
Recursive partitioning methods and Ensemble methods:
an introduction

Chapter 1

Recursive partitioning
methods

1.1 Classification and Regression Trees

Binary segmentation procedure consists of a recursive binary partition
of a set of objects described by some explanatory variables (either nu-
merical or and categorical) and a response variable. In the following,
CART procedure (Breiman et al., 1984) is followed.
The data are partitioned by choosing at each step a variable and a cut
point along it according to a goodness of split measure which allows
to select that variable and cut point that generates the most homo-
geneous subgroups respect to the response variable. The procedure
results in a nice and powerful graphical representation known as de-
cision tree which express the sequential grouping process. Because of
the evident analogy with the graph theory, a subset of observations is
called node and nodes that are not split are called terminal nodes or
leaves (see figure 1.1). Each node has a number such that generic node
t generates the left node 2t and the right node (2t+1). This approach

III

Recursive partitioning methods

Figure 1.1: Tree-based structure

was proposed by authors of statistical software SPAD (Cisia Institute,
France). In this way, it is always possible to recognize the position of
each node given its number deriving the path from the node to the
root node and vice versa. In example, in the above figure, the node
6 is the left node of its parent node 3 which is the right node of its
parent node 1 (the root node).
Once the tree is built, a response value or a class label is assigned to
each terminal node. According to the nature, categorical or numeri-
cal, of the response variable, in the framework of binary segmentation
procedures a distinction is made between Classification Tree (for the

IV

1.1. Classification and Regression Trees

categorical response case) and Regression Tree (for the numerical re-
sponse case). In classification tree case, when the response variable
takes value in a set of previously defined classes, the node is assigned
to the class which presents the highest proportion of observations (by
voting); whereas in the regression tree case, the value assigned to cases
in a given terminal node is the mean of the response variable values
associated with the cases belonging to the given node. In both cases
this assignment is probabilistic, in the sense that a measure of error is
associated to it.
The main aim of the procedure is to define a classification/prediction
rule on the basis of a learning set (also called training set), for which
the values of a response variable Y , and of a set of K explanatory
variables (X1, . . . , Xk, . . . , XK) (either numerical or/and categorical)
have been recorded.
The recursive partitioning procedure follows a divide and conquer al-
gorithm, in the sense that in principle the algorithm continues par-
titioning nodes until all leaves contain a single case or cases either
belonging to the same class or presenting the same response value.
This leads to overlarge trees with many rules which are hard to un-
derstand and overfit the data.
In practice, when performing binary segmentation one has to look for
a compromise that allow for the trade-off between the exploratory and
the confirmatory purposes of the tree structures methodology. A dis-
tinction is made between the two problems involved in investigating
the data sets: that is, whether to explore dependency, or to predict
and decide about future responses on the basis of the selected predic-
tors.
Explanation can be obtained by performing a segmentation of the ob-
jects until a given stopping rule defines the final partition of the objects
to interpret.
Confirmation is a completely different problem that requires the def-
inition of decision rules, usually obtained by performing a pruning

V

Recursive partitioning methods

procedure soon after a segmentation procedure. Therefore, a further
step, tree simplification, is usually carried out to avoid overfitting and
improve the understandability of the tree by retrospectively pruning
some of the branches.
Summarising, tree based methods involve the following steps:

� the definition of a splitting criterion;

� the definition of a stopping rule;

� the definition of the response classes/values to the terminal nodes;

� tree pruning, aimed at simplifying the tree structure, and tree
selection, aimed at selecting the final decision tree for decisional
purposes

1.2 Splitting criteria

Let (Y,X) be a multivariate random variable where X is a set of K
categorical or numerical predictors (X1, . . . , Xk, . . . , XK) and Y is the
response variable. The first problem in tree building is how to deter-
mine the binary splits of the data into smaller and smaller subgroups.
Since the partitioning is just two branches, splitting variables need to
be created from the original explanatory variables. Accordingly, data
partitioning is based on a set of Q binary questions of the form:

is Xk ∈ A?,

so that, if Xk is categorical, A includes subsets of levels, while if Xj is
numeric, Q includes all questions of the form:

is Xk ≤ c?,

VI

1.2. Splitting criteria

for all c ranging over the domain of Xk. For example, if K = 3, X1, X2

are numerical and X3 ∈ {a1, a2, a3}, Q includes all questions of the
form:

X1 ≤ 3.5?

X2 ≤ 5?

X3 ∈ {a1, a3} ?

The set of possible splitting variables is finite and the number of
splitting variables that can be created from a given explanatory vari-
able depends on the type of variable, i.e., according to its measure-
ment. Table 1.1 reports the number of splitting variables that can be
generated by any type of explanatory variable according to its scale of
measurement. To each tree node the algorithm generates all the pos-

Explanatory variable Categories # of splitting variables

Numeric N N − 1

Binary 2 1

Ordered M M − 1

Unordered M 2M−1 − 1

Table 1.1: Origin of the splitting variables

sible splitting variables and searches through them one by one, so the
easiest case to deal with is binary variables that can generate just a
single splitting variable, numeric variables are treated as ordered with
N categories. Finally, unordered variables are the most difficult to
deal with because they can generate a very large number of splitting
variables even for a small value of M . Once that, at a given node, the
set of binary questions has been created, some criterion which guides
the search in order to choose the best one to split the node is needed.
As said before, the key idea is to split each node so that each de-
scendant is more homogeneous than the data in the parent node. To

VII

Recursive partitioning methods

reach this aim, we need a measure of homogeneity to be evaluated by
means of a splitting criterion. In the CART methodology the idea of
finding splits of nodes which generate more homogeneous descendant
nodes has been implemented for classification trees by introducing the
so called impurity function.
Let p(j|t) ≥ 0 be the proportions of cases in node t belonging to class
j with

∑J
j=1 p(j|t) = 1.

