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Introduction I

Tree-based methods involve stratifying or segmenting the predictor
space into a number of simple regions. Since the set of splitting
rules used to segment the predictor space can be summarized in a
tree, these types of approaches are known as tree-based (or
decision tree) methods.

Tree-based methods are supervised and non-parametric tools
dealing with each kind of variables. When the response variable is
numerical, we deal with regression trees. When the response
variable is categorical we deal with classification trees.
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Introduction II

Tree-based methods are mainly used for two purposes: exploratory
and / or predictive. Their outputs are very easy to interpret,
showing interaction among the predictors and automatically
selecting the predictors.

The principle is simple: for each predictor generate a binary
question involving all their categories in this way:

is Xj < 12.5? if Xj is numerical;
is Xj < medium? if Xj is ordinal;
is Xj ∈ {north, east} ? if Xj is categorical.

Then evaluate for each question the decrease in impurity, and split
the sample into two sub-samples characterized by the splitting rule.
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Introduction III

Tree-based methods are known as unstable tools: often, for
decisional purposes, they are not so accurate.

For this reason, resampling methods are intensively used in order to
improve their accuracy. In the framework of tree-based methods,
these methods are called ensemble methdos. We will talk about

Regression trees;

Classification trees;

Speeding up tree-growing;

Ensemble methods.
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Tree-growing I

The data are partitioned by choosing at each step a variable and a
cut point along it according to a goodness of split measure which
allows to select that variable and cut point that generates the most
homogeneous subgroups respect to the response variable.
The procedure results in a nice and powerful graphical
representation known as decision tree which express the sequential
grouping process. Because of the evident analogy with the graph
theory, a subset of observations is called node and nodes that are
not split are called terminal nodes (or leaves).
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Tree-growing II

Tree based methods involve the following steps:

the definition of a splitting criterion;

the definition of a stopping rule;

the definition of the response classes/values to the terminal
nodes;

tree pruning, aimed at simplifying the tree structure, and tree
selection, aimed at selecting the final decision tree for
decisional purposes
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Splitting criteria I

Let (Y ,X ) be a multivariate random variable where X is a set of
K categorical or numerical predictors (X1, . . . ,Xk , . . . ,XK ) and Y
is the response variable. The first problem in tree building is how
to determine the binary splits of the data into smaller and smaller
subgroups. Since the partitioning is just two branches, splitting
variables need to be created from the original explanatory variables.
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Splitting criteria II

Accordingly, data partitioning is based on a set of Q binary
questions of the form:

is Xk ∈ A?,

so that, if Xk is categorical, A includes subsets of levels, while if Xj

is numeric, Q includes all questions of the form:

is Xk ≤ c?,

for all c ranging over the domain of Xk .
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Splitting criteria III

For example, if K = 3, X1,X2 are numerical and X3 ∈ {a1, a2, a3},
Q includes all questions of the form:

X1 ≤ 3.5?
X2 ≤ 5?
X3 ∈ {a1, a3} ?

The set of possible splitting variables is finite and the number of
splitting variables that can be created from a given explanatory
variable depends on the type of variable, i.e., according to its
measurement.
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Splitting criteria IV

Explanatory variable Categories # of splitting variables
Numeric N N − 1
Binary 2 1
Ordered M M − 1
Unordered M 2M−1 − 1

Table: Origin of the splitting variables
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Impurity measures I

Once that, at a given node, the set of binary questions has been
created, some criterion which guides the search in order to choose
the best one to split the node is needed.
The idea of finding splits of nodes which generate more
homogeneous descendant nodes has been implemented for
classification trees by introducing the so called impurity function.
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Impurity measures II

Let p(j |t) ≥ 0 be the proportions of cases in node t belonging to
class j with

∑J
j=1 p(j |t) = 1.

