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Introduction I

Unsupervised learning is often performed as part of an exploratory
data analysis.

It can be hard to assess the results obtained from unsupervised
learning methods: we have not a ”supervisor”. In unsupervised
learning, there is no way to check our work because we don’t know
the true answer.

There are several models and methods dealing with unsupervised
learning: factor analysis, principal component analysis,
correspondence analysis, multidimensional scaling, cluster
analysis....
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Introduction II

We will focus our attention on Multidimensional Scaling and
Unfolding.
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Multidimensional Scaling

Antonio D’Ambrosio MDS & Unfolding



MDS

Introduction I

Multidimensional Scaling (MDS) generally is a technique used to
visualize the level of (dis)similarity of individual cases or stimuly of
a data set.
It is generraly used to

visualizing proximity data

uncovering latent dimensions of judgment

testing structural hypotheses

Antonio D’Ambrosio MDS & Unfolding



MDS

Visualizing proximity data I

From Borg, Groenen and Mair, 2013: The figure shows a case from
industrial psychology. Its 27 points represent 25 items and two
indexes from an employee survey in an international IT company
(Liu et al. 2004). Two examples for the items are: ”All in all, I am
satisfied with my pay”, and ”I like my work”, both employing a
Likert-type response scale ranging from ”fully agree” to ”fully
disagree.”The two indexes are scale values that summarize the
employees’ responses to a number of items that focus on their
affective commitment to the company and on their general job
satisfaction, respectively. The distance between two points
represents the correlation of the respective variables.
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MDS

Visualizing proximity data II
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MDS

Uncovering latent dimensions of judgment I

Why does Julia look like Mike’s daughter?
How come that a Porsche appears to be more similar to a Ferrari
than to a Cadillac?
To explain such judgments or perceptions, distance models offer
themselves as natural candidates. In such models, the various
objects are first conceived as points in a psychological space that is
spanned by the subjective attributes of the objects. The distances
among the points then serve to generate overall impressions of
greater or smaller similarity.

Antonio D’Ambrosio MDS & Unfolding



MDS

Uncovering latent dimensions of judgment II

Wish (1971) wanted to know the attributes that people use when
judging the similarity of different countries. He conducted an
experiment where 18 students were asked to rate each pair of 12
different countries on their overall similarity. For these ratings, an
answer scale from ”extremely dissimilar” (1) to ”extremely similar”
(9) was offered to the respondents. No explanation was given on
what was meant by ”similar”.
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MDS

Uncovering latent dimensions of judgment III

From data...
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MDS

Uncovering latent dimensions of judgment IV

... to visualization: how interpret latent dimensions?
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MDS

Testing structural hypotheses I

A frequent application of MDS is using it to test structural
hypotheses. For example,suppose that persons are asked to solve
several test items, which can be classified on the basis of their
content into different categories of two design factors (facets).
Some test items require the testee to solve computational problems
with numbers and numerical operations (N). Other items ask for
geometrical solutions (G). The data in the small example are the
intercorrelations of eight intelligence test items. The items are
coded in terms of the facets ”Format = N(umerical),
G(eometrical)”and ”Requirement = A(pply), I(nfer)”.

Antonio D’Ambrosio MDS & Unfolding



MDS

Testing structural hypotheses II

Do Format and Requirement surface in some way in the MDS
solution?.
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MDS

Testing structural hypotheses III
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MDS

MDS I

MDS has been predominantly used as a tool for analyzing
proximity data of all kinds (e.g., correlations, similarity ratings,
co-occurrence data). It is a technique for analysis of data that are
(dis)similarities observed on a set of objects.

MDS models such data as distances among points in a (reduced)
geometrical space.
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MDS

MDS II

Imagine to have m points defined in a space of dimension p. Goal
of MDS is find a space X of dimension r (r < p) that represents
the coordinates of the m points.

From X is possible compute the distance matrix among the m
points in the r -dimensional space. The goal is find a configuration
such that the distances dij in the reduced space are as close as
possible to the raw distances-dissimilarities in the full
p-dimensional space.