An impurity function ϕ is a function of the set of all J-tuples of num-
bers p(j|t) with the properties (Breiman et al., 1984, , p. 24):

1. ϕ is maximum only at the point {1/J, 1/J, . . . , 1/J};

2. ϕ achieves its minimum only at the points
(1, 0, . . . , 0), (0, 1, . . . , 0), (0, 0, . . . , 1);

3. ϕ is a symmetric function of p(j|t).

There are several impurity functions satisfying these three properties.
The most common are:

1. the error rate, or the misclassification ratio:

i(t) = 1−maxjp(j|t)

2. the Gini diversity index

i(t) = 1− sumjp(j|t)2

3. the entropy measure

i(t) = −sumj(pj|t)log(j|t)

Another splitting criterion is the twoing, that can be used for multi-
class classification problems. The idea is to find that grouping of all J

VIII

1.2. Splitting criteria

classes into two super-classes so that considered as a two-class prob-
lem, the greatest decrease in node impurity is realized. The following
rules determine the optimal super-classes for a candidate split:

CL = {j : pj(tl) ≥ pj(tr)}
CR = {j : pj(tl) < pj(tr)},

where CL and CR are two super-classes. The left super class has all of
the target classes that tend to go left. The right super class has all of
the target classes that tend to go right. Once the super-classes have
been determined, the rest of the calculation is the same as the for the
Gini criterion with the super classes as the binary target.

Talking about regression trees, the splitting criterion is based on
the search of that split that generates the most different descendant
nodes in terms of mean value of the response variable.

i (t) =
1

N

∑
xn∈t

(yn − ȳt)
2 (1.1)

which can be meant as the total sum of squares (TSS), divided by
N , where N is the sample size, ȳt =

1
Nt

∑
xn∈t

yn , Nt is the total num-

ber of cases in the node t where the sum is over all yn such that xn ∈ t.

If s is a proposed split of a generic node t into two offspring tl and
tr , and pl and pr are the proportions of objects in node t which the
split s puts into nodes tl and tr respectively, then a measure of the
change in impurity which would be produced by split s of node t is
given by:

∆i(t, s) = i(t)− [i(tl)ptl + i(tr)ptr] (1.2)

∆i, called decrease in impurity, can be used as splitting criterion: a
high value means that a proposed split is a good one. At a given node

IX

Recursive partitioning methods

t, a split s∗ maximising equation 1.2 is optimal and used for generate
two descendants tl and tr . Let T̃ be the set of all terminal nodes of
the tree T: the total impurity of any tree T is defined as

I (T) =
∑
t∈T̃

i (t) p(t)

To proceed with tree growing, CART procedure must compute the
decrease in impurity associated to each possible split generated by
each variable. For example, suppose to have a binary response variable
and a set of six predictors as defined in table 1.2. In the root node the

Variable Nature Categories # of split

X1 Nominal 6 25 − 1 = 31

X2 Nominal 7 26 − 1 = 63

X3 Ordinal 3 3− 1 = 2

X4 Binary 2 1

X5 Ordinal 5 5− 1 = 4

X6 Ordinal 4 4− 1 = 3

Table 1.2: Example of generation of splits according to the nature of the predic-
tors

number of decreases in impurity to be computed is 31+63+2+1+4+3
= 104. Therefore, computational cost of CART is really high, because
this procedure must be repeated until a stooping rule in tree-building
occurs.

1.2.1 Two Stage splitting criterion

Mola and Siciliano (Mola and Siciliano, 1992, 1994) have proposed a
Two-Stage splitting criterion to choose the best split. This approach
relies on the assumption that a predictor Xk is not merely used as a
generator of partitions but it plays also a global role in the analysis.

X

1.2. Splitting criteria

In the first stage, a variable selection criterion is applied to find one
or more predictors that are the most predictive for the response vari-
able. On the basis of the set of partitions generated by the selected
predictor(s), a partitioning criterion is considered in the second stage
in order to find the best partition of the objects at a given node. The
criteria to be used in the two stages depends on the nature of the
variables, the tool of interpretation and the desired description in the
final output. The partitioning algorithm takes account of the compu-
tational cost induced by the recursive nature of the procedure and the
number of possible partitions at each node of the tree. Further devel-
opments of the Two Stage procedure face the computational efficiency
problem. In fact, from a computational point of view, the growing
procedure is crucial when dealing with very large data sets or when
dealing with ensemble methods. At any node t the two stages can be
defined as:

� global selection; one or more predictors are chosen as the most
predictive for the response variable according to a given criterion;
the selected predictors are used to generate the set of partitions
or splits. In this stage an index needs to be defined to evaluate
the Global Impurity Proportional Reduction (Global IPR) of the
response variable Y at node t, due to the predictor X;

� local selection; the best partition is selected as the most pre-
dictive and discriminatory for the subgroups according to a given
rule. In this stage one has to define an index as the Local Impu-
rity Proportional Reduction (Local IPR) of the response Y due
to the partition p generated by the predictor X

