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Preface

Planning and evaluation of government programmes usually requires access to a
huge amount of data concerning national, sub-national and supranational socio-
economic, environment and health related statistics. There is, however, a growing
need for statistics relating to much smaller geographical areas, where data are too
sparse to support the sort of standard estimation methods typically employed at
national level. These small area official statistics are routinely used for a variety
of purposes, including assessing economic well-being of a nation, making public
policies, and allocating funds in various government programmes. With the rapid
development of survey methodology, different governmental agencies are now ex-
ploring ways of combining national survey data with a variety of structured and
unstructured data, including administrative, census records and Big Data to pro-
duce reliable small area statistics. The field of small area estimation research is
quickly expanding to meet this demand, and is constantly tackling practical prob-
lems that are theoretically challenging.

The SAE2021: Conference on Big Data for Small Area Estimation
- BIG4small (SAE2021 - www.sae2021.org) - a Satellite Meeting of the Inter-
national Statistical Institute 63rd World Statistics - collected talks that tried to
address these issues from a methodological and/or applicative point of view, to-
gether with traditional topics in estimating for small areas.

The conference program has included 4 plenary sessions, 15 invited sessions, 8
solicited sessions and the award for Outstanding Contribution to Small Area Esti-
mation 2020 and 2021 ceremony, assigned to Partha Lahiri and Wayne A. Fuller,
respectively. The conference committee had registered 73 accepted submissions,
including 49 to be presented in plenary and invited sessions, and 24 spontaneously
submitted for oral solicited sessions. The scientific program can be found at the
end of this preface.

For more than a year, the Covid-19 pandemic has hit our most consolidated
habits with serious challenges on social and economic system. Implementation of
the guidelines for social distancing has led to the shifting of most of the research
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activities remotely. After very careful consideration, concerning the health of all
conference participants and the restricted mobility of the staff of many universities
and research centres, the Advisory Board and the Local Organizing Committees
decided to schedule the SAE 2021 in remote from the 20th to the 24th of September
2021. The Conference was streamed through the Zoom platform provided by the
University of Naples Federico II. The organizers met at the University of Naples
Federico II during the management of the conference.

This volume gathers part of the peer-reviewed papers submitted to the BIG4small
SAE 2021 conference. The volume covers a wide variety of subjects ranging from
methodological and theoretical contributions, to applied works and case studies,
giving an excellent overview of the interests of the international researchers who
work on SAE topic.

Of course, both the Conference and this volume would not be possible without
the collaboration of the members of the Programme Committee and the members
of the University of Naples Federico II and of the University of Pisa. Members of
these two institutions took part actively in the Local Organizing Committee. The
conference also received support from sponsors, namely the International Associ-
ation of Survey Statisticians (IASS - http://isi-iass.org/home/) and the De-
partment of Economics and Statistics (DISES - http://www.dises.unina.it/),
University of Naples Federico II. To all of them, our thanks.

Our thanks also go to the keynote lecturers, all contributors for having sub-
mitted their work to the conference, the members of the Advisory Board, the
Programme Committee and the extra reviewers for their efforts in this difficult
period.

Monica Pratesi
University of Pisa, Italy (Chair of the Program Committee)

Roberta Siciliano
University of Naples Federico II, Italy (Chair of the Program Committee)

Antonio D’Ambrosio
University of Naples Federico II, Italy (Chair of the Organizing Committee)

Gaia Bertarelli
Sant’Anna School of Advanced Studies, Pisa, Italy.
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Abstract

We use time series analysis, including methods from for non-linear
dynamical systems, to separate different types of dynamics encapsulated
within a historical record of land system states for farming in Scotland
over the period from 1867 to 2020. Our results characterize dynamics from
internal feedbacks and coupling of farming as a system at the national
scale, reveal some system characteristics and behaviours associated with
the dynamical evolution of farming as a system, and identify some regime
shifts over the full 154-year timespan of the Scottish agricultural census.
Specifically, the results reveal i) consequences of several exogenous factors
as events that had an impact on system states, ii) show that arable
and pastoral farming, at a national scale, are dynamically related over a
range of timescales and coupled to global trends, and iii) that throughout
much of the timespan of the study the system has maintained a pattern
of changes consistent with endogenous systems-level feedbacks between
sectors that act to dampen the impacts of exogenous factors. Changes in
system dynamics over the timespan are also associated with policy changes
that altered the interaction of arable and pastoral farming. Analysis of
data for counties within NE Scotland show similar trends and suggest that
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the patterns discovered in national aggregate data are informative about
farming in smaller areas.

Keywords— land system dynamics, time series analysis, non-linear
dynamical systems, Scotland

1 Introduction

Dynamics in land systems are associated with process–response (cause
and effect) relationships, endogenous behaviours resulting from system–level
interactions, and adaptation to exogenous factors. Discovering these dynamics
for different land uses, geographical contexts, and historical periods is a core
activity of land systems science.
In this paper, we use time series analysis, including methods for non-linear
dynamical systems, to separate dynamics encapsulated within a historical record
of land system states for farming in Scotland over the period from 1867 to
2020, and for smaller geographic areas within Scotland from 1892 to 1975.
The data are from the annual series of agricultural census, that provides a
summary of farming in Scotland. Although these data record the annual state
of farming, they are seldom analysed for trends beyond short-term changes or
for information beside the status of different components of the funds of land
use, livestock numbers and productivity that define the national account of
farming. We use the data at national and county scales, with a simple systems
model of farming land use as a coupled human-environment system, to elucidate
information on dynamics of farming and its evolution over time.

2 Data

The data used are time series of annual records describing the farming system
in Scotland from 1867 to 2020 and from 1892 to 1975 for five counties in NE
Scotland. Data describe area planted in cereals and the number of sheep, both
compiled from the Annual Agricultural (June) Censuses of Scotland which have
been published over the last 154 years.
The total planted area in cereals is used to represent the arable sector. The
number of sheep are used to represent the pastoral. These national and county-
level data are collated from individual farm-level survey returns; clearly the
participants in the survey have changed over time, as have the nature of
the farming systems being recorded. Price of barley for each year is from
multiple sources, including annual reports on Agricultural Statistics (1912-
1978), Economic Reports on Scottish Agriculture (1980-2020. All prices data
are converted to pounds sterling from a variety of source prices (viz. Scots and
English pounds, shillings and pence (£/s/d), GB Pounds after decimalisation
in 1971) in use at the time of original data collection.

Aspinall et al.: Discovering dynamics in land systems using time series analysis and non-linear dynamical
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3 Methods

We analyse dynamics using two set of methods: i) time series analysis, including
lag plots and decomposition of time series into long-, medium-, and short-term
components; and ii) Recurrence plots (RP) (Eckmann et al., 1998; Marwan
et al., 2007) and Recurrence Quantification Analysis (RQA) (Webber and
Marwan, 2015) from analysis of non-linear dynamical systems. Use of different
methods in combination helps to assess the coherence and reliability of the data
from the time series.

4 Results

The time series analysis for barley price, cereal area and sheep numbers for
Scotland are shown in Figure 1; the recurrence plots, RP, and recurrence
quantification analysis, RQA, for these data are shown in Figure 2. The long-
term trend for barley price is exponential growth (Figure 1a). Deviations from
the long-term trend are modelled with a smoothing spline, revealing 4 main
cycles over the 154-year period (Figure 1b). The long-term trend in cereal area
is an annual decline in area planted of 0.14%, accumulating to a total of about
19% over the 154-year period (Figure 1d), with four cycles superimposed on the
long-term trend (Figure 1e). The long- term trend for sheep is of increasing
numbers (Figure 1g), with five medium term cycles (Figure 1h). The RP for
barley price (Figure 2a) shows clear evidence of regime shifts, with areas of
black along the diagonal of the plot and no recurrence points outside those
boxes. The regime shift in the 1970s is clear in the time series plot (Figure 1a),
but the RP shows there was a further shift starting in the 1930s, and another
in the 1950s lasting into the 1960s. The white bars coinciding with the world
wars indicate extreme variability in barley price; high variability since 1973 is
also revealed in the absence of recurrence points. The RP for cereals (Figure
2b) shows long term cycles, with variability during the two world wars; the RP
also shows increased cycles in the period since 1973. The RP for sheep (Figure
2c) shows clear evidence of cycles in the number of sheep, with regular pattern
of recurrences spaces about 30 years apart, three cycles being evident since
1950; numbers were more stable in the latter part of the 19th century. Figure
3 shows the medium-term cycles for cereal area and sheep numbers for counties
in NE Scotland, as well as for NE Scotland and Scotland, as well as barley
price for Scotland, from 1892-1975. This plot shows the close interdependence
and synchronisation between the variables in the medium-term, making evident
their associations: sheep numbers are negatively correlated with cereal area and
barley price, and barley price and cereal area are positively correlated. As barley
(and other cereal) prices increase cereal area increases and sheep numbers fall; as
barley price falls the area of cereals also falls and sheep numbers increase. From
1973-2020, when the UK was within the EEC/EU Common Agricultural Policy,
the associations between the three variables break down as cereal production and
sheep farming, representing the arable and pastoral systems, become somehow
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uncouple.

Figure 1: Time series results for barley price, cereal area and sheep numbers in
Scotland, 1867-2020

5 Discussion

Trends and cycles over different timespans and timescales identified within the
data using time series analysis, as well as RP and RQA, characterise long-
, medium-, and short-term dynamics of cereal and sheep farming and cereal
prices. Irregular cycles are evident in each of barley price, cereal area, and sheep
numbers, the cycles being synchronised with each other but with phase shifts.
The period of these cycles is between 15 and 40 years. The long-term trends
and patterns of cycles, as well as the year-to-year variability superimposed on
the long- and medium-term trends, for farming, reveal the multiscale nature of
temporal variation in changes to farming systems. Cycles in the data for smaller
areas within NE Scotland (from 1892-1975) are consistent with the national and
regional pattern, suggesting, for NE Scotland in this instance, that the national
pattern is informative about regional trends. The RP and RQA also help to
identify regime shifts. In particular, the RP (Figure 2a) and RQA (Figure 4)
for Barley price shows clear evidence of regime shifts, with one regime over the
period from 1867 to the late-1930s (interrupted by World War one), and two
further shifts in about 1950 and 1970; since 1970 the price has been highly
volatile. Regime shifts are not apparent for cereal area and sheep number.
In summary, in systems terms the analysis of the historical record of changes
in cereal area and price, grassland area, and sheep numbers in Scotland
reveals a complex pattern of interdependencies and coupling over time and
at different scales, combining endogenous system dynamics with short-term
variability associated with stochastic events, within a broader set of higher-
level interdependencies and boundary conditions for the system. The long

Aspinall et al.: Discovering dynamics in land systems using time series analysis and non-linear dynamical

methods

4



Figure 2: Recurrence plots and RQA for barley price, cereal area and sheep
numbers in Scotland, 1867-2020

time-period of the study also shows that the embedded system dynamics can
make farming relatively resilient to changes in policy, exogenous shocks (e.g.,
weather events or disease outbreaks), or regime changes and thresholds (as seen
here in prices). These results, taking a long-term, whole systems perspective,
and use of methods from time series analysis, reveals the evolution of land
use as a dynamic and dynamical system. Moreover, exploring recurrence as a
fundamental property of dynamical systems, the proposed RP-RQA analysis
shows interesting potential to be applied for effectively capturing relationships
(viz. associations and interdependences) between a whole system perspective
and small areas.
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Figure 3: Medium-term cycles in cereal area and sheep numbers for counties in
NE Scotland, NE Scotland and Scotland and barley price for Scotland (1892-
1975)
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Abstract

In this work we focus on estimating monetary poverty indicators at
sub-regional level in Italy taking into account the different price levels
within the country. To account for the local price levels, Spatial Price In-
dexes (SPIs) are computed using retail scanner data on regional and sub-
regional retail volumes (units) and price for food and grocery. Specifically,
a Country Product Dummy model is used, with products aggregated by
province and ECOICOP-8-digit classification, for a total of 103 provinces
and 102 ECOICOP-8-digit. The SPIs are used to adjust the poverty line
when computing provincial poverty indicators that are estimated using
area level Small Area Estimation (SAE) models, which link direct unreli-
able estimates to aggregated auxiliary information, often easily available.
The use of SAE models is necessary to obtain reliable estimates at sub-
regional level that can be used to guide policy decisions to reduce poverty.

Keywords— Poverty mapping, Spatial price indexes, Scanner data, Cross
product dummy model.

1 Estimation of Spatial Consumer Price Indexes
for the Italian Provinces

In this work we present a methodology to compute Spatial Price Indexes (SPIs)
at sub-regional level in Italy using retail scanner data on regional and sub-
regional retail volumes (units) and price for food and grocery. The data were
provided by Istat/Nielsen within a research project between the Dagum Cen-
ter (http://www.centrodagum.it/en/) and Istat in the framework of the H2020
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1

Pratesi, Siciliano, Bertarelli and D’Ambrosio (Eds): SAE2021 BIG4small. Book of short papers

8



project Makswell (www.makswell.eu) (for more details please refer to the work
by Pratesi, Giusti, Marchetti, Biggeri, Bertarelli, Schirripa Spagnolo, Laureti,
Benedetti, Polidoro, Di Leo, Fedeli of the Makswell “Deliverable 3.2 - Guidelines
for best practices implementation for transferring methodology”).

Specifically, we compute SPIs for 103 (out of 110) Italian provinces, by using
the scanner data referring to the year 2018 and only to the products (barcodes
or Global Trade Item Numbers - GTINs) in food and beverages categories,
excluding fresh food. Usually the information on products’ quantities is reported
in terms of grams and milliliter, but sometimes in units; given that we needed
to use comparable prices, we discarded about 17,000 quotations expressed in
units. To estimate the SPIs a two-step procedure has been used, adapting the
World Bank Group (2015) approach.

In the first step, we computed the average unit price at provincial level,
by considering the unit value prices from the consumer side. In applying the
principle of comparability, we did not follow a very tight way by considering
the comparisons of the ‘like to like’ items (products). Instead, we applied the
principle at a different level, the level products’ groups, and exactly at the level
of the 102 groups of the ECOICOP-8-digit classification.

Define the weighted mean price p̄ij for ECOICOP-8-digit j and province i.
Let rijk and qijk be the annual turnover and the total quantity sold1 respectively
of item k belonging to ECOICOP-8-digit j in province i. These quantities are
estimated by Istat using the scanner data and the sampling weights computed
according to the survey design (we refer to Deliverable 3.2 of the MAKSWELL
project for further details). Let uijk be the quantity of the item ijk in terms of
gr. or ml. For each item we define its annual price per gr. or ml. as

pijk =

rijk
qijk

uijk
.

Then, for each item we define its relative weights in term of turnover as

wijk =
rijk∑nij

k=1 rijk
,

where nj is the number of items in the jth ECOICOP-8-digit aggregation and
the ith province. Finally, the weighted mean price is:

p̄ij =
1

nij

nij∑

k=1

pijkwijk.

Therefore, p̄ij is the weighted mean price per gr. or ml. for products in
ECOICOP-8-digit j and province i.

The second step is devoted to the aggregation of 102 average level of prices to
estimate the provincial SPI. Note that not all the ECOICOP-8-digit aggregates
are present in all the provinces.

1Which are the expenditure and the quantity purchased by consumers.

2
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To compute the SPIs at provincial level we adapt a Country Product Dummy
model (Laureti and Rao, 2018). The products are aggregated by province and
ECOICOP-8-digit classification, for a total of 103 provinces and 102 ECOICOP-
8-digit. Note that not all the ECOICOP-8-digit aggregates are present in all
the provinces. The CPD model we propose is as follows:

log p̄ij = α0 + αiDi + βjIj + εij , i = 1, . . . , 103 j = 1, . . . , 102, (1)

where Di is a vector equal 1 if the mean price is in province i and 0 otherwise, Ij
is equal 1 if the mean price belongs to jth ECOICOP-8-digits and 0 otherwise.
The index i is for the provinces and the index j is for the ECOICOP-8-digit.
The error εij ∼ N(0, σ2).

To take into account the different level of the turnover between the ECOICOP-
8-digit aggregates we estimate the model (1) using weighted least squares, where
the weights are computed as

wlsij =

∑nij

k=1 rijk∑ni

k=1 rijk
,

the ratio between the total turnover of one aggregate in one province and the
total turnover in the province (ni is the number of items in the ith province).

Model (1) – as it is specified – is not identified, because the Dis vectors are a
linear combination of the constant. Therefore, we impose the constraint α1 = 0
so that the model is identified. Once the model is estimated, from the data we
obtain the estimates of the SPIs at provincial level by exp(α̂i), where α̂i is the
estimate of αi. The coefficient αi is the difference of fixed effects connected with
the province i compared with the base province i = 1. To use as a reference Italy
instead of area 1, the coefficients α̂i has been adjusted following Suits (1984).

The SPIs estimated at the province level can be used for many purposes.
One of these purposes is to adjust the national poverty line at the province
level, by this way relative poverty estimates take into account the different pur-
chase power within the country. The SPIs estimated according to model (1)
are based on mean prices of specific headings (ECOICOP-8-digit), therefore the
adjustment of the national poverty line is not poor specific. As an alternative,
the method can be easily extended to produce SPIs related to the first quintile
of the distribution of the price of each specific product, assuming that poor
purchase the cheaper items of the product. For example, figure 1 reports two
choropleth maps of estimated SPIs based on model (1, left) and on an adjusted
the model that considers the quantile 0.2 of the unit prices to obtain the es-
timates of spatial price indices related to the cheaper prices for each Italian
provinces, which we denote as SPI(Q0.2)’s (right).

The results we obtained are somehow expected. Indeed, provinces in the
south of Italy show SPIs smaller than 1, while provinces in the north show
values greater than 1. However, there are exceptions, provinces in the north-
east Alps mountains show SPIs below 1, even if they are close, both considering
the mean and the quantile 0.2 of unit prices.

3
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Italian provinces

Spatial Price Indicies − ASESD method, Mean

Data: Scanner data 2017. Source: Istat

SPI

0.9 0.95 1 1.05 1.1 1.15

Italian provinces

Spatial Price Indicies − ASESD method, Quant. 0.2

Data: Scanner data 2017. Source: Istat

Figure 1: Choropleth map of SPIs obtained using mean unit prices (left) and
quantile 0.2 of unit prices (right).

2 The impact of the local cost-of-living differ-
ences on the measure of the poverty incidence

Intra-country comparisons of poverty indicators are important for many rea-
sons. For example, when measuring the poverty incidence, the use of a national
poverty line allows to establish a general scheme of how local areas (e.g. regions
or provinces) compare with national standards. However, considering the same
poverty line for each area implies an equity concept in which individuals with
equal income are assumed to have similar wellbeing regardless of the area where
they live. The use of local poverty lines allows to gauge intra-country poverty,
which can be important for planning local policies. A possibile approach to
compute local poverty lines is by taking into account the different price levels
within the country.

In this work we estimate the Head Count Ratio – a measure of poverty in-
cidence – at provincial level using Household Expenditure Survey (HES) data
in Italy, adjusting the national poverty line using the SPI(Q0.2) values. Specifi-
cally, the national poverty line is adjusted for each province using the SPI(Q0.2)
values opportunely weighted (adapting the idea in Renwick et al. (2014)):

nPL∗
i = nPL× (λiSPIi + 1 − λi) (2)

where nPL is the national poverty line, nPL∗
i is the adjusted poverty line for

4
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province i, λi is the estimated share of food consumption in province i and SPIi
is the SPI(Q0.2) for province i. The quantities λi’s are estimated from the HES
2017 as the provincial mean of the ratios between the food expenditure and the
total consumption expenditure:

λi =
1∑ni

j=1 wij

ni∑

j=1

pij
tij
wij , (3)

where ni is the sample size in province i, wij is the survey weight of household j
in area i, pij is the food expenditure of household j in area i and tij is the total
consumption expenditure of household j in area i. The survey weights have
been calibrated to sum to the total households at provincial level. Although the
λi’s are estimated at the provincial level – thus possibly unreliable because of
small sample size – we judge the direct estimates suitable for our purpose.

Having computed the adjusted nPLs, we then calculated the corresponding
direct estimates of the poverty rates. As the variability of the direct estimates
was too high (approximately half of the provinces a CV greater than 30%)
we estimated a Fay-Herriot (FH) model with the following auxiliary variables:
the ratio between number of taxed persons over the population, and the ratios
between the number of persons with i. income coming from salary, ii. income
coming from pensions and iii. income lower than 10,000 euros per year, over the
number of taxed persons. These data come from the Italian tax agency database
2017. The EBLUPs (Empirical Best Linear Unbiased Predictors) obtained with
the FH model showed a gain in efficiency with respect to direct estimates. We
obtained a CV smaller than 16% in 37 provinces, while half of the provinces
had a CV smaller than 20%. We also computed the EBLUPs without any
adjustment of the national poverty line, using the same small area model as for
adjusted EBLUPs. Figure 2 reports the comparison of the two set of EBLUPs
estimates: as we can see, using the SPI(Q0.2) to adjust the poverty lines, the
HCRs in northern and central provinces slightly decrease.

The results obtained here suggest that the methodology can be extended
to include other Spatial Price Indexes, therefore adjusting the national poverty
line with other components of households’ consumption expenditure. Indeed,
our results suggest the products included in the scanner data represent a rel-
evant but still limited share of the total household consumption expenditure,
approximately equal to the 20%. Therefore, by including other consumption
expenditure components, such as for example the expenditure for the rent, the
national poverty line could be adjusted in a more complete manner.

5
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Figure 2: Poverty rate at provincial level in Italy: provincial EBLUPs estimates
using the SPI(Q0.2) adjusted vs not adjusted national poverty line.
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Abstract

This paper extends the concepts of informative selection, population distribu-
tion and sample distribution to a spatial process context. These notions were first
defined in a context where the output of the random process of interest consists of
independent and identically distributed realisations for each individual of a popula-
tion. It has been showed that informative selection induces stochastic dependence
among realisations on selected units. In the context of spatial processes, the “pop-
ulation” is a continuous space and realisations for two different elements of the
population are not independent. We show how informative selection may induce
a different dependence among selected units from a spatial process and how the
sample distribution differs from the population distribution. We provide the cor-
rect likelihood and predictive distribution that account for the informative selection
on a particular case in this paper, to illustrate the general framework developed by
the authors.

Keywords— Nuisance parameters, endogeneous selection, variogram.

1 Introduction
Informative selection occurs when the sampling (selection) process is dependent on the
process of interest being measured. This dependence must be accounted for when infer-
ring on the distribution of the study process. When the study process can be described
with a simple linear model, where all units of a population behave independently con-
ditionally on the covariates, Skinner et al. (1989) showed that ignoring the selection
process can lead to bias and erroneous inference. Krieger and Pfeffermann (1992) dis-
tinguish the population distribution from the sample distribution: the observations on
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the sample follow a distribution that is different from the distribution of the units in
the population. Bonnéry et al. (2012) also show that, in addition, informative selection
can introduce a dependence between the sampled units. When the study process is a
spatial process on a field, the population can be assimilated to the field and there is a
dependence structure on the population units. In certain cases, this dependence can be
summarised by the variogram, see Cressie (2015). In this study, we show that informa-
tive selection results in making the dependence structure of the sampled units different
from the dependence structure of the “population” units. We apply some of the general
results of Bonnery, Pantalone, Ranalli (2021) to a particular example. In fact, we will
focus on a particular distribution for the variable of interest and a specific sampling
design defined by a Binomial point process. Section 2 introduces the statistical frame-
work. In Section 3 we compare the sample and the population likelihoods when the
target is a function of a spatial process sampled informatively. Section 4 focuses on the
semivariogram as a relevant example of target of interest: we show the bias that affects
the naive sample semivariogram in presence of informative sampling and develop a
prediction approach that accounts for it.

2 Statistical Framework
We consider the space U= [0,1]2 to be our population of interest and a 0-mean isotropic
second order stationary random Gaussian process Y with Gaussian covariogram de-
fined on U with value in Y = R, e.g. Y : Ω → (U → (R,η)), where η is the Lebesgue
measure on Y , and ν is a probability measure on U. Capital letters are used for ran-
dom variables, and corresponding bold lowercase letters for realisations. The pro-
cess Y is characterised by its finite dimensional densities: for a sample of locations
x = (x1, . . . ,xn) of size n, Y [x] denotes the vector (Y [x1], . . . ,Y [xn]). The density of

Y [x] is fY [x] (y) =
(

2πn/2|ΣY |
1
2

)−1
exp
(
− 1

2 yΣ−1
Y yT

)
, where ΣY is the matrix with i j-th

element given by σ2
Y exp(−∥xi − x j∥2/δ 2

Y ), with σY and δY positive constants. The
function C(h;σY ,δY ) = σ2

Y exp(−∥h2∥/δ 2
Y ), is the covariogram of Y . Figure 2 contains

heatmaps of realisations of such processes for different values of the scale parameter
δY , respectively 0.01, 0.1 and 1.

The process Y is not observed entirely, but only on a sample. The sampling de-
sign is a function of a design variable Z, a random process defined on U with values
in R, characterised by Z = exp(α0 +α1Y +α2ε) , where α0, α1, α2 are real positive
numbers, and ε : Ω → (U → R) is an isotropic Gaussian process with mean µε [x] = 0
and Gaussian covariogram C(h) = exp

(
−∥h∥2/δ 2

ε )
)

independent on Y . The sample S
is a random point process on U, such that the distribution of S conditionally on Z = z
is a binomial point process of size n with intensity proportional to z (as represented in
Figure 2). The process S does not depend on Y conditionally on Z and has density with
respect to ν⊗{1,...,n}: for x ∈ U{1,...,n}, fS|Z=z(x) = (

∫
U z(x′)dν(x′))−n (∏n

ℓ=1 z(xℓ)).
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Figure 1: Heat maps of realisations of Y for different values of δY .