Antonio D’Ambrosio MDS & Unfolding



MDS by hand

MDS by hand I

Suppose to observe the distances between 10 cities:
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MDS by hand

MDS by hand II

Identify the maximum distance in the table, here

d23 = 1212. Place two points on a piece of paper

such that their distance is proportional to d23.

Choose a scale factor s so that the reconstructed

map has a convenient overall size. For example, we

want the largest distance in the map to be equal to

5 cm, then s = 0.004125. All values are then

multiplied by s, which leaves invariant the

proportions or ratios of the data. Draw a line

segment with a length s × 1212 = 5.
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MDS by hand

MDS by hand III

Assume now that we consider city

9: we know that d29 = 787,

hence point 9 must lie anywhere

on the circle with radius s × 787

cm around point 2. On the other

hand, d39 = 714, so point 9 also

must lie on the circle with radius

s × 714 city 3. We have two

possible solutions, between points

9 and 9’ we choose the first.
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MDS by hand

MDS by hand IV

Pick now, say, city 5. Its position
must lie on

a) the circle around point 2
with radius s × 617(d25);

b) the circle around point 3
with radius s × 596(d35);

c) the circle around point 9
with radius s × 436(d95).
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MDS by hand

MDS by hand V

And so on, until all points have been placed
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MDS by hand

A classical example: European Cities I

London Stockholm Lisboa Madrid Paris Amsterdam Berlin Prague Rome Dublin

London 0.00 569.00 667.00 530.00 141.00 140.00 357.00 396.00 569.00 190.00
Stockholm 569.00 0.00 1212.00 1043.00 617.00 446.00 325.00 423.00 787.00 648.00

Lisboa 667.00 1212.00 0.00 201.00 596.00 768.00 923.00 882.00 714.00 714.00
Madrid 530.00 1043.00 201.00 0.00 431.00 608.00 740.00 690.00 516.00 622.00
Paris 141.00 617.00 596.00 431.00 0.00 177.00 340.00 337.00 436.00 320.00

Amsterdam 140.00 446.00 768.00 608.00 177.00 0.00 218.00 272.00 519.00 302.00
Berlin 357.00 325.00 923.00 740.00 340.00 218.00 0.00 114.00 472.00 514.00
Prague 396.00 423.00 882.00 690.00 337.00 272.00 114.00 0.00 364.00 573.00
Rome 569.00 787.00 714.00 516.00 436.00 519.00 472.00 364.00 0.00 755.00
Dublin 190.00 648.00 714.00 622.00 320.00 302.00 514.00 573.00 755.00 0.00
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MDS by hand

A classical example: European Cities II

> X=as.data.frame(EUCITIES)

> row.names(X)=colnames(X)

> require(smacof)

> mdssol=mds(as.dist(X),type="ordinal")

> mdssol$conf[,2]=mdssol$conf[,2]*-1 #why?
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MDS by hand

A classical example: European Cities III
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MDS by hand
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Metric vs non-metric MDS

Metric versus non-metric I

A MDS model is a proposition such that, given some proximities
(pij) and a transformation of the proximities (f (pij)), these become
as close as possible to the distances among the points of the
configuration X

f (pij) = dij(X).

The function p can be completely specified, or it can be assumed
to belong to some class of functions. The choice of f specifies the
MDS model.
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Metric vs non-metric MDS

Metric versus non-metric II

A main difference of various MDS models is the scale level that the
models assume for the proximities. The most popular MDS model
in research publications using MDS has been ordinal MDS, also
known as non-metric MDS.

Mon-metric MDS builds on the premise that the proximities pij are
on an ordinal scale: only their ranks are taken as reliable and valid
information. The task of ordinal MDS is to generate a
r -dimensional configuration X so that the distances over X are
ordered as closely as possible as the proximities.