An impurity function ϕ is a function of the set of all J-tuples of
numbers p(j |t) with the properties:

1 ϕ is maximum only at the point {1/J, 1/J, . . . , 1/J};
2 ϕ achieves its minimum only at the points

(1, 0, . . . , 0), (0, 1, . . . , 0), (0, 0, . . . , 1);

3 ϕ is a symmetric function of p(j |t).
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Impurity measures III

There are several impurity functions satisfying these three
properties. The most common are:

1 the error rate, or the misclassification ratio:

i(t) = 1−maxjp(j |t)
2 the Gini diversity index

i(t) = 1−
∑
j

p(j |t)2

3 the entropy measure

i(t) = −
∑
j

p(j |t)log(j |t)
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Impurity measures IV

About regression trees, the splitting criterion is based on the search
of that split that generates the most different descendant nodes in
terms of mean value of the response variable.

i (t) =
1

N

∑
xn∈t

(yn − ȳt)
2

which can be meant as the total sum of squares (TSS), divided by
N, where N is the sample size, ȳt =

1
Nt

∑
xn∈t

yn , Nt is the total

number of cases in the node t where the sum is over all yn such
that xn ∈ t.
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Impurity measures V

If s is a proposed split of a generic node t into two offspring tl and
tr , and pl and pr are the proportions of objects in node t which
the split s puts into nodes tl and tr respectively, then a measure of
the change in impurity which would be produced by split s of node
t is given by:

∆i(t, s) = i(t)− [i(tl)ptl + i(tr )ptr .]

∆i , called decrease in impurity, can be used as splitting criterion: a
high value means that a proposed split is a good one.
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Impurity measures VI

At a given node t, a split s∗ maximising the decrease in impurity is
optimal and used for generate two descendants tl and tr .
Let T̃ be the set of all terminal nodes of the tree T: the total
impurity of any tree T is defined as

I (T ) =
∑
t∈T̃

i (t) p(t)
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Stopping rules I

Once the rules for growing the tree has been defined, another set
of rules to stop the building of the structure are needed. There is
no unique rule to define the stopping of the procedure, but there
are several rules used according the discretion of the researcher.
Tree growing can be arrested considering a suitable combination of
the following conditions:

Bound on the decrease in impurity.
A node is terminal if the reduction in impurity due to the
further partition of the node is lower than a fixed threshold; a
node should be splitted if their contribution to the total
impurity reduction is significant;
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Stopping rules II

Bound on the number of observations.
In general, can be useless to continue splitting nodes with a
few number of individuals: sample size within-node should be
”rational”;

Tree size.
A further condition could be based on either the total number
of terminal nodes or the number of levels of the tree to limit
its expansion.
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Stopping rules III

Once the tree has been built, terminal nodes must be associated
with a response.
In the case of classification trees the assignment of a response to
each terminal node is based on a simple majority rule.
In the case the response variable is numeric the response values for
the object falling into a given terminal node t can be summarised
by means of a synthetic measure; in general this is simply given by
the mean.
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Classification and Regression trees: example

|

Heart disesase data: classification tree

Thal:b

Ca < 0.5

Age < 57.5

MaxHR < 152.5

Chol < 226.5

Fbs < 0.5

ChestPain:bcd

Age < 65.5

Age < 55.5

Sex < 0.5

Ca < 0.5

ExAng < 0.5

Age < 51

ChestPain:bc

Oldpeak < 1.55

Chol < 240.5

RestECG < 0.5

MaxHR < 145

MaxHR < 158

No No

No No No

No Yes

No No Yes

No Yes

No

No Yes

Yes Yes

No Yes

Yes

|

Boston housing data:regression tree

rm < 6.941

lstat < 14.4

dis < 1.38485

rm < 6.543

crim < 6.99237

rm < 7.437

lstat < 11.455 ptratio < 17.9

45.58

21.63 27.43

17.14 11.98 33.50 20.74 46.82 36.48
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Tree pruning I

Exploratory trees can be used to investigate the structure of data
but they cannot be used in a straightforward way for induction
purposes.

A very large tree might overfit the data, while a small tree may not
be able to capture the important structure.