For classification trees the Global IPR is defined as τ index of Good-
man and Kruskal

τt(Y |X) =

∑
i

∑
j p

2
t (j|i)pt(i)−

∑
j p

2
t (j)

1−
∑

j p
2
t (j)

(1.3)

XI

Recursive partitioning methods

where pt(i), for i = 1, . . . , I, is the proportion of cases in node t that
have category i of X, and Pt(j|i), for j = 1, . . . , J , is the proportion
of cases in the node t belonging to class j of Y given the ith category
of X. Note that the denominator in equation 1.3 is the Gini diversity
index.
For regression trees, Global IPR can be defined as the Pearson’s squared
correlation η2:

η2Y |X(t) =
BSSY |X(t)

TSSY (t)
(1.4)

where SST is the total sum of squares of the numerical response vari-
able Y and BSS is the between group sum of squares due to the
predictor X.
In a similar way, the Local IPR for both classification and regression
trees are defined as in equation 1.3 and 1.4, with the difference that
in these cases indexes are computed between the response variable Y
and the set of split s generated by the global IPR functions.
More precisely, for classification trees, at each node t of the splitting
procedure, a split s of the I categories of X into two sub-groups (e.g.
i ∈ l or i ∈ r), leads to the definition of a splitting variable Xs with
two categories denoted by l and r. Local IPR is defined as

τt(Y |s) =
∑

j p
2
l (j|tl)ptl +

∑
j p

2
tr(j|r)ptr −

∑
j p

2
t (j)

1−
∑

j p
2
t (j)

(1.5)

whereas for regression trees it is

η2Y |s(t) =
BSSY |s(t)

TSSY (t)
(1.6)

Two stage splitting criterion works as follow:

1. select the best predictor X∗(t) at t node by maximising equation
1.3 or 1.4 for classification or regression problems respectively:

XII

1.2. Splitting criteria

2. select the best split s∗(t) at node t by maximizing equation 1.5
or 1.6 for all splits of X∗(t) for classification or regression trees
respectively

1.2.2 FAST splitting criterion

FAST algorithm (Fast Splitting for Splitting Tree) (Mola and Siciliano,
1997) provides a faster method to find the best split at each node
when using CART methodology. As discussed in above section, when
applying the two-stage criterion the best predictor could be found
minimizing the Global Impurity Proportional Reduction factor due
to any predictor X, then the Local Impurity Proportional Reduction
factor determines the split with respect to all partitions derived from
the best predictor.
Main issue of FAST is that the measure of Global IPR measure satisfies
the following property:

γ(Y |X) ≥ γ(Y |s) (1.7)

in which γ is the generic Global IPR measure, and s is the set of split
generated by X variable.
FAST algorithm consists in two step:

� computing Global IPR measure as in equation 1.3 or 1.4 for
all variables belonging to the predictor matrix X and sort in
decreasing order these measures;

� computing Local IPR measure as in equation 1.5 or 1.6 for the
first previously ordered variable with maximum Global IPR. If
Local IPR of this variable is higher than Global IPR of the sec-
ond ordered X variable, stop the procedure, otherwise continue
until inequality is satisfied.

XIII

Recursive partitioning methods

The computational cost of FAST algorithm is really lower than the
one of CART procedure, with the advantage that the final trees are
exactly the same. In the example showed at the end of section 1.2.1
in the table 1.2, there is a set of six predictors, 2 nominal with 6 and 7
categories respectively, 3 ordinal with respectively 3, 5 and 4 categories
and one binary variable. It was shown that CART procedure for each
variable must examine each possible split to decide which one is the
best. Considering the root node, CART technique has to compute
(25-1)+(26-1)+2+1+4+3 = 104 splits. FAST algorithm computes at
the beginning only six Global IPR measure (in this case there are
only six predictors) and then only the local impurity reduction factor
until inequality of the second step of the procedure is satisfied. In
this small example, the number of computations made is 6+(25-1) =
30 (it is assumed that Global IPR measure relative to the second-best
predictor is lower than the local impurity reduction factor obtained by
the second one). The computational advantage of using FAST instead
of CART is clear: one obtains the same tree-based structure with a
great gain in terms of computational cost.

1.3 Stopping rules and assignment of the

response classes/values to the termi-

nal nodes

Once the rules for growing the tree has been defined, another set of
rules to stop the building of the structure are needed. There is no
unique rule to define the stopping of the procedure, but there are
several rules used according the discretion of the researcher. Tree
growing can be arrested considering a suitable combination of the
following conditions:

� Bound on the decrease in impurity.

XIV

1.3. Stopping rules and assignment of the response classes/values to
the terminal nodes

A node is terminal if the reduction in impurity due to the fur-
ther partition of the node is lower than a fixed threshold; a node
should be splitted if their contribution to the total impurity re-
duction is significant;

� Bound on the number of observations.
In general, can be useless to continue splitting nodes with a
few number of individuals: sample size within-node should be
”rational”;

� Tree size.
A further condition could be based on either the total number
of terminal nodes or the number of levels of the tree to limit its
expansion.