In other words, in ordinal MDS is required that

pij < pkl → dij(X) < dkl(X)
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Metric vs non-metric MDS

Metric versus non-metric III

A second class of MDS models is called metric MDS. Such models
specify an analytic function for f .

f (pij) =

absolute MDS: pij ;

ratio MDS: b × pij , with b > 0;

interval MDS: a+ b × pij , with a ≥ 0, b ≥ 0;

spline: polynomial sum of pij .
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STRESS

STRESS I

The loss function to be minimized, as well as the main badness of
fit measure to be evaluated, is called STRESS. The single error is

e2ij = [f (pij)− dij(X)]
2.

Summing over all the possible pairs a measure called raw STRESS
is obtained:

σr (X) =
∑
i>j

e2ij .
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STRESS

STRESS II

The raw STRESS is generally normalized in this way:

σ1(X) =
σr∑

i<j d
2
ij (X)

.

A measure for evaluating the MDS solution is the Kruskal’s
STRESS-1:

STRESS-1 =
√
σ1(X)
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Classical Scaling

MDS algorithms: classical scaling

Classical scaling:

Compute the squared dissimilarities matrix ∆2;

Apply the double centering operation to the matrix:

D∆ = −1

2
J∆2J,

with J = In−111′;

compute eigenvalues (Λ) and eigenvectors (Q) of the matrix
D∆;

The coordinates are given by X = Q+

√
Λ+, in which the

subscript + indicates the first r positive eigenvalues ordered in
descending order.
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Classical Scaling

…Classical scaling (Torgerson-Gower Scaling)…

1. Compute the squared dissimilarities matrix:

1.1 Compute the matrix J:

2. Apply double centering:

 2
                                    
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0,75 0, 25 0,25 0, 25 0 16, 40 68,06 31,02 0,75 0, 25 0, 25 0, 25

0,25 0,75 0,25 0, 25 16, 40 0 6, 45 7, 23 0,25 0,75 0, 25 0, 21

0,25 0, 25 0,75 0, 25 68,06 6, 45 0 4,452

0,25 0, 25 0,25 0,75 31,02 7, 23 4, 45 0

B

        
            
     
   
     

5

0,25 0, 25 0,75 0, 25

0,25 0, 25 0, 25 0,75

 
 
  
   
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=
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Classical Scaling

…Classical scaling (Torgerson-Gower Scaling)…

3.  Compute the eigendecomposition:

3. 1 Select eigenvalues and eigenvectors

4. Find the coordinates:

 Q                                                              

+                                                              Q  

0,77 0,04

0,01 0,61 5,97 0

0,60 0,19 0 1,81

0,18 0,76

X Q 

 
            
 
 
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Classical Scaling
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MDS algorithms

Gradient-based MDS I

In the following, some algorithms for unweighted MDS are
presented. Often (always?) the classical scaling algorithm is the
starting configuration for other algorithms. If the STRESS is
minimized, a popular one is the gradient-based MDS
(implemented, for example, in MatLab and STATISTICA).
Let the STRESS be defined as

σ =
∑
i<j

(δij − dij(X))
2

=
∑
i<j

δ2ij +
∑
i<j

d2
ij (X)− 2

∑
i<j

δijdij(X)
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MDS algorithms

Gradient-based MDS II

The second term
∑

i<j d
2
ij (X) can be written as trace(XVXT ),

where V is a matrix with elements vij = −1 if i ̸= j and N − 1
otherwise and X is the N ×m matrix of coordinates.