Tree size is a tuning parameter governing the complexity of the
model, and the optimal tree size should be adaptively chosen from
the data.
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Tree pruning II

In order to choose the ”honest” tree in terms of its size, we refer to
the minimal cost-complexity pruning. Before, the definition of an
error measure of a tree structure is necessary.
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Tree pruning III

(Classification trees) The error at node t is defined as

r(t) =
1

nt

nt∑
i=1

(Ŷt ̸= Yi )

where nt is the size at tth node, Ŷt is the classification
returned by the tree in the same node. The error rate of the
overall tree is defined as

R(T ) =
∑
h∈HT

r(t)p(t)

where HT is the set of all terminal nodes of the tree T , and
p(t) is the proportion of cases falling into the tth terminal
node.
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Tree pruning IV

(Regression trees). The error rate is the sum of TSS in the tth

node divided by the total sample size, whereas the prediction
error of overall tree is defined as

RR(T ) =
R(T )

R(t1)

where R(t1) is the error in the root node.
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Cost complexity pruning I

Let Tmax be the maximum tree, let
∣∣∣T̃ ∣∣∣ denote the set of all

terminal nodes of Tmax , that is its complexity. The cost-complexity
measure is defined as

Rα(T ) = R(T ) + α
∣∣∣T̃ ∣∣∣ ,

where α is a non negative complexity parameter which ”governs the
tradeoff between tree size and its goodness of fit to the data”.
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Cost complexity pruning II

The idea is, for each α, find the subtree T ∗
α ⊇ Tmax to minimize

Rα(T ). When α = 0 the solution is the full tree Tmax , and the
more α increases the more the size of the tree decreases.
The cost complexity measure is defined for any internal node t and
the branch Tt rooted at t as:

Rα(t) = r(t)p(t) + α

Rα(Tt) =
∑
h∈Ht

r(h)p(h) + α
∣∣∣T̃t

∣∣∣
where R(t) is the resubstitution error at node t, p(t) = n(t)

N is the
weight of node t given by the proportion of training cases falling in
it and Ht is the set of terminal nodes of the branch having

cardinality
∣∣∣T̃ ∣∣∣.
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Cost complexity pruning III

The branch Tt will be kept as long as:

Rα(t) > Rα(Tt)

the error complexity of node t being higher than the error
complexity of its branch. As α increases the two measures tends to
became equal, this occurs for a critical value of α that can be
found solving the above inequality:

α =
R(t)− R(Tt)∣∣∣T̃t

∣∣∣− 1

so that α represents for any internal node t the cost due to the
removal of any terminal node of the branch.
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Cost complexity pruning IV

The pruning process produces a finite sequences of subtrees
Ω = T1 ⊂ T2 ⊂ . . . ⊂ Tmax , where T1 is a tree constituted only by
the root node.
Note that the sequence of subtrees is always computed considering
the training set.
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Cost complexity pruning V

There are three possible ways to select the ”best” tree:

Resubstitution estimate. It is an optimistic estimate, therefore
it is not used.

Test set estimate, if the sample size is sufficiently large.

Cross validation estimate, ehen sample size is not sufficiently
large to be splitted into two sub-samples.

A single final tree is then selected either as the one producing the
smallest error estimate on an independent test set (0− SErule) or
the one which error estimate is within one standard error of the
minimum (1− SErule).
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Pruning sequence: example

5 10 15 20

40
60

80
10

0
12

0
14

0

number of terminal nodes

R
T

Heart disease data: pruning sequence

Training error
CV error

2 4 6 8

10
00

0
20

00
0

30
00

0
40

00
0

number of terminal nodes

R
T

Boston housing data: pruning sequence

Training error
CV error
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Two-stage I

