Carlo

sampling from a reference distribution, and log(Wk) is computed
from the sample data.

The GAP is then the ”distance”between random data clustered in
k clusters and the actual data.
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Cluster validation Internal validation criteria

Scree-plot
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Cluster validation Internal validation criteria

Scree-plot I

A simple method consists in analysing the variation of the within
cost (say SSQw) statistic, or equivalently, the percentage of
explained variance SSQb/SSQt, against the number of clusters in a
scree plot. This statistic is usually monotonically decreasing as the
number of cluster increases. An elbow point in this plot indicating
a high decrease in the SSQw statistic such that increasing the
number of clusters only marginally improves (i.e., lowers) this
statistics, may provide a good estimate for the number of clusters
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Cluster validation Internal validation criteria

Scree-plot II
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Cluster validation Internal validation criteria

Kalinski-Harabasz index
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Cluster validation Internal validation criteria

Kalinski-Harabasz index

The Calinski-Harabasz criterion is sometimes called the variance
ratio criterion (VRC). The Calinski-Harabasz index is defined as

VRCk =
SSB

SSW

N − K

N − 1
.

Well-defined clusters have a large between-cluster variance (SSB)
and a small within-cluster variance (SSW). The larger the VRCk
ratio, the better the data partition. To determine the optimal
number of clusters, maximize VRCk with respect to k. The
optimal number of clusters is the solution with the highest
Calinski-Harabasz index value.
The Calinski-Harabasz criterion is best suited for k-means
clustering solutions with squared Euclidean distances.
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Davies-Bouldin criterion
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Davies-Bouldin criterion

The Davies-Bouldin criterion is based on a ratio of within-cluster
and between-cluster distances:

DB =
1

K

K∑
k=1

maxi ̸=jDi ,j ,

where Di ,j is the within-to-between cluster distance ratio for the
ith and jth clusters:

Di ,j =
d̄i + d̄j
di ,j

,

where d̄i (d̄j) is the average distance between each point in the ith
(jth) cluster and the centroid of the ith (jth) cluster, abd di ,j is the
Euclidean distance between the centroids of the ith and jth clusters.

The optimal clustering solution has the smallest Davies-Bouldin
index value.
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External Validation Criteria
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External vaidation criteria I

Let X the (n × p) data matrix, where n is the number of objects
and p the number of variables. Let P = {P1, , ...,PK} be a K
partition of the n objects. We say that two elements of X, i.e.
(x, x′) are paired in P if they belong to the same cluster. Let P
and Q be two partitions of the objects set X.
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External vaidation criteria II

Let us define the following quantities:

a: the number of pairs (x, x′) that are paired in P and in Q;

b: the number of pairs (x, x′) that are paired in P but not
paired in Q;

c: the number of pairs (x, x′) that are not paired in P but
paired in Q;

d : the number of pairs (x, x′) that are neither paired in P nor
in Q.

We will focus the attention only on the indices that can be built
with these quantities.
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External vaidation criteria III

Starting from these quantities, several indexes have been defined:

Rand index (RI): (a+ d)/(a+ b + c + d);

Adjusted Rand index (ARI):
[2(ad − bc)]/[b2 + c2 + 2ad + (a+ d)(c + b)];

Jaccard index: a/(a+ b + c);

Fowlkes and Mallows index: a/
√
(a+ b)(a+ c);

Yule index: [(ad)− (bc)]/[ab + cd ];

Dice’s coefficient: 2a/(2a+ b + c);

...
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External validation criteria for fuzzy partitions I

There exist several adjustments of these indices for fuzzy
partitions. The following is the Normalized Degree of Concordance
index by Hullermeier:
Let W = {W1, ...,WK} be a fuzzy partition of the data matrix X.
Given any pair (x, x′) ∈ X, these membership vectors define a fuzzy
equivalence relation on X in terms of similarity measure as:

EW = 1− ∥W(x)−W(x′)∥,

where ∥ · ∥ = 0.5
∑K

k=1 |xk − x′k |.
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External validation criteria for fuzzy partitions II

Consider now two fuzzy partitions, P and Q. The degree of
concordance is:

conc(x, x′) = 1− ∥EP(x, x
′)− EQ(x, x

′)∥ ∈ [0, 1],

and the degree of discordance is:

disc(x, x′) = ∥EP(x, x
′)− EQ(x, x

′)∥.
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External validation criteria for fuzzy partitions III

A distance measure is defined by the normalized sum of concordant
pairs:

d(P,Q) =

∑
(x,x′)∈X ∥EP(x, x

′)− EQ(x, x
′)∥

n(n − 1)/2
.

Finally, the normalized degree of concordance is defined as

RE (P,Q) = 1− d(P,Q),
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External validation criteria for fuzzy partitions IV

The Adjusted Concordance Index is the fuzzy variant of the
Adjusted Rand Index. Let P and ,Q two probabilistic (fuzzy)
partitions. The ACI is defined as

ACI =
RE (P,Q)− R̄E (P,Q)

1− R̄E (P,Q)
,

where R̄E (P,Q) is the mean value of the RE over all permutations
of (say) P keeping fixed Q.
When determining all of the permutations is not practical, for
example, when n > 20, the expected value is estimated by taking
into account a very large number h of randomly selected
permutations of the total n! permutations.
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Non-hierarchical clustering: pros

Non-hierarchical cluster analysis

Can reallocate an individual that was misplaced in its cluster

It is generally Computationally efficient (e.g. K-means)

Can improve the objective function obtained with some
hierarchical methods (e.g., K-means and Ward)
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Non-hierarchical clustering: cons

The number of clusters (or some other parameters, for
model-based clustering) has to be known (or estimated) a
priori

No taxonomic type of relationship between clusters is obtained
and no dendrogram is produced

Some methods work only with ”geometric”data and may
require the euclidean distance
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