Once the tree has been built, terminal nodes must be associated with
a response.
In the case of classification trees the assignment of a response to each
terminal node is based on a simple majority rule. Specifically, node t
is assigned to class j∗ if the highest proportions of objects in node t
belong to class j∗ so that:

p(j∗|t) = max
j∈C

[p(j|t)]

In the case the response variable is numeric the response values for
the object falling into a given terminal node t can be summarised by
means of a synthetic measure; in general this is simply given by the
mean, so that Ȳt is assigned to node t where:

ȳt =
1

n(t)

∑
xn∈t

yit

XV

Recursive partitioning methods

1.4 Pruning

Exploratory trees can be used to investigate the structure of data but
they cannot be used in a straightforward way for induction purposes.
For inductive purposes the question is: how large should be the tree?
A very large tree might overfit the data, while a small tree may not be
able to capture the important structure. Tree size is a tuning param-
eter governing the complexity of the model, and the optimal tree size
should be adaptively chosen from the data. To choose the ”honest”
tree in terms of its size, Breiman et al. (Breiman et al., 1984) defined
the minimal cost-complexity pruning. Before proceeding with pruning
description, the definition of an error measure of a tree structure is
necessary.

� For classification trees, the error at the generic node t is defined
as

r(t) =
1

nt

nt∑
i=1

(Ŷt ̸= Yi)

where nt is the size at tth node, Ŷt is the classification returned
by the tree in the same node. The error rate of the overall tree
is defined as

R(T) =
∑
h∈HT

r(t)p(t)

where HT is the set of all terminal nodes of the tree T , and p(t)
is the proportion of cases falling into the tth terminal node.

� For regression trees the error rate is defined exactly as in equa-
tion 1.1, that is as the sum of TSS in the tth node divided by the
total sample size, whereas the prediction error of overall tree is

XVI

1.4. Pruning

defined as

RR(T) =
R(T)

R(t1)

where R(t1) is the error in the root node.

Pruning procedure works as follow: Let Tmax be the maximum tree, let∣∣∣T̃ ∣∣∣ denote the set of all terminal nodes of Tmax, that is its complexity.

The cost-complexity measure is defined as

Rα(T) = R(T) + α
∣∣∣T̃ ∣∣∣ (1.8)

where α is a non negative complexity parameter which ”governs the
tradeoff between tree size and its goodness of fit to the data” (Hastie
et al., 2019; James et al., 2013).
The idea is, for each α, find the subtree T ∗

α ⊇ Tmax to minimize Rα(T).
When α = 0 the solution is the full tree Tmax, and the more α increases
the more the size of the tree decreases.
The pruning procedure is the same for both classification and regres-
sion cases, so the attention can be focused on the classification problem
without loss of generality. The cost complexity measure is defined for
any internal node t and the branch Tt rooted at t as:

Rα(t) = r(t)p(t) + α

Rα(Tt) =
∑
h∈Ht

r(h)p(h) + α
∣∣∣T̃t

∣∣∣
where R(t) is the resubstitution error at node t, p(t) = n(t)

N
is the weight

of node t given by the proportion of training cases falling in it and Ht

is the set of terminal nodes of the branch having cardinality
∣∣∣T̃ ∣∣∣. The

branch Tt will be kept as long as:

Rα(t) > Rα(Tt)

XVII

Recursive partitioning methods

the error complexity of node t being higher than the error complexity
of its branch. As α increases the two measures tends to became equal,
this occurs for a critical value of α that can be found solving the above
inequality:

α =
R(t)−R(Tt)∣∣∣T̃t

∣∣∣− 1
(1.9)

so that α represents for any internal node t the cost due to the removal
of any terminal node of the branch.
The pruning process produces a finite sequences of subtrees Ω = T1 ⊂
T2 ⊂ . . . ⊂ Tmax, where T1 is a tree constituted only by the root
node. It can be proved (Breiman et al., 1984) that the minimal cost-
complexity pruning procedure produces the subtrees with the mini-
mum error rate given the number of its terminal nodes. In other words,
if Tα has five terminal nodes, there is no other subtree Ts ⊆ Tmax hav-
ing five terminal nodes with smaller error (Breiman et al., 1984, ,
p.71).
To validate a tree-based structure one has to consider its accuracy:
the misclassification ratio or the prediction error. In both classifica-
tion and regression cases an estimation of the error rate is needed.
There are three possible ways to estimate it:

� Resubstitution estimate
Resubstitution estimate is computed by using the same dataset
used to build the tree. It is an optimistic estimate, therefore it
is not used.

� Test set estimate
If the sample size is sufficiently large, data can be randomly
splitted into two sub-samples (training sample and test sample).
Then training sample is used to grow the tree-based structure
and the test set is used to validate it.

XVIII

1.4. Pruning

� Cross validation estimate
When sample size is not sufficiently large to be splitted into two
sub-samples, one can use the cross-validation estimate. Data set
is splitted into V sub-samples approximately of the same size,
then V trees are built using the V th sub-sample as test set and
the other V −1 as training set. By averaging over the V test set
estimates, finally the cross-validation estimate of the error rate
is achieved.