Two-Stage splitting criterion to choose the best split was proposed
by Mola and Siciliano (1992). This approach relies on the
assumption that a predictor Xk is not merely used as a generator
of partitions but it plays also a global role in the analysis.
At any node the two stages can be defined as:

global selection; one or more predictors are chosen as the
most predictive for the response variable according to a given
criterion; the selected predictors are used to generate the set
of partitions or splits. In this stage an index needs to be
defined to evaluate the Global Impurity Proportional
Reduction (Global IPR) of the response variable Y at node t,
due to the predictor X ;
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Two-stage II

local selection; the best partition is selected as the most
predictive and discriminatory for the subgroups according to a
given rule. In this stage one has to define an index as the
Local Impurity Proportional Reduction (Local IPR) of the
response Y due to the partition p generated by the predictor
X .
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Two-stage III

For classification trees the Global IPR is defined as τ index of
Goodman and Kruskal

τt(Y |X ) =

∑
i

∑
j p

2
t (j |i)pt(i)−

∑
j p

2
t (j)

1−
∑

j p
2
t (j)

,

where pt(i), for i = 1, . . . , I , is the proportion of cases in node t
that have category i of X , and Pt(j |i), for j = 1, . . . , J, is the
proportion of cases in the node t belonging to class j of Y given
the i th category of X . Note that the denominator in the equation
is the Gini diversity index.
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Two-stage IV

For classification trees, at each node t of the splitting procedure, a
split s of the I categories of X into two sub-groups (e.g. i ∈ l or
i ∈ r), leads to the definition of a splitting variable Xs with two
categories denoted by l and r . Local IPR is defined as

τt(Y |s) =
∑

j p
2
l (j |tl)ptl +

∑
j p

2
tr (j |r)ptr −

∑
j p

2
t (j)

1−
∑

j p
2
t (j)
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Two-stage V

For regression trees, Global IPR can be defined as the Pearson’s
squared correlation η2:

η2Y |X (t) =
BSSY |X (t)

TSSY (t)

where SST is the total sum of squares of the numerical response
variable Y and BSS is the between group sum of squares due to
the predictor X .
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Two-stage VI

for regression trees, local IPR is defined as

η2Y |s(t) =
BSSY |s(t)

TSSY (t)

Two stage splitting criterion works as follow:

1 select the best predictor X ∗(t) at t node by maximising the
Global IPR;

2 select the best split s∗(t) at node t by maximizingthe Local
IPR
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Fast Algorithm for Splitting Tree I

FAST algorithm (Fast Algorithm for Splitting Tree) defined by
Mola and Siciliano (1997) provides a faster method to find the
best split at each node when using CART methodology.
Main issue of FAST is that the measure of Global IPR measure
satisfies the following property:

γ(Y |X ) ≥ γ(Y |s)

in which γ is the generic Global IPR measure, and s is the set of
split generated by X variable.
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Fast Algorithm for Splitting Tree II

FAST algorithm consists in two step:

computing Global IPR measure for all variables belonging to
the predictor matrix X and sort in decreasing order these
measures;

computing Local IPR measure for the first previously ordered
variable with maximum Global IPR. If Local IPR of this
variable is higher than Global IPR of the second ordered X
variable, stop the procedure, otherwise continue until
inequality is satisfied.
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Ensemble methods I

Ensemble methods are learning algorithm that construct a set of
classifiers and then classify new data points by taking a vote of
their predictions.

A necessary and sufficient condition for an ensemble of classifiers
to work better than any single classifier is that the classifiers to be
aggregate must be accurate (e.g. they must have an error rate
better than random choices) and diverse (e.g. the errors of the
classifiers have to be unrelated).
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Three reasons for constructing ensembles I

1. Statistical reason

The outer curve denotes the hypothesis space H. The inner curve denotes the
set of hypotheses that all give good accuracy on the training data. The point
labeled f is the true hypothesis. Averaging the accurate hypotheses,we can find a
good approximation to f .