Figure 2: Heat maps of the design variable z and plot of realisations of S.
Sub-figures correspond to the heatmaps of three different design variables z (Sub-figures 2.a, 2.b, 2.c) and of
y (Sub-figure 2.d) with samples (triangle dots) drawn accordingly to z. The values of (α0,α1,α2) for each
sub-figure are: 2.a: (log(10),0,0), 2.b:(log(10)−0.125,0,0.5), 2.c: (log(10)−0.125,0.4,0.3)

3 Sample vs Population distribution of Y

The data consist of the realisations of the random variables S and Y [S]. In this section,
we derive the distribution of the observed values of Y on the sample, i.e. the distribution
of Y [S], from the distribution of the design variable Z conditionally to the signal Y and
the function that links the design to the design variable, or equivalently the distribution
of the sample S conditionally to the design variable Z. We resort to the Bayes formula
to express the density of (Y [S],S) in (y,x), as the product of the density of the sample
S in x conditionally on Y [x] = y by the density of the signal Y [x] in y. For 1 ≤ n′ ≤ n,
let S{1,...,n′} be the vector (S[1], . . . ,S[n′]). For x ∈ U{1,...,n′}, y ∈ Y {1,...,n′},

fY [S{1,...,n′}]|S{1,...,n′}(y | x) = ρ{1,...,n′}(x | y)× fY [S{1,...,n′}](y) ̸= fY [x](y), (1)
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Figure 3: Representation of ρ̃{1}(x | y) when α2 = 1 and α1 varies.

where

ρ{1,...,n′}(x | y)

=

∫
∏n′
ℓ=1(

∫
exp(α1(Y [x′]−yℓ)+α2(ε[x′]−ε[xℓ]))dν(x′)dν(x′))−1 dPY,ε|Y [x]=y

∫
(
∫

exp(α1 (Y [x′]−Y [xℓ])+α2 (ε[x′]− ε[xℓ]))dν(x′)dν(x′))−n′ dPY,ε
.

Figure 3 represents the function ρ{1}(x | y) for x = (0.5,0.5) and when y and the
nuisance parameters α1 vary and the other parameters are fixed. Numerical methods
are used to compute ρ{1,...,n}, which allows to compute the likelihood of the different
parameters based on Equation (1).

4 Estimation of semivariogram parameters and predic-
tion

Figure 4 shows that in the case of informative selection (α1 ̸= 0), the naive estimator
of the semivariogram is biased. The couple of spatial process Y and ε was simulated
one time independently, and for three different values of the nuisance parameter vector
α = (α0,α1,α2), 1000 samples of sample size n = 100 were drawn. The solid line
represents the semivariogram obtained from all the points of U, whereas the dashed
line is the pointwise mean of all the semivariogram estimates. When α1 is large, it
has the effect of skewing the sample distribution of Y , which in turns has the effect of
producing naive estimates that overestimate the variance of Y and the sill, i.e. limit
when h → ∞.

This is an illustration of the fact that the expected value of the naive nonparametric
estimate of the semivariogram is given by approximately

1
2

∫

U{1,2}

[∫

Y {1,2}
(y2 −y1)

2 ρ{1,2}(x | y) fY [x](y) dη⊗2(y)
]

d(ν⊗{1,2})X |X2−X1=h(x)

which differs by the term ρ{1,2} from the value of the semivariogram of Y :

1
2

∫

U{1,2}

[∫

Y {1,2}
(y2 −y1)

2 fY [x](y)dη⊗2(y)
]

d(ν⊗{1,2})X |X2−X1=h(x).
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Figure 4: Naive estimates of the semivariogram.

To account for the informative selection process, we propose to base our estimates on
the true conditional likelihood:

L(α,σY ,δY ,δε ;(Y [x] = y | S = x)) = ρ{1,...,n};α,σY ,δY ,δε (x | y)× fY [S];σY ,δY (y).

In addition, we can also consider prediction accounting for informative selection. In
particular, the following equation characterises the predictive distribution of Y [x0] when
S,Y [S] = x,y is observed that takes into account the informative selection process: the
probability density function of Y [x0] conditionally on (S,Y [S]) = (x,y) is given by:

fY [x0]|S,Y [S](y0 | x,y) =
fS|Y [x],Y [x0](x | y,y0)

fS|Y [x](x | y)
× fY [x0]|Y [x](y0 | y), (2)

with

fS|Y [x],Y [x0](x | y,y0)

fS|Y [x](x | y)
=

∫ exp
(
−α1(∑n′

ℓ=1 y(ℓ)−α2(∑n′
ℓ=1 ε[xℓ])

)

(
∫

exp(−α1Y [x0]−α2ε[x0])dν(x0))
n′ dPY,ε|Y [x]=y,Y [x0]=y0

∫ exp
(
−α1(∑n′

ℓ=1 Y [xℓ]−α2(∑n′
ℓ=1 ε[xℓ])

)

(
∫

exp(−α1Y [x0]−α2ε[x0])dν(x0))
n′ dPY,ε|Y [x]=y

.

Naive prediction would use fY [x0]|Y [x](y0 | y), which leads to biased predictions as
well as biased estimation of the confidence interval of predictions. Via numerical
methods, when model parameters are known or plugged in, we integrate expression
(2) to compute point predictors E[Y [x0] | S = x,Y [S] = y] as well as block predictors
E[
∫

A0
Y [x′]dν(x′) | S = x,Y [S] = y], their variance and their confidence intervals.

5 Conclusion
We have extended the notions of informative selection, population and sample distribu-
tions defined by Krieger and Pfeffermann (1992) to a situation where a spatial process
is assumed to have generated the whole population. In particular, we have focused
on a Gaussian random field and a binomial point process that represents the selection
mechanism.
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We have highlighted the role of the density ratio function ρ and expressed correct
likelihood and predictive distribution to account for the informative selection process.
We have focused on estimation of the semivariogram and highlighted the bias coming
from naive estimation in presence of informative selection. We use numerical meth-
ods to estimate the function ρ , but they can be computationally intensive. Alternative
methods that use approximations are currently being investigated.

Acknowledgements Francesco Pantalone’s work was partially funded by the In-
ternational Graduate Research Fellowships at Joint Program in Survey Methodology,
University of Maryland, College Park, USA.

References
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Abstract

Given the importance of knowing life expectancy, with less aggregation
than provincial level, the paper aims to estimate it for municipal and
sub-municipal areas, by means of big data from Registry of Municipal
Census Office. The UN approved the 2030 Agenda, with 169 Sustainable
Development Goals in 17 domains, placing in SDG 3 (Health and well-
being) as many as 6 goals for mortality reduction out of 9 total and for
improvement of life expectancy at birth and healthy life. We highlight
the validity of a tool, such as the real-time mortality observatory, which
we have been designing for some years as a support to both medicine and
criminal justice, as an alternative to the classic epidemiological analysis
and appraisals based on outdated information. For Taranto city, where
the environmental pressure is very strong, different statistical sources
can be used to shorten these waiting times compared to ecological and
epidemiological studies based on official data which have a longer circuit.

Keywords— Life expectancy, Mortality, Istat, Registry-office, Taranto)

1 Introduction

Mortality tables are one of the most complete tools in determination of biometric
functions: deaths, probability of death and survival, years lived and life expectancy.
However, their elaboration requires specific data on the structure of the population
and on the characteristics of deaths. In Italy, Istat has always placed considerable
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interest in their construction since 1972, with regional aggregates, and since
1995 at the provincial level, in line with the European harmonization on the
nomenclature levels of the NUTS 3 statistical territorial units (from French
”Nomenclature des unités territoriales statistiques”, it includes regions with
populations between 150,000 and 800,000 people, for example the oblasts in
Bulgaria and the provinces in Italy).
From the official statistics, life expectancy by age can be obtained from the
ISTAT mortality tables (Demo.istat datawarehouse) from 1974 to 2020, for
NUTS 3 provincial aggregates (107 today in Italy), with an average population of
about 550,000 inhabitants. But the relevance of mortality and life expectancy
data for smaller municipal and sub-municipal areas is increasingly greater in
terms of awareness and active citizenship, as well as for governments and organizations
(at any level, including international), in intervention policies on issues concerning
the health of citizens (Gianicolo et al., 2016; Vigotti et al., 2014).

2 Life expectancy in the Taranto province

In 2006 Taranto was among the top ten provinces with the best life expectancy,
equal to almost 82 years (1), but since then it has seen a sharp decline, recovering
this level only five or six years later: in that period we were among the worst in
Italy. In 2009 we had lost 70 positions, a situation never seen before: only in the
war phase this can happen, and we wondered why and how it happened in such
a short time, so much so that at the end of this phase the judicial processes
began on the many environmental problems of Taranto. Analysing the most

Figure 1: Life expectancy at birth, eo (Source: Istat)

easily accessible source of data, that of the National Institute of Statistics, we
realize that years of delay are also accumulated for the validation of causes of
death, thus making its databases provisional for a long time. Even at the local
level, the latest cancer register relating to Taranto is from December 2017, an
excellent job, which however presents data updated to 2012, therefore, with a
large time gap that requires checking if there are alternatives. In particular for
the city of Taranto, where the environmental pressure is actually very strong,
different statistical sources can be used to shorten these waiting times compared
to ecological and epidemiological studies based on official data, which have a

2
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longer circuit (Berti et al., 2009): having available a direct source, such as the
municipal registry, it was possible for us to make even sub-municipal analysis,
whereas Istat provides mostly provincial data.
Working on that aggregate basis is a limit, and we realize it especially in this
phase of the Covid-19 pandemic, in which there is the frantic search for local
and up-to-date data, where the measurement system must be correct, precise
and updated as much as possible, for the control system it has to enslave. If you
intend to use demographic indices, such as those relating to mortality, to develop
health policies, you need to use the data immediately: a slow measurement
system does not work, it must be speeded up as much as possible.

3 Life expectancy in Taranto city and sub-municipal
areas

We therefore consulted the aforementioned data sources and we were able to
understand that the trend of Istat presented, above all in the past, large differences
compared to the municipal registry of Taranto (2): especially in the first decade
of the new millennium, therefore between the fourteenth and fifteenth Census,
there were quite misaligned numbers between Istat (whose data trend is rather
irregular) and registry office (with a fairly regular evolution). In Tab. 1 we can

Figure 2: (Mis)alignments Registry-Office vs Istat

therefore see the difference in life expectancy between males and females, in the
individual districts of Taranto. Also Istat is now opening up to the registry
data, a good result for the whole community, so in January 2019 we had the
publication of life expectancy for all Italian cities. Fig. 3 graphically represents
those data: life expectancy grows a little in all the districts, among which there
is however a lot of inequality. For example, in the Tre Carrare-Solito area, the
life expectancy of men and women in 2018 was almost the same, and this makes
the trend of the latter even negative; but even in some circumscriptions there is
a paradoxically lower female life expectancy than male even though it concerns
different but still close neighborhoods.
From the indicators of life expectancy at birth, a situation of strong inequality
emerges, which obviously affects the socio-economic situation: the Borgo, Paolo

3
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Table 1: Life expectancy at birth, by year, gender and district
Gender District Year

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Females

Paolo VI 81.43 82.60 84.27 83.94 82.84 80.86 81.86 83.40 82.56 84.13 83.32
Tamburi 83.52 82.42 84.15 83.74 83.63 84.08 85.19 81.54 84.57 84.45 83.71
Borgo 83.51 83.45 82.86 84.19 84.00 84.85 83.13 83.65 84.23 84.15 84.43

Tre Carrare - Solito 84.72 84.71 85.31 85.36 85.59 86.50 84.20 84.70 83.69 85.63 85.34
Montegranaro - Salinella 83.99 85.98 85.18 86.30 85.00 86.03 85.46 86.45 84.58 84.93 85.41
Talsano Lama S. Vito 84.96 83.83 85.45 85.69 83.89 85.32 86.06 84.89 87.00 85.40 85.15

Males

Paolo VI 77.71 79.24 77.79 79.61 78.66 79.88 78.07 79.36 78.63 74.95 79.71
Tamburi 75.35 76.85 78.08 78.84 77.78 77.31 78.46 79.80 77.37 77.42 77.48
Borgo 77.79 76.98 77.02 79.00 78.38 74.87 77.42 78.74 79.39 80.09 78.82

Tre Carrare - Solito 81.46 80.01 79.89 80.82 80.31 81.53 80.19 82.36 83.61 82.18 82.69
Montegranaro - Salinella 81.08 79.91 80.23 80.67 80.82 81.88 81.62 81.98 81.69 82.86 81.60
Talsano Lama S. Vito 81.25 79.65 80.72 81.12 81.60 81.36 81.31 80.89 81.02 83.56 82.79

Figure 3: Life expectancy at birth, by year, gender and district

VI and Tamburi districts are united by the levels of life expectancy very detached
from the others, as if they were different cities (Fig. 4), which also results from
life expectancy at all ages (Fig. 5).
In fact, without considering causes of death, we also calculated Standardized
Mortality Ratios (SMR) between observed and expected deaths estimated by
taking Apulian mortality rates as a reference: the map in Fig. 6 can therefore
be interpreted considering the area of residence as an exposure factor (Graziano
et al., 2009; Mangia et al., 2013; Marinaccio et al., 2011; Mataloni et al., 2012).
For example, we record a statistically significant excess of 21% for Tamburi in
the period 2010-2018. But we also have positive data that show how resilient
the city is: the over one-hundred-year olds are also distributed in the areas of
greatest environmental impact, with people aged 109, 110 and even 112 years
old.

4 Final remarks

This kind of analysis would also make it possible to verify generational inequalities
in small areas and, due to the ever faster updating of the municipal registries, the
data could be processed in near-real-time. In a future work we will determine the
ID-Sentieri socio-deprivation indicators for municipal and sub-municipal areas,
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Figure 4: Life expectancy at birth, by year, gender and district

Figure 5: Life expectancy by age, gender and district (average 2010-2020)

which in the literature is related to indicators such as the standardized mortality
rate.
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Abstract

Traditional direct estimation methods are not efficient for domains
of a survey population with small sample sizes. To estimate the domain
proportions, we combine the direct estimators and the regression-synthetic
estimators supported by domain-level auxiliary information. For the case
of small true proportions, we introduce the design-based linear combination
that is a robust alternative to the empirical best linear unbiased predictor
(EBLUP) based on the Fay–Herriot model. We imitate the Lithuanian
Labor Force Survey, where we estimate the proportions of the unemployed
in municipalities. We show that the considered design-based compositions
and estimators of their mean square errors are competitive for EBLUP and
its accuracy estimation.

Keywords— area-level model, composite estimator, Labor Force Survey

1 Introduction

Design-based and model-assisted direct estimators of parameters rely only on
the sample of the estimation domain (area). Therefore, after the sample is
selected, their application for some unplanned domains leads to high variances
of the estimators because of too small sample sizes. In the small area estimation
theory (Rao and Molina, 2015), indirect estimators borrow sample information
from neighbor domains through auxiliary information and linking models. These
model-based estimators usually have lower variances than the direct estimators,
but their biases can be significant.

To estimate proportions in the domains, one can consider explicit linking
models supported by auxiliary data aggregated to the area level. A popular
model is the Fay–Herriot (FH) model, which is a separate case of linear mixed
models, and the empirical best linear unbiased predictors (EBLUPs) of the
domain means or proportions are derived from it (Fay and Herriot, 1979).
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That small area predictor is expressed as the linear combination of a regression-
synthetic estimator and the direct estimator. While the former part accounts
for a variation reflected in the auxiliary data, the direct component exploits the
unbiasedness property. Compositions of the synthetic and the direct estimators
constitute an important class of indirect estimators. Before the mixed models,
traditional design-based composite estimators were often used (Rao and Molina,
2015, Chapter 3). However, now it is accepted that the models including random
area-specific effects are more useful. For example, they are more convenient
to handle complex data structures than the traditional estimators with only
randomness induced by the sampling design. Another notable drawback of the
latter estimators is the difficulty to estimate their precision.

We construct the design-based composite estimator, which is in some sense
similar to EBLUP. According to the construction, it is a robust estimator
suitable for small or large domain proportions. The mean square error (MSE)
of this composition is estimated as suggested in Čiginas (2021). We compare
the estimators and their MSE estimators in the simulation study using the
Lithuanian Labor Force Survey (LFS) data, where fractions of the unemployed
are the proportions of interest estimated in municipalities.

2 Direct and synthetic estimation

The set U = {1, . . . , N} consists of the labels of elements of the survey population.
Let y be a binary study variable with the fixed values y1, . . . , yN assigned to
the corresponding elements. The sample s ⊂ U of size n < N is drawn by
the sampling design p(·), and πk = Pp{k ∈ s} > 0, k ∈ U , are inclusion
into the sample probabilities. Here the symbol Pp, and hereafter Ep, varp,
and MSEp denote probability, expectation, variance, and MSE according to
p(·), respectively. The characteristic varp(·) is called the sampling variance or
design variance. Let U = U1 ∪ · · · ∪ UM be the partition of the population
into the non-overlapping domains, where the domain Ui contains Ni elements.
Then the domain sample si = s ∩ Ui is of size ni ≤ Ni. We aim to estimate
the proportions θi =

∑
k∈Ui

yk/Ni, i = 1, . . . ,M , where the numbers Ni are
assumed to be known. If the design p(·) does not ensure the fixed sizes ni, then

they can be too small to get suficiently accurate direct estimates θ̂di of θi.
Assume that, for each domain Ui, the auxiliary information is available as

the vector of characteristics zi = (zi1, zi2, . . . , ziP )
′. This assumption narrows a

choice of direct estimators to the design unbiased Horvitz–Thompson estimators
of θi or the weighted sample proportions

θ̂di =
1

N̂i

∑

k∈si

yk
πk
, where N̂i =

∑

k∈si

1

πk
, i = 1, . . . ,M, (1)

that are approximately unbiased. Let ψ̂i be estimators of the sampling variances
ψi = varp(θ̂

d
i ). The direct estimators ψ̂i = ψ̂d

i (Särndal et al., 1992, p. 185)
are approximately design unbiased but they have large variances themselves for
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small sample sizes. Therefore, the variances ψ̂d
i are smoothed, and new more

stable estimators ψ̂s
i are often further used. For the proportions, that ψ̂s

i can
be obtained by assuming that ψi ≈ KNγ

i and estimating the parameters K > 0
and γ ∈ R through a log-log regression model.

The regression-synthetic estimators

θ̂Si = θ̂Si (ψ̂i) = z′iβ̂ with β̂ =

(
M∑

i=1

ziz
′
i

ψ̂i

)−1 M∑

i=1

ziθ̂
d
i

ψ̂i
, i = 1, . . . ,M, (2)

of θi are derived from the basic area-level model for EBLUP ignoring random
area effects (Rao and Molina, 2015, Section 4.2). Here one can take ψ̂i = ψ̂s

i

instead of ψ̂d
i . If the underlying linking model is strong, the sampling variances

of (2) are small, compared to that of θ̂di . However, the design biases of (2) can
be relatively large because a specificy of the domains is not taken into account.

3 Design-based composite estimation

3.1 Evaluation of optimal compositions and their accuracy
estimation

To find a trade-off between larger variances of θ̂di and biases of θ̂Si , we consider
their linear combinations

θ̃Ci = θ̃Ci (λi) = λiθ̂
d
i + (1− λi)θ̂

S
i , i = 1, . . . ,M, (3)

with weights 0 ≤ λi ≤ 1. Minimizing the function MSEp(θ̃
C
i (λi)) with respect to

λi, the optimal weight λ∗i for the domain Ui is obtained and then approximated

using λ∗i ≈ MSEp(θ̂
S
i )/(MSEp(θ̂

d
i ) + MSEp(θ̂

S
i )), see Rao and Molina (2015).

However, it is difficult to evaluate the quantities MSEp(θ̂
S
i ). A common approach

to this is to use the representation

MSEp(θ̂
S
i ) = Ep(θ̂

S
i − θ̂di )

2 − varp(θ̂
S
i − θ̂di ) + varp(θ̂

S
i )

with θ̂di assumed unbiased (Rao and Molina, 2015, Section 3.2.5), and then to
build an approximately design unbiased estimator

mseu(θ̂
S
i ) = (θ̂Si − θ̂di )

2 − σ̂2(θ̂Si − θ̂di ) + σ̂2(θ̂Si ), (4)

where σ̂2(·) is an estimator of the variance varp(·). Unfortunately, estimator
(4) can be very unstable and take negative values for individual small domains.
Therefore, the straightforward estimation of the optimal weights λ∗i is avoided.

To alternatively evaluate the optimal coefficients for compositions (3), one
can set a common weight for all domains and then minimize a total MSE with
respect to that weight (Rao and Molina, 2015, Section 3.4.1). A similar approach
is to apply James–Stein method (Rao and Molina, 2015, Section 3.4). Another
idea is sample-size-dependent estimation (Rao and Molina, 2015, Section 3.3.2).
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Estimation of MSEs of the design-based composite estimators like these is
known as a difficult problem in the literature (Rao and Molina, 2015, Chapter

3). One general way is to treat the composition θ̂Ci = θ̃Ci (λ̂i) as a synthetic
estimator and use the estimator

mseu(θ̂
C
i ) = (θ̂Ci − θ̂di )

2 − σ̂2(θ̂Ci − θ̂di ) + σ̂2(θ̂Ci ) (5)

of MSEp(θ̂
C
i ). However, (5) has the same drawbacks as (4). Another general

method is to assume that the estimator θ̂Ci defined by (3) approximates the

optimal combination θ̂opti = θ̃Ci (λ
∗
i ) quite well and derive the approximation

MSEp(θ̂
C
i ) ≈ λi(1−λi)ψi+varp(θ̂

C
i ) with the empirical version (Čiginas, 2021)

mseb(θ̂
C
i ) = λ̂i(1− λ̂i)ψ̂i + σ̂2(θ̂Ci ), (6)

where we would set ψ̂i = ψ̂s
i . Estimator (6) takes only non-negative values.

3.2 Composition based on a ratio of variances

The sampling variance ψi is approximately proportional to the product θi(1−θi).
That is, one can use the approximation

ψi ≈ Diθi(1− θi)/ni, (7)

where Di is the design effect reflecting the sample efficiency of the complex
sampling design (Kish, 1995). Then, inserting θ̂di and an appropriate estimator

D̂i of Di into (7), we approximate the direct estimator ψ̂d
i of ψi.

Let us first suppose that the domain proportions θi are small, say θi < 0.1.
Consider two candidate estimators ψ̂d

i and ψ̂s
i of ψi used in (2). Assume that we

got too small estimate θ̂di of θi for the specific sample s. The direct estimate ψ̂d
i

then underestimates ψi. Therefore, the inequality ψ̂s
i > ψ̂d

i should often hold,

that is, the smoothed variance ψ̂s
i could be a better choice than ψ̂d

i . Now suppose

that θ̂di overestimated the parameter θi. Then ψ̂
d
i overestimates ψi as well, and

the inequality ψ̂s
i < ψ̂d

i should hold if θ̂di is an outlier. That larger estimate

ψ̂d
i can be employed to down-weight the outlying observation θ̂di used in β̂ thus

robustifying estimators (2). From these considerations, we derive the combined

estimators ψ̂c
i = max{ψ̂s

i , ψ̂
d
i } of ψi that should improve the regression-synthetic

estimation. Next, we define the composite estimators

θ̂Ci = λ̂iθ̂
d
i + (1− λ̂i)θ̂

S
i (ψ̂

c
i ) with λ̂i =

min{ψ̂s
i , ψ̂

d
i }

ψ̂c
i

, i = 1, . . . ,M, (8)

of the proportions θi. If the estimate θ̂di is an outlier by its small or large value,
then relatively more weight is attached to the synthetic part of composition (8).

We use the same arguments to create (8) if the parameters θi are not small,

but then the inequalities max{θi, θ̂di } < 1/2 or min{θi, θ̂di } > 1/2 must be
satisfied. If these inequalities are not valid, the composite estimator is still
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applicable, but it can be less efficient. The worst scenario here would be a large
difference θi − θ̂di and the relation θi ≈ 1− θ̂di but those events are rare.

To estimate MSE of design-based composition (8), we apply estimator (6).

4 Simulations using the Labor Force Survey data

Let θi be the proportions of the unemployed in the municipalities of Lithuania.
We construct the artificial population U from the single sample data by removing
areas with too small fractions of unemployed and then replicating the data of
each person the number of times equal to the rounded survey weight. We get
M = 30 and N = 1396763. We draw R = 103 samples of households of size
n′ = 3700 without replacement with probabilities proportional to household
sizes. The selected households are surveyed entirely, and it yields n ≈ 7667.

We compare the direct estimator θ̂di from (1), synthetic estimator (2), design-

based composition (8), and EBLUP θ̂FHi , where ψ̂i = ψ̂s
i and the variance of the

random area effects is estimated using the method of moments. Moreover, we
compare the accuracy of the appropriate MSE estimator for θ̂FHi with that of
two MSE estimators (5) and (6) applied to (8). We consider also the optimal

combination θ̂opti and its MSE estimator by (6). The auxiliary proportions
in zi = (1, zi2, zi3, zi4, zi5, zi6)

′ are: zi2 is registered unemployment, zi3 means
persons who pay the social contribution, zi4 is for males, and zi5 and zi6 are for
age intervals 26–40 and 41–55, respectively. We apply the bootstrap to evaluate
the variances in (5) and (6). We use the accuracy measures

RMSE(µ̂i) =

(
1

R

R∑

r=1

(µ̂
(r)
i − µi)

2

)1/2

and AB(µ̂i) =

∣∣∣∣∣
1

R

R∑

r=1

µ̂
(r)
i − µi

∣∣∣∣∣,

where µ̂
(r)
i is a realization of the specific estimator µ̂i of the parameter µi,

based on the rth sample. We classify the municipalities by the expected domain
sample size into three classes of equal size, and calculate the average of RMSEs
as well as ABs over domains of each class. We also present the averages over all
municipalities as common indicators of accuracy.

The results are in Table 1. We use the superscripts of estimators to discuss
the output. Any indirect estimator of the proportions improves the direct one
in the sense of RMSE, and theoretical composition opt is the best estimator.
Among the indirect estimators, synthetic estimator S has much larger design
biases than compositions FH and C. The average of RMSEs over all domains of
design-based composite estimator C is smaller than that of FH. MSE estimation
(6) for C evidently improves estimation (5), and yields better results than the
MSE estimator for FH. The best MSE estimation using (6) is obtained for
composition opt. Composite estimator C only approximates the optimal one
and, therefore, its MSE estimator makes larger errors. On the other hand,
these errors are acceptable if to compare them with the results for FH.
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Table 1: Average RMSEs and ABs of estimators for the unemployed fractions.