The third term can be written as∑
i<j δijdij(X) = trace(XTB(X )X), where B(X ) is a matrix with

elements bij(X ) =
−dij (X)

dij
if i ̸= j and dij ̸= 0, 0 if i ̸= j and

dij = 0, and −
∑

i ̸=j bij .
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MDS algorithms

Gradient-based MDS III

Hence, as the gradient of the STRESS is equal to
∇σ = 2VX− 2B(X )X, gradient methods for minimizing the
so-called Least Squares STRESS work by updating X in this way:

Xk+1 = Xk − 2αk
(
VXk − B(X k)Xk

)
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MDS algorithms

SMACOF I

The SMACOF (Scaling by Majorizing A COmplicated Function)
algorithm is implemented in SPSS (as PROXSCAL mds) and in R.
It works as in the following flow chart
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MDS algorithms

SMACOF II
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MDS algorithms

SMACOF III

By Cauchy-Schwartz inequality we can write

m∑
k=1

(x
(k)
i −x

(k)
j )(q

(k)
i −q

(k)
j ) ≤

(
m∑

k=1

(x
(k)
i − x

(k)
j )2

)1/2( m∑
k=1

(q
(k)
i − q

(k)
j )2

)1/2

,

hence the third term in STRESS function can be written as
trace(XTB(X )X) = trace(XTB(Q)Q).
The step Xk+1 = N−1B(Q)Q is called ”Gutman transform”. The
SMACOF algorithm ensures the use of quadratic function to be
minimized. It is generally faster than gradient methods.
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Unfolding

Unfolding
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Unfolding

Introduction I

”The unfolding model is a model for preferential choice. It assumes
that different individuals perceive various objects of choice in the
same way but differ with respect to what they consider an ideal
combination of the objects’ attributes. In unfolding, the data are
usually preference scores (such as rank-orders of preference) of
different individuals for a set of choice objects. These data can be
conceived as proximities between the elements of two sets,
individuals and choice objects. Technically, unfolding can be seen
as a special case of MDS where the within-sets proximities are
missing”(Borg and Groenen, 2005, pag. 293)
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Unfolding

Introduction II

Unfolding can be seen as a special case of Multidimensional
Scaling (MDS).
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Unfolding

Unfolding: loss function

The most accepted formulation of the problem in terms of a
badness-of-fit function is given in a least squares framework by
minimization of the STRESS function (?):

σ2(A,B, ∆̂) =
m∑
i=1

n∑
j=1

(δ̂ij − dij)
2, where:

∆̂ is a m × n matrix in which each entry δ̂ij represents the
disparity or monotonically transformed dissimilarity between
the ith-subject and the jth-object;

dij = dij(A,B) represents the distance, usually Euclidean,
between the corresponding points in dimension K ,
i = 1, . . . ,m, j = 1 . . . , n.
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Unfolding

Unfolding I

Unfolding is typically performed when the are preference data.

Individuals are represented as ideal points in the MDS space so
that the distances from each ideal point to the object points
correspond to the preference scores.

Two blocks of dissimilarities are missing
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Unfolding

Unfolding II

table from Borg, Groenen and Mair, 2013
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Unfolding

Unfolding III

There are both metric and non-metric unfolding models.

Most of the time (quite always?) one is interested in non-metric
unfolding. The used transformation is usually the monotone
regression.

There are two approaches to ties:

1 Primary approach: allow ties to be broken;

2 Secondary approach: do not allow ties to be broken.
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Unfolding

Unfolding IV

From a geometric point-of-view, unfolding can easily lead to
unstable solutions.

This is so because the model rests on data that constrain only a
sub-set of the distances, namely the distances among ideal points
and object points, but not the distances among ideal points and
also not the distances among object points.

Moreover, in real data, object points and ideal points are often not
thoroughly mixed. In the Unfolding solution single points can be
moved around arbitrarily in ample solution regions without
affecting the Stress at all.
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Problems with Unfolding

Problems with unfolding I

A common problem is the risk to obtain degenerate solutions.
Such undesirable solutions are sometimes easily recognized, for
example, if the person points are all located on a circular arc, while
the object points are lumped together in the center of the circle.