A single final tree is then selected either as the one producing the
smallest error estimate on an independent test set (0−SErule) or the
one which error estimate is within one standard error of the minimum
(1−SErule). Denoting byRts(T) the test set error estimate associated
with a generic tree T in the sequence Ω, according to the 0− SE rule
the tree T ∗ will be selected if:

Rts(T∗) = min
T∈S

Rts(T)

whereas, if 1− SE rule is employed tree T ∗∗ will be selected if:

Rts(T∗∗) ≤
[
Rts(T∗)± SE(Rts(T∗))

]

XIX

Recursive partitioning methods

XX

Chapter 2

Ensemble Methods

Ensemble methods are learning algorithm that construct a set of clas-
sifiers and then classify new data points by taking a vote of their
predictions (Dietterich, 2000). A necessary and sufficient condition
for an ensemble of classifiers to work better than any single classifier
is that the classifiers to be aggregate must be accurate (e.g. they must
have an error rate better than random choices) and diverse (e.g. the
errors of the classifiers have to be unrelated).
There are several methods for constructing ensemble (Dietterich, 2000)
(by enumerating the hypotheses or bayesian voting, by manipulating
input features, by manipulating output targets), but the most popular
ensemble methods work by manipulating the training examples.
These methods manipulate training examples through a re-sampling
technique to generate multiple classifiers, then a learning algorithm is
run several times with a different subset of training examples, as it
can be seen in figure 2.1. The most famous ensembles belonging to
this category are Bagging, Boosting and Random Forests.

XXI

Ensemble Methods

Figure 2.1: Ensemble methods working by manipulating training ex-
amples

2.1 Bagging

Bagging (Breiman, 1996) is an acronym for Bootstrap Aggregating: it
forms a set of classifiers that are combined by voting by generating
replicated bootstrap (Efron, 1979; Tibshirani and Efron, 1993) samples
of the data. Table 2.1 shows the pseudo-code of Bagging algorithm.
Given a learning set L = (xi, yi), . . . , (xn, yn), the aim is to predict y
using x as input by using a classifier h(x,L). By using a sequence of
t learning sets Lt, with t = 1, . . . , T , each consisting of n independent
observations from the same distribution as in L, goal is to get a better
predictor than the single learning predictor set h(x,L) coming from
t bootstrap replications. The aggregating process is quite simple: if
y is numerical the aggregated classifier is the average of each single

XXII

2.1. Bagging

classification over all the iterations of the procedure, if y is numerical
the method of aggregating the classifiers is by voting.

Let L = (xi, yi), . . . , (xn, yn) be a training sample, where xi ∈ X and
yi ∈ R if numerical or yi ∈ {1, . . . , J} if categorical.

� for t = 1 : T

– generate a bootstrap replication LB from L
– run a single classifier on LB

– obtain the estimation ŷti from the single classifier

� Output: final bagged classifier

H(X) =

{
aggregation by voting if yi ∈ {1, . . . , J}
avh
(
x,LB

)
if yi ∈ R

Table 2.1: Bagging algorithm

Bagging works well for unstable procedures. Both classification and
regression methods are unstable in the sense that small perturbations
in their training sets or in construction may result in large changes
in the constructed predictor (Breiman, 1998). In general, a classifier
is unstable when it is affected by high variance, whereas a classifier
is stable when it is affected by high bias (Tibshirani, 1996; Wolpert,
1997; Friedman, 1997). So, Bagging is a method of variance reduction
(Friedman and Hally, 1999) and it works well with classification and
regression trees because their are known as methods with high vari-
ance. Bagging returns worse performance than single classifiers when
it is used with stable classifiers, e.g. with a stump (Hastie et al., 2019).
As Breiman says (Breiman, 1996): Bagging unstable classifiers usually

XXIII

Ensemble Methods

improve them. Bagging stable classifiers is not a good idea.

2.2 Boosting algorithms

Boosting is a general method for improving the accuracy of any given
learning algorithm provided that single classifications are better than
random choices. Here we recall the first boosting algorithms, whose
‘philosophy’ survives in all the more recent variants of the algorithm
(gradient boosting, stochastic gradient boosting, logitboost, etc.) The
main difference between Bagging and Boosting algorithms is that
whereas Bagging uses the bootstrap as resampling method (that is, the
probability of each individual to be included in the bootstrap train-
ing sample through the iterations is constant and equal to 1/n, where
n indicates the sample size), Boosting uses a weighted bootstrap, in
the sense that the probability of each individual to be included in the
boosted training sample is not constant, but it is weighted by the (good
or bad) classification obtained by the learning sample. More precisely,
starting from a uniform distribution of weights, these are increased
for the ith individual if he has been misclassified by the learning al-
gorithm (or weak learner), otherwise these are decreased. This way,
within the next iteration the probability of a misclassified instance to
be included in the boosted training sample is higher than observations
correctly classified, so the learning algorithm is forced to learn by its
errors becoming a strong learner.
Therefore a weak learner is a supervised learning algorithm which
returns a classification just slightly better than random choice, for ex-
ample in the case of binary classification problems it must give back
an error rate smaller than 50%.
Boosting has its roots in a theoretical framework for studying machine
learning called the ”PAC” learning model (Valiant, 1984). In brief, this
theory states that a learning machine which is wrongly trained returns

XXIV

2.3. AdaBoost algorithms for classification and regression problems

an incorrect prediction even if it is trained a lot of time, but with high
probability a well trained learning machine will solve the classification
problem after a certain number of tests. In other words, the machine
has to be Probably Approximately Correct.
Several boosting algorithms are developed in the last years (?), such as
polynomial-time boosting algorithm (?) and boosting-by-majority al-
gorithm (Freund, 1995), but doubtless the most famous boosting algo-
rithm is AdaBoost developed by Freund and Schapire in 1995 (Freund
and Schapire, 1997).