Average RMSE (×102) Average AB (×102)

Estimator Domain size class Domain size class
any small med. large any small med. large

θ̂di 2.4793 3.8540 2.4578 1.1259 0.0636 0.1200 0.0485 0.0223

θ̂Si 1.8174 2.8950 1.5632 0.9940 1.3461 2.3656 1.0677 0.6050

θ̂FHi 1.7857 2.6707 1.7156 0.9707 0.7349 1.4738 0.5496 0.1811

θ̂Ci 1.7511 2.6798 1.6838 0.8897 0.7951 1.4777 0.6130 0.2946

θ̂opti 1.4712 2.3804 1.2486 0.7846 0.7301 1.3978 0.5206 0.2720

mse(θ̂FHi ) 0.0223 0.0445 0.0173 0.0051 0.0180 0.0373 0.0128 0.0039

mseu(θ̂
C
i ) 0.0708 0.1540 0.0491 0.0094 0.0263 0.0532 0.0215 0.0041

mseb(θ̂
C
i ) 0.0173 0.0371 0.0119 0.0030 0.0135 0.0296 0.0087 0.0021

mseb(θ̂
opt
i ) 0.0098 0.0206 0.0064 0.0023 0.0050 0.0110 0.0027 0.0012

5 Conclusions

The construction of composite estimator (8) is based on the monotonicity of the
variance of the direct estimator as the function of the proportion. Approximation
(7) is the monotone function in two separate parts of the interval [0, 1]. Therefore,
the composition loses its efficiency for the proportions close to turning point 1/2.

The simulations show that the new composition might be an alternative to
the classical EBLUP estimating small proportions in small domains. Design-
based estimators and estimators of MSE under the design-based approach are
desirable in practice. That design MSE estimator (6) works well in the experiment.
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Abstract

The aim of this work is to describe the statistical methodology used to
produce estimates of a set of labour market variables at City and Fua level
and to analyse the results obtained. The small area estimates have been
computed through a unit level multivariate model, designed to allow the
estimation of the variables of interest in a coherent way and to exploit the
administrative data from the Integrated System of Registers (SIR). The
estimator is based on a multivariate model implemented through the R
MIND function, developed by Istat. The method described in the present
work is an extended multivariate version of the more standard linear
mixed model at unit level. The coherence of indicators across different
domains was reached via a single cross-classification model that includes
all the domains of interest. The results show significant efficiency’s gains
with respect to the direct estimates, this is relevant in particular for the
estimation of the unemployed persons (total and by sex) for which the
sampling errors of direct estimates were rather high.

Keywords— multivariate small area models, registers and administrative
data, coherence among estimates

1 Goal of the work

The Labour force survey (LFS) is the main source of information on the Italian
labour market, more specifically on the labour supply, that is employment and
unemployment of the population. Beyond the direct estimates computed for
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the usual administrative domains (representing planned domains in the LFS
sampling design), small area estimates are regularly produced for the Labour
Market Areas, that is sub-regional areas where the bulk of the labour force lives
and works, and where companies can find the largest amount of the needed
labour force. In recent years the interest in statistical information on small
geographical areas increased; Eurostat (EUROSTAT, 2018) in agreement with
National Statistical Institutes is promoting the production of estimates on Cities
and their commuting zones (the so-called Functional Urban Areas – Fua).
Fua are based on the OECD-EC city definition and they represent territories
that are highly integrated from an economic point of view. Such territorial
domains are typically “small areas”: they are not planned domains of social
surveys, some of them result uncovered by the sample, in general sampling rate
is very variable; they often intersect the administrative boundaries of provinces
(Nuts3) and, in some cases, even of regions (Nuts2).
Regarding the labour market participation, the variables of interest on such
areas are twelve, namely economically active population (EAP), total and age
class 20-64, by gender; employed (EMP) age class 20-64, by gender; unemployed
total, by gender. Beyond the additive coherence between estimates referred to
men, women and total, it is worth noting that a relationship holds between the
indicators:

EAP 20− 64 < EMP 20− 64 + UNE < EAP sex =M,F, Total.

In order to produce small area estimates, the availability of covariates is
fundamental. We dispose of a large set of administrative information for
all the individuals in the population deriving from the Integrated System of
Registers, in particular from the Thematic Labour Registry (RTL) and the
Base Register of Individuals (RBI), integrated with further information on
demographic and social aspects, mainly employment benefits and income. The
aim of this work is to describe the statistical methodology to produce estimates
of some labour market variables at City and Fua level using small area models,
exploiting administrative data beyond LFS data and guaranteeing the coherence
among all the estimates. In paragraph 2 the small area estimation models
that we experimented are described. Main results are analysed in paragraph 3,
comparing small area estimates obtained through different models with direct
ones; finally, some conclusions are drawn.

2 Small area estimation models

As we mentioned earlier Cities and Fua do not represent planned domains of the
LFS. The survey’s planned domains are provinces and regions, for which annual
and quarterly direct estimates are released. The sample design envisages a
stratification of municipalities at provincial level and the calibration used to
produce the direct estimates is carried out with respect to the population of
provinces and regions. Since Cities and Fua are not planned domains, the
sample coverage varies and certain areas may be uncovered.
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The direct LFS estimates of the twelve indicators mentioned earlier were
produced for the areas of interest (year 2018); they represent the first step
towards the production of estimates with small area models. They were
produced applying the same estimator used for the survey’s current estimates,
namely a calibration estimator for which the constraints are represented
essentially by the population distribution by age and sex at different territorial
scales (provinces, regions). The accuracy of direct estimates has been evaluated
through their coefficient of variation.
Coefficients of variation strongly vary among the areas and the indicators of
interest. Looking at two main indicators – employed aged 20-64 (EMP 20-64)
and unemployed (UNE), by gender, on Cities and Fua – cvs may be considered
”acceptable” for the employed (the maximum is 0.22), while for the unemployed
they are higher: they exceed 0.33 in 29 Fua and 58 Cities – maximum values
are 0.57 in one Fua and 1.10 in one City –, while they range between 0.16 and
0.33 in 114 Fua and 136 Cities and in 103 Fua and 64 Cities they are lower
than 0.16. The small area estimation model for achieving the estimation goal of
the present work must follow a multivariate approach in order to preserve the
inner coherence among the estimates of the different indicators. The estimator
we used is based on a multivariate model implemented through the R MIND
function (D’Aló et al., 2021a,b), developed by Istat. The method is an extended
multivariate version of the more standard linear mixed model at unit level
(Battese et al., 1988). The main extensions give the possibility to include two
or more random effects in the model and to consider a multivariate qualitative
variable as dependent variable (following the multivariate modelling approach of
Datta et al., 1999). More specifically, as regards the random effects, when some
domains of interest are not covered by the sample, it is possible to introduce
one or more marginal random effects that, unlike the domains of interest, are
all observed in the sample. In order to produce the labour market estimates
at City and Fua level, the potential of the multivariate approach proposed by
MIND has been exploited in two ways: to specify the dependent variable and
to define the random effects. Since the variables of interest are the employed,
the unemployed and the economically active population (that is the sum of
employed and unemployed persons), the dependent variable y was defined as
a vector composed by three dichotomous variables representing the categories
of the employed, unemployed and inactive (these three groups represent an
exhaustive and mutually exclusive classification of the population). Obviously,
the joint modelling of the three labour market status guarantees the coherence
with the population of the domain of interest. The territorial domains of interest
for each variable are given by Cities and Fua. Within each territorial domain,
the units are further specified according to sex and age group (the indicators for
the employed refer to the 20-64 age group, the indicators for the unemployed
to those aged 15 and over, while the indicators for the economically active
population refer to both age groups).
In order to guarantee the coherence of indicators across different domains, it is
possible to define a single cross-classification model that includes all the domains
of interest. The model for the vector yd,j,k associated to the k (k = 1, . . . , Nd,j)
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individual in the domain (d, j), being d = 1, . . . , D the geographical domain and
j = 1, . . . , C the modalities of socio-demographic variables, can be expressed as:

yd,j,k = XT
d,j,kβ + τd + δj + γd,j + ed,j,k,

where τ , δ and γ are the random effects. We consider a model where the random
effects δ and γ are degenerate at zero.
In order to estimate the labour market indicators, the information deriving from
the Integrated System of Registers was used and, in particular, that from the
Thematic Labour Registry (RTL) and from the Base Register of Individuals
(RBI), integrated with further administrative information on demographic and
social aspects, mainly employment benefits and income. Besides the usual
demographic auxiliary variables, information regarding monthly employment,
events of job-protected leave for which the worker receives an allowance,
information on the end of the job are used. Moreover, from fiscal sources,
information on work income, retirement income and capital income are
also available. Exploiting these income variables jointly with the family’s
characteristics, the individual equivalent income indicator was also computed.
Finally, the following social variables are taken into account: educational
qualification and participation in training courses; retirement scheme, other
types of financial support (unemployment benefits, family allowances for
workers, transfers to families with economic problems, sickness and maternity
allowances, subsidies for students).

3 Analysis of the results

The selection of the estimation models for the indicators of interest at City
and Fua level was carried out considering separately the employed and the
unemployed. The best fit of the model has been assessed through a stepwise
approach applied to the full mixed model, defined for Fua and City, maximising
the usual diagnostics such as the AIC and BIC criteria (see Table 1). The
marginal and conditional R2 have been computed; as expected, the marginal
R2 is very high (77%) for the employed, thanks to the presence of variables
that are strongly associated to the employment status such as administrative
employment and work income. The marginal R2 is instead lower (14%) for the
unemployed, as there are no variables strongly associated to the phenomenon.
The random domain effect leads to a small increase of the R2 index (conditional
R2).

Table 1: Indicators of the goodness of fit of the selected model
area Indicator N Obs AIC BIC LL LLDF Sigma Marginal R2 Conditional R2

FUA Employed 231504 -17142.4 -16697.2 8614.20 43 0.233 0.773 0.775
FUA Unemployed 231504 -76704.8 -76259.7 38395.42 43 0.205 0.132 0.137
City Employed 144899 -9689.8 -9264.8 4887.92 43 0.233 0.771 0.773
City Unemployed 144899 -40462.9 -40037.9 20274.49 43 0.210 0.136 0.142
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That is confirmed also by the analysis of the inter-class correlation coefficient
(ICC). For both the employed and the unemployed, as well as for both
the domains (Fua and Cities), the variance is almost fully explained by the
variability across units, while the variability explained by the inclusion in the
different domains is almost equal to zero. Based on these results we can expect
that the efficiency and reliability of small area estimates will strongly depend
on the auxiliary information used in the estimation model and in particular on
their relationship with the variable of interest. To this aim, the availability of a
large set of administrative information is very useful in the estimation process.
Looking at the distribution of the small area estimates and the corresponding
direct estimates, taking into account also their confidence intervals, we see that
the SAE estimates do not present evident systematic bias (see Fig. 1). In
particular, we may see that the small area estimates fall almost entirely in the
confidence interval of the direct estimates. This applies in general to the whole
set of parameters of interest as well as to both Cities and Fua. In some cases,
outliers of the direct estimates were corrected by the SAE estimates.

Figure 1: SAE and direct estimates for employment and unemployment rate
and related confidence intervals. Domains: Cities

Figure 2: Distribution of coefficient of variations (percentage) of SAE and direct
estimates for employed and unemployed by gender. Domains: Fua

In general, the SAE estimates lead to strong efficiency gains for the employed,
due to the goodness of the fitted model, but also for the unemployed the gain
of efficiency is relevant (see Fig. 2).
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4 Conclusions and further developments

In this work we described the methodology used to produce SAE estimates
for several labour market indicators over different domains (Fua and Cities),
which are not planned domains for the LFS and intersect administrative units
(provinces and regions). We adopted a unit level multivariate model, designed
to allow the estimation of the variables of interest in a coherent way and to
exploit the large set of administrative information from the Integrated System
of Registers (SIR). Beyond this estimator, area level univariate models have
also been tested, however the use of a specific model for each variable of interest
does not guarantee the inner coherence among the estimates; moreover the
informative potential from the SIR is better exploited by the unit level model,
while area level estimates tends to be closer to direct ones; compared with
direct estimates, SAE unit level models allow to obtain more evident efficiency
gains. These estimates are made available online on Eurostat website1 as part
of the Cities’ database and they enlarge the set of information on Italian labour
market over small territorial areas. Ongoing studies concern the analysis of the
external coherence of these SAE estimates with direct LFS estimates usually
produced and disseminated. Benchmarking techniques should also be taken into
account, considering that LFS direct estimates are produced and disseminated
at several levels of disaggregation and, in a cross-sectional perspective, LFS
provides monthly estimates for the whole Country, quarterly figures for NUT2
regions and yearly figures at NUTS3 level.

References

Battese G. E., Harter R. M. and Fuller W. A. (1988). An Error-Components Model
for Prediction of County Crop Areas Suing Survey and Satellite Data. Journal of
the American Statistical Association 83(401), 28–36
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D’Aló, M., Falorsi, S. and Fasulo (2021). MIND R Package https: // cran.

r-project. org/ web/ packages/ mind/ index. html

Datta G. S., Day B., Basawa I. (1999). Empirical best linear unbiased and empirical
Bayes prediction in multivariate small area estimation. Journal of Statistical
Planning and Inference, 75(2), 269–279.

EUROSTAT (2018). Methodological manual of territorial typologies.
https: // ec. europa. eu/ eurostat/ statistics-explained/ index. php? title=

Territorial_ typologies_ manual .

1EUROSTAT Cities database: ,https://ec.europa.eu/eurostat/web/cities/data/

database
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MIND, an R package for multivariate small area

estimation with multiple random effects.
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Abstract

This work is aimed to describe a Small Area Estimator based on a
multivariate linear mixed model implemented in the MIND R Package
(2021a). The method is a multivariate version of the standard area
and unit small area estimators based on linear mixed model. Beyond
the possibility of considering multivariate qualitative (or quantitative
variable in the incoming release of the new version of package) dependent
variable, the proposed method allows to specify a model with more than
one random effects. The further marginal random effects, in addition
to the usual random area effects, can be very useful when the areas
of interest are very small and a significant numbers of areas are out
of sample. This means that when some domains of interest are out of
sample, or are strongly under covered, it is possible to introduce one or
more marginal random effects that are instead well represented in the
sample data. In this way, the bias of the synthetic estimator could be
lessened. The estimates obtained with MIND fall within the group of
estimators classified as model-based projection or composed estimator.
The last one using multivariate predicted values, under the model, only
for the subset of units that are not included in the sample. The REML
estimation of variance components of the mixed effects model and MSE
is calculated by a multivariate extension of the methodology proposed
in Saei e Chambers (2003). A simulation study has been carried out to
evaluate the performance of the small area estimators considered, while
an application to real data are report in D’Alò et al (2021b).

Keywords— ANOVA, Spatial and Temporal Autocorrelation, EBLUP

1 Introduction

Over the last few years, the paradigm underlying the statistical process has
been gradually changing the production of official statistical data by the
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major information statistical centres, both nationally and internationally. In
fact, alongside the data collected using traditional ”statistical surveys”, the
growing availability of data from so-called ”new data sources” – both those of
an administrative nature and those obtained through new electronic devices
and information-gathering channels on the Internet – overwhelmingly dictates
the agenda of the methodological and operational aspects to be addressed
and resolved by official statisticians in each country. As far as the more
strictly statistical-methodological aspects are concerned, the following aspects
are relevant: the need to estimate multiple contingency tables, which arises from
the fact that large scale surveys produce multiway tables (hypercubes) obtained
from the intersection of numerous variables; many different and intersecting
territorial and structural estimation domains; the different cells of hypercubes
may be either estimated using information arising from Statistical Registers
or estimated using survey data by means of direct or indirect estimators; the
need to produce predicted values at the level of each the single record of
the Statistical Register representing the target population. In this context,
multivariate modelling may be more efficient (or appropriate) because there are
multiple target variables from each small area, and these are either correlated
with (or mutually restrictive of) each other. Also, a set of counts may sum
up to a known total in each small area, such as the number of persons in
different household types or the number of persons with the three different
labour market statuses. The small area estimation methodology proposed, based
on multivariate small area model, can properly aid to the solution of the above
listed problems. For estimating simultaneously different totals of interest on the
basis of the same multivariate linear mixed model, the multivariate modelling
approach by Datta et al (1999) is followed. In particular, the proposed Small
Area Estimation (SAE) method is a multivariate extension of the standard
estimators for small area based on a linear mixed model with only an area
random effects, in fact, it allows to deal with more than one target variable at
same time. From this the name of the R package MIND - Multivariate model
based INference for Domains (https://cran.r-project.org/web/packages/
mind/index.html). Moreover, the method here described allows a model
specification with more than one random effect, so that, possible marginal effects
can be fitted in the model. This further possible marginal random effects, in
addition or instead to the usual random area effects, can be very useful when
the areas of interest are very small and a significant numbers of areas are out of
sample. This means that when some domains of interest are out of sample or are
strongly under covered, one or more marginal random effects, which are covered
in the sample data, can be fitted into the model. Bigger is the deviance among
marginal effects more the bias of the synthetic estimator can be lessened. This
means that more local smoothed synthetic estimates can be derived for the out
of sample areas, and that generally the over-shrinkage of the small area estimates
can be smaller. The marginal random effect may be derived from the variables
used to define the strata or from some other variables utilized for defining the
planned domains or for cross-classify the population units.
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2 MIND methodology

Let’s consider the General Linear Mixed Model (GLMM) with: V ≥ 1 target
variables, ∆ ≥ 1 and J ≥ 1 factors for the fixed and random part of the
model. The v-th (v = 1, . . . , V ) target variable includes Vk ≥ 2 categories or
Vk = 1 for a quantitative variable. The δ-th (δ = 1, . . . ,∆) fixed effect factor
has Gδ ≥ 2 levels, where gδ denotes the generic of them (gδ = 1, . . . , Gδ);
Gδ = 1 for a quantitative variable. The j-th (j = 1, . . . , J) random effect
factor is characterized by Qj levels, where qj denotes the generic of them

(qj = 1, . . . , Qj). Then the multivariate model considers V (=
∑K
k=1 Vk) target

variables, G(=
∑∆
δ=1Gδ) levels for the fixed part and Q(=

∑J
j=1Qj) for the

random part.
The GLMM, M (y; β, ω), depends on a set of unknown parameters:
regression coefficients β and variance components ω and is expressed as y =
Xβ + Zu+ e. In order to deal with the multivariate nature of the model, let’s
denote with: ∗ = [∗b], a column vector, ∗ ≡ a, or a matrix, ∗ ≡ A, formed by B
blocks: ∗b ≡ ab or ∗b ≡ Ab, respectively; diag

B
b=1∗b a diagonal block matrix of B

blocks ∗b (scalar ab, vector ab or matrix Ab); Σa = diagBb=1ab a diagonal block
matrix formed from vector a; matBb,b′ {∗bb′} a block matrix formed by B × B
blocks: ∗bb′ ≡ abb′ or ∗bb′ ≡ Abb′ ; ⊗ the Kronecker product. The matrices and
vectors of the model, y = [yi], X = [Xi], β = [βδ,gδ ], Z = [Zi],u = [uj,qj ]
and e = [ei], are formed by column blocks each one composed by V rows. The
index i(i = 1, . . . , a) denotes the generic basic element of the model: sampled
unit or area (domain). More specifically, yi and ei denote vectors of target
variables and of residuals, Xi= ẋ′

i⊗ IV and Zi= ż′i⊗ IV are the design matrices
of fixed and random effects - being x′

i and z′i two covariate vectors available for
the i-th basic element of the model; βδ,gδ and uj,qj are vectors referred to gδ-th
and qj–th levels of δ-th fixed and j-th and random effects factors respectively.
Notice that ẋ′

i may include a subset of ∆′ ≤ ∆ quantitative variables, being for
these Gδ′ = 1(δ′ = 1, . . . ,∆′).
Vector e is supposed to have an iid multi-Normal, MN(0,R), distribution with
mean 0 and variance covariance matrix R = R(σ2

e) with a diagonal block
structure dependent on the vector of variance components σ2

e = [σ2
e,v] (v =

1, . . . , V ). In particular, R = [Σσe ⊗ Ia] • W with σe = [σ2
e,v] and W =

diagai=1Wi and Wi = ẁi ⊗ IV for ẁi a known quantity assigned to i-th basic
element of (1).
Vector u, is supposed to have an iidmulti-Normal, MN(0,G), distribution with
mean 0 and a block diagonal structure for variance covariance matrixG = G(ω)
dependent on the vector of (1 + 2 • J)× V variance components ω = [σ2′

e ,γ
′]′,

being γ = [φ′,ρ′]′ for φ = [φj ] and ρ = [ρj ] . In details, G = [Σσe ⊗ IQ] •Ω,

where Ω = Ω(γ) = diagJj=1Ωj is defined under a linear covariance structure
composed by J diagonal blocks. The structure of j-th block Ωj = Ωj(φj ,ρj)
is known unless the variance component vectors φj = [φj,v = (σ2

j,v/σ2
e)] and

ρj = [ρj,v]. In particular it is obtained as Ωj =
[
Σφj

⊗ IQj

]
• Ὼj , where
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Σφj
= diagVv=1φj,v and Ὼj = Ὼj(ρj) is a square matrix formed by blocks,

Ὼj,qjq′j
= Ὼj,qjq′j

(ρj) (qj , q
′
j = 1, . . . , Qj), each one of order V . As it is

assumed that the variables yv and yv′(v ̸= v′) are uncorrelated, each one of

the Qj × Qj blocks, Ὼj,qjq′j
, of Ὼj = mat

Qj

qjq′j
Ὼj,qjq′j

is a diagonal matrix.

For each one of the matrices, Ὼj (j = 1, . . . , J), we assume three alternative
models M1 ÷M3. The first one is the basic ANOVA model, in which ρj ≡ 0

and: Ὼj,qjq′j
≡ 0V×V forqj ̸= q′j ; Ὼj,qjq′j

≡ IV forqj = q′j . M2, assumes an

AR(1) process, in which the difference function, fj(qj , q
′
j), between levels qj

and q′j of j-th random factor, coincides with the lag, l(qj , q′j)
and Ὼj,qjq′j

≡
[IV (IV − Σ2

ρj)]
−1Σl

ρj(qj, qj
′). M3, assumes a process depending on a spatial

distance function, s(qj ,q′j), and Ὼj,qjq′j
≡ IV + δqj ,q′j + exp

s(qj,q′j)Σ−1
ρj

−1
. The

BLUE estimator of fixed effects, β̃ = β̃ (γ), and BLUP estimator the random
effects ũ = ũ (γ) depends on the unknown variance components γ. Adapting
the REML procedure by Saei e Chambers (2003) at the multivariate context,

we get ω = ω̂, and the final plug-in estimators, β̂ = β̂ (γ̂) and û = û (γ), are

expressed as: β̂ = M̂−1
XX (γ̂)•m̂Xy (γ̂) and û = T̂∗[m̂Zy (γ̂)−M̂ZX (γ̂)]. In the

above formulas: M̂−1
XX (γ̂) = [MXX−MZX ′T ∗MZX]−1, m̂Xy (γ̂) = [mXy−

M′
ZXT̂∗ mZy] in which T̂∗ = T̂∗ (γ̂) is given by T̂∗ = [MZZ+Ω−1(γ̂)]−1, where

MAB = A′WB and mAb = A′Wy for A or B = (X,Z).
Under GLMM, the general expression of target parameter is given by η =
[ηd] = [X

+
d∗β+Z+

d∗u], where ηd is the sub-vector of V target parameters for d-

th target domain (d = 1, . . . , D). The EBLUP estimator, η̂EP = η̂EP (γ̂), of η

is η̂EP =
[
η̂EPd

]
= [X

+
d∗β̂ + Z+

d∗u]. The correspondent Synthetic Predictor

is η̂SP = [X
+
d∗β̂]. The MSE of η̂EP is the diagonal of MCPE

[
η̂GE

]
=

Ĝ1 (γ̂) + Ĝ2 (γ̂) + 2Ĝ3 (γ̂), where: Ĝ1 (γ̂) = [Σσ̂e
⊗ ID] • Z+

∗ T̂
∗Z+′

∗ ; Ĝ2 (γ̂) =

[Σσ̂e
⊗ ID] Ĝ2∗ M̂

−1

XX (γ̂) Ĝ′
2∗, for Ĝ2∗ (γ̂) =

[
X+

∗ − Z+
∗ T̂

∗ (γ̂) M̂ZX (γ̂)
]
;

Ĝ3 (γ̂) = [Σσ̂e
⊗ ID] tr

{
Ĉ Σ̂

∗
Ĉ′B̂

}
. In last formula: C = ∂[Z+

∗ T∗ (γ)/∂γ],

which equals to −Z+
∗ T

∗ (γ) ⊗ I2×J/∂Ω−1 (γ)∂γT∗ (γ); Σ∗ = MZZ +
MZZΩ(γ)MZZ ; B is the submatrix of the inverse of the Fisher information
matrix referred to the sub-component γ of the vector of the variance components
ω.
The setting of η̂GE is completely general and allows to apply with the same
general formulation both unit or area level estimators, depending on the level
of data aggregation of the basic elements of the model. In case of a unit-level
estimator, the basic elements of the model coincide with the sampling units,
then: a ≡ n and ≡ k (k = 1, . . . , n). In case of an area-level estimator,
the model coincide with the sampled domains, then: a ≡ D̀ and ≡ d (d =
1, . . . , D̀), being D, the size of the population domains and Dout = D − D̀ the
out of sample ones.
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3 Simulation study

In order to evaluate the performance of the proposed estimator a Monte Carlo
simulation 200 samples have been drawn from the 2011 Italian Population
Census for one Italian region, Piedmont, using the Italian Permanent Census
sampling design. In this region, there are 1201 municipalities and 359 of those
are included in the sample. The target variables are the population counts
for the five modes of the variable occupational status (employed, unemployed,
retired, student, in other condition). The overall number of cells in the census
table is 12010 (1201 municipalities times 2 gender times 5 occupational status).
A mixed linear model with two random effect has been specified, the first at
municipality level by gender and the second at level of aggregated Local Labour
Market Area. The auxiliary variables are demographic variables, i.e. class
of age by gender, marital status, educational level and citizenship. Different
estimators are compared by means of the standard indicators of accuracy of
prediction: Average Absolute Relative Bias (AARB) and Average Relative Root
Mean Squared Error (ARRMSE). The evaluation indicators are formulated as
follows:

AARB =
1

D

D∑

d=1

∣∣∣ 1R
∑200
r=1 ŷrd − Yd

∣∣∣
Yd

RRMSE =
1

D

D∑

d=1

1
R

∑200
r=1

√
(ŷrd − Yd)2

Yd

where ŷrd and Yd are the predicted true value in the r-th simulated sample in
the domain d. The estimator consider are direct estimator, EBLUP, Projection
and Synthetic and their performance in term of AARB and ARRMSE are
showed the Table 1 and 2. The simulation study shows good performance
of EBLUP and Projection estimator in term of ARRMSE and, except for
unemployed and retired people, also in term of AARB, with respect to the
direct estimator for in sample areas.