In this case the Unfolding solution is quite perfect (i.e.,
STRESS ≈ 0), but the graphical solution is absolutely
uninformative.
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Problems with Unfolding

Problems with unfolding II
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Problems with Unfolding

Problems with Unfolding: degenerate solutions I

Strategies to avoid degenerate solutions:

Modify the STRESS function (i.e., STRESS-2, obtained by
dividing σr by

∑
i<j(dij(X)− d̄)2

ALSCAL minimizes the so-called S-STRESS:

σ2 =
∑
i<j

(δ̂2i j − d2
ij )

2
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Problems with Unfolding

Problems with Unfolding: degenerate solutions II

Penalization of the loss function (Implemented in
SPSS-PREFSCAL. Today it is also in R, package SMACOF);

σp = σ2(A,B, ∆̂)λ

(
1 +

w

v2(∆̂)

)
, where:

λ and w are the two penalty parameters fixed by the user;
v2(∆̂) denotes the (squared) coefficient of variation for the
elements of ∆̂.

”Augmenting” the data matrix.
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Problems with Unfolding

Problems with Unfolding: degenerate solutions III

The SMACOF algorithm for rectangular tables (namely, the
Unfolding) is implemented in both R (smacof package) and SPSS.
ALSCAL is implemented in SPSS
Note that the smacof package provides both metric (ratio
transformation with coefficient equal to 1) and non-metric
unfolding (PRESCAL algorithm).
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Problems with Unfolding

Problems with Unfolding: degenerate solutions IV

Augmenting the data matrix allows, very often, to use any
”standard”MDS algorithm in order to perform unfolding. New
Augmented data matrix based on Kemeny distance will be
available soon

Unfolding (and, generally, MDS) is closely related to cluster
analysis.
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Examples

Unfolding: breakfast data

toast butoast engmuff jdonut cintoast bluemuff hrolls toastmarm butoastj toastmarg cinbun danpastry gdonut cofcake cornmuff
1 13 12 7 3 5 4 8 11 10 15 2 1 6 9 14
2 15 11 6 3 10 5 14 8 9 12 7 1 4 2 13
3 15 10 12 14 3 2 9 8 7 11 1 6 4 5 13
4 6 14 11 3 7 8 12 10 9 15 4 1 2 5 13
5 15 9 6 14 13 2 12 8 7 10 11 1 4 3 5
6 9 11 14 4 7 6 15 10 8 12 5 2 3 1 13
7 9 14 5 6 8 4 13 11 12 15 7 2 1 3 10
8 15 10 12 6 9 2 13 8 7 11 3 1 5 4 14
9 15 12 2 4 5 8 10 11 3 13 7 9 6 1 14

10 15 13 10 7 6 4 9 12 11 14 5 2 8 1 3
11 9 2 4 15 8 5 1 10 6 7 11 13 14 12 3
12 11 1 2 15 12 3 4 8 7 14 10 9 13 5 6
13 12 1 14 4 5 6 11 13 2 15 10 3 9 8 7
14 13 11 14 5 4 12 10 8 7 15 3 2 6 1 9
15 12 11 8 1 4 7 14 10 9 13 5 2 6 3 15
16 15 12 4 14 5 3 11 9 7 13 6 8 1 2 10
17 7 10 8 3 13 6 15 12 11 9 5 1 4 2 14
18 7 12 6 4 10 1 15 9 8 13 5 3 14 2 11
19 2 9 8 5 15 12 7 10 6 11 1 3 4 13 14
20 10 11 15 6 9 4 14 2 13 12 8 1 3 7 5
21 12 1 2 10 3 15 5 6 4 13 7 11 8 9 14
22 14 12 10 1 11 5 15 8 7 13 2 6 4 3 9
23 14 6 1 13 2 5 15 8 4 12 7 10 9 3 11
24 10 11 9 15 5 6 12 1 3 13 8 2 14 4 7
25 15 8 7 5 9 10 13 3 11 6 2 1 12 4 14
26 15 13 8 5 10 7 14 12 11 6 4 1 3 2 9
27 11 3 6 14 1 7 9 4 2 5 10 15 13 12 8
28 6 15 3 11 8 2 13 9 10 14 5 7 12 1 4
29 15 7 10 2 12 9 13 8 5 6 11 1 3 4 14
30 15 10 7 2 9 6 14 12 8 11 5 3 1 4 13
31 11 4 9 10 15 8 6 5 1 13 14 2 12 3 7
32 9 3 10 13 14 11 1 2 4 5 15 6 7 8 12
33 15 8 1 11 10 2 4 13 14 9 6 5 12 3 7
34 15 8 3 11 10 2 4 13 14 9 6 5 12 1 7
35 15 6 10 14 12 8 2 4 3 5 11 1 13 7 9
36 12 2 13 11 9 15 3 1 4 5 6 8 10 7 14
37 5 1 6 11 12 10 7 4 3 2 13 9 8 14 15
38 15 11 7 13 4 6 9 14 8 12 1 10 3 2 5
39 6 1 12 5 15 9 2 7 11 3 8 10 4 14 13
40 14 1 5 15 4 6 3 8 9 2 12 11 13 10 7
41 10 3 2 14 9 1 8 12 13 4 11 5 15 6 7
42 13 3 1 14 4 10 5 15 6 2 11 7 12 8 9
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Examples