”A learning algorithm can be

viewed as searching a space H of

hypotheses to identify the best

hypothesis in the space. The

statistical problem arises when the

amount of training data available

is too small compared to the size

of the hypothesis space. Without

sufficient data, the learning

algorithm can find many different

hypotheses in H that all give the

same accuracy on the training

data” (Dietterich, 2000)
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Three reasons for constructing ensembles II

2. Computational reason

An ensemble constructed by running the local search from many different
starting points may provide a better approximation to the true unknown function
than any of the individual classifiers

”Many learning algorithms work
by performing some form of local
search that may get stuck in
local optima... In cases where
there is enough training data (so
that the statistical problem is
absent), it may still be very
difficult computationally for the
learning algorithm to find the best
hypothesis...
An ensemble constructed by
running the local search from
many different starting points may
provide a better approximation to
the true unknown function than
any of the individual classifiers”
(Dietterich, 2000)
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Three reasons for constructing ensembles III

3. Representational reason

The true function f cannot be represented by any of the hypotheses in H.

””In most applications of machine
learning, the true function f
cannot be represented by any of
the hypotheses in H. By forming
weighted sums of hypotheses
drawn from H, it may be possible
to expand the space of
representable functions””
(Dietterich, 2000)
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How build up ensembles? I

There are two ways to building up ensemble methods:

Using classifiers that are really different only theoretical, never
used

Manipulating training examples bagging, boosting, random
forests
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How build up ensembles? II
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Manipulating training examples

Training examples are manipulated through re-sampling techniques
to generate multiple classifiers, then a learning algorithm is run
several times with a different subset of training examples.

The most famous ensembles belonging to this category are
Bagging and Boosting and Random Forests.
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Bagging I

Bagging is an acronym for Bootstrap Aggregating: it forms a set
of classifiers that are combined by voting by generating replicated
bootstrap samples of the data.

Idea: Let X1, . . . ,Xn be a set of i.i.d. observations with constant
variance equal to σ2: then the variance of X̄ is equal to σ2/n.
”Averaging a set of observations reduces variance” (Breiman).

Bagging is an ensemble that reduces the variance (remember:
prediction error is formed by irreducible error+b2+σ2)
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Bagging II

Given a learning set L = (xi , yi ), . . . , (xn, yn), the aim is to predict
y using x as input by using a classifier h(x ,L). By using a
sequence of t learning sets Lt , with t = 1, . . . ,T , each consisting
of n independent observations from the same distribution as in L,
goal is to get a better predictor than the single learning predictor
set h(x ,L) coming from t bootstrap replications. The aggregating
process is quite simple: if y is numerical the aggregated classifier is
the average of each single classification over all the iterations of
the procedure, if y is numerical the method of aggregating the
classifiers is by voting.
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Bagging III

Let L = (xi , yi ), . . . , (xn, yn) be a training sample, where xi ∈ X
and yi ∈ R if numerical or yi ∈ {1, . . . , J} if categorical.

for t = 1 : T

generate a bootstrap replication LB from L
run a single classifier on LB

obtain the estimation ŷ t
i from the single classifier

Output: final bagged classifier

H(X ) =

{
aggregation by voting if yi ∈ {1, . . . , J}
avh

(
x ,LB

)
if yi ∈ R
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Bagging IV

Wdbc dataset: (UCI Machine Learning Repository). Classifier: CART. Bootstrap replications: 50
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Bagging, variance and bias I

Bagging works well with unstable classifiers. In general, a classifier
is unstable when it is affected by high variance, whereas a classifier
is stable when it is affected by high bias.
Bagging is a method of variance reduction.It works well with
classification and regression trees because their are known as
methods with high variance.
Bagging returns worse performance than single classifiers when it is
used with stable classifiers, e.g. with a stump. Bagging unstable
classifiers usually improve them. Bagging stable classifiers is not a
good idea (Breiman, 1996).
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Bagging, variance and bias II

Wdbc dataset: (UCI Machine Learning Repository). Classifier: STUMP. Bootstrap replications: 100. The
performance of Bagging is worse than the one of the single classifier if it has low variance and high bias
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Out-of-bag

On average, each bagged tree makes use of around two-thirds of
the observations. The remaining one-third of the observations not
used to fit a given bagged tree are referred to as the out-of-bag
(OOB) observations. We can use the OOB observations to
estimate the prediction error.
The OOB approach for estimating the test error is particularly
convenient when performing bagging on large data sets for which
cross-validation would be computationally onerous.
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From Bagging to Random Forests

Bagging today is no more used

Other ensembles perform better (e.g., Boosting)

Bagging principle still survives

Random forests were born from Bagging
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Random Forests I

Random forests provide an improvement over bagging.