4 Conclusions and further developments

The R package MIND allows to compute small area estimates based on
multivariate mixed model using two and more random effects. The simulation
study shows good performance of proposed estimators. Further development
will be the introduction of the spatial correlation among areas and the time
correlation for repeated surveys.
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Table 1: AARB for the variable occupational status for the estimators
Direct Employed Unemployed Student Retired Other

In-sample 7,2 7,4 7,8 7,3 7,4
EBLUP Employed Unemployed Student Retired Other

Overall 4,0 34,2 5,1 14,5 7,7
In-sample 1,8 16,8 2,1 6,8 3,2
Out-sample 4,9 41,6 6,4 17,8 9,6
Projection Employed Unemployed Student Retired Other
Overall 4,3 37,7 5,5 16,2 8,4
In-sample 3,2 28,6 3,4 12,6 5,5
Out-sample 4,9 41,6 6,4 17,8 9,6
Synthetic Employed Unemployed Student Retired Other
Overall 5,0 41,1 6,3 16,8 9,5
In-sample 4,7 37,7 5,8 14,7 8,9
Out-sample 5,1 42,6 6,5 17,8 9,7

Table 2: ARRMSE for the variable occupational status for the estimators
Direct Employed Unemployed Student Retired Other

In-sample 12,3 38,5 14,4 31,5 17,3
EBLUP Employed Unemployed Student Retired Other

Overall 4,6 27,3 5,6 14,1 8,7
In-sample 3,5 22,2 4,0 11,3 6,0
Out-sample 5,1 29,5 6,3 15,3 9,8
Projection Employed Unemployed Student Retired Other
Overall 4,7 27,8 5,7 14,4 8,9
In-sample 3,9 23,8 4,4 12,2 6,8
Out-sample 5,1 29,5 6,3 15,3 9,8
Synthetic Employed Unemployed Student Retired Other
Overall 5,2 28,6 6,2 14,6 9,3
In-sample 4,9 26,7 5,8 13,0 8,7
Out-sample 5,3 29,4 6,4 15,3 9,6
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Abstract

In the first quarter of 2019 there were 2457 municipalities in Mexico,
distributed among 32 states. The size of the total population in each
one is very variable. The working age population (older than 15 years,
according to Mexican legislation) in these municipalities goes from 68
people in Santa Magdalena Jicotitlán, Oaxaca to 1,448,788 in Iztapalapa,
Mexico City. In this context, the analysis of results from applying
small area estimation models to estimate employed population in each
one of these municipalities requires identifying auxiliary variables that
provide sensible results. In a study of the employment rate by means
of estimating both employed and total economically active populations
by municipality, the resulting model shows an employment rate equal to,
or larger than 99 percent of the economically active population for 328
municipalities, whose population older than 15 varies from 167 to 85,875
persons. Economic theory about the Natural unemployment rate indicates
that in any economy there exists a subset of the total economically active
population, which is part of frictional unemployment, defined as those
who are moving from one job to another or that just entered the labour
market. This makes it very unlikely to have employment rates of 100
percent, where all people interested in getting a job have one, since this
would motivate part of those population in the economically unactive
who are available to work, who could try to enter in labour market. In
this paper we look for variables that allow us to identify results from the
model that are adequate to show the reality of the employment rate at
the municipality level.

Keywords— Small area, unemployment, municipality, Mexico
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1 Introduction

Article 3 of the National Statistics and Geographical Information System of
Mexico (SNIEG, in Spanish) establishes that the System has as its aim to
provide the State and society as a whole with Information that is of quality,
relevant, timely and truthful in order to contribute to national development.
The guiding principles of the System will be accessibility, transparency,
objectivity and independence. The Mexican Government is divided into three
orders: Federal, State and Municipal. The three orders contribute to the
attainment of the State goals and tasks: guarantee human rights, provide
public services, assure law and order, write new laws and monitor their
implementation. So whenever possible it is necessary to produce statistical
information disaggregated by all orders of government.

2 Background

The National Survey of Occupation and Employment (ENOE) is the main source
of information on the Mexican labour market; it provides monthly and quarterly
data on the labor force, employment, labor informality, underemployment and
unemployment. It is also the largest continuous statistical project in Mexico,
providing national and four-size locality figures for each of the 32 states and for
a total of 39 cities.
The general objectives of the ENOE are:

1. Ensure that the country has basic statistical information with national,
state and major city representation on the employment characteristics of
the population.

2. To provide sociodemographic statistical information to complement and
deepen the analysis of the employment characteristics of the Mexican
population.

3. Increase the supply of strategic indicators for the full knowledge of
the national reality and for decision-making in the formulation of labor
policies.

The information generated by the ENOE is important for the design of public
policies on employment, and data are required with representation at the level
of the municipalities. Given these circumstances and the high cost of generating
samples that are sufficiently large to calculate indicators at the municipal level.
It was necessary to find methodological tools that would allow us to provide data
on the participation of the population in the labor market within municipalities:
as a result, small area estimation techniques were applied to obtain the number
of economically active and employed population. (Vielma Orozco et al., 2021).
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3 Small Area Estimation

The purpose of applying SAE is to obtain estimates of the economically active
population and the employed (and unemployed) population by municipality, for
which census data, surveys and administrative records were explored.

3.1 The Model

An initial set of 12 auxiliary variables was considered – for which temporal and
geographic reference, adjustments were made to make them compatible with
the variables provided by ENOE, Vielma et al. (2021). The final selection of
auxiliary variables reduced to three after testing for their significance:

� Economic dependency ratio (Population under 15 years old and 65 years
old and over compared to the population of 15 to 64 years old)

� Proportion of male population (Male population aged 15 to 44 years old
compared to population aged 15 and over)

� Proportion of the population affiliated to IMSS1 or ISSSTE2 (Population
affiliated to these institutions compared to the population aged 15 years
old and over).

The dependent variables (one model for each) are:
Economically Active Population (EAP), composed of people aged 15 and over
who had a link with the economic activity or who looked for it in the reference
week, so they were employed or unemployed. Mexican law establishes the age
of at least 15 years to be able to work.
Employed population (EP), are people aged 15 and over who in the reference
week carried out some economic activity for at least one hour. It includes the
employed who had a job, but for some reason did not perform it temporarily,
without losing the employment link with it; as well as those who helped in some
economic activity without receiving a salary. The condition of carrying out an
economic activity at least one hour in the reference week was established by the
International Labour Organization.
The models fitted were mixed models with a spatial component included in the
part that represents the random effects component resulting in a new model
called SEBLUP, Vielma Orozco et al. (2021). Model assumptions were checked
in each case. The results of estimating the model are given in Table 1 for
Economically Active Population (EAP) and in Table 2 for Employed Population
(EP).

Moran’s Index was used to test spatial correlation; its value was 0.25088 and
the corresponding p-value was p=2.2204E-16. The models were estimated with
760 data from municipalities that had data and whose Coefficient of Variation
was les tan 20%. (Vielma Orozco et al., 2021).

1IMSS: Mexican Social Security Institute.
2ISSSTE: Institute of Social Security and Services for State Workers.
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Table 1: Estimated parameters for the EAP model

Table 2: Estimated parameters for the AP model

3.2 Some Results

In this subsection we comment on some of the results obtained by the SEBLUP
models. Figure 1 shows the proportion in the Economically Active population,
by municipalities, obtained from the model, INEGI (2019).

Figure 1: Proportion of EAP by municipality. Source:INEGI. Cifras laborales para

los municipios de México, 2019. Estimación para Áreas Pequeñas. Febrary 2020.

The information obtained in the 2020 Population and Housing Census
(CPV2020) is a tool to review the results of the SAE model, a linear relationship
is observed between the Economically Active Population of both information
programs. The same is true of the employed population, so we can consider
that the results of the SAE model are adequate. This is shown in Figure 2.

On the other hand, employment rate estimates obtained for all municipalities
by combining both models yield the results presented in Figure 3. The largest
values are near 100% and many of these are in very small municipalities in
the state of Oaxaca. Economic theory about the Natural unemployment rate
indicates that in any economy there exists a subset of the total economically
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Figure 2: Pairs of the estimates Economically Active Population and the
Employed Population from the SAE model and the CPV2020.

active population, which is part of frictional unemployment, defined as those
who are moving from one job to another or that just entered the labour market.
This makes it very unlikely to have employment rates of 100 percent, where all
people interested in getting a job have one, since this would motivate part of
those population in the economically unactive who are available to work, who
could try to enter in labour market. Thus, further analysis is required to explain
this. Perhaps combining these results with those on Informality in Mexico as
obtained by Ibarra-Olivo et al (2021) can help understand what is going on.

Figure 3: Employment rates obtained from the SAE models by municipality:
20 smallest and 20 largest. Source:INEGI. Cifras laborales para los municipios de

México, 2019. Estimación para Áreas Pequeñas. Febrary 2020.
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4 Conclusions

The estimation of the economically active population and the employed
population show a clear linear relationship with the data obtained in the 2020
Population and Housing Census, which allows us to conclude that the estimates
are adequate. However, it is necessary to examine municipalities that have
values of 100 percent of economically active population employed, as they could
reflect the need to assess the size of the population in order to eliminate the
option of such municipalities to have a labour market in which recruitment is
done through the search for a job.
Another important element is the characteristic of the economy of the specific
state, where higher rates are shown in Oaxaca, Chiapas and Guerrero, which
have small municipalities with self-consumption economies.
From the methodological point of view the results can also be improved. As they
are, the estimated proportions derived from these models might be inconsistent
in the sense that they might not be within the [0, 1] interval, and also the
sum of both proportions might exceed one. As indicated by Molina et al
(2007), the estimated proportions can be brought to the [0, 1] interval by
using logistic models, which relate the logit transformation of the proportions
to the auxiliary variables. An additional alternative would be to simultaneously
estimate the proportions of unemployed and employed individuals assuming a
joint multinomial logit model with random area effects. This model adapts
naturally to the characteristics of the problem, solving the inconveniences
of previous approaches, and allowing simultaneous model-based estimation of
unemployment, employment and inactivity totals, Molina et al. (2007).
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Silvia De Nicolò a*, Maria Rosaria Ferrante b** and Silvia Pacei c**

*Department of Statistical Sciences, University of Padova
**Department of Statistical Sciences ”P.Fortunati”, Alma Mater

Studiorum University of Bologna

Abstract
The aim of the paper is to propose a small area estimation model

for Theil Index, an entropy-based measure used to quantify economic
inequality, industrial concentration and, in general, the disparity related
to economic phenomena. We developed an area-level model of its relative
index, i.e. Theil index over its maximum, which has a more manageable
support between 0 and 1. Classical proposals in area-level context for
measures on (0,1) are mostly based on proportions modelling and show
limitations when dealing with asymmetric heavy-tailed data, such as in
our case. We propose a model with alternative distributional assumptions
based on a particular Beta mixture with unconstrained mean modeling,
estimated under a Hierarchical Bayes approach. An application to IT-
SILC income data is provided, showing that our proposal yields a more
flexible framework in comparison with Beta regression with unmatched
sampling and linking models.

Keywords— Beta Mixtures, Inequality Mapping, Small Area Estimation,
Theil Index.

1 Introduction
In recent year, we are observing an increasing gap in inequality and social ex-
clusion across EU regions. As a consequence, the demand for reliable estimates
of economic inequality measures for small areas is growing due to its impor-
tance in better planning public and convergence policies. Their estimation in
small domains by using income data from household surveys implies that the
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number of units sampled at area level is generally not large enough to obtain
reliable estimates. Thus, we have to resort small area estimation techniques,
allowing estimators to borrow strength across areas through the use of auxiliary
information. See Rao and Molina (2015) for a comprehensive review. The body
of literature concerning estimation of inequality measures in small domains is
very scarce, comprising Fabrizi and Trivisano (2016) for Gini Index at area level
and Tzavidis and Marchetti (2016) for Gini Index and Quintile Share Ratio via
M-quantile-based models at unit level. Moreover, inequality can be seen as a
multidimensional concept, since different measures are able to capture different
aspects of the income distribution. Thus, the estimation of alternative measures
may enable a more meaningful and complete overview of the phenomenon.

As opposed to the well known Gini index, Theil index has the advantages to
be strongly transfer sensitive, meaning that it react to transfers depending on
donor and recipient income levels and it is decomposable among groups. Based
on the concept of entropy which applied to income distributions has the meaning
of deviations from perfect equality, it pertains to the Generalized Entropy family
with parameter α= 1:

GE(α= 1) = 1
N

∑

k

xk

µ
ln xk

µ

with xk be a characteristic of interest, for the k-th unit of the finite popu-
lation, where xk ∈ R+, k = 1, . . . ,N , and µ its expected value. Since Theil
index is defined between 0 and log(N), we will consider its relative index
RE(1) =GE(1)/ log(N) withGE(1) estimated from the survey data with proper
weighted estimator and N the true population size. In our estimation strategy,
we considered Hierarchical Bayes area level models (Rao and Molina (2015)).

2 Our model proposal
In the context of small area estimation of measures in (0,1), a huge body
of literature is dedicated to proportions, implementing Fay-Herriot (Rao and
Molina (2015)) and Beta regression models, see Janicki (2020) for a review,
with non-linear linking model. The first solution appears restrictive since it
may fit values outside the variable support. On the other hand, Beta regression
does not provide enough flexibility when facing heavy-tailed, skewed responses
and bimodality. Thus our model proposal involves incorporating an alternative
distributional assumption on the likelihood of a Hierarchical Bayes area level
model, by adopting a beta mixture-based approach. Specifically, we implement
the Flexible Beta (FB) distribution proposed by Migliorati et al. (2018), a spe-
cial mixture of two beta distributions that guarantees a great flexibility and
at the same time, great tractability. In fact, the common variance between
the two components and their ordered arbitrary means leads it to be identifi-
able in a strong sense. Let us considered the mean-precision parametrization
of the Beta distribution (Ferrari and Cribari-Neto (2004)) such that a generic
random variable beta distributed Y ∼ Beta(µϕ,(1 −µ)ϕ), with E(Y ) = µ and
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V ar(Y ) = µ(1 −µ)/(ϕ+ 1) with 0 < µ < 1 and ϕ > 0 has probability density
function fB(y;µ,ϕ). The FB distribution has pdf

fF B(λ1,λ2,ϕ,p) = p ·fB(y;λ1,ϕ)+(1−p) ·fB(y;λ2,ϕ) (1)

with 0 < λ2 < λ1 < 1 distinct ordered means, 0 < p < 1 and expected value
E(Y ) = pλ1 + (1 −p)λ2. Our small area model proposal for yd, the direct esti-
mator of Theil index and xd a set of p generic covariates for m small areas is as
follows:

{
yd|θd ∼ FB(λ1d,λ2d,ϕd,p) ∀d= 1, . . . ,m
logit(λ2i) = xT

d β+vd vd ∼N(0,σ2
v)

(2)

with θd = E(yd|θd) = pλ1d +(1−p)λ2d the true parameter value and

ϕd = θd(1−θd)−V ar(yd|θd)
V ar(yd|θd)−p(1−p)(λ1d −λ2d) , (3)

where sampling variance V ar(yd|θd) is assumed to be known, as common in
literature, in order to allow identifiability. As opposed to the FB regression pro-
posed by Migliorati et al. (2018), the linear predictor does not model directly
the mean parameter but rather a mixture component mean, which in this case
can be seen as a pure location parameter. This location-modelling approach
avoids imposing many vincula on the parameter and simplifies the posterior
geometry. In order to carry on the estimation, the parametrization considered
is the following: yd|θd ∼ FB(w̃d,λ2d,ϕd,p) with w̃d = λ1d −λ2d > 0. Since esti-
mation requires a variation independent parameter space, we decided to leave
λ2d,ϕd, and p free to assume any value of their support and to constrain w̃d,
whose constrained range is (0,min{1 −λ2d,

√
V ar(yd|θd)/(p(1−p)}). Thus we

model it as w̃d =w ·max{w̃d}, with w varying in (0,1) and common to all areas.
The separate estimation of sampling variances from data follows a two steps
procedure as in Fabrizi et al. (2011). Initially, it is estimated by a proper boot-
strap procedure developed taking into account the complex sampling design,
using B = 1000 repeated samples. Secondly, those estimates are smoothed via a
Generalized Variance Function approach in order to reduce bootstrap sampling
error. To do so, we derived the variance function of the Theil index as follows.

Proposition 1. Under the assumption of log-normality of income variable i.e.
log(xjd) ∼N(µd,σ

2
d), with j = 1, . . . ,nd the individuals and d= 1, . . . ,m the ar-

eas, the s.r.s. estimator of Relative Theil Index yd has variance function

V (yd|θd) ∼= 2θ2
d

nd
. (4)

Proof. Relative Theil index under log-normal population assumption is

θd = 1
log(Nd)

(
E[x · log(x)]

E[x] − log(E[x])
)

= σ2
d

2log(Nd) (5)
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with Nd population size and since E[x] = exp{µd +σ2
d/2} and E[x · log(x)] =

(σ2
d +µd)exp{µd +σ2

d/2}, with σ2
d estimated by s2

d =
∑nd

j=1(log(xjd)−µ̂d)2/(nd −
1). By applying the normal distribution theory V (sd) ∼= σ2

d/(2nd) with nd sam-
ple size, and using delta method:

V (yd|θd) = V

(
s2

d

2log(Nd)

)
∼= σ4

d

2log2(Nd)nd

= 2θ2
d

nd
(6)

where the last right hand side equation is obtained by (5) considering σ2
d =

2θd log(Nd) .

Let us assume that V (yd|θd) = 2θ2
d × IF/nd with IF denoting a design-

effect variance inflation factor induced by the complex sampling, assumed not to
vary across areas, and nd area sample size under complex sampling. Therefore,
considering ψ = 1/IF , we introduce the following smoothing model:

2θ2
d

V̂ (yd|θd)boot

= ndψ+εd (7)

where εd are zero-mean and heteroskedastic residuals, estimated via gener-
alized least squares. The smoothed estimator follows from (6) by replacing
θd with yd and nd with ndψ̂. The following non-informative priors complete
the model: β ∼ Np(0̄,Σ) with Σ diagonal matrix with diagonal 10 × 1̄p, σv ∼
Half-Cauchy(0,2.52), p∼Unif(0,1), w∼Unif(0,1). We estimated it via Hamil-
tonian MCMC (stan, Carpenter et al. (2017)).

3 Application and Results
An application to assess inequality in Italian NUTS-3 regions through equiv-
alent disposable income data is provided by 2017 EU-SILC survey. Negative
income values have been treated by a semi-parametric inverse pareto tail mod-
eling procedure following Finkelstein et al. (2006) and Masseran et al. (2019).
As auxiliary variables we considered both fiscal and registry office data related
to each of the 107 provinces. In particular: population density, aged depen-
dency ratios, % of foreigners residents, people in higher education ratio, average
taxable income, % of residents filling tax forms, % of residents filling tax forms
with income lower than/greater than double national median and lastly, Theil
index calculated on income classes declared by tax forms.

The Theil index estimator is negatively biased in small samples, direct
estimators have been bias-corrected following De Nicolò et al. (2021). We
proceeded estimating model in Section (2) and a Beta baseline model hav-
ing at sampling level yd|θd ∼ Beta(θd(1 − ϕd),(1 − θd)(1 − ϕd)), and at link-
ing level logit(θd) ∼ N(xT

d β,σ
2
v). Some diagnostic measures have been used

for comparison, as regards goodness-of-fit, looic, based on leave-one-out cross-
validation Vehtari et al. (2017), whereas a precision improvement measure has
been used to evaluate model-based estimators performances, i.e. the Stan-
dard Deviation Reduction measure: SDR(θd) = 1 − [V (θd|data)/V̂ (yd|θd)]1/2.
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Figure 1: SDR distributions
for each area in both models.

As regards Beta model looic take value -966.8
(with standard error 16.9), for Flexible Beta
model is -992.3 (15.6) showing better goodness
of fit. As clear from results set out in Figure 1,
our model leads to a greater variability reduc-
tion for almost all areas, avoiding negative val-
ues, i.e. increases in variability. The FB model
provides a standard deviation reductions rang-
ing from 1.6% to 80% with quartiles 32%, 48%
and 59%. Moreover, model estimates shows de-
sign consistency, i.e. convergence to direct es-
timators in large samples. Shrinking process of
both models is displayed in Figure 2, Beta model
estimates present three outliers which have been
under-shrank towards the lower tail. This is due to the constrained mean-
modelling of the Beta model, highly sensible to covariate values.

4 Concluding Remarks
We proposed a Beta mixture approach for small area estimation of Relative
Theil Index, which provides a more flexible framework with respect to Beta
regression. Further directions of research involve expanding it to other measures
and developing a multivariate context.
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Figure 2: Shrinking process in Beta and Flexible Beta model.
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Abstract

In this paper, we consider the problem of producing estimates of
poverty and inequality measures using a Bayesian unit-level small area
model, specified on the logarithmic transformation of the equivalised in-
come. In this framework, we extend the classical log-normal model to a
finite mixture of log-normal distributions. Moreover, possible negative val-
ues are also accomodated. Notoriously, posterior moments for quantities
in the original data scale are not necessarily finite under the log-normal
model: to solve this problem, we propose a prior specification that guar-
antees their existence. These methods are applied to Italian data from the
EU-SILC survey, complemented with Census information. As domains,
we consider sub-population given by administrative provinces by gender.

Keywords— Finite Mixture Model, Generalized Inverse Gaussian, Inequal-
ity Indicators, Posterior Moments

1 Introduction

The availability of poverty and inequality indicators estimated for small subsets
of large populations enhances the understanding of their distribution across
geography and social groups (see Grusky et al., 2006, for a general introduction).
In this paper, small area estimation methods (Pratesi, 2016) are exploited to
make inference on these quantities, using data from the Italian section of the
EU-SILC sample survey complemented by auxiliary information from the Italian
population Census. We aim at estimating measures of poverty and inequality
obtained as functions of the equivalised income, focusing on the working-age
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population of Italian administrative provinces classified by gender, since the
Italian society is characterized by a marked economic gender divide. Specifically,
we target the headcount at-risk-of-poverty rate as a poverty indicator and the
quintile share ratio as a measure of inequality.

Concerning the small area literature, we consider unit-level model-based
methods and a Bayesian approach to estimation. Since income is typically a
positively skewed variable, several authors propose to implement small area
methods based on unit-level linear mixed models (and the nested error model,
Battese et al. (1988) in particular) specified on the log transformation of the
size variable (Elbers et al., 2003; Molina and Rao, 2010, among the others). Un-
fortunately, the log-normality is not tenable in most applications, and, specifi-
cally, it is not in ours. To overcome this problem, we assume a finite mixture
of log-normal distributions for the income, an option already discussed in the
literature (Lubrano and Ndoye, 2016). Our specification is also related to pre-
vious contributions to the small area literature and namely to Chakraborty
et al. (2019), who propose a scale mixture of two normal distributions to ac-
commodate outlying residuals in nested error regression models. Notoriously,
commonly used priors for the variance components lead to posterior distribu-
tions with non-existing moments for several functionals of the un-transformed
response variable. To solve this problem, Gardini et al. (2021) propose to use
generalized inverse Gaussian distributions (GIG) for variance components. We
extended their results to the case of a finite mixture of log-normal distribu-
tions, suggesting a prior setting that allows to carry out inference on the target
quantities.

2 The proposed model

Before stating the proposed statistical model, some notation needs to be in-
troduced. We target a finite population U of size N , partitioned into D sub-
populations U1, ..., UD whose sizes N1, ..., ND are such that N =

∑D
d=1Nd.

A random sample s of size n is drawn from U , retrieving also the domain-
specific sub-samples s1, ..., sD with sizes n1, ..., nD, nd ≥ 0,

∑D
d=1 nd = n.

Eventually, the unit-level values of the equivalised income are denoted with ydi,
i = 1, . . . , Nd, d = 1, . . . , D, whereas xdi ∈ Rp contains the observed covariates.
The following model is specified:

log (ydi + k) = wdi = xTdiβ + ud + edi, d = 1, ..., D; i = 1, ..., Nd;

ud|τ2 ∼ N (0, τ2), edi|σ2
1 , . . . , σ

2
K ∼

K∑

k=0

πkN (0, σ2
k);

(1)

where K is an integer defining the number of mixed components, π1, . . . , πK are
the weights, with

∑
k πk = 1, and σ2

1 , . . . , σ
2
K are the variances characterizing the

K components. To avoid issues with negative incomes, the constant k must be
accordingly fixed. To guarantee the identifiability of the model components, the
variances of the components are ordered: σ2

1 > · · · > σ2
K . In the proposed model

Fabrizi et al.: Unit level models on the log-scale: a new Bayesian proposal for poverty mapping

65



formulation, the linear predictor slopes as well as the area-specific intercepts are
common for all the components, whereas the variances of the individual errors
edi are allowed to change from one mixture component to the next. It can
be noted that simple log-normal model is a particular case of model (1) when
K = 1.

The model is specified under the assumption of non-informative sampling,
it is fitted on sampled data and, for area d, the observed responses are ydi, i =
1, . . . , nd; on the other hand, the unsampled ones are ỹdi, i = nd + 1, . . . , Nd.
To simplify the notation of the subsequent sections, we introduce the vectors
ys and ws containing the responses registered for the sampled units and their
(shifted) logarithmic transformation, Xs is the design matrix with the covariates
information.