2.3 AdaBoost algorithms for classification

and regression problems

Table 2.2 shows the pseudo-code of AdaBoost algorithm for binary
classification problems. The algorithm takes as input a training set
L = (xi, yi), . . . , (xn, yn) in which yi = {−1,+1} and it calls a given
weak learning algorithm repeatedly in a series of rounds t, . . . , T . Main
idea of the algorithm is to maintain a distribution of weights over L.
These weight are updated at each iteration t according to the weighted
error occurred by the weak learner in the last iteration. Weak learner
has to define a weak hypothesis ht : X → {−1,+1} by which it is
possible to compute the error ϵt = Pri∼Dt [ht(xi) ̸= yi] (note that the
error is computed over the distribution D on which the weak learner is
trained). Subsequently the algorithm chooses an α parameter which
indicates the importance of the weak hypothesis ht to update the dis-
tribution D. The final boosted classifier, or strong learner, is the
weighted majority vote of the T weak hypotheses weighted by αt. Ad-
aBoost is the acronym of Adaptive Boosting because it adapts to the
error rates of the individual weak hypotheses. The most basic theoret-
ical property of AdaBoost concerns its ability to reduce the training

XXV

Ensemble Methods

Let L = (xi, yi), . . . , (xn, yn) be a training sample, where xi ∈ X and
yi = {−1,+1}

� initialize D1 =
1
n for i = {1, . . . , n}

� for t = 1 : T

– train weak learner ht using distribution Dt

– obtain a weak hypotesys ht : X → {−1,+1}
– compute the error ϵt = Pri∼Dt [ht(xi) ̸= yi]

– choose αt =
1

2
ln

(
1− ϵt
ϵt

)
– update D distribution:

Dt+1(i) =
Dt(i)

Zt
×

{
ϵ−αt if ht(i) = yi

ϵαt if ht(i) ̸= yi

=
Dt(i)exp (−αtyiht (xi))

Zt

where Zt is a normalization factor

� Output: final boosted classifier:

H(x) = sign

(
T∑
t=1

αtht (x)

)

Table 2.2: AdaBoost algorithm for binary response variable

error. It can be proved (Freund and Schapire, 1997; Meir and Rätsch,

XXVI

2.3. AdaBoost algorithms for classification and regression problems

2003) that the training error of the final hypothesis is at most

1

n

n∑
i=1

[H(xi) ̸= yi] ≤
1

n

n∑
i=1

exp(−yiαtht(xi)) =
T∏
t=1

Zt

By minimizing Zt this limit error can be minimized, and this can
be obtained by choosing the suitable α parameter. The expression

Zt =
n∑

i=1

Dt(i) exp (−αtyiht(xi)) can be write as

Zt =
n∑

i=1

Dt(i) exp (−αtui) (2.1)

where ui = yiht(xi) < 0 if yi ̸= ht(xi) and ui = yiht(xi) > 0 if
yi = ht(xi). If Y ∈ {−1,+1}, it follows that

Zt =
n∑

i=1

Dt(i) exp (−αtui) ≤

≤
n∑

i=1

Dt(i)

(
1 + ui

2
exp(−αtui) +

1− ui

2
exp(αtui)

)

XXVII

Ensemble Methods

Recall that ϵt is the training error at tth iteration, it can be indicated
as ϵt =

1−ui

2
and (1− ϵt) = 1−

(
1−ui

2

)
= 1+ui

2
. Equation 2.1 becomes

Zt =
n∑

i=1

Dt(i) exp (−αtui) ≤

≤
n∑

i=1

Dt(i) ((1− εt) exp(−αtui) + εt exp(αtui))

(2.2)

The last part of equation 2.2 can be wrote as

(1− εt) exp(−αt) + εt exp(αt) (2.3)

so, to minimize Zt one has to minimize expression 2.3 with respect to
α and compute this parameter in that point, namely

αt =
1

2
ln

(
1− εt
εt

)
By substituting this parameter in the expression 2.2 and by reducing,
obtain

T∏
t=1

Zt =
T∏
t=1

[√
4εt(1− εt)

]
=

T∏
t=1

[
2
√

εt(1− εt)
]

(2.4)

If weak learner works better than random choice, ϵt = 0.5− γt where
γt is some positive parameter, and then γt = 0.5 − ϵt. Equation 2.4
can be re-wrote as

T∏
t=1

√
1− 4γ2

t ≤
T∏
t=1

exp
(
−2γ2

t

)
= exp

(
−2

T∑
t=1

γ2
t

)
(2.5)

in which the last term is the upper limit over training error of boosted
classifier. Freund and Schapire (Freund and Schapire, 1997) showed

XXVIII

2.3. AdaBoost algorithms for classification and regression problems

how to bound the generalization error of the final hypothesis in terms
of its training error, the sample size n and the VC-dimension d of the
weak hypothesis space (which is a standard measure of the complexity
of a space of hypotheses (Meir and Rätsch, 2003)). They proved that
the upper bound of the generalization error, which can be interpreted
as the expected value of the test error (Hastie et al., 2019), is at most
(Bartlett et al., 1998)