> res=unfolding(breakfast,type="ordinal"

+ ,omega=0.5,lambda=1)

> res$stress

[1] 0.2947333
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Examples
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Examples

Unfolding by augmenting data matrix: Spearman ρ
distance

Van Deun, Heiser and Delbeke proposed to augment the data
matrix in order to obtain and entire dissimilarity matrix to be
analyzed with a standard MDS program.

They used the Spearman ρ distance for rankings
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Examples

Recall: Spearman distance

Let A and B be two rankings of n elements. A distance defined as

d(A,B) =
n∑

i=1

|Ai − Bi |p

for some 0 < p < ∞ is a set of spatial distances for rankings.

If p = 1 the distance d is known as Spearman’s footrule distance.

If p = 2, d is known as Spearman distance, and it is the distance
measure related to the well-known Spearman’s ρ.
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Examples

Unfolding by augmenting data matrix: Spearman ρ
distance (cont’d) I

Let X a m × n data matrix in which there are m individuals and n
items to be ranked.

Add n additional rows to X. These rows represent the items
by tied rankings in this way: πkk′ = 1 if k = k ′,
πkk′ = 1 + n/2 if k ̸= k ′, k, k ′ = 1, . . . , n;

center the data with respect to c = [(n + 1)/2]1;

Scale the object vectors by multiplying the additional rows by
((n + 1)1/2)/31/2;
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Unfolding by augmenting data matrix: Spearman ρ
distance (cont’d) II

derive the (m + n)× (m + n) dissimilarity matrix by
computing the squared Euclidean distance between the
centered and scaled rank vectors (the length is set equal to
(
√
n
√
(n2 − 1))/

√
12);

perform a non-metric MDS
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> VanDeunTransf = function(X){

+ #Given a rectangualr matrix X of dimension n x m

+ #containing preferences, transform the matrix

+ #into a dissimilarity matrix (n+m) x (n+m)

+ #according the approach by Van Deun,

+ #Heiser and Delbeke (2007)

+ #

+ #Output: Delta, to be use as input in MDS;

+ # Interactions, for evaluation purposes

+

+ n=dim(X)[1]

+ m=dim(X)[2]

+ nr=row.names(X)

+ if (is.null(nr)){nr=seq(1:n)}

+ nc=colnames(X)

+
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+ C=matrix((m+1)/2,(n+m),m) #center of

+ #geometrical space

+

+ # step 1: create the objects vectors

+ obj = matrix(0,m,m)

+ for (j in 1:m){

+ obj[j,j]=1

+ obj[j, setdiff(c(1:m),j)]=1+m/2

+ }

+

+ X=rbind(as.matrix(X),obj) #add the n row to X

+ row.names(X)=c(nr,nc)

+

+ #step 2: center the matric with trespect to C

+ Xc=X-C

+
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+ #step 3: Scale the object vectors

+ scalefact=sqrt((m+1))/sqrt(3)