Monte Carlo Markov Chain (MCMC) methods are used to draw samples

from the posterior distributions of the parameters, and indicating with ỹ
(m)
di the

m-th MCMC replicate from the posterior predictive distribution of the unsam-
pled observations, it is possible to define the Bayes predictors as:

HCR
(m)
d |ys = N−1

d

[
nd∑

i=1

1[0;λ](ydi) +

Nd∑

i=nd+1

1[0;λ]

(
ỹ
(m)
di

)]

QSR
(m)
d |ys =

∑nd

i=1 ydi1[Q̂
(m)
d,0.8;+∞)

(ydi) +
∑Nd

i=nd+1 ỹ
(m)
di 1

[Q̂
(m)
d,0.8;+∞)

(
ỹ
(m)
di

)

∑nd

i=1 ydi1[0;Q̂
(m)
d,0.2]

(ydi) +
∑Nd

i=nd+1 ỹ
(m)
di 1

[0;Q̂
(m)
d,0.2]

(
ỹ
(m)
di

) ,

where HCRd is the headcount ratio, QSRd the quantile share ration, Q̂
(m)
d,0.2,

and Q̂
(m)
d,0.8 represent the first and the fourth quintiles.

A prior distribution for the model parameters must be specified. Starting
from the regression coefficients and the mixture weights:

β ∼ Np (b0,V0) , (π1, . . . , πK) ∼ Dirichlet(1); (2)

where 1 is a K-dimensional vector of ones that allows to specify a uniform
distribution on the simplex for the vector of weights.
It can be proved that, under model (1) and priors (2), the moments E [QSRrd|ys]
are finite if the priors for the variances associated to unit-level residuals σ2

k, ∀k
have density function with a term exp

{
−cσ2

k

}
and:

c >
r2

2

[
1 + max

i

{
x̃Tdi
(
XT
sXs +V−1

0

)
x̃di
}]
.

The prior we choose to fulfill this existence condition is the GIG distribution, a
flexible three-parameters distribution with positive support already considered
in Gardini et al. (2021) to specify the prior for the variance components a
general purpose log-normal mixed model (not allowing for the scale mixture).
If V ∼ GIG (λ, δ, γ), then its probability density function is:

p(v) =
(γ
δ

)λ 1

2Kλ(δγ)
vλ−1 exp

{
−1

2

(
δ2v−1 + γ2v

)}
1R+ ,
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where λ ∈ R is the shape parameter, δ ∈ R+ the scale parameter, and γ ∈ R+

the tail parameter. The last parameter can be set in order to account for the
required existence condition in the prior specification step, keeping

γ > r
√[

1 + x̃Tdi
(
XT
sXs +V−1

0

)
x̃di
]
, ∀d, i.

In line with the instructions provided in Gardini et al. (2021), we propose the
following independent priors for the variance components:

σ2
k ∼ GIG (1, 0.01, γ0) , k = 1, . . . ,K; τ2 ∼ GIG (1, 0.01, γ0) ,

with γ0 = (r+1)
√[

1 + maxd,i
{
x̃Tdi
(
XT
sXs +V−1

0

)
x̃di
}]

, in order to guarantee

the existence the posterior moments of the functionals for any area d. In this
way, the priors on the variances are approximately gamma distributions and the
induced priors on the intraclass correlation coefficients ρk = τ2

(
τ2 + σ2

k

)
are

uniform distributions in the range (0; 1).

3 Results from the application

The proposed model is applied to the data from the 2012 Italian sample of the
EU-SILC survey, using the equivalised income as response variable and auxiliary
information retrieved from the 2011 Italian population census, consisting in
counts of the population classified by administrative province, age class (3 levels
in the range we consider), sex and education level (4 levels). The combination
of administrative province and gender is considered as domain.

Table 1: Goodness-of-fit indicators for the fitted models.

Model LOOIC (S.E.) % CPO < 0.025 % CPO < 0.014

LN 46412 (428) 2.97 2.21
LNM-2 44589 (360) 1.96 1.06
LNM-3 44562 (356) 2.01 1.18

Model (1) is fitted starting from K = 1, i.e. the simple log-normal mixed
model (LN) and then increasing then the number of components (LNM-K).
The performances of the estimated models are compared in Table 1 in terms
of LOOIC (Vehtari et al., 2017) and conditional predictive ordinates (CPOs
Gelfand, 1996). The mixture model with 2 components improves the LN model,
whereas adding a third term does not lead to a considerable change in the
goodness-of-fit, and, for this reason, model LNM-2 is chosen for the subsequent
considerations.

Figures 1 and 2 shortly illustrate some results. From Figure 1 (left panel),
we note that despite HCR is computed on the basis of equivalized income which
is the same for all members of a given household, poverty prevalence for women
tends to be higher than those for men. This reflects the gender wage gap that
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Figure 1: Estimates of the indicators compared by gender.
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Figure 2: Spatial distribution of QSR.

still characterizes Italy’s labour market (Mussida and Picchio, 2014). We note
that the wage gender gap translates also in an old-age pension income gap as the
latter is positively correlated with wages earned during the working life. Figure
2 highlights the country’s North-South divide, with Southern provinces experi-
encing much larger poverty prevalence. From both figures, we note that poorer
areas experiences also larger inequality levels (see also Fabrizi and Trivisano,
2016).

4 Concluding remarks

Beside the application we introduced, we validated our model by means of an
exhaustive simulation study, implementing both a model-based and a design-
based simulations. The first one highlights that the mixture model does not
lose efficiency when the data generating process is actually log-normal, and it
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outperforms the single components log-normal model when a mixture generates
the data. The second study, based on a population generated from a GB2 dis-
tribution that mimics the Italian income distribution, confirms the advantages
of the mixture model in the estimator performances.
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Abstract

The small area problem is usually considered to be treated via
estimation. However, if the domain indicator variables are available for
each unit in the population, there are opportunities to be exploited at the
survey design stage. This condition is usually met in the business survey
context, where the domain indicator variables are available in the business
register. The circumstance is respected even in the surveys on households
for the geographical domains. Singh, Gambino and Mantel (1994) noted
a need to develop an overall strategy that deals with small area problems,
involving both planning sample design and estimation aspects. In this
framework, it is crucial to control the sample size for each domain of
interest so that it is treated as a planned domain at the design stage. It
is possible to produce direct estimates with a prefixed level of precision.
In general, with a design-based approach to the inference, the presence
of sample units in each domain allows one to compute domain estimates,
although not always reliably.
In the model-based or model-assisted approach, sample units in each
estimation domain allow one to use models with specific small area effects,
giving more accurate estimates of the parameters of interest at the small
area level (Rao, 2015). Indeed, having sampling units in each domain
of interest would also benefit the computation of indirect estimates by
enabling a substantial reduction of model bias. Traditional sampling
techniques address data disaggregation by oversampling or introducing
a more profound stratification. More sophisticated techniques allow
improving sampling designs by geographically spreading the sample units
(Gräfstorm, Lundström and Schelin, 2012) and diminishing the level of
clustering. These approaches would foster reaching segregated or rare
subpopulations. In this paper, we consider the problem of estimating the
totals Yd of a variable y for various overlapping domains.

Keywords— Minimum cost solution, balancing equations
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1 Introduction

The small area problem is usually considered to be treated via estimation.
However, if the domain indicator variables are available for each unit in the
population, there are opportunities to be exploited at the survey design stage.
This condition is usually met in the business survey context, where the domain
indicator variables are available in the business register. The circumstance
is respected even in the surveys on households for the geographical domains.
Singh, Gambino and Mantel (1994) noted a need to develop an overall strategy
that deals with small area problems, involving both planning sample design
and estimation aspects. In this framework, it is crucial to control the sample
size for each domain of interest so that it is treated as a planned domain at
the design stage. It is possible to produce direct estimates with a prefixed
level of precision. In general, with a design-based approach to the inference,
the presence of sample units in each domain allows one to compute domain
estimates, although not always reliably.
In the model-based or model-assisted approach, sample units in each estimation
domain allow one to use models with specific small area effects, giving more
accurate estimates of the parameters of interest at the small area level (Rao,
2015). Indeed, having sampling units in each domain of interest would also
benefit the computation of indirect estimates by enabling a substantial reduction
of model bias. Traditional sampling techniques address data disaggregation by
oversampling or introducing a more profound stratification. More sophisticated
techniques allow improving sampling designs by geographically spreading the
sample units (Gräfstorm, Lundström and Schelin, 2012) and diminishing the
level of clustering. These approaches would foster reaching segregated or rare
subpopulations. In this paper, we consider the problem of estimating the totals
Yd of a variable y for various overlapping domains.

2 Statistical setting

Let U be a target population of size N and let yi indicate the value of a target
variable y of the i-th unit of U . Let Ud (d = 1, . . . , D) be a particular sub-
population of U (being Ud ∈ U) of size Nd and let γid (i = 1, . . . , N ; d =
1, . . . , D) be the domain membership variable, being γdi = 1 if i ∈ Ud and
γdi = 0, otherwise. Let

yid = yiγdi.

The different domains can overlap, meaning that it is possible γdiγd′i = 1 for
d = d′. The latter relationship, implies that the different domains may define
alternative partitions of U . For instance, in the business surveys, the domains
of interest may be the regions, and the Nace (code of economic activity class).
Let
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Yd =
∑

i∈U
yid (d = 1, . . . , D) (1)

be the target domains of interest. With reference to the domain d, we consider
a general small-area model

yid = x′
idβ + ud + eid, (2)

where regarding the unit i in the domain d, xid denotes a vector of auxiliary
variables, β is a vector of unknown super-population parameters, ud indicates
a random domain effect, and eid a random noise.
The model expectations and variances are EM (ud) = EM (eid) = 0, VM (ud) =
σ2
u, and VM (eid) = σ2.

A sample S of size n is selected without replacement from U with a general
sampling design with vector π = (π1, . . . , πi, . . . , πN )′ of inclusion probabilities.
Let

Ŷd =
∑

i∈S
yid +

∑

iinU\S
x′
idβ̂ + ûd (3)

be the small area estimate of Yd where β̂ and ûd are the sample estimate of β,
and ud. According to Rao (2015, 7.2.11, pag. 137), we have

VM (Ŷd) ∼= g1(d) + g2(d) + terms of minor order, (4)

where

g1(d) = N2
d

σ2
uσ

2

ndσ2
u + σ2

, and (5)

g2(d) =

[
x̄Ud

− ndσ
2
u

ndσ2
u + σ2

x̄Sd

]′
A−1

[
x̄Ud

− ndσ
2
u

ndσ2
u + σ2

x̄Sd

]
and (6)

in which nd is the number of sample units which belong to the small domain Ud
and

x̄Sd
=

1

nd

nd∑

i=1

xid, x̄Ud
=

1

Nd

Nd∑

i=1

xid,

A =
∑

d∈Par(d)

nd∑

i=1

xidx
′
id

1

nd
−

∑

d∈Par(d)

ndσ
2
u

ndσ2
u + σ2

ndx̄Sd
x̄′
Sd
,

Par(d) being the partition of U which includes the domain d. g1(d) is the
dominant term of Expression 4 and g2(d) is a term of minor order.
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3 Sampling selection

We suppose that the domain indicator variables are available in the sampling
frame. We suppose furthermore selecting the sample S by the Cube algorithm
(Tillé, 2020) with balancing equations given by

∑

i∈S

di
π1

∼=
∑

i∈U
di (7)

where di is a vector of H auxiliary variables for the unit i. Let γi =
(γ1i, . . . , γdi, . . . , γDi)

′ be the vector of the domain membership indicators, and
let n = (n1, . . . , nd, . . . nD)

′ be the vector of the domain sample sizes. If we
define the balancing variables in Expression (7) as

di = πiγi, (8)

then the sampling selection ensures planned sample sizes, nd(d = 1, . . . , D) for
each domain. If we define the balancing equations of Expression 7 as

di =

(
πiγ

′
i

1

n1
γ1ixidπi, . . . ,

1

nD
γDixiDπi

)′
, (9)

then the term g2(d) of Expression 4 vanishes, and the sampling selection ensures
the planned sample sizes for each domain. Given the fact that (i) the term
g2(d) is of minor order, and (ii) that it vanishes by selecting the sample with
appropriate balancing equations, then the main sampling problem is that of
defining the minimum cost sample design ensuring that the terms g1(d) (d =
1, . . . , D) of the model variances VM (Ŷd) are lower than pre-fixed thresholds V ∗

d .
The constrained minimum cost problem may be defined as




Min

(∑
i∈U Ciπi

)

N2
d

σ2σ2
u

(
∑

i∈U πiγdi)σ2
u+σ

2
≤ V ∗

d (d = 1. . . . , D) ,
(10)

where Ci is the unit cost for surveying the unit i. We note that in Problem 10 the
variances σ2

u and σ2 are treated as known; in practice they must be estimated.
The main issue is to find an algorithmic solution of the problem (10) which
represents a non-standard problem. In the context of SSRSWOR sampling, we
can define a similar problem, except that the constraints are different. Bethel
(1989) invokes the Kuhn-Tucker theorem to show that there exists a solution for
the problem of the SSRSWOR sampling. He describes a simple algorithm and
discusses its convergence properties. Chromy (1987) develops an algorithm,
suitable for automated spreadsheets. The proof of the convergence is given
in Falorsi and Righi (2015). Here we describe a modification of the Chromy
algorithm to consider the different nature of the constraints in problem (10)
with respect to those of the SSRSWOR design. Following Chromy (1987). Let’s
define the Lagrangian of Problem (10), as:
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L =
∑

iinU

Ciπi +

D∑

d=1

λdN
2
d

σ2σ2
u(∑

i∈U πiγdi
)
σ2
u + σ2

(i = 1, . . . , n).

Setting ∂N
∂πi

, for i = 1, . . . , N , we define a system of N non-linear equation

ai = π = 0 i = 1, . . . , N (11)

where:

ai(π) =
∂L

∂πi
= Ci −

D∑

d=1

λd

[
N2
d

σ2σ2
uγdiσ

2
u[(∑

i∈U πi[α]γdi
)
σ2
u + σ2

]2

]
(i = 1, ldots, n).

The values of the Lagrangian λd are defined iteratively by the following iteration.

1. Initialization. At the first iteration, α = 0, we set λd[α] = 1.

2. Calculus. We find the πi[α] (i = 1, . . . , N) values which solve the
following non-linear problem

ai(π[αi]) = Ci −
D∑

d=1

λd

[
N2
d

σ2σ2
uγdiσ

2
u[(∑

i∈U πi[α]γdi
)
σ2
u + σ2

]2

]
(i = 1, . . . , N).

3. Updating. We compute

g1(d)[α] = N2
d

σ2σ2
u(∑

i∈U π[α]γdi
)
σ2
u + σ2

,

λd[α+1] = λd[α]

(
g1(d)[α]

V ∗
d

)2

.

4. Iteration. We set α = α+1. We iterate the steps 2 and 3 till convergence.
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Abstract

Nowadays the information extracted from data should be the key to
good policy, therefore, analysts must make the best possible use of all
available information. However, data availability often is limited by cost
or for other reasons. Consequently, there is the need to use data from
different sources. Our goals are to develop hierarchical models and to
demonstrate their ability to improve inferences about quantities for which
there are meager data. When a hierarchical model can be found to rep-
resent the situation properly, analysis of that model often can be used to
extract most or all of the relevant information and so provide the best
possible estimates. The application considered will include small area
estimation in the context of the EU Statistics on Income and Living Con-
ditions. In developing the hierarchical model, we use together survey data
and population registers. As for the implementation of the hierarchical
model, we propose to use Bayesian methodology assisted by Monte Carlo
Markov Chain.

Keywords— poverty mapping, population register, multilevel modelling

1 Introduction

The main goal of this work is to propose a hierarchical model that is able to use
data at a different level of aggregation and that come from different sources in
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order to make inference on the Foster et al. (1984) poverty measures (FGT) at
small area level.

In particular we make use of survey data and administrative data, which are
collected for many different porpoises, therefore they are available at different
level of aggregation. Often, administrative data are aggregated following ad-
ministrative subdivision of the country, Italy in our application. Italy is divided
into 5 repartitions (NUTS 1 level according to the EU nomenclature), 20 re-
gions (NUTS 2), 107 provinces (NUTS 3/LAU 1) and about 8000 municipalities
(LAU 2). The goal of our application is the estimation of FGT indexes at the
provincial level, in particular poverty incidence. Nevertheless, domains different
from administrative boundaries are possible under the proposed framework, e.g.
provinces by age class and gender.

The combined use of administrative data and survey data fits the new
register-based paradigm of many national statistical offices, where administra-
tive data play a central role in the production of official statistics. This new
paradigm requires appropriate models to exploit all the data available in order
to produce sound statistics at the small area level.

2 Target paramters and data

Our goal is to obtain FGT indexes at the province level in Italy. Let wijkl be
a wealth variable in region i = 1, . . . , R, province j = 1, . . . , Di, municipality
k = 1, . . . ,Mij and household l = 1, . . . , Nijk and t be a fixed national threshold
that classified poor and non poor households. Then, FGT poverty measure at
provincial level is defined as follows:

FGT (t)ij,α =
1

∑Mij

k=1Nijk

Mij∑

k=1

Nijk∑

l=1

( t− wijklt
t

)α
I(wijkl < t),

where α = {0, 1, 2} define poverty incidence, intensity and severity respectively.
As wealth variable we use the equivalised household income, which is computed
as the total available household income divided by the equivalised household size
according to the OECD modified scale that assign weight 1 to the first adult,
0.5 to other adults and 0.3 for children (age less than 14).

The equivalised household income is available from the EU Statistics on
Income and Living Conditions (SILC) survey, which is conducted yearly by
Istat and represent the reference source in the EU for comparative statistics
on income distribution and social exclusion. It surveys personal data, income,
working status, housing, leisure activities. The 2017 Italian EU-SILC survey has
a sample size of about 22 thousand households. It is a two-stage sample design
stratified by region and type of municipality. The PSU are the municipalities
and the SSU are the households. The survey use a rotating panel each 4 year.
More details are available on the Istat website.

Municipalities level data are organised in administrative archives, which are
integrated by Istat under the ARCHIMEDE project. The administrative sources
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used to build ARCHIMEDE microdata are: municipal population registers, tax
return registers, central register of pensioners, social security and fiscal sources,
social security benefit registers and the population census. Italian population
counts about 60 million persons in about 24 million households.

Province level data can be obtained properly aggregating municipality level
data, since municipalities are partitions of provinces. However, some data are
available only at provincial level, such as the labour force data. This information
come the labour force survey (LFS), which is a cross-sectional and longitudinal
household sample survey. It provides information about main labour market
indicators, broken down by socio-demographic variables. The LFS in Italy fol-
lows a rotating sample design where households participate for two consecutive
quarters, then they exit for the next two quarters, and finally come back for
other two quarters (2 in - 2 out - 2 in rotation). The 2017 LFS in Italy has
a sample size of about 250 thousand households, about 600 thousand persons,
which guarantee reliable estimates also at the provincial level for what concern
annual estimates.

Region specific data can be available from other surveys, but are not con-
sidered at this stage in this work.

3 Proposed hierarchical Bayes multilevel model

Hierarchical Bayesian (HB) models have been extensively used in small area
estimation, see for example Rao and Molina (2015) for a general review. They
can accommodate very complex models based on very simple models as building
blocks. Another great advantage of these models is about the estimation of the
standard error of the small area HB estimators, which can be found exactly
without using approximations. In this framework we can obtain credible inter-
vals and useful summaries from the posterior distributions with practically no
additional effort.

In order to obtain reliable estimates of poverty incidence FGT (t)ij,0 at
provincial level, we propose a three-level cross-sectional model. The three levels
are household, municipality and province. Some parameters are defined region
specific. The proposed method require to have a transformation T (w) of the
wealth variable such that y = T (w) is approximately normal. The mode can be
represented as follows:

L.1 yijkl|θijk,βi, σ2
i ∼ N(θijk + aijklβi, σ

2
i )

L.2 θijk|ηij ,γi, τ2i ∼ N(ηij + bijkγi, τ
2
i )

L.3 ηij |ξ,λ, δ2 ∼ N(ξ + cijλ, δ
2),

where θijk is the municipality random effect, aijkl are the household level co-
variates from EU-SILC, ηij is the provincial level random effect, bijk are the
municipality level covariates from ARCHIMEDE, ξ is a fixed effect and cij are
the province level covariates from LFS. As a note, cij covariates are affected by

3
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sampling error, which is considered negligible in this work, and then they are
treated as true values.

Following Gelman (2015) we use proper informative priors, half-Cauchy for
δ, τi, σi, multivariate normal for γi,βi and normal for ξ,λ.

The household level covariate we use is the household size groups: 1 member,
2 members, 3 members, 4 members, 5 or more members. The municipality level
covariates are the proportion of persons in age classes (13 to 35, 36 to 65, 66 or
more), proportion of male, proportion of persons in 3 type of work contract (de-
pendent, independent, other), median of equivalised taxable income. Note, this
last covariate is different from the median equivalised household income esti-
mated from the EU-SILC survey because of a different taxonomy. The province
level covariate is the unemployment rate, that is the proportion of persons who
don’t work while seeking for a job.

An estimate of the unknown quantity FGTij,α can be obtained as follows:

¯FGT (t, θijk, βi, σi)ij,α =
1

Nij

mij∑

k=1

nijk∑

l=1

E[gα(wijkl)|θijk,βi, σ2
i ]ωijkl,

where

gα(wijkl) =
( t− wijkl

t

)α
I(wijkl < t),

mij are the sampled municipality in province j of region i, ωijkl is the survey weight
for household l in municipality k in province j in region i, nijk is the sample size in
municipality k in province j in region i.

For α = 0,

E[gα(wijkl)|θijk,βi, σ2
i ] =

∫ log t−(θijk+aijkβi)

σi

− θijk+aijkβi
σi

φ(z|θijkl, σi,βi)dz

= Φ
( log t− (θijk + aijkβi)

σi

)
− Φ

(
− θijk + aijkβi

σi

)
,

where φ and Φ are respectively the density function and the distribution function of
the standard normal distribution.

The model parameters are estimated using Gibbs sampling by Monte Carlo Markov
Chain (MCMC). To obtain stable posterior distribution of model parameters we use a
lasso penalty. Let H be the number of MCMC samples after burn-in. Let θijk,h,
βi,h and σi,h denote the hth MCMC draw of θijk, βi and σi, respectively (h =
1, . . . , H). We define the Di × H matrix Fα, where the j, h entry is defined as
F(j,h);α = ¯FGT (t, θijk,h, βi,h, σi,h))ij,α.

According to Lahiri and Suntornchost (2018) the matrix Fα provides samples
generated from the posterior distribution of ¯FGT (t, θijk, βi, σi)ij,α, j = 1 . . . , Di, i =
1, . . . , R and so is adequate for solving a variety of inferential problems in a Bayesian
way. Lahiri and Suntornchost (2018) suggest three different inferential problems: 1.

estimates F̂GT (t)ij,α of FGT (t)ij,α obtained as the posterior mean of F(j,h);α, h =

1, . . . , H, and estimates M̂SE(F̂GT (t)ij,α) of MSE(F̂GT (t)ij,α) obtained as the pos-
terior standard deviation of F(j,h);α, h = 1, . . . , H; 2. identification of provinces that
are out of predefined bounds and 3. identify the worst and best provinces according
to FGT indexes. In this work we focus on point 1 only, with α = 0. As a remark
inference on points 2. and 3. make use of Fα taking advantage of a unique hierarchical
Bayes framework.
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4 Application Results

In this section we show the FGT (t)ij,0 estimates for 27 provinces in three Italian
regions, namely Lombardia, Tuscany and Campania. This choice is due to the avail-
ability of ARCHIMEDE data, which have been available to us under an agreement
between ISTAT and University of Pisa.

We analyse the model parameters estimates through convergence plot.
We compare the direct estimates with the HB estimates (Figure 1 and Figure 2).

Direct HB
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Figure 1: Direct and HB ARPR estimates computed using EU-SILC 2017 at
provincial level (NUTS 3)
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Figure 2: Direct and HB ARPR estimates computed using EU-SILC 2017 at
provincial level (NUTS 3).

Model estimates are more reliable than direct ones, with a clear reduction in their
coefficients of variation (Figure 3).
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Figure 3: Direct and HB ARPR estimates CVs.

5 Conclusions

In this work we have successfully integrate administrative and survey data at different
level of aggregation to obtain posteriors distribution of a multilevel model parameters,
which allow different inferential goals. In particular we focus on the incidence of
relative poverty, one of the main indicators used by policy makers and stakeholders.

In future works the hierarchical Bayes model can be improved by taking into
account the measurement error of auxiliary variables coming from survey data, such as
the unemployment rates coming from LFS. Furthermore, the model can be enriched by
big data coming for example from google trends, twitter text analysis or supermarket
scanner data (which collect price and quantity of retail chains spread across Italy).
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Abstract

One of the main motivations of concern when we apply a small area es-
timation model is to relate individual area estimates with some direct
estimates in a larger area. External and internal benchmarked estima-
tors provide adjusted model-based estimates, in order to agree with that
aggregated results. The use of multiple calibration quantities in the bench-
marking matrix suggests that the underlying “true” model is misspecified
by the actual model equation. We examine the appropriateness of em-
ploying the benchmarking matrix to account for omitted variables in the
model, through an additional regression term.

Keywords— Fay-Herriot model, benchmarking estimators, model misspec-
ification, augmented model

1 Introduction

In the context of small area estimation, benchmarking is justified by the need
for adjusting individual area level estimates to agree with direct estimates of a
larger area. The Eblup estimators do not satisfy the benchmarking property,
and thus, in the last years, many authors studied a variety of benchmarking
techniques, in order to address this issue. In general, these methods rely on
some modification of the Eblup by simple adjustments, as for the ratio and the
difference benchmarking estimators (Steorts and Ghosh, 2013). Otherwise, an
optimal benchmarking estimator that is model unbiased and at the same time
satisfies the design-consistency property was obtained by Wang et al. (2008).
Bell et al. (2013) give a general result for the optimal estimator in case of
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multiple benchmarking constraints, by joining together external and internal
benchmarking using a common relation. Under model misspecification, Wang
et al. (2008) also proposed an augmented model, by inserting a sampling vari-
ance model covariate, adjusted by the proportion of units in the corresponding
area. Simulation experiments has shown that the augmented model estimator
performs well in case of model misspecification, when the omitted variable is
correlated with the augmented covariate. Nevertheless, self-benchmarking as in
the You and Rao (2002) approach generally ensures efficiency in terms of the
MSE, when direct estimates for the larger area suggest a model failure. By
a general approach with multiple benchmarking constraints, this paper intro-
duces a benchmarking linear estimator, assuming a model misspecification by
an omitted variable factor. The underlying assumption is that direct estimates
for the larger area accounts for the true model. Then, we propose an augmented
model that incorporates a tentative approach to the model failure. We show
that misspecification is proportional to the orthogonal projection of the direct
estimate in the subspace of the benchmarking constraints. An application study
is reported, in order to introduce the validity of this approach.