P
[
marginf (x, y) ≤ θ

]
+ Õ

(√
d

nθ2

)

for any θ > 0, in which margin is a number in [0, 1] which is an indi-
cator of the ”confidence” of the classification.
For both multiclass and regression cases, main difference with the
above described AdaBoost algorithm is about a suitable definition of
the error and the computation of a loss function. Table 2.3 shows
the pseudo-code of AdaBoost algorithm for multiclass classification
problems. In a multiclass problem the condition that the error rate
of the base classifier is less than 0.5 can be too restrictive. For this
reason Freund and Schapire (Freund and Schapire, 1997) introduced
a pseudo-loss function of a confidence-rated classifier to be minimized
in the boosting iterations instead of the error rate. The code in ta-
ble 2.3 is the modified version of AdaBoost.M algorithm (Freund and
Schapire, 1997) as made by Eibl and Pfeiffer (Eibl and Pfeiffer, 2002)
and called AdaBoost.M1W.
Table 2.4 shows the AdaBoost code for regression problems. In this
case, the error can be defined as a squared loss function, even if other
loss functions, such as linear or exponential, could be used. In the
regression case the final boosted classifier is obtained, in general, by
averaging the single weak hypotheses through the iterations.
Code showed in the table 2.4 is the modification of AdaBoostR algo-
rithm (Freund and Schapire, 1997) made by Drucker (Drucker, 1997;

XXIX

Ensemble Methods

Let L = (xi, yi), . . . , (xn, yn) be a training sample, where xi ∈ X and
yi = {1, . . . , J}

� initialize D1 =
1
n for i = {1, . . . , n}

� for t = 1 : T

– train weak learner ht using distribution Dt

– obtain a weak hypothesis ht : X → {1, . . . , J}
– compute the error ϵt =

∑
iDt(i)I (ht(xi) ̸= yi)

– choose αt = ln

(
|J − 1| (1− ϵt)

ϵt

)
– update D distribution:

Dt+1(i) =
Dt(i)e

−αtI(ht(xi)=yi)

Zt

where Zt is a normalization factor

� Output: final boosted classifier:

H(x) = argmaxy∈J

(
T∑
t=1

αtI (ht(x) = y)

)

Table 2.3: AdaBoost algorithm for multiclass classifiers

Gey and Poggi, 2006). The aggregation process in this case is the
weighted median.

Boosting is a method of bias reduction (Hastie et al., 2019), there-
fore it can be used with stable classifiers (e.g. with a stump), but it

XXX

2.4. Random Forests

works really good also in reducing variance of a classifier. Sometimes
it can produce overfitting phenomenon, but it can occur when weak
learner has a too high error rate or when the boosted training error
reaches to zero too fast (Freund and Schapire, 1997; Meir and Rätsch,
2003; Bartlett et al., 1998).

In general, ensemble methods allow to gain in prediction accuracy.
When these are used in combination with tree-based models, if the
goal is predicting as more as possible new observations, ensembles can
help us to it achieve. If our goal is interpreting relationships among
covariates, we could never use ensembles. As Breiman says (Breiman,
1996), what one loses, with the trees, is a simple and interpretable
structure. What one gains is increased accuracy.

2.4 Random Forests

The Random Forests (RF, Breiman, 2001) constitute an improvement
over Bagging. The algorithm is quite simple: it provides T bootstrap
replications (over the statistical units), and, supposing there are M
input variables, a random specification of m < M predictors at each
node, searching the best split on these m predictors. The value of m is
held constant during the forest growing. The forest error rate depends
on:

� the correlation between any two trees in the forest. Increasing
the correlation increases the forest error rate;

� the strength of each individual tree in the forest. A tree with
a low error rate is a strong classifier. Increasing the strength of
the individual trees decreases the forest error rate.

Reducing m reduces both the correlation and the strength. Increasing
it increases both. Somewhere in between is an ”optimal” range of

XXXI

Ensemble Methods

m. As a rule of thumb, one can set m ≈
√

(M). This is the only
adjustable parameter to which random forests is somewhat sensitive.
In principle, RF do not need for a separate test set to get an unbiased
estimate of the test set error. It can be internally estimated through
the Out-Of-Bag (OOB) error estimate during the run:

� For each iteration t, t = 1, . . . , T , each tree is built using a
different bootstrap sample from the original data. About one-
third of the cases are left out of the bootstrap sample and not
used in the construction of the tth tree. Call these observations
out-of-bag observations.

� Put each OOB case down the tth tree to get a classification.
In this way, a test set classification is obtained for each case in
about one-third of the trees.

� At the end of the run, take j to be the class that got most of
the votes every time the same case was OOB. The proportion of
times j is not equal to the true class is the OOB error estimate.

The OOB error during the iterations can be evaluated also as a sta-
bilizer for Random Forests. When the OOB error is stable, then the
training phase of Random Forests can be considered finished.
RF also provides the variable importance expressed as either predic-
tion accuracy or Gini importance. In the first case, the OOB cases
are used first to measure the prediction accuracy (i.e., misclassifica-
tion error). Then, the values of the variable in the OOB sample are
randomly shuffled, keeping all other variables the same. Finally, the
decrease in prediction accuracy on the shuffled data is measured.
The Gini importance is instead computed by adding up the Gini de-
crease in impurity for each individual variable over all the T trees in
the forest.
Note that for numerical outcomes the measures are computed by using

XXXII

2.4. Random Forests

the right quantities (i.e., mean squared error for prediction accuracy
and reduction in sum of squared errors for the ‘Gini’ importance).