Idea: decorrelate trees. (Breiman 1999, 2001)

Let X1, . . . ,Xn a set of i.d. observations with constant variance
equal to σ2. Assuming positive pairwise correlation ρ, we have that
the variance of X̄ is equal to ρσ2 + (1− ρ)/nσ2.

The principle that inspired the Random Forests was ”destroy” the
correlation structure of the trees.
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Random Forests II

As in bagging, a number of trees is built on bootstrapped training
samples. On the other hand, when building these trees, a random
sample of m predictors is chosen as split candidates from the full
set of p predictors.
As a rule of thumb, a fraction m ≈ √

p of predictors is used in
each iteration.
Random forests can be used to rank the importance of variables in
a regression or classification problem.

Antonio D’Ambrosio Tree-based methods



Introduction
Tree-growing

Ensemble methods

Bagging
Random Forests
Boosting

Random Forests III

Let L = (xi , yi ), . . . , (xn, yn) be a training sample, where xi ∈ X
and yi ∈ R if numerical or yi ∈ {1, . . . , J} if categorical.

for t = 1 : T

generate a bootstrap replication LB from L
grow a random forest to LB by recursively repeating the
following steps for each terminal node of the tree:

1 select m variables at random from the p predictors
2 pick the best variable/split-point among the m

obtain the estimation ŷ t
i from the single forest

Output: final classifier

H(X ) =

{
aggregation by voting if yi ∈ {1, . . . , J}
avh

(
x ,LB

)
if yi ∈ R
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Random Forests IV

The out-of-bag observations are useful to observe the so-called
out-of-bag error (OOB), which can be evaluated as a stabilizer for
Random Forests.

When the OOB error is stable, then the training phase of Random
Forests can be considered finished.

The OOB error is ”almost identical to that obtained with n-fold
cross validation” (Hastie, Tibshirani & Friedman (2008))
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Random Forests V

Boston housing data set: (UCI Machine Learning Repository). Example of using out-of-bag error to chose the
”right”number of predictors. In this case m = 5 predictors are suggested. Note that m = 13 means doing Bagging.
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Random Forests VI

Spam data set: (UCI Machine Learning Repository). Classifier: CART. Bootstrap replications: 2600
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Random Forests and Variables Importance I

Ensemble methods don’t allow interpretation of phenomena, they
belong to the ”black-box”classifiers’ category.

Variable importance ranking is an aspect that, jointly with a
prediction accuracy comparable with Boosting, has made Random
Forests very popular

At each split generated by each single forest, the total amount of
decrease in RSS (or Gini index) associated with the predictor that
generated it is kept.

At the end of the procedure, the average of these quantities is
calculated for each predictor, and the result is a graph that shows
the importance of each variable in the ’explanation’ of the
phenomenon.
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Random Forests and Variables Importance II

Spam data set: (UCI Machine Learning Repository). Example of variable importance with Random Forests
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Boosting I

Boosting is a general method for improving the accuracy of any
given learning algorithm provided that single classifications are
better than random choices.
Here we present the original boosting algorithms. The main
difference between Bagging and Boosting algorithms is that
whereas Bagging uses the bootstrap as resampling method,
Boosting uses a weighted bootstrap, in the sense that the
probability of each individual to be included in the boosted training
sample is not constant, but it is weighted by the (good or bad)
classification obtained by the learning sample.
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Boosting II