2 Theory

Following the Bell et al. (2013) approach to benchmarking small area estimators,
as regards the application of the Fay-Herriot model, we say that a) θ = Xβ+ u
represents the population area-level parameter model, b) y = θ+e the sampling
model, and, c) t =W ′θ+η, the benchmarking model by an external random data
vector. θ is the m×1 vector of area parameters, X is the m×p covariates design
matrix, β the p× 1 regression parameters, u is the regression error, y the m× 1
vector of sampling estimates, e is the sampling error, with given var(e) = R =
diag(ψ1, ..., ψm). Furthermore, t is the q×1 vector of benchmarking constraints
(q < m) to which the area-level estimates must agree, with η the q × 1 related
sampling errors. W is am×q “benchmarking” matrix, that contains the multiple
constraints that links the small area parameters with t. The model variance for
θ is var(y) = Q = Σu +R, Σu = σ2

uIm. Finally, cov(u, η) = cov(u, e) = 0, with
a chance of a non-zero covariance between sampling errors, i.e. cov(e, η) = C.
Assuming model normality, together with standard Bayesian prior for β, we
know that Σy = σ2

βXX
′ +Q, and, as σ2

β −→ ∞ and by matrix inversion rules,

Σ−1
y = Q−1(I−PX). PX = X(X ′Q−1X)−1X ′Q−1 is the projection matrix onto

the subspace by X in the metric of Q−1.
Knowing σ2

u, and denoting by θ̃y = E(θ|y) the best unbiased linear predictor,

we have that θ̃y = y − RPy, and mse(θ̃y) = var(θ̃y) = R − RPR, with P is
the projection matrix onto the complement of the column space of X in the
metric of Q−1. Assuming the benchmarking model for θ, we get (Bell et al.,

2013) θ̃y,t = E(θ|y, t) as the best linear “adjusted” predictor based on both data
sources (y, t):
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θ̃y,t = E(θ|y, t) = θ̃y + cov(θ, t|y)var(t|y)−1 {t− E(t|y)} , (1)

mse(θ̃y,t) = var(θ̃y)− cov(θ, t|y)var(t|y)−1 {cov(θ, t|y)}′ . (2)

When var(η) = Ση −→ 0, θ̃y,t becomes the “externally” benchmarked predictor

θ̃E = θ̃y+var(θ̃y)W [W ′var(θ̃y)W ]−1[t−W ′θ̃y]. ConsideringW ′θ = t as the pro-
jection of the parameter vector θ onto the subspace ofW , when we have no exter-
nal data t and that projection is that relating to y, i.e. W ′y, the (1) becomes the

“internal” benchmarked predictor θ̃I = θ̃y + var(θ̃y)W [W ′var(θ̃y)W ]−1W ′(y −
θ̃y). In both cases, θ̃E and θ̃I verify the benchmarking property W ′θ̃E = t and

W ′θ̃I =W ′y, respectively.
In the standard regression theory it is well-known that if for the model in a)

we get E(u|x) ̸= 0, the covariates are said endogeneous in the linear model, i.e.
almost one of the explanatory variables is correlated with the regression error u.
One of the most important endogeneity problem arises when model misspecifica-
tion is due to some omitted variables in the equation model. This situation leads
in general to the “omitted variable bias” of the fixed-effects estimator, together
with an overestimation of the error variance. When important regressors are
ignored and the correlation between included and omitted regressors is relevant,
the correlation between the covariates and the model error u increases. Con-
versely, it matters to delete from the model ”unimportant” regressors, because
they may increase the sampling variance. In large samples, the bias of estimates
becomes the major issue (Davidson et al., 2004). Although the standard area
level model is mixed linear model, ignoring omitted variables in the regression
component of the model, and the consequent unseemly random-area effect vari-
ance estimation, may adversely affect the linear predictor. For example, it can
be shown that if the true mixed linear model with known model variance Q
is y = X1β1 +X2β2 + π + Zv + e, with π as the unobservable omitted vector
of fixed effects, and v and e, the random effects and the residual error, respec-
tively, the bias for the fixed-effects estimates of β1 is B(β̂1,gls) = A′(I−X2B

′)π,
A = Q−1X1(X

′
1Q

−1X1)
−1, B = PX2(X

′
2PX2)

−1.
Generally, the presence of omitted variables in the structural linear model

significantly correlated with the regression error may be expressed by a model
error u, composed of two parts. Denoting by θm = Xβ + u the assumed but
incorrect population model, and q the omitted regressor, then u = qγ+v, where
v is the “true” structural regression error. Given the true model θ, we have:

θ = θm + (θ − θm) = Xβ + qγ + v. (3)

As q is the unobservable factor in the model for θ, v is uncorrelated with all
the covariates x1, ..., xp, and q. Further, other relations are given, since by the
normalization due by the model q has zero mean: E(u|x) ̸= E(u), E(u|q) ̸=
0,cov(u, q) ̸= 0, E(v|x, q) = 0, Ev(θ − θm) = qγ. With the true model for
θ, and given the benchmarking model c), it is straightforward that E(t) =
W ′θ ̸= W ′θm. In the same way, taking the subspace spanned by the columns
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of W , we observe that BW ′θm ̸= BW ′θ = Bt, B = W (W ′W )−1, as BW ′

is the orthogonal projection matrix for W . A proxy-variable solution, say z,
for the unobserved factor q, can be assumed as dependent on the difference
(W ′θ −W ′θm), i.e. z ∝ E(BW ′θ − BW ′θm). As z becomes a linear regressor
for q, we may have in general:

q = zλ+ r = λ0 + λ1z + r, (4)

E(r|z) = 0, E(r|x, z) = 0, and, as requested by standard “redundancy” con-
ditions about proxy variables, we can easily check for z that E(θ|x, q, z) =
E(θ|x, q). Furthermore, given the linear projection L(q|x, z), due to the circum-
stance that cov(x, r) = 0 we may observe that L(q|x, z) = L(q|z). By putting
(4) into (3), we get:

θ = Xβ + γλ01 + λ1BW
′(θ −Xβ)γ + γr + v,

(I − γλ1BW
′)(θ −Xβ) = γλ01 + γr + v.

Thus:
θM = Xβ + (I − b1BW

′)−1ϵ, (5)

with β = β0 + (I − b1BW
′)−1b01, ϵ = γr + v, b0 = γλ0, b1 = γλ1. By

mitigating the omitted factor in the assumed model, equation (5) defines a
new model for θ, due to the availability of a proxy variable z. The last by
“mirroring” differences in the parameter θ by the projection onto the subspace
defined by the benchmarking matrix W . It is straightforward to see for the
model (5) that var(θM ) = σ2

ϵ (I− b1BW ′)−1[(I− b1BW ′)−1]′, and cov(ϵ, θM ) =
Σϵ(I − b1BW

′)−1. Although the benchmarking property is always verified for

the adjusted predictor (1), whatever the estimate θ̃y or θ̃M , is certainly inter-
esting to investigate how different models may change estimate of mse(θ). By

the decomposition of the mse(θ̃) = g1 + g2 + g3 for the Fay-Herriot model,

with the leading term g1(σ
2
u) = R − RQ−1R = diag(

σ2
uψ1

σ2
u+ψ1

, ...,
σ2
uψm

σ2
u+ψm

), it is

straightforward to note that g1,i(σ
2
v) < g1,i(σ

2
u), ∀i, i = 1, ...,m, when σ2

v < σ2
u.

Further, with Q = diag(σ2
v + ψ1, ..., σ

2
v + ψm), Qm = diag(σ2

u + ψ1, ..., σ
2
u +

ψm), and following standard matrix inversion rules, Q−1
m = Q−1 − S−1, S =

diag[
(σ2

v+ψ1)(σ
2
u+ψ1)

σ2
u−σ2

v
, ...,

(σ2
v+ψm)(σ2

u+ψm)
σ2
u−σ2

v
)], it can be shown that:

tr[mse(θ̃M )] = tr
{
var[θ̃y(σ

2
v)] +R(Q−1

m + S−1)P(I−PX)qR
}

< tr
{
var[θ̃y(σ

2
u)] +R(Q−1

m + S−1)P(I−PX)qR
}
= tr[mse(θ̃y)].

Here the projection matrix of the model (3) is partitioned by the decomposition
PX,q = PX + P(I−PX)q, where the matrix P(I−PX)q projects vectors onto the
space spanned by the columns of (q − PXq).
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3 Estimation, application study, conclusions

The model in (3), equipped with the proxy-variable solution expressed by (5),
contains the parameters γ, λ0, and λ1. While the last two are regression param-
eters, the γ parameter gives the level of dependence of the “true” model respect
to the omitted factor. Our proposal is to firstly give an estimate of γ, in order
to provide more easily the estimates of the remaining two parameters, λ0 and
λ1. Starting from the error in the assumed model for θ (i.e. θm), u = qγ + v,
first give the Fay-Heriott model estimate ũ. Remembering that in our belief
the random effects in the incorrect model contain an omitted factor q, we fit a
standard regression model d) ũ = γ(y − ỹ) + ϵ to the predicted data, to thus
obtain an estimate γ̂. The underlying condition to verify is the following: if we
have no omitted factors in the model, the contribution to the random effect of
(y − ỹ) is random with zero mean, i.e. u ≡ v in the population model. With
the estimate γ̂ of γ, standard estimation methods are available, like REML or
ML in case of normal distribution. If we set in the model (5) λ0 = b0 = 0 as
a no-intercept model for q in (4), it is possible to provide the estimation of the
model (5), quite similar to a simultaneous autoregressive spatial Fay-Herriot
model. We have indeed ρt ≡ b1 = γ̂λ1, and D ≡ BW ′, b1 ̸= 1, being ρt the
time-autocorrelation parameter to estimate, and D a standardized proximity
matrix that define both a spatial model, taken as an example of comparison.
With b0 ̸= 0 and fixing γ̂, we propose to alternate by the chosen estimation
method both b1 and b0, in turn. In the data study we present an application

of the Fay-Herriot area-level model to official Agricultural Census Data (Survey
structure and production of Italian farms (year 2007). The dataset contains
103 observations (the small areas in our context) that are the Italian provinces.
The target variable is the mean of standard gross profit (SGP). The selected
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auxiliary variables are the mean of irrigable area (IRR) and the mean of the
number of worked days (DAYS). We use restricted maximum likelihood estima-
tors (REML) at the several step of estimation. To illustrate the experiment,
it is important to know that the SGP is a composite variable, depending on
several economic features of farms. It depends on IRR and DAYS, but also on
other farm characteristics. The ”larger areas” are the 20 administrative Region
(NUTS2 level), which includes several Provinces (NUTS3 level). The applica-
tion consists on comparing estimates and their mean squared prediction errors
(MSPE) only, respect to the standard Fay-Herriot model. We use a benchmark-
ing matrix for a simple “internal” benchmarhing design, W103×1, that reports
some weights to agree small area estimates with regional available direct es-
timates of the mean of SGP of the farms. The plot illustrates results from
three models: “model 1”, the model that has only the DAYS covariate, “model
2” with both ”DAYS” and ”IRR” covariates, and “model M”, the presented
model in (5). An estimate of γ by the model in d), γ̂ = 3.969, together with a
no-intercept proxy-variable model (λ0 = b0 = 0) is used, that gives the REML

estimate b1 = γ̂λ1 = 0.898 −→ λ̂1 = 0.226.
The plot reports differences in the predicted root mean squared errors for the

three model investigated. It is interesting to note that the progressive inclusion
of covariates (from model 1 to model 2), tends to what it is the possible “true”
model, that build the SGP dependent variable with a lot of variables, included
DAYS and IRR. The application presented is only a first step respect to what
may be the potential of the introduced model (5). A possible definitive proof
about the quality of the proposed approach to the benchmarking issues in small
area estimation, will probably be represented by simulation experiments. In
our opinion, one of the most important features of the approach is given by
exploiting the benchmarking matrix as appears in the augmented factor in the
model. This matrix viewed as an “implicit bringer” of information, toward the
identification of a “true” model for the small area statistics.
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Abstract

Many survey variables are categorical in nature and SAE methods based on
generalised linear mixed models represent a frequent tool of analysis for predic-
tion. Jiang (2003) developed an Empirical Best Prediction (EBP) method for re-
sponses in the Exponential Family, based on the use of area-specific, Gaussian,
random effects. However, a major drawback of this approach is the computational
burden required to derive estimates, compute the EBP and, in particular, provide
the corresponding measure of reliability. Here, we introduce a semiparametric EBP
for categorical outcomes by extending the approach proposed by Marino et al.
(2019) for univariate responses belonging to the Exponential Family of distribu-
tions. This approach leaves the mixing distribution (that is, the distribution of the
area-specific random effects) unspecified and estimate it from the observed data
via a NonParametric Maximum Likelihood approach. This estimate is known to
be a discrete distribution defined over a finite number of locations and leads to the
definition of a finite mixture specification. Finite sample properties of the proposal
are tested via a simulation study.

1 Introduction
Quite often survey variables are categorical and when researcher’s interest entails pre-
diction, SAE methods based on the use of generalised linear models identify a rather
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standard tool of analysis. For responses belonging to the univariate Exponential Family
of distributions, Jiang (2003) developed an Empirical Best Prediction (EBP) method.
More recently, Boubeta et al. (2016, 2017) derived the EBP and the corresponding
(second-order) approximation to the MSE under an area-level mixed Poisson model
for small area counts, while Hobza and Morales (2016) specifically focused on the
development of an EBP for small area proportions under the unit-level mixed logistic
model considered in Jiang (2003). An extension of this latter approach to deal with
longitudinal responses was recently proposed by Hobza et al. (2018).

These proposals are based on unit-level mixed models and area-specific random
effects which are assumed to be i.i.d. according to a Gaussian density. One of the
drawbacks associated with this parametric approach entails the computational cost of
deriving parameter estimates, compute the EBP and, in particular, provide the cor-
responding measure of reliability. This is due to the need of approximating (possi-
bly) multiple integrals without a closed form expression. Monte Carlo integration and
parametric bootstrap are frequently considered to obtain an approximation. To avoid
computational issues, ad hoc alternatives, mainly based on plug-in predictors, were
proposed in Molina et al. (2007); Saei and Taylor (2012). In particular, Molina et al.
(2007) suggest the use of a SAE model in which the area-specific random coefficients
are assumed to be Gaussian and shared by all model equations; Saei and Taylor (2012)
relaxed this latter assumption by considering area- and category-specific random co-
efficients to enhance model flexibility. In both cases however, plug-in predictions are
considered to estimate small area proportions for response’ categories.

In this paper, we extend the semiparametric best predictor approach introduced by
Marino et al. (2019) for univariate responses in the Exponential Family to the multino-
mial case. We leave the distribution of the area-specific random effects unspecified and
estimate it from the observed data via a NonParametric Maximum Likelihood approach
(NPML Laird, 1978). This estimate is known to be a discrete distribution defined over
a finite number of locations leading to a finite mixture model. Such an approach offers
a number of advantages. First, it allows us to obtain an EBP and not a plug-in approx-
imation and avoid unverifiable assumptions on the random effect distribution; second,
since mixture parameters are directly estimated from the data and are completely free
to vary over the corresponding support, extreme and/or asymmetric departures from
the homogeneous model can be easily accommodated. Last and more important, the
discrete nature of the mixing distribution allows us to avoid integral approximations
and considerably reduces the computational effort.

The paper is organised as follows. In Section 2 we illustrate the method, while
in Section 3 we report the results of a simulation study that explores its performance.
Finally, Section 4 provides concluding remarks and hints at ongoing work on MSE
estimation and application to real data on employment indicators.

2 Semiparametric EBP for categorical data
Let Y i j = (Yi j1, . . . ,Yi jK)

′ denote a multinomial response for unit j belonging to small
area i (i = 1, . . . ,m, j = 1, . . . ,Ni), whose generic element Yi jk is equal to 1 if the i j-th
unit is in the k-th category (k = 1, . . . ,K), and is equal to 0 otherwise; furthermore,
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we have that ∑K
k=1 Yi jk = 1. Let α i = (αi1, . . . ,αiK)

′ be an area-specific random vector
associated to area i, xi j denote a p-dimensional vector of covariates, with X i the matrix
of covariates for the i-th small area.

We assume that, conditional on α i, responses for units in the i-th small area Y i =
{Y i1, . . . ,Y iNi} are independent each other and each element in Y i j, say Yi jk, is influ-
enced by the corresponding element in α i only, that is αik. In particular, we assume
that, conditional on α i, responses Y i j follow a multinomial distribution, with parame-
ters 1 and probability elements pi j =(pi j1, . . . , pi jK); these latter are modeled according
to the following multinomial logit specification:

θi jk = log
pi jk

pi j1
= αik + x′i jβ k, k = 2, . . . ,K. (1)

Here, β k denotes a p-dimensional vector of fixed model parameters that describes the
effect of observed covariates on the multinomial logit transform of pi jk.

Our aim is that of predicting small area proportions Ȳ i = (Ȳi1, . . . ,ȲiK)
′, with

Ȳik =
1
Ni

Ni

∑
j=1

Yi jk,

using model (1) and assuming that responses Y i j are observed for sampled units
only (i = 1, . . . ,m, j ∈ si), while covariates xi j are available at the population level
(i = 1, . . . ,m, j = 1, . . . ,Ni). To this aim, we extend the semiparametric best prediction
approach introduced by Marino et al. (2019) for univariate outcomes to the multino-
mial framework. In detail, we define the semiparametric best predictor for the quantity
pi = (pi1, . . . , pik)

′, with

pik =
1
Ni

Ni

∑
j=1

pi jk (2)

by assuming that the random coefficients α i follow a discrete distribution defined over
the finite set of locations ξ g = (ξg1, . . . ,ξgK)

′ with masses

πg = Pr(α i = ξ g) = Pr(αi1 = ξg1, . . . ,αiK = ξgK),

where πg > 0, ∑G
g=1 πg = 1. This approach is similar to that detailed by Alfò et al.

(2021) in the context of multivariate longitudinal measures and leads to the definition
of the following model likelihood:

L(·) =
m

∑
i=1

G

∑
g=1

[
∏
j∈si

f (yi j | α i = ξ g,X i)

]
πg, (3)

where f (yi j | α i = ξ g,X i) denotes the density for the observed responses of the j− th
unit belonging to the i-th small area, conditional on α i = ξ g. That is, it corresponds to
the Exponential Family density with canonical paramerer

θi jkg = log
pi jkg

pi j1g
= ξgk + x′i jβ k.
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Turning back to the problem of estimating pi, we have that the semiparametric best
predictor of each component pik in pi is given by

p̃sp-BP
ik =

G

∑
g=1

pi·kg

exp
[
∑ j∈si ∑K−1

k=1 yi jkθi jkg −∑ j∈si
log
(

1+∑K−1
k=1 eθi jkg

)]
πg

∑G
l=1 exp

[
∑ j∈si ∑K−1

k=1 yi jkθi jkl −∑ j∈si
log
(

1+∑K−1
k=1 eθi jkl

)]
πl

=
G

∑
g=1

pi·kg

exp
[
∑K−1

k=1 αgkyi·k −∑ j∈si
log
(

1+∑K−1
k=1 eθi jkg

)]
πg

∑G
l=1 exp

[
∑K−1

k=1 αlgyi·k −∑ j∈si
log
(

1+∑K−1
k=1 eθi jkl )

)]
πl

where yi·k = ∑ j∈si yi jk and pi·kg = N−1
i ∑Ni

j=1 pi jkg. By letting

τig(yi·)
=

exp
[
∑K−1

k=1 αgkyi·k −∑ j∈si
log
(

1+∑K−1
k=1 eθi jkg

)]
πg

∑G
l=1 exp

[
∑K−1

k=1 αlkyi·k −∑ j∈si
log
(

1+∑K−1
k=1 eθi jkl )

)]
πl

,

the sp-BP of pik is given by p̃sp-BP
ik = ∑G

g=1 pi·kg τig(yi·). In matrix form, we may re-write
the above problem as

p̃sb-BP
i = P′

i[1:G]τ i(yi·) (4)

where

p̃sb-BP
i =




psb-BP
i1

...
psb-BP

iK


 , Pi[1:G] =




pi·11 . . . pi·K1
pi·12 . . . pi·K2

...
...

...
pi·1G . . . , pi·kg


 , τ i(yi·)

=




τi1(yi·)
...

τiG(yi·)


 .

The corresponding sp-EBP, denoted by p̂sb-EBP
i , is obtained by plugging ML estimates

of model parameters into expression (4):

p̂sb-EBP
i = P̂′

i[1:G]τ̂ i(yi·)
. (5)

ML estimates of model parameters can be obtained using the EM algorithm. Note
that, for a given choice of G, the prediction problem is solved by rewriting the general
integral used in the parametric approach as a sum over G components. This leads
to a substantial save in computational complexity as often integral approximation by
parametric methods leads to a sum over a much larger number of locations.

3 Simulation study
To evaluate the empirical properties of the proposal, we conducted a model-based sim-
ulation study considering T = 1,000 samples. Multinomial population data are gener-
ated considering m= 100, 200, 500 small areas under the proposed modelling assump-
tions. From such a population, sample data are selected via a simple random sampling
without replacement within each area. The population and the sample sizes are as-
sumed to be constant across areas and are fixed to Ni = 100 and ni = 10, respectively.
For each unit j in small area i, we generate the target variable Y i j, i = 1, . . . ,m, j =
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1, . . . ,Ni, from a Multinomial distribution with parameters 1 and pi j, with components
of pi jk defined as

pi jk =
eαik+x′i jβk

1+∑K
k=2 eαik+x′i jβk

, k = 2,3,

with β2 = 0.5, β3 =−0.5, xi j ∼Unif(−1,bi), and bi = i/8, i/16, i/48 for m= 100,200
and 500, respectively. The simulation settings are those used in González-Manteiga
et al. (2007) and suitably adapted to the multinomial case. As regards the random
coefficients αik,k = 2,3, these are generated from both a multivariate Gaussian and
a mixture of multivariate Gaussian density, with both uncorrelated (ρα2α3 = 0) and
correlated components (ρα2α3 ̸= 0).

Starting from parameter estimates computed via a NPML approach, we derived the
sp-EBP for pik and compared results with those obtained by considering the approach
detailed by Molina et al. (2007) and Saei and Taylor (2012) in terms of absolute bias
and root mean square error over areas (ABi and RMSE).

Simulation results (not reported here for reasons of space) highlight that, in the
presence of multivariate Gaussian random coefficients (besides their correlation) the
proposal performs better than that by Molina et al. (2007) and slightly worse than that
by Saei and Taylor (2012), both in terms of bias and RMSE. On the other side, when
random coefficients are generated from a mixture of multivariate Gaussian densities,
the semiparametric EBP returns predictions with a much lower bias and RMSE than
competitors.

4 Conclusions
In this work, we extended the semiparametric EBP introduced by Marino et al. (2019)
for general responses in the univariate Exponential Family to the multinomial frame-
work. Multivariate, area-specific random coefficients, with category-specific compo-
nents, are considered to account for dependence between outcomes from the same
small area. The corresponding multivariate distribution is left unspecified and esti-
mated through the observed data via a NPML approach, leading to the definition of a
finite mixture model likelihood.

A large scale simulation study was performed to assess the quality of predictions
obtained thanks to the proposed approach. Here, the chosen scenarios represent two
extreme situations; we expect that, in real applications, the random coefficient distri-
bution lies in between them. Results of such a study highlight good performance of
the proposal so that is seems a promising approach to consider when dealing with the
problem of predicting small area proportions for categorical outcomes.

An analytic expression for the MSE of the sp-EBP is available and we are currently
working on its implementation. In particular, the quality of predictions obtained via
p̂sp-EBP

i can be evaluated through the following analytic MSE expression:

MSE(p̂sp-EBP
i ) = Eα [pi p

′
i]−Ey[p̃

sp-BP
i (p̃sp-BP

i )′]+Ey[(p̂sp-EBP
i − p̃sp-BP

i )(p̂sp-EBP
i − p̃sp-BP

i )′].

As an alternative, a bootstrap approach may be adopted.
Finally, a main goal of the project is the application of the proposal to obtain esti-

mates of employment, unemployment, and inactive counts and proportions using data
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from the Italian Labor Force Survey for Local Labor Market Areas (LLMAs). LLMAs
are 611 unplanned domains obtained as clusters of municipalities and defined at the
Census on the basis of daily working commuting flows. In this context, direct sur-
vey estimates cannot be computed and/or published for most of the LLMAs due to the
presence of many out-of-sample areas and small sample sizes. In this context, indirect,
model-based, small area estimators are adopted by ISTAT to produce official yearly
estimates of labor market indicators for the Italian LLMAs, separately for employed
and unemployed. A multivariate perspective would certainly provide more insights
and grant internal coherence of the final estimates.
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Alfò, M., Marino, M. F., Ranalli, M. G., Salvati, N., and Tzavidis, N. (2021). M-quantile

regression for multivariate longitudinal data with an application to the millennium cohort
study. Journal of the Royal Statistical Society: Series C (Applied Statistics), 70(1):122–146.

Boubeta, M., Lombardı́a, M. J., and Morales, D. (2016). Empirical best prediction under area-
level Poisson mixed models. Test, 25(3):548–569.