XXXIII

Ensemble Methods

Let L = (xi, yi), . . . , (xn, yn) be a training sample, where xi ∈ X and yi ∈ R

� initialize D1(i) =
1
n

� for t = 1 : T

– train weak learner ht using distribution Dt

– obtain a weak hypotesys ht : x → y

– compute the quadratic loss function Lt(i) = (yi − ht(xi))
2

– compute an average loss ϵDt =

n∑
i=1

Dt(i)Lt(i)

– set βt =
ϵDt

max
1≤i≤n

Lt(i)− ϵDt

– set wk(i) =
Lt(i)

max
1≤i≤n

Lt(i)

– set gt(i) = β
1−wk(i)
t Dt(i)

– update D distribution:

Dt+1(i) =
gt(i)∑
i gt(i)

� Output: final boosted classifier:

H(x) = inf

y ∈ Y :
∑

t:ht≤y

log

(
1

βk

)
≥ 1

2

∑
t

log

(
1

βt

)
Table 2.4: AdaBoost algorithm for regression problems

XXXIV

Bibliography

Bartlett, P., Freund, Y., Lee, W. S., and Schapire, R. E. (1998). Boost-
ing the margin: A new explanation for the effectiveness of voting
methods. The annals of statistics, 26(5):1651–1686.

Breiman, L. (1996). Bagging predictors. Machine learning, 24:123–
140.

Breiman, L. (1998). Arcing classifier (with discussion and a rejoinder
by the author). The annals of statistics, 26(3):801–849.

Breiman, L. (2001). Random forests. Machine learning, 45:5–32.

Breiman, L., Friedman, J., Olshen, R. A., and Stone, C. J. (1984).
Classification and regression trees. CRC press.

Dietterich, T. G. (2000). Ensemble methods in machine learning. In
Multiple Classifier Systems: First International Workshop, MCS
2000 Cagliari, Italy, June 21–23, 2000 Proceedings 1, pages 1–15.
Springer.

Drucker, H. (1997). Improving regressors using boosting techniques. In
Proceedings of the 14th International Conference on Machine Learn-
ing, volume 97, pages 107–115.

XXXV

Bibliography

Efron, B. (1979). Bootstrap methods: Another look at the jackknife.
The Annals of Statistics, 7(1):1–26.

Eibl, G. and Pfeiffer, K. P. (2002). How to make adaboost. m1 work
for weak base classifiers by changing only one line of the code. In
Machine Learning: ECML 2002: 13th European Conference on Ma-
chine Learning Helsinki, Finland, August 19–23, 2002 Proceedings
13, pages 72–83. Springer.

Freund, Y. (1995). Boosting a weak learning algorithm by majority.
Information and computation, 121(2):256–285.

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic general-
ization of on-line learning and an application to boosting. Journal
of computer and system sciences, 55(1):119–139.

Friedman, J. H. (1997). On bias, variance, 01–loss, and the curse-of-
dimensionality. Data mining and knowledge discovery, 1:55–77.

Friedman, J. H. and Hally, P. (1999). On bagging and nonlinear esti-
mation. Technical report, Technical report: Stanford University.

Gey, S. and Poggi, J.-M. (2006). Boosting and instability for regression
trees. Computational statistics & data analysis, 50(2):533–550.

Hastie, T., Tibshirani, R., Friedman, J. H., and Friedman, J. H.
(2019). The elements of statistical learning. Springer.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An
introduction to statistical learning, volume 112. Springer.

Meir, R. and Rätsch, G. (2003). An introduction to boosting and
leveraging. In Advanced Lectures on Machine Learning: Machine
Learning Summer School 2002 Canberra, Australia, February 11–
22, 2002 Revised Lectures, pages 118–183. Springer.

XXXVI

Bibliography

Mola, F. and Siciliano, R. (1992). A two-stage predictive splitting
algorithm in binary segmentation. In Dodge, Y. and Whittakerr,
J., editors, Computational Statistics: COMPSTAT 92, pages 179–
184. Physica Verlag, Heidelberg.

Mola, F. and Siciliano, R. (1994). Alternative strategies and catanova
testing in two-stage binary segmentation. In Diday, E., Lechevallier,
Y., Schader, M., Bertrand, P., and Burtschy, B., editors, New Ap-
proaches in Classification and Data Analysis: Proceedings of IFCS
93, pages 316–323. Springer Verlag, Heidelberg.

Mola, F. and Siciliano, R. (1997). A fast splitting procedure for clas-
sification trees. Statistics and Computing, 7:209–216.

Tibshirani, R. (1996). Bias, variance and prediction error for clas-
sification rules. Technical report, Technical report: University of
Toronto.

Tibshirani, R. J. and Efron, B. (1993). An introduction to the boot-
strap. Monographs on statistics and applied probability, 57(1).

Valiant, L. G. (1984). A theory of the learnable. Communications of
the ACM, 27(11):1134–1142.

Wolpert, D. H. (1997). On bias plus variance. Neural Computation,
9(6):1211–1243.

XXXVII

	Recursive partitioning methods
	Classification and Regression Trees
	Splitting criteria
	Two Stage splitting criterion
	FAST splitting criterion

	Stopping rules and assignment of the response classes/values to the terminal nodes
	Pruning

	Ensemble Methods
	Bagging
	Boosting algorithms
	AdaBoost algorithms for classification and regression problems
	Random Forests