Starting from a uniform distribution of weights, these are increased
for the i-th individual if he has been misclassified by the learning
algorithm (or weak learner), otherwise these are decreased. This
way, within the next iteration the probability of a misclassified
instance to be included in the boosted training sample is higher
than observations correctly classified, so the learning algorithm is
forced to learn by its errors becoming a strong learner.
Several boosting algorithms are developed in the last years
(polynomial-time boosting algorithm, boosting-by-majority
algorithm,...). Doubtless the most famous boosting algorithm is
AdaBoost developed by Freund and Schapire (1995)
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Boosting III

Let L = (xi , yi ), . . . , (xn, yn) be a training sample, where xi ∈ X and yi = {−1,+1}

initialize D1 = 1
n

for i = {1, . . . , n}

for t = 1 : T

train weak learner ht using distribution Dt
obtain a weak hypotesys ht : X → {−1,+1}
compute the error ϵt = Pri∼Dt [ht (xi ) ̸= yi ]

choose αt =
1

2
ln

(
1 − ϵt

ϵt

)
update D distribution:

Dt+1(i) =
Dt (i)

Zt
×

{
ϵ−αt if ht (i) = yi
ϵαt if ht (i) ̸= yi

=
Dt (i)exp (−αtyi ht (xi ))

Zt

where Zt is a normalization factor

Output: final boosted classifier:

H(x) = sign
(∑T

t=1 αtht (x)
)

Adaboost for binary case
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Boosting IV

For both multiclass and regression cases, main difference with the
above described AdaBoost algorithm is about a suitable definition
of the error and the computation of a loss function.
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Multiclass boosting

Let L = (xi , yi ), . . . , (xn, yn) be a training sample, where xi ∈ X and yi = {1, . . . , J}

initialize D1 = 1
n

for i = {1, . . . , n}

for t = 1 : T

train weak learner ht using distribution Dt
obtain a weak hypotesys ht : X → {1, . . . , J}
compute the error ϵt =

∑
i Dt (i)I (ht (xi ) ̸= yi )

choose αt = ln

( |J − 1| (1 − ϵt )

ϵt

)
update D distribution:

Dt+1(i) =
Dt (i)e

−αt I(ht (xi )=yi )

Zt

where Zt is a normalization factor

Output: final boosted classifier:

H(x) = argmaxy∈J

(∑T
t=1 αt I (ht (x) = y)

)

AdaBoost algorithm for multiclass classifiers
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(A variant of) Regression Boosting

Let L = (xi , yi ), . . . , (xn, yn) be a training sample, where xi ∈ X and yi ∈ R

initialize D1(i) = 1
n

for t = 1 : T
train weak learner ht using distribution Dt
obtain a weak hypotesys ht : x → y
compute the quadratic loss function Lt (i) = (yi − ht (xi ))

2

compute an average loss ϵDt =
n∑

i=1

Dt (i)Lt (i)

set βt =
ϵDt

max
1≤i≤n

Lt (i) − ϵDt

set wk (i) =
Lt (i)

max
1≤i≤n

Lt (i)

set gt (i) = β
1−wk (i)
t Dt (i)

update D distribution:

Dt+1(i) =
gt (i)∑
i gt (i)

Output: final boosted classifier:

H(x) = inf
{
y ∈ Y :

∑
t:ht≤y log

(
1
βk

)
≥ 1

2

∑
t log

(
1
βt

)}
AdaBoost algorithm for regression problems
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Adaboost: some examples I

German credit data set: (UCI Machine Learning Repository). The learning error goes to zero
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Adaboost: some examples II

German credit data set: (UCI Machine Learning Repository). Adaboost works also reducing bias
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Download and read the following papers:

Mola, F., and Siciliano, R. (1997). A Fast Splitting Procedure for
Classification and Regression Trees, Statistics and Computing, 7,
Chapman Hall, 208-216.

Breiman, L. (1996). Bagging predictors. Machine learning, 24(2),
123-140.

Freund, Y., Schapire, R., and Abe, N. (1999). A short introduction
to boosting. Journal-Japanese Society For Artificial Intelligence,
14(771-780), 1612.

Breiman, L. (2001). Random Forests. Machine learning, 45, pp.
5–32
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