Boubeta, M., Lombardı́a, M. J., and Morales, D. (2017). Poisson mixed models for studying the
poverty in small areas. Computational Statistics & Data Analysis, 107:32–47.
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Abstract This study explores design-based small area estimation methods using Demographic 

and Health Survey (DHS) data collected by The DHS Program, an international project funded 

by United States Agency for International Development (USAID). The DHS surveys are 

household based two-stage cluster surveys that provide key survey indicators for a country’s 

first level administrative unit, or region. The DHS Program faces increasing requests from host 

countries for sub-regional indicator estimates for policymaking and development planning 

purposes. Increasing sample size is not usually feasible for meeting this need. One solution is 

to use small area estimation techniques to produce reliable estimation for sub-regions. This 

study explores a method that “borrows” strength from within the target survey or from similar 

surveys conducted recently in the same country. The idea is to create a survey “domain” 

covering the small area by pooling clusters close to the small area within the target survey or 

from similar surveys conducted in recent years. “Close” means geographically, or in time and 

space, or using other measures such as demographic, social, religious, cultural, or economic 

measures. Using design-based domain analysis tools, the calculation of parameter estimation, 

variance estimation and confidence intervals for small areas is straightforward. This study uses 

data from the 2010 and 2014 Rwanda DHS surveys and the proposed methods to produce 

district level total fertility rates (TFR) which were not provided in the survey reports due to 

insufficient sample sizes at the district level.   
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1 Introduction 

The Demographic and Health Surveys (DHS) Program is an international project 

funded by the United States Agency for International Development (USAID). The 

DHS Program has collected, analysed, and disseminated high quality data on 

population, health, HIV, malaria, and nutrition and other topics through more than 

400 national surveys in over 90 countries since 1984. The DHS Program receives 

more and more requests from host countries to produce estimates of key DHS 

indicators at the sub-regional/district level. Direct estimates, especially for total 

fertility rates (TFR) and childhood mortality rates (CMR) which need a very large 

sample size, are not feasible because of the cost and possible adverse effect on data 

quality, especially when there is a large number of sub-regions. One solution is to use 

small area estimation techniques to produce reliable sub-regional estimates. This 

research explores a design-based methodology, by “borrowing strength” from data 

collected in a single target survey or in similar surveys conducted in recent years. The 

idea is to create a survey domain which is the nearest neighbour to the small area by 

pooling clusters close to the small area geographically, in time and space, or by using 

other measures such as demographic, social, religious, cultural, and economic 

measures within one survey or from similar surveys conducted in recent years. A 

survey domain created in this way is easy to analyse using design-based domain 

analysis tools to calculate parameter estimates, variance estimates and confidence 

intervals. Data from DHS surveys are typically more reliable and often more timely 

than data from other sources such as censuses or administrative records. A calibration 

procedure can be applied to small area estimates to ensure that they can be aggregated 

to the regional level and match the regional level estimates of the target survey. This 

consistence property is desirable for small area estimation. 

2 Design-Based Small Area Estimation: The Nearest Neighbour 

In practice, most large-scale sample surveys have complex designs, including multi-

stage and multi-phase probability sampling procedures with stratification and 

clustering. Sampling weights, expansion weights, are calculated as the inverse of the 

overall inclusion probability with possible adjustments for non-response and other 

calibration factors. Let 𝑆 be a sample selected with a complex survey design, let 

𝑌𝑖 , 𝑖 ∈ 𝑆 be the sample observations made on the variable of interest 𝑌,  and let 𝑤𝑖 , 𝑖 ∈

𝑆 be a set of expansion weights. The population total and mean can be estimated as:   

�̂�𝑤 = ∑ 𝑤𝑖𝑌𝑖𝑖∊𝑆 ,      �̂�𝑤 = ∑ 𝑤𝑖𝑌𝑖𝑖∊𝑆 / ∑ 𝑤𝑖𝑖∊𝑆                        (1) 

The variance estimation can be calculated approximately by Taylor Linearization 

approximation, or by the Jackknife repeated replication method. 

Suppose that the total population can be subdivided into small areas 𝑈𝑎 , 𝑈 =
⋃ 𝑈𝑎

𝐴
1 , with unknown small area totals 𝑇𝑎 = ∑ 𝑌𝑖𝑖∊𝑈𝑎

,   1 ≤ 𝑎 ≤ 𝐴. Suppose that the 

sample S can be subdivided the same way into small sub-samples  𝑆𝑎  ,  𝑆 = ⋃ 𝑆𝑎
𝐴
1  

with a small sample size for each area. The aim is to efficiently estimate the area total 

or its mean based on 𝑆𝑎  for each small area. Direct estimation based only on a small 
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area sample is usually inefficient because of the small sample size. There are many 

ways to construct small area estimates by borrowing ‘strength’ based on spatial or 

structural properties of the small area, including design-based, model-assisted, and 

model-based methods [1-5]. Design-based small area estimation techniques use 

auxiliary information from outside the survey data to improve the reliability of the 

direct estimates, including ratio estimator, regression estimator, or more generally, 

calibration estimators.  

In this study, we explore a design-based small area estimation method that uses 

the nearest neighbour technique. Sampling units located geographically close or close 

in other related measures correlated with the variable of interest may have similar 

characteristics to the study variables. We pool the sampled sampling units “close” to 

the small area together with the sampled sampling units from the small area to form 

a group, a nearest neighbourhood, and then treat it as a survey domain. A domain 

created in this way could be a true survey domain or a pseudo domain, depending on 

the definition of the distance measure. If the distance measure defines a fixed sub-

population that does not depend on any sample selection results, then the domain is a 

true survey domain. For example, all sampling units located within a fixed distance 

from a fixed geographical point within a small area form a true survey domain. All 

sampling units located within a fixed distance to any of the sampled sampling units 

of a small area form a true survey domain. By treating them as survey domain, we 

can use all the known statistical inference techniques of survey domain analysis, 

including the estimation of small area totals, means and their variance estimation. Let 

𝑆𝑎
+ be the enlarged sample consisting of the small area sample plus the borrowed 

sampling units from nearest neighbour areas; then the small area total can be 

estimated by 

�̂�𝑎
∗ = 𝑁𝑎 ×

∑ 𝑤𝑖𝑖∈𝑆𝑎
+ 𝑌𝑖

∑ 𝑤𝑖𝑖∈𝑆𝑎
+

       or      �̂�𝑎
∗ = �̂�𝑎 ×

∑ 𝑤𝑖𝑖∈𝑆𝑎
+ 𝑌𝑖

∑ 𝑤𝑖𝑖∈𝑆𝑎
+

                   (2) 

depending on whether or not the small area population size 𝑁𝑎  is known, where �̂�𝑎 =
∑ 𝑤𝑖𝑖∈𝑆𝑎

 is the estimate of the area population size in case it is unknown. 

When similar surveys have been conducted in the same area in recent years and 

the characteristics to be estimated are stable over time, we can then combine two 

surveys together to increase the sample size for small areas. Let 𝑆𝑎
(1)

 and 𝑆𝑎
(2)

 be the 

small area samples from the previous survey and the current (target) survey, 

respectively, and �̂�𝑎
(1)

and �̂�𝑎
(2)

 are the direct estimates of area total over small area 𝑎, 

the following estimate 

�̂�𝑎
∗ = 𝛼�̂�𝑎

(1)
+ (1 − 𝛼)�̂�𝑎

(2)
= 𝛼 ∑ 𝑤𝑖𝑖∈𝑆𝑎

(1) 𝑌𝑖 + (1 − 𝛼) ∑ 𝑤𝑖𝑖∈𝑆𝑎
(2) 𝑌𝑖       (3) 

is an estimate for the current area total through a proper weighting factor 𝛼 (𝛼 > 0). 

The two direct estimates can be weighted equally or weighted with an importance 

weight. Assuming that the two surveys are independent, then all analysis is simple 

and direct based on standard survey data analysis tools and techniques. We use simple 

notations in the formula, but the values of 𝑌𝑖 in the two different terms represent the 

sample values of the variable of interest at different occasions.  

It is desirable that small area estimates that are produced by different methods 

are consistent with reliable higher-level estimates. The small area estimates may be 

adjusted for consistency.  Let �̂�𝑎
∆ be the adjusted estimate such that 
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�̂�𝐵 = ∑ 𝛿𝑎�̂�𝑎
∆

𝑎∈𝐵 ,          𝛿𝑎 =
∑ 𝑤𝑖𝑖∈𝑆𝑎

∑ 𝑤𝑖𝑖∈𝑆𝐵

                                       (4) 

where �̂�𝐵 is the broad area or higher-level estimate based on the full sample 𝑆𝐵 from 

the broad area 𝐵, �̂�𝐵 = ∑ 𝑤𝑖𝑖∈𝑆𝐵
𝑌𝑖 .The simplest adjustment is  

�̂�𝑎
∆ =

�̂�𝐵

∑ 𝛿𝑎�̂�𝑎
∗

𝑎∈𝐵
× �̂�𝑎

∗                                                       (5) 

�̂�𝑎
∆ is consistent in the sense that it can be aggregated to the broad area estimate �̂�𝐵. 

A more complex adjustment uses a “reverse calibration” procedure by treating �̂�𝐵 as 

the target total and the �̂�𝑎
∗s as “weights”. This adjustment can also be used to adjust 

complex indicators such TFR and CMR.  
The proposed methods in this study are different from the Broad Area Ratio 

Estimator (BARE) ADB (2020) which pools all neighbouring small areas together 

from a broad area, where a homogeneous assumption was made that all small areas 

have the same mean as the broad area. It is also different from the reweighting method 

of Schirm and Zalansky et al. (1997) which uses the full sample including the small 

area and adjusts the sampling weights to catch the small area population size or other 

known population characteristics. 

In the following sub-sections, we use data from the Rwanda DHS 2014 as the 

target survey and Rwanda DHS 2010 as the auxiliary survey. Rwanda has five 

provinces, each of which is subdivided into districts, with a total of 30 districts. The 

two surveys had the same design as two-stage cluster surveys, both of which had a 

designed sample size of 492 clusters and 12,792 households, and 26 households per 

cluster. The sample size was 16 clusters and 416 households per district, except for 

the three districts in Kigali province where 20 clusters and 520 households per district 

were sampled. The district level sample size is not too small for many indicators, but 

it is too small for a direct estimate of TFR. What we call “small area” here is relative 

to specific variables where a reliable estimate usually needs a very large sample size. 

2.2.1 The Time-Space Nearest Neighbour 

This method uses time-space nearest neighbour by simply combining the 2010 and 

2014 surveys together, since all the sampled clusters in the 2010 survey in a district 

are the nearest neighbours geographically and maybe in time for the clusters in the 

same district for the 2014 survey. This doubles the sample size for each of the 30 

districts and meets the minimum sample size requirement for TFR estimation at the 

domain level. All districts have 32 clusters and 984 households, except three districts 

in Kigali province each have 40 clusters and 1040 households. TFR is calculated 

using a standard procedure based on the combined sample as they were from a single 

survey. However, an importance weight can be used to reflect the user’s objective 

judgement. For example, a larger weight can be assigned to the target survey than to 

the auxiliary survey. The importance weight can be area/district specific. In this study, 

we used equal weights and province level TFR variance weights for simplicity, but 

two different weights give very close results. The results reported here used the equal 

weight option; the calculated TFR without adjustment represents a reference period 

between the two surveys, roughly from 2010 to 2011. A consistency adjustment for 

the 2014 provincial TFR makes the estimate lean toward the 2014 survey. A 
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consistence adjustment can be made for age-specific fertility rates or the total fertility 

rate. The results are adjusted for TFR at the province level. 

2.2.2 The District Centre Nearest Neighbour 

This method uses the small area centre point as a reference point and calculates the 

distance of the other clusters from other areas and takes a few clusters closest to the 

small area central point as the nearest neighbourhood, which creates a true survey 

domain. Usually, the small area central point is an easy-to-get information. When the 

sample size from the small area is not too small, such as for the Rwanda DHS 2014, 

a central point calculated based on the GPS coordinates of the sample clusters should 

be very close to the district central point, the central point of inhabited areas, which 

is better and more meaningful than the actual geographical centre. Suppose a group 

of such clusters are identified, plus the sample from the target district, the population 

characteristic estimation has the same formula as equation (2). The 2014 Rwanda 

DHS collected the GPS central point for each of the 492 clusters. We calculated the 

district centre based on the sample points from the district, and then calculated the 

distance to a district centre for each of the clusters which are not from the target 

district and took the first 20 clusters closest to the targeted district centre. Some 

districts borrowed clusters only from other districts in same province, and some 

districts borrowed clusters from districts in other provinces. 

2.2.3  The Cluster Centre Nearest Neighbour 

This method uses the cluster centre’s nearest neighbour. Distances to a cluster in the 

target district from each of the clusters in neighbouring districts are calculated from 

the same province or other provinces. The 5 clusters closest to each cluster in the 

target district are identified. Since one neighbour cluster can be the nearest neighbour 

for several clusters in the target district, we just kept the distinct clusters. A fixed 

distance cut-off was used to control the neighbourhood size. The distance cut-off was 

district specific, ranging from 4 km to 25 km, with a target of about 16 distinct clusters 

borrowed for each district to reach the smallest sample size required for reliable TFR 

estimation at the district level. The number of borrowed clusters ranges from 8-19 per 

district. Some districts borrowed clusters only from the neighbouring districts within 

the same province, and some districts also borrowed clusters from districts in other 

provinces.   

3 Numerical results 

In this section, we present numerical results using the Rwanda DHS 2010 and 

Rwanda DHS 2014 data and the SAE methods proposed in the previous sections to 

estimate district level TFR. TFR is the average number of children a woman would 

have by age 49 if she bore children at current age-specific fertility rates. It is 

calculated as the sum of 7 age-specific fertility rates (ASFR) by 5-year age group 
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multiplied by 5 for the 3 years before the survey. An age-specific fertility rate is the 

ratio of the number of live births over women-years of exposure. We calculated the 

direct estimates and the three SAE estimates; their variance and confidence intervals 

were calculated using the Jackknife method. 

Confidence intervals 

for direct estimates 

have an average length 

of 1.43 children, which 

is beyond our precision 

control for domain 

level estimation which 

is controlled for one 

child. The average 

confidence interval 

length for the three 

SAE estimates is 1.01 

(SAE1) for the 

combined estimate, 

0.93 (SAE2) for the district centre nearest neighbour method, and 0.96 (SAE3) for 

the cluster centre nearest neighbour method. These are all under our controlled 

precision for domain level estimation. The two nearest neighbour methods produce 

very similar results. Figure 1 shows the numerical results, plotted against the 

provincial level TFR. The curve of the direct estimate departs more from the 

provincial level curve, SAE1 is better, and SAE2 and SAE3 are very close to the 

provincial level curve.         
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Figure 1. Line plot of the various TFR estimates against the 

provincial TFR estimates 
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Abstract

Analysing complex phenomena often requires the estimation of multivariate,
correlated, descriptive parameters, which may potentially have a heterogeneous
nature: binary variables, counts, continuous symmetric or skewed variables, or a
combination of them. Moreover, a frequent issue is that of deriving estimates for
small spatial areas that are non-sampled or are under-sampled in surveys. Estim-
ates of such parameters can ‘borrow strength’ from data on multiple character-
istics and/or auxiliary variables from other neighboring areas through appropriate
models. We suggest the use of a multivariate mixed effect model, based on cor-
related random effects, for the jointly modelling of multiple outcomes recorded
on a sample of units clustered within small areas. This allows us to account for
the multivariate dependence among outcomes by means of the latent terms in the
model. The proposal is tested by means of an intensive simulation study consider-
ing different types of outcomes.

Keywords— multiple characteristics, multivariate unit-level small area models, cor-
related random effects

1 Introduction
Direct small area estimates (SAE) may not provide acceptable precision in the presence
of small sample sizes or out-of sample areas. In this framework, indirect, model-based,
approaches represent a powerful tool since they allow to borrow information across re-
lated areas by means of auxiliary variables. The most popular models for SAE are the
linear-mixed models. They area based on independent, area-specific, random effects
that allow us to account for the variability between areas exceeding that explained by
the auxiliary variables. Responses can be either observed at the small area-level or
at a the unit-level. Fay and Herriot (1979) studied the area-level model and proposed

aemilia.rocco@unifi.it
bmariafrancesca.marino@unifi.it
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an empirical Bayes estimator for this case. Battese and Fuller (1988) considered the
unit-level model and constructed an empirical best linear unbiased predictor (EBLUP)
for the small area means. Several extensions to this set-up have been considered in the
literature, mostly for handling univariate survey data. Rao and Molina (2015) provides
a general reviews of small area estimation. When the aim is to estimate a finite popula-
tion mean vector of multiple characteristics, multivariate area-level or unit-level mixed
models allow to take into account their correlation. For multivariate area-level data,
Fay (1987) proposed the multivariate Fay-Herriot model; some extensions have also
been considered in the literature (e.g., Porter et al., 2015; Ubaidillah et al., 2019). For
multivariate unit-level data, the use of multivariate linear mixed models has been con-
sidered by Datta et al. (1999) and Esteban et al. (2020) among others. All the cited
works prove how the multivariate approach allows to achieve substantial improvement
over the univariate counterparts. However, in the SAE literature, the use of multivariate
generalized linear mixed models (GLMMs) to estimate a finite population mean vec-
tor of non-Gaussian, multiple, characteristics observed at the unit-level has not been
studied much. In this paper, we suggest and investigate its use to deal with the estim-
ation of a mean vector for each small area when the assumption of the multiple linear
mixed model are not satisfied. Section 2 describes the estimation setting while Section
3 carries out simulation experiments and reports a final discussion.

2 Small area estimation under multivariate GLMMs
Let U be a finite population of N units, partitioned in m small-areas (Ui ⊂U) of size Ni,
with ∑m

i=1 Ni = N. Let Y i j = (Yi j1, . . . ,Yi jD)
′ denote an D-dimensional response vector

for unit j belonging to small area i (i = 1, . . . ,m, j = 1, . . . ,Ni). Let ui = (ui1, . . . ,uiD)
′

be an area-specific random vector having response-specific components. Last, let xi j
denote a p-dimensional vector of auxiliary covariates, and X id the corresponding mat-
rix of covariates for the i-th small area and the d-th response.

We assume that the following generalized linear mixed model relates the response
variables in Y i j to the auxiliary ones





g1(E[Yi j1 | ui1]) = x′i j1β 1 +ui1

g2(E[Yi j2 | ui2]) = x′i j2β 2 +ui2
...
gD(E[Yi jD | uiD]) = x′i jDβ D +uiD],

(1)

Here, gd(·) is a proper link function, xi jd is a subset of xi j (that is, xi jd ⊆ xi j), β d is a
p-dimensional vector of fixed model parameters describing the effect of covariates xi jd
on the (transformed) mean of Yi jd , and uid is the area- and response-specific random
effect which is meant to describe sources of unobserved heterogeneity not captured by
xi jd . We assume that each element in Y i j, say Yi jd , is influenced by the corresponding
element in ui only, that is uid , and conditional on these effects, multiple responses
from the same unit are independent (within-unit local independence). The proposed
multivariate small area model is completed by the following assumptions.

Rocco and Marino: Small area estimation via multivariate generalized linear mixed effects models

107



• Conditional on the vector ui, responses from units in the i-th area, Y i = {Y i1, . . . ,Y iNi},
are independent (within-area local independence) and the corresponsing joint, con-
ditional, density is:

f (yi | ui) =
Ni

∏
j=1

f (yi j | ui) =
Ni

∏
j=1

D

∏
d=1

f (yi jr | uid)

where f (yi jd | uid) denotes the Exponential Family (EF) density.

• The area-specific random vector ui follows a zero mean, multivariate, Gaussian dis-
tribution, with unconstrained covariance matrix Σu. Diagonal elements of such a
matrix identify the variance of the area- and response-specific random effect uid ,d =
1, . . . ,D, while off-diagonal elements correspond to the covariance between couples
(uid ,uid′). This latter provides an (indirect) measure of dependence between the
corresponding responses (Yi jd ,Yi jd′).

Our aim is here that of predicting the vector of small area means ȳi = (ȳi1, . . . , ȳiD)
′

with ȳid = 1
Ni

∑Ni
j=1 yi jd , d = 1, . . . ,D, by using the GLMM in equation (1). To this

aim, a sample (si) of ni units is selected from each small area Ui according to a non-
informative sampling design (∪m

i=1si = s). We assume that covariates X id are available
at the population level, while responses Y i j are observed for sampled units only. In this
respect, each component in ȳi can be partitioned into the sampled and unsampled part

ȳid =
1
Ni

∑
j∈si

yi jd + ∑
j/∈si

yi jd ,

and predictions for yi jd when j /∈ si can be obtained as

ŷi jd = g−1(ûid + x′i jd β̂ d).

Here, β̂ d and ûid denote the maximum likelihood estimate of fixed model parameters
and the empirical best predition of the area- and response-specific random effectin the
model, respectively. The latter is obtained as ûid = E(uid | yid).

While the prediction of one small-area mean at a time from univariate equations
in (1) allows us to obtain equivalent results to the proposed multivariate approach in
terms of bias, improvements are expected to be observed in terms of efficiency. In-
deed, as far as this measure is entailed, using the multivariate approach allows us to
borrow strength not only from areas (as for the univariate approach), but also from
multiple responses. Furthermore, the proposed multivariate small area model directly
nests the corresponding univariate ones. When responses are uncorrelated, the cov-
ariance matrix for the area-specific random effects reduces to Σu = σuID, where ID
denotes a D×D identity matrix. Last, but not least, it can be the case that analysing the
association structure between multiple responses is itself of interest. In this sense, the
proposed multivariate approach represents an iteresting tool of analysis which is worth
to consider.
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3 Simulations
In order to investigate the performance of the proposed multivariate SAE approach,
a large scale model-based simulation experiment has been performed. It takes into
account several scenarios. For each of them, bivariate population data are generated
from the following bivariate GLMM:

{
g1(E[Yi j1 | ui1]) = β0 + xi jβ11 +ui1
g2(E[Yi j2 | ui2]) = β0 + xi jβ12 +ui2,

where gk(·),k = 1,2, denotes a proper link function, a single covariate x is considered,
and the area-specific effects ui = (ui1,ui2)

′ are simulated from a bivariate Gaussian
distribution ui ∼ N2(0,Σu) with two specification for the covariance matrix

Σ(high)
u =

[
1 0.7

0.7 1

]
, Σ(low)

u =

[
1 0.32

0.32 1

]
.

Concerning the response type, the related link function, and the values of fixed model
parameters, we have considered the following two settings:

1. A pair of Poisson responses – Yi j1 | ui1 ∼ Pois(·) and Yi j2 | ui1 ∼ Pois(·) – with
g1(·) = g2(·) = log(·) and regression parameters: β0 = 0.7,β11 =−0.1,β12 =−0.2

2. A pair of Bernoulli responses – Yi j1 | ui1 ∼ Bern(·) and Yi j2 | ui1 ∼ Bern(·) – with
g1(·)= g2(·)= logit(·) and regression parameters: β0 = 0.5,β11 =−0.4,β12 =−0.6

The population size is assumed to be constant across areas (Ni = 100 for i =
1, ...,m), while three different values are considered for the number of areas: m =
50, 100, 200. For each m, the auxiliary variable in the model is generated as xi j ∼
Unif(1, i/b), where b = 4,8,16, for m = 50, 100, 200, respectively.

For each scenario (for a total of 2×2×3), sample data are drawn by using a strati-
fied sampling design, with strata corresponding to areas and equal sample size, ni = 10,
in each stratum. The number of simulation runs is fixed at T = 1000. Finally, the mul-
tivariate small area estimates obtained through the proposed multivariate GLMM are
compared to estimates obtained through the corresponding univariate coutnerparts. To
this end, for each area i and each predictor, the empirical Root Mean Squared Error

(RMSE) is calculated as: RMSEi =
√

T−1 ∑T
t=1( ˆ̄yModel

it − ȳit)2.

From the empirical results shown in Figure 1 and 2, it is evident that in the presence
of highly correlated responses, the multivariate modelling is preferable to the univari-
ate counterparts, whatever the nature (the distribution form) of the data. When the
correlation is low, may be opportune to evaluate for each case (considering the nature
of the data, the number of small-areas, the size of the sample, and the aim of the study)
the trade of between the capability of the multivariate approach to exploit the relation
among the two variables and the higher complexity of the model itself. However, the
problem in the case of low correlation may be not the mean predictor itself, but the
corresponding MSE estimators based on an incorrect model. When the target variables
are positively correlated, univariate models usually tend to under-estimate the MSEs.
Prospective research endeavors will investigate more this aspect and will consider the
extension to multivariate mixed type responses.
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(c)

RMSE for response variable 1 in case of high correlation with (a) m=50, (b) m=100, (c) m=200
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(c)

RMSE for response variable 2 in case of high correlation with (a) m=50, (b) m=100, (c) m=200
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(c)

RMSE for response variable 1 in case of low correlation with (a) m=50, (b) m=100, (c) m=200
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(c)

RMSE for response variable 2 in case of low correlation with (a) m=50, (b) m=100, (c) m=200

Figure 1: Poisson data
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(c)

RMSE for response variable 1 in case of high correlation with (a) m=50, (b) m=100, (c) m=200
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(c)

RMSE for response variable 2 in case of high correlation with (a) m=50, (b) m=100, (c) m=200
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(c)

RMSE for response variable 1 in case of low correlation with (a) m=50, (b) m=100, (c) m=200
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(c)

RMSE for response variable 2 in case of low correlation with (a) m=50, (b) m=100, (c) m=200

Figure 2: Bernoulli data
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Abstract

Small area estimation is studied under a Heteroskedastic Geographically Weighted
Regression model for functional data. The calibrated spatio-functional model we
propose assumes that the variance varies across the space, and that each local
model (defined at each location) gives a local non parametric estimation of the
variance. This approach improves the model performance in terms of predictive
spatio-functional fit for small area estimation, as illustrated by a simulation study
and financial data analysis.

Keywords— Small are estimation, Functional data analysis, Heteroskedasticity,
Non-stationarity, Weighted regression

1 Introduction
Nowadays, many modern systems need the estimation and publication of statistics for
disaggregated domains (Marchetti et al., 2015). This is strictly related to small area
estimation problems involving the estimation of parameters for small sub-populations,
generally defined when the sub-population of interest is included in a larger survey.

In this framework robust methods like GWR proposed by Salvati et al. (2012) have
proven to be very useful. In this paper we propose a robust small area methodology
that allows for the presence of spatial correlation in the data. We especially present
a robust predictive functional approach that incorporates the spatial impact from the
areas on the small area of interest.
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The approach, we present, is a generalisation of a geographically weighted regres-
sion model (GWR) (Fortigam et al., 2002) for spatially correlated sample curves, focus-
ing on the problem of non-stationarity in parameter estimation. Like in (Romano et al.,
2020), we calibrate the variance of the model by estimating locally the variance and
we improve the model performance in terms of predictive fit by searching a parameter-
specific distance metric. This involves replacing the weighted linear regression in IRLS
algorithm by a back-fitting algorithm.