+

+ Xc[(n+1):(n+m),] =

+ Xc[(n+1):(n+m),]*scalefact

+

+ #step4: compute the squared

+ #Euclidean distance among

+ #the rows of the matrix

+

+ XcS=matrix(0,(n+m),m)

+ scalefact2=sqrt((m*(2*m+1)*(m+1))/6)

+

+ for (j in 1:(n+m)){

+ XcS[j,]=scalefact2*Xc[j,]/

+ norm(matrix(Xc[j,]),type="f")
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+ }

+ rownames(XcS)=rownames(X)

+

+ Delta = dist(XcS)^2

+ D=as.matrix(Delta)

+ return(list(Delta=D,

+ Interactions=D[(1:n),(n+1):(n+m)]))

+ }
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Augmented unfolding solution: Roskam data
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Smacof unfolding solution: Roskam data I

> load("Roskam.rd")

> res2=unfolding(RoskamGifi,type="ordinal"

+ ,omega=0.5,lambda=1)

> res2$stress

[1] 0.2239048
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Smacof unfolding solution: Roskam data II

−1.0 −0.5 0.0 0.5 1.0

−
0.

5
0.

0
0.

5
1.

0

Joint Configuration Plot

Dimension 1

D
im

en
si

on
 2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

2324

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Jexp

Japp

Jpsp

Mubr

Jcons

Jedu

Pmet

Hure

Psbu

Humd

Antonio D’Ambrosio MDS & Unfolding



Clustering and Unfolding

Clustering and Unfolding I

Some example on the ”sports”data set: 130 students at the
University of Illinois ranked seven sports according to their
preference (Baseball, Football, Basketball, Tennis, Cycling,
Swimming, Jogging).

> require(ConsRank)

> data(sports)

> unfsol2=prefscal(sports,lambda=0.1,omega=1)

What we can conclude from the Unfolding solution?
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Clustering and Unfolding II
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Hierarchical cluster analysis

> #1. compute Kemeny distance

> d=kemenyd(sports)

> #2. Convert Kemeny distance into Kendall distance

> d=d/2

> #3. hierarchical clustering with the

> # weighted average method

> hc=hclust(as.dist(d),method="mcquitty")

Let’s give a look at the dendrogram
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> #1. cut te dendrogram with 4 clusters

> chc=cutree(hc,k=4)

> #2. compute the median ranking within

> # each cluster

> CR1=consrank(sports[which(chc==1),],ps=FALSE)

> CR2=consrank(sports[which(chc==2),],ps=FALSE)

> CR3=consrank(sports[which(chc==3),],ps=FALSE)

> CR4=consrank(sports[which(chc==4),],ps=FALSE)

> # now let's see the clusters composition

Cluster # Ordering Averaged τX Size
1 Baseball Football Basketball Tennis Cycling Swimming Jogging 0.556 52
2 Tennis Swimming Cycling Basketball Jogging Football Baseball 0.398 22
3 Swimming Cycling Basketball Tennis Baseball Football Jogging 0.588 31
4 Jogging Swimming Cycling Tennis Baseball Basketball Football 0.523 25
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Recall: Kemeny distance

Let A and B two rankings of n elements. Transform the two
rankings into two transformed vectors A∗ and B∗ of dimension
n(n − 1)/2 in which, for each pair i , j , i < j :

= 1 if the i-th item is preferred over the j-th item

A∗(B∗) = −1 if the j-th item is preferred over the i-th item

= 0 if they are in a tie.

Then, the Kemeny distance is defined as

d(A,B) =

n(n−1)/2∑
i=1

|A∗
i − B∗

i |.
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Clustering and Unfolding

Cluster # Ordering Averaged τX Size
1 Baseball Football Basketball Tennis Cycling Swimming Jogging 0.556 52
2 Tennis Swimming Cycling Basketball Jogging Football Baseball 0.398 22
3 Swimming Cycling Basketball Tennis Baseball Football Jogging 0.588 31
4 Jogging Swimming Cycling Tennis Baseball Basketball Football 0.523 25
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