2 Heteroskedastic GWR model (H-GWR) for spatially
dependent functional data

Let YD = {Ys(t) : t ∈ T, s∈D}, be a functional response variable (Ramsay et al., 2005)
observed at a location s ∈ D ⊆ R2, whose realisation as a function of t ∈ T is a func-
tional data, where T is a compact subset of R. Assume we also have K functional co-
variates defined on T (Delicado et al., 2010), and observe χχχD(v)= [χD,1(v), . . . ,χD,K(v)]T .
We introduce a model calibration by means of local estimation of the squared residuals.
The model is built on the assumption that the variance varies across the space, and that
each local model (defined at each location) gives a local estimation of the variance.

A GWR model can be defined written as

Ys = ms + εs (1)

where ms is a drift term and εs is a zero mean, second-order stationary and isotropic
random field, so that

(i) E(Ys) = ms ∀ s ∈ D

(ii) E(εs) = 0 ∀ s ∈ D

(iii) Var(εs) = E[εsεT
s ] = Σ, where the diagonal elements of Σ reflect zero spatial

autocorrelation, and are defined by σ2(t) =Var(εs(t)) that are independent from
the spatial location.

At the generic location si, the model in (1) becomes

Ysi(t) = msi(t)+ εsi(t) i = 1, . . . ,n (2)

where msi(t) can be written as msi(t) = βsi,k(t)+
∑K

k=1
∫

T χsi,k(v)βsi,k(v, t,si)dv, where
βsi,0 is the intercept, and βsi,k(v, t,si) are the functional coefficients of the k covariates
at site si. Recall that the GWR prediction variance at a generic location si, without any
assumption of spatial dependence, is defined as

σ2GWR
si

(t) = var{Ŷsi(t)−Ysi(t)}= σ̂2(t)[1+Ssi(t)] (3)

where

• σ̂2(t) = RSS(t)/(n−ENP), with RSS(t) the residual sum of squares and ENP
the effective number of parameters of GWR fit. This is a function independent
from the spatial location.
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• Ssi(t) is the i-th element of the matrix S = (CkJφk)Wsi(
∑K

k=1 CkJφk Bsi,k)Jφk .

In several cases, like in the small area estimation, the above assumption of indepen-
dence of the variance from the space is not realistic. Indeed, the local variability of
the coefficients in space may easily depend on different levels of the spatial variability.
Thus to predict the function Ysi taking into account the non-constant spatial variability,
we propose to correct the variance of the model providing local error variance estimates
that are spatially dependent.

We calibrate the variance of the model σ2GWR
si

(t) by replacing σ̂2(t) with σ̂2
si
(t),

and assuming the latter is a continuous function over the space, we can estimate it by a
mean smoother. The final variance σ̂2

si
(t) replaces σ̂2(t) to give

σ2GWR
si

(t) = var{Ŷsi(t)−Ysi(t)}= σ̂2
si
(t)[1+Ssi(t)] (4)

Note that in this equation, the random variable is σ2GWR
si

(t). For the local variance
estimation, we need to model the relationship with the local mean. Thus we write the
local mean in terms of a local smoother as follows

msi(t)=
n∑

j=1

wsi,s jYsi(t)/
n∑

j=1

wsi,s j =
n∑

j=1

L∑

l=1

wsi,s j al(t) fl(si)/
n∑

j=1

wsi,s j si,s j ∈D, t ∈T,

(5)
where fl(·), l = 1, . . . ,L are known functions at each location, and al(·), l = 1, . . . ,L
are unknown functional coefficients independent of the spatial location that have to be
estimated. Note that the dependence of the mean on the spatial location comes from
the function { fl(·)}l=1,...,L and the weights wsi,s j .

Then, the local variance smoother becomes

Lσ2
si
(t) =

n∑

j=1

wsi,s j(Ysi(t)−msi(t))
2/

n∑

j=1

wsi,s j . (6)

This is a mean smoothing over the observed squared residuals, and provides the fol-
lowing local variance estimation

σ̂2
si
(t) =

n∑

j=1

wsi,s j(Ysi(t)−
n∑

j=1

L∑

l=1

wsi,s j al(t) fl(si)/
n∑

j=1

wsi,s j)
2/

n∑

j=1

wsi,s j .

Spatially varying relationships between the dependent variable and the covariates
are accounted for by locally weighting and calibrating from the spatial locations. The
algorithm is iterated with updated estimates of β̂si,k(v, t,si) until an acceptable level of
convergence is reached. Together with the parameter estimates, the H-GWR prediction
at si is also updated. In a traditional GWR technique, the calibration given by Wsi

is obtained by kernel smoothing where the bandwidth is selected via a leave-one-out
cross-validation method or by the Akaike Information criterion (AIC). In both cases the
Euclidean distance is often used as a default metric in this calibration step. In addition
to a first heteroskedastic calibration step, we additionally propose to account for the
spatial non-stationarity in the parameter estimates by building a weight matrix using a
back-fitting algorithm, generalization of (Liu et al., 2015).
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Figure 1: Distribution of the difference between residuals of two estimated models
HGWR calibrated and not calibrated.

3 Application results
Banks have always been the main source of finance for the Italian economy, and learn-
ing about the strengths and weaknesses of the banking system is essential to understand
the economic prospects of the country, in particular given the growing integration of
international financial markets. The relationship between financial systems and growth
has been explored at the infra-national level as local finance and growth stream of stud-
ies. In this perspective, the aim of this study is to show the cross-regional variation in
economic growth in countries such as Italy by using the H-GWR technique, proposed
in Section 2. Especially the impact of years (2000-2014) of transformations of the Ital-
ian banking system on the local economic development has been investigated.
Data (collected from the Bank of Italy database (www.bancaditalia.it)) consists of a
panel composed by the 103 Italian provinces, considering for each province the time
series over 15 years of the following variables: the value added by worker (YD(t));
the percentage of the ratio between the number of Banche di Credito Cooperativo
(BCC) and number of total bank (XD,1(τ)); the ratio of total loans on total value added
(XD,2(τ)).

We considered a functional model to estimate YD(t)) from XD,1(τ) and XD,2(τ). In
particular, in the aftermath of the 2007− 08 global banking crisis, Italy underwent a
credit crunch that particularly affected small, local cooperative banks. During a credit
crunch such small banks may be more inclined to reduce lending to their traditional
clientele. This may weaken or cancel the negative effect of reduced banking diversity
on growth at the local level.
We considered a functional model to estimate YD(t)) on XD,1(τ) and XD,2(τ) over the

4

Romano et al.: Small area estimation via heteroskedastic geographically weighted regression for functional data.

116



period 2000−2014.
The 103 Italian provinces divided in 4 areas: Sud, Midlle, Nord-Est, Nord-ovest.

The mean of residuals was calculated for each area, with HGWR calibrated method
(mrCHGWR) and HGWR method (mrCHGWR). Figure 3 shows a map of Italy painted
different level of blue. Light areas are the macro areas where the means of residuals of
the calibrated HGWR are smaller than the means of residuals of the HGWR.
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Abstract

In this paper we propose two bias correction approaches in order to
reduce the prediction bias of the robust M-quantile predictors in small
area estimation in the presence of representative outliers. A Monte-
Carlo simulation study is conducted. Results confirm that our approaches
improve the efficiency and reduce the prediction bias of M-quantile predictors
when the population contains units that may be influential if selected in
the sample.

Keywords— Robust methods, Small Area Estimation, M-quantile

1 Introduction

Outliers can arise frequently in sample surveys, for instance regarding economic
variables whose distribution are highly skewed the data distribution is highly
skewed. Some outliers are sample elements whose data values are recorded
incorrectly or are unique, consequently they can be can be somehow corrected
or removed. However, other outliers may not associated with an error: the
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sample values associated with these outliers have been correctly recorded and
they cannot be considered as unique. According to (Chambers, 1986) they
are ‘representative outliers’. Such outliers values are representative of the
non-sampled part of the population and they can seriously affect the survey
estimates. Consequently, several methods have been developed in order to
mitigate the effects of outliers on survey estimates. The representative outliers
are even more concerning in the small area estimation (SAE) context, where
sample sizes are very small and the estimation is often model-based Chambers
et al. (2014). Robust small area estimation has received considerable attention
in last years. Among other, Chambers and Tzavidis (2006) propose a robust
approach based on the M-quantile regression aiming at overcoming the issue of
outliers by avoiding the normal assumption. Sinha and Rao (2009) addressed
the same issue from the perspective of linear mixed models. However, these
approaches use plug-in robust prediction replacing parameter estimates in optimal
but outlier-sensitive predictors by outlier robust versions and they may introduce
a prediction biases. Dongmo-Jiongo et al. (2013) and Chambers et al. (2014)
proposed a bias correction method for models with continuous response variables.
The main aim of this work is to propose general bias correction methods to
reduce the prediction bias of the robust M-quantile predictors in SAE in the
presence of outliers. Two approaches are studied. The first estimator is a
unified approach to M-quantile predictors based on a full bias correction and it
could be viewed as a generalization of Chambers (1986). The second proposal
is developed following the conditional bias approach by Beaumont et al. (2013)
and Dongmo-Jiongo et al. (2013).

2 Bias corrected M-quantile-based estimator

Let θi be a finite population parameter for area i. That is, θi is a well-defined
function of the values of a random variable Y associated with the Ni elements of
such a small area finite population of interest. For ease of notation, we assume
that both Y and θi are scalar, and we denote

θi = f(yUi
),

where yUi denotes the vector of population values of Y for small area i and
f is a known function. A basic sample survey inference problem is then one
of predicting the value of θi give a sample of n < N values from yU . Without
loss of generality we put ys equal to the population sub-vector defined by these
values, where s denotes the set of sampled population units. We define (i) yUi

vector of population values of Y for area i with U =
⋃m
i=1 Ui with m is the

number of small areas; (ii) ysi vector of sampled population values in small
area i with s =

⋃m
i=1 si. Suppose that, given ysi we can impute the remaining

values ŷUi
denote this imputed vector. A popular method of predicting the

unobserved value of θi is via the Plug-In Predictor (PIP)
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θ̂i = f(ŷUi). (1)

Adopting a model-based approach, the empirical PIP for θi based on this
plug-in approximation is

θ̂i = f(ysi , {ŷoptij ; j ∈ Ui − si}) (2)

where the set Ui − si contains the Ni − ni indices of the non-sampled units,
ŷoptij = E[yij |ys; δ = δ̂] is the plug-in approximation of the minimum mean

squared error predictor (MMSEP) of yoptij for a non-sampled population unit j
for area i, and δ is a vector of unkown parameters. The above PIP (2) for small
area can be also computed using the M-quantile approach. It can be obtained by
using the estimated regression coefficients by M-quantile approach, β̂τ , leading
to

θ̂MQ
i = f

(
ysi , {g−1(xTijβ̂τi); j ∈ Ui − si}

)
, (3)

where τi represents the order of M-quantile for area i. Its computation varies
depending on the type of the data.

We propose two small area estimators based on Generalised version of M-
quantile regression models.

The first estimator is a unified approach to M-quantile predictors based on a
full bias correction. Following Chambers (1986), the first order approximation

to the prediction bias of θ̂MQ
i is

E[θ̂MQ
i −θi] '

∑

j 6∈si

( ∂f

∂yij

)
yUi

=mUi

E[ŷij−yij ] '
∑

i∈rj

( ∂f

∂yij

)
yU=m̂Uq̄j

(∂g−1

∂η

)
η=xT

ij β̂q̄j

xTijE[β̂q−βq],

The bias corrected robust predictor MQC for the population average of Y
in the ith area will be:

θMQC
i = N−1

i

(∑

j∈si
yij +

∑

j∈ri
µ̂ij +

∑

j∈ri

( ∂f

∂yij

)
yU=m̂Uq̄j

(∂g−1

∂η

)
η=xT

ij β̂q̄j

xTijB̂i

)
(4)

where djhq̄j = 2 {q̄jI(rhj > 0) + (1− q̄j)I(rhj ≤ 0)} and B̂i has to be computed
depending of the type of the response variable. If yij is continuous

B̂i =




m∑

h=1

∑

j∈sh

xhj d̂hjx
T
hj



−1

m∑

h=1

∑

j∈sh

xhj d̂hj σ̂hjφ

{
yhj − xTijβ̂τi

σ̂hj

}
. (5)

The second proposal is developed following the conditional bias approach
by Beaumont et al. (2013) and Dongmo-Jiongo et al. (2013). In a model based
approach, the conditional bias attached to unit ij is

Bij = E[θ̂ − θ|s;Yij = yij ].

The prediction error θ̂i − θi can be approximated as:
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θ̂i − θi '
∑

j∈ri
Bij(Iij = 0) +

∑

j∈si
Bij(Iij = 1). (6)

To determine the conditional bias, we need to distinguish two cases, whether
the unit belongs to the sample or not. The main problem is that the conditional
bias of a non-sampled unit can’t be estimated since it depends on the Y -values
on the non-sample units, which are not observed. A robust predictor of the
mean in the ith area can be expressed as

N−1
i

(∑

j∈si
yij +

∑

j∈ri
g−1(xTijβ)−

∑

j∈si
Bij(Iij = 1) + φ

{∑

j∈si
Bij(Iij = 1)

})

where φ is the Huber function. Translating the idea for MQ we have:

θMQD
i = N−1

i


∑

j∈si
yij +

∑

j∈ri
g−1(xTijβq̄j )−

m∑

h=1

∑

j∈sh

B̂jh(Ijh = 1) + φ





m∑

h=1

∑

j∈sh

B̂jh(Ijh = 1)






 .

(7)

The φ-function in MQD depends on a tuning constant c. Using min-max
method to compute the optimal tuning constant we obtain

θMQD
i = N−1

i

(∑

j∈si
yij +

∑

j∈ri
g−1(xTijβq̄j )− 1

2
(min {Bjh(Ijh = 1)}+max {Bjh(Ijh = 1)})

)

(8)

where the conditional bias for unit j has to be computed depending of the
type of the response variable. If yij is a continuous

B̂hj(Ihj = 1) =
∑

i/∈si

xTij





m∑

h=1

∑

j∈sh

xhj d̂hjx
T
hj





−1

d̂hjxhj(yhj − xThjβ̂τi). (9)

3 Model-based simulations

In this section, we provide results regarding model-based simulation scenarios
for continuous variables. We use a simulation setup based on Chambers et al.
(2014). We consider the following outcome model for generating the finite
population for m = 40 small areas:

yij = 100 + 5xij + ui + εij ,

where i refers to the areas and j to the population units. Values for x
are generated as i.i.d. from a lognormal distribution with a mean of 1 and a
standard deviation of 0.5 on the log scale. The area and individual random
effects are independently generated according to the following scenarios:

a) [0,0,0] - no outliers, u ∼ N(0, 3) and e ∼ N(0, 6);
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b) [e,u,0] - outliers in area (fixed) and individual effects, u ∼ N(0, 3) for areas
1–36, u ∼ N(9, 20) for areas 37–40 and e ∼ δN(0, 6) + (1− δ)N(20, 150).

The sample data are selected by a simple random sampling without replacement
within each area. The population and sample size are the same for all areas and
are fixed at Ni = 100 and ni = 5.

Each scenario is independently simulated 1000 times. The parameter of
interest is the population mean in each small area. Nine different estimators are
used for this purpose: the M-quantile estimator MQ by (Chambers and Tzavidis,
2006) which serves as a reference for the MQ regression based estimators, the
bias corrected M-quantile estimator MQBC by (Chambers et al., 2014), the M-
quantile estimator based on full bias correction MQC (see equation (4)), the
M-quantile estimator based on conditional bias correction MQD (see equation
(8)),the standard EBLUP which serves as a reference for all the considered
estimators, the robust eblup REBPLUP by (Sinha and Rao, 2009) and its
robust bias corrected version REBLUP–BC by (Chambers et al., 2014), the
CBEBLUP and CEBLUP predictorS by (Dongmo-Jiongo et al., 2013). The
influence function φ that is used in MQBC, MQC, REBLUP BC, CBEBLUP
and CEBLUP is a Huber proposal 2 type. For each estimator, we test three
different tuning constant for the bias correction part equal to 3, 6 and 9. The
performance of the proposed indicators is evaluated according to min-max plots
(Figure 1). The values on the x-axis and y−axis on plots are:

AbsRBias =
Median[AbsB(θki)]−min{Median[AbsB(Θi)]}

max{Median[AbsB(Θi)]} −min{Median[AbsB(Θi)]}
and

RRMSE =
Median[RRMSE(θki)]−min{Median[RRMSE(Θi)]}

max{Median[RRMSE(Θi)]} −min{Median[RRMSE(Θi)]}
,

where θki is the kth estimator in the ith area and Θi is the vector all K
predictors in area i.

(a) (0,0,0) (b) (e,u,0)

Figure 1: Min-Max plots for MQ, MQBC, MQC, MQD, EBLUP, REBLUP,
REBLUP BC, CBEBLUP and CEBLUP under selected simulation scenarios.
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Results confirm our expectations regarding the behaviour of the MQC and
MQD estimators. With respect to MQ estimator, the new proposed estimators
reduce the bias in the presence of outliers.
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Abstract

In the last years one could see increasing methodological research and
applications of multivariate Fay-Herriot (MFH) models. The models al-
low for various structures of random effects and sampling variances and
can further improve the quality of the model-based predictions. In ap-
plications to real data, however, MFH models can suffer from partially
missing direct estimates of the variables of interest. This can frequently
occur when considering direct estimates from different survey or differ-
ent points in time as dependent variables. Burgard et al. (2021b, 2019)
introduce a variant of the bivariate Fay-Herriot model which allows for
partially missing direct estimates. They present parameter estimation
(ML and REML), derive (empirical) best predictors and approximations
to the corresponding MSE for the new model. We extend their work on
bivariate models to arbitrary multivariate models and missing structures
of the variables of interest, conduct simulation studies, and give an appli-
cation to publicly available data from the American Community Survey
(ACS).

Keywords— area-level models, multivariate models, small area estimation,
missing values

1 The multivariate FH model

For fine regional and demographic domains, direct survey estimates can be as-
sociated with high variability due to small sample sizes. Model-based small
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area estimation (SAE) techniques facilitate to increase the effective sample size
of domain-level direct estimates by combining similar domains in a common
model-based framework; a procedure which is referred to as borrowing strength.
A comprehensive overview of SAE techniques is given in Rao and Molina (2015)
and Morales et al. (2021). There are two main types of model-based small area
estimation techniques, unit- and area-level models. In the small area context
their variants are often referred to as Battese-Harter Fuller (BHF) and Fay-
Herriot (FH) models respectively, following the works of Battese et al. (1988)
and Fay and Herriot (1979). Even though area-level models do not directly
use unit-level sampling information, but only aggregate domain statistics, there
are a number of reasons for their use, several of them listed in Morales et al.
(2021, Chapter 16). For non-linear statistics, the auxiliary information have
to be available for the entire target population at the unit-level. This is often
not given or leads to the fact that valuable but only aggregated auxiliary in-
formation cannot be used. Furthermore, researchers often do not get access to
unit-level information on fine regional and demographic levels, but only aggre-
gate statistics.

In the class of area-level small area models, multivariate Fay-Herriot (MFH)
models have received more attention in recent years. With MFH models several
variables of interest are modelled simultaneously, additionally profiting from the
correlation structure between them. One can model one statistic over different
points in time or several statistics from the same survey together. The possibil-
ity of using additional information from the same survey for SAE motivated Fay
(1987) to propose a multivariate version of the FH model. He applied the model
to estimate the median income of three-, four-, and five-person households in
the U.S. Current Population Survey (CPS). The structure of the MFH model
accounts for covariances of the sampling errors which is especially necessary
when considering variables of interest from the same survey. Even when one is
interested in one variable alone, the multivariate modeling can further increase
the precision of each variable of interest when the variables are sufficiently cor-
related. Thus, MFH models facilitate to include further variables of interest as
well as (estimated) auxiliary information for which sampling error covariances
can be estimated. Further early work with MFH models is given in Datta et al.
(1991) and Datta et al. (1999). To name a few applications of the MFH model,
in the context of poverty estimation it is applied in Huang and Bell (2004) with
further studies in Huang and Bell (2006), Morales et al. (2015), Porter et al.
(2015), Benavent and Morales (2016), Arima et al. (2017), Ubaidillah et al.
(2019), Benavent and Morales (2021), and Burgard et al. (2021a). We refer to
Benavent and Morales (2016) for a general description of the MFH model and
its parameter estimation.

2 Partially missing information

Especially when using data from different sources it can frequently occur that in-
formation which is needed for modeling is partially missing. Area-level informa-
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tion can be partially missing when the domains of interest are not incorporated
in the sampling design (via stratification) and thus - by chance - domain-specific
sample sizes can be zero such that no direct estimate can be computed. Fur-
thermore, statistical agencies usually only publish aggregate statistics for which
a statistic of the variation, e.g. the standard error or the coefficient of variation,
does not exceed a certain threshold. Molina and Marhuenda (2015) recall that
in official statistics the threshold for the coefficient of variation is usually set to
20%. In addition to that, for disclosure control statistical agencies set minimum
cell counts for the publication of frequency tables, see Hundepool et al. (2010)
for an overview. The previously mentioned reasons can lead to missing values
both in the variables of interest and auxiliary data. Partially missing auxil-
iary data can be imputed. Then, however, the associated measurement errors
should be considered in the FH model. The use of partially-imputed auxiliary
information motivated Lohr and Ybarra (2002) to investigate an extension of
the FH model to measurement errors, known as the measurement error model
which is published in Ybarra and Lohr (2008). The model is extended in Bur-
gard et al. (2021a) to bivariate FH models and a bivariate normal distribution
of measurement errors.

Next to the auxiliary data, also the direct estimates of interest may be par-
tially missing. Then, a multivariate - or a corresponding univariate - FH model
can only be applied to the domains with full information. Using a model fit on
domains with complete data, synthetic predictions can be calculated for domains
with missing direct estimates, see e.g. Morales et al. (2021, Chapter 16).

Let there be D domains and m > 1 dependent variables. Then, we can
partition the set of domains in subsets D0 = {1, . . . , D0} and D1 = {D0 +
1, . . . , D}, where D0 < D, such that if the vector of the m direct estimates yd
is completely observed d ∈ D0 and if at least one entry of yd is not observed
d ∈ D1. Parameters β, i.e. the fixed effects of the model, and θ, i.e. the
variance parameters of the model, can be estimated based on information from
D0 via maximum likelihood (ML) or restricted maximum likelihood (REML).
The synthetic predictor of the characteristic of interest µd is given by

µ̂synd = Xdβ̂, d = 1, . . . , D, (1)

where Xd is the matrix of auxiliary information for domain d. For domains
with missing direct estimates the mean squared error of the synthetic predictor
can be approximated by

MSE(µ̂synd ) ≈ Xd(X
⊤
0 V −1

0 X0)
−1X⊤

d + Vud, ∀d ∈ D1, (2)

where quantities X0 and V0 are defined solely based on data from D0, compare
Morales et al. (2021, 441–442). The MSE can be estimated by plugging in θ̂ for
θ.

Applying the MFH model only to the domains with complete information,
however, is unsatisfactory. The estimation of the parameters (apart from the
correlation of the random effects) can be worse than with the corresponding
univariate FH models. This occurs when there are only few domains for which
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no observation is missing and when the missing pattern is heterogeneous across
domains. On the other hand, the univariate FH model ignores the correlation
of the variables of interest, thereby only using part of the available informa-
tion. Furthermore, the synthetic predictor is not considering the information
of other domain-specific direct estimates in a domain which could give valuable
information for the prediction of the missing values.

3 The multivariate FH model under partially
missing information

Burgard et al. (2021b, 2019) introduce a bivariate Fay-Herriot model under
partially missing direct estimates of the dependent variables, called missing data
BFH (MBFH) model. They give ML and REML fitting algorithms to estimate
model parameters. Furthermore, they introduce empirical best predictors of
target values and derive approximations to the mean squared error. For the
bivariate case Burgard et al. (2021b, 2019) allow some of the direct estimates
ydk, k = 1, 2, to be missing. By setting yd̄1 = (yd1, 0)

⊤ and yd̄2 = (0, yd2)
⊤,

three groups of domains can be distinguished:

D1 = {d ∈ N : 1 ≤ d ≤ D1} containing the D1 domains where only yd1 is
observed.

D2 = {d ∈ N : D1 + 1 ≤ d ≤ D1 +D2} containing the D2 domains where
only yd2 is observed.

D3 = {d ∈ N : D1 +D2 + 1 ≤ d ≤ D} containing the remaining domains
with fully observed yd = (yd1, yd2)

′.

The best predictor (BP) of ud under the MFH model, exemplary shown for
domains in D1, is given by

ûbpd = E[ud|yd] = Φd1

(
σ−2
ed1 0
0 0

)
(yd̄1 −Xdβ), d ∈ D1 (3)

with

Φd1 =

[(
σ−2
ed1 0
0 0

)
+ V −1

ud

]−1

. (4)

By considering the partially-missing direct estimates in (3), domain-specific best
predictions of random effects can be given, also for the missing direct estimates.
This is a significant advantage of the MBFH model compared to the synthetic
predictions which could else-wise only be calculated for missing values in a FH
or MFH model.

We extend the model introduced in Burgard et al. (2021b, 2019) to multivari-
ate dependent variables, derive empirical best predictors of domain parameters
and approximations to the mean squared error. The derived algorithms are
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examined in model-based Monte Carlo simulation studies under different corre-
lation settings of random effects and sampling errors. We furthermore apply the
model to publicly available data from the American Community Survey (ACS)
estimating the county-year median income of Hispanic or Latino Americans.
The simulation studies and application reveal the flexibility and applicability of
the proposed approach to different small area estimation problems.

References

Arima, S., Bell, W. R., Datta, G. S., Franco, C., and Liseo, B. (2017). Multi-
variate Fay-Herriot Bayesian estimation of small area means under functional
measurement error. Journal of the Royal Statistical Society: Series A (Statis-
tics in Society), 180(4):1191–1209.

Battese, G. E., Harter, R. M., and Fuller, W. A. (1988). An error-components
model for prediction of county crop areas using survey and satellite data.
Journal of the American Statistical Association, 83(401):28–36.

Benavent, R. and Morales, D. (2016). Multivariate Fay-Herriot models for small
area estimation. Computational Statistics & Data Analysis, 94:372–390.

Benavent, R. and Morales, D. (2021). Small area estimation under a temporal
bivariate area-level linear mixed model with independent time effects. Statis-
tical Methods & Applications, 30(1):195–222.

Burgard, J. P., Esteban, M. D., Morales, D., and Pérez, A. (2021a). Small area
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