
On the Aging Effects due to Concurrency Bugs: a Case Study on MySQL

Antonio Bovenzi∗, Domenico Cotroneo∗, Roberto Pietrantuono∗, Stefano Russo∗†,
∗Dipartimento di Informatica e Sistemistica, Universitá di Napoli Federico II, Via Claudio 21, 80125, Naples, Italy.

†Laboratorio CINI-ITEM “Carlo Savy”, Complesso Universitario Monte Sant’Angelo, Via Cinthia, 80126, Naples, Italy.
{antonio.bovenzi, cotroneo, roberto.pietrantuono, stefano.russo}@unina.it

Abstract—This study investigates software aging effects
caused by the activation of concurrency bugs in a well-
known database management system (DBMS), namely MySQL.
Experiments with different workloads are performed in order
to reproduce the most likely conditions for concurrency bugs
activation. Besides the typical aging effects observed in many
operational systems (i.e., a gradual degradation over time),
results highlight that both available resources and DBMS
performance (e.g. service rate, service time, and connection
latency) can decrease with time in a hard-to-predict way. We
observed that, due to the activation of concurrency bug, the
DBMS enters a degraded state in which: i) the estimation of
Time-To-Failure (TTF) by means of memory depletion trend
analysis is highly inaccurate, and ii) the failure rate does not
depend on the instantaneous and/or mean accumulated work.
Results suggest that, in such cases, finer-grained indicators
and/or different techniques need to be taken into account for
properly preventing failures.

Keywords-Software Aging, Concurrency Bug, Database

I. INTRODUCTION

Current software applications are often built by integrating
legacy and third-party components, by relying on interme-
diate middleware layers, and/or by extensively exploiting
multithreading features. This trend, even bringing valuable
advantages, leads to large and complex systems whose
behavior is difficult to predict. A well-known phenomenon
often observed in such systems is software aging. It mainly
causes a continued and growing degradation of software
internal state during its operational life, which can lead
to progressive performance loss or even to system crash
and hang. Aging has been experienced intensively in long-
running applications such as web-servers [1], operating
systems [2], spacecraft systems [3], and, by now, the phe-
nomenon is recognized as a systematic non-negligible prob-
lem of mission- and safety-critical systems (e.g., memory
leaks in NASA project1). Software aging is due to the
activation of a particular class of bugs, known as Aging-
related bugs (ARB), which have the peculiarity to cause
an increasing failure rate and/or degraded performance
once activated [3], [4]. Examples are those bugs causing
resource leakage (e.g., unreleased file/locks, unterminated
threads, and memory leaks), numerical round-off errors,

1International space station (ISS) reboot: on-orbit status 03-26-11.
www.nasa.gov/directorates/heo/reports/iss reports/2011/03262011 prt.htm

and fragmentation problems (e.g., file system and physical
memory).

ARBs are difficult to reproduce in a systematic way
during the testing phase, because they require a long time
to manifest their effects. For these characteristics, they are
considered as a subclass of Mandelbugs [4]. Mandelbugs are
those software faults that are difficult to isolate, and whose
activation and/or error propagation are considered “com-
plex” because: i) they depend on indirect factors (e.g., timing
and/or sequencing of operations or inputs, interactions with
system-internal environment), and/or ii) there is a time lag
between the fault activation and the failure manifestation.

Due to the intrinsic difficulty in detecting ARBs during
development, most of the literature on software aging pro-
poses methods to best counteract the phenomenon during
operation, thus trying to contain the effect of ARBs acti-
vation. The most studied and adopted method to this aim
is software rejuvenation, which is a preventive maintenance
activity aiming at restoring a clean state of the system before
the failure occurrence.

However, the effects of ARBs activation might vary
depending on the type of ARB, and this aspect is often
neglected. From a recent survey [5], we observed that most
of studies conducted so far analyze aging effects without
addressing the nature of aging bugs. This leads to analyses in
which ARBs are systematically activated at every execution
with any workload (e.g., [6], [7]). These bugs, like any
Mandelbug, are certainly hard to reproduce during testing,
because their manifestation requires long time (i.e., the
propagation is “complex”). Nevertheless, when the bugs
activation is easy to reproduce, long-running experiments
tend to regularly activate them, leading to observe linear or
piecewise-linear degradation trends that researchers seam-
lessly use to estimate the time to failure. We still do not
know if similar trends hold also for more complex software
bugs.

This paper investigates software aging effects caused by
the activation of concurrency bugs in Database Management
System (DBMS). Concurrency bugs are a valuable example
of such “complex” bugs; they represent a significant share
of Mandelbugs in operational software systems [3] and a
widely-studied class of bugs [8], [9]. The unpredictable
activation of a concurrency bug could lead to complex and
unknown propagation patterns able to cause aging effects for

which current countermeasures may fail. Thus, analyzing
their impact on aging phenomena would help in adopting
the most proper action to avoid failures. Such an analysis is
not trivial, because concurrency bug activation may depend
on many factors: the number of threads competing for
shared resources; the type of operation to perform on the
resource (e.g. write or read); and the thread interleavings.
It requires a comprehensive experimental plan in terms of:
i) type of applied workload, ii) number and duration of
experiments, and iii) monitoring ability, since more suitable
aging indicators may be required in this case, along with the
traditional ones (e.g., available free memory and response
time).

By performing a set of measurements-based analyses, this
work examines the impact of the activation of concurrency
bugs on software aging. To this aim, an experimental cam-
paign is designed and executed on the MySQL DBMS2,
which is a multi-threading software application deployed
in many of the most popular Web Sites including Google,
Facebook and YouTube, as well as in several enterprise
applications [10]. The workload-based experiments were
aimed at stressing MySQL extensively with various settings,
so as to increase the likelihood of activating concurrency
bugs and then investigate the aging effect.

Preliminary results highlighted, in any experiment, an
improper memory consumption and a progressive perfor-
mance degradation after many hours of execution, detecting
the presence of aging in MySQL. However, besides these
memory-related aging trends, we also observed atypical per-
formance degradation in some experiments, which leads to
the DBMS failure. We further investigated this behavior by
inspecting the MySQL bug report (http://bugs.mysql.com/).
We found that we reproduced a concurrency bug, which was
ascertained to cause performance degradation (more details
are in Section IV).

Starting from these results, further experiments have been
performed to replicate the observed behavior and then an-
alyze aging when such bugs are activated. To this aim, we
have measured resource depletion and performance degra-
dation, by taking into account several system-wide (coarse-
grain) and application-specific (fine-grain) indicators. The
analysis revealed that in such cases:
1) the estimation of the TTF by means of trend analysis is
highly inaccurate; trends in resource depletion/performance
degradation are not trivially linear or quasi-linear. Therefore
rejuvenation techniques based on trend analysis, e.g., [2],
[11], [12], are no longer effective to avoid the occurrence of
failures;
2) the failure rate is not depending on the instantaneous
and/or mean accumulated work; in other words, to heavier
load does not necessarily correspond a greater failure rate. In
such a case, traditional models capturing the failure rate as

2http://www.mysql.com/

workload-dependent, e.g., [13], [14], [15], are not accurate
in the TTF estimation.

In the rest of the paper we first present the existing liter-
ature on software aging (Section II); then, in Section III, we
illustrate the case study, whereas in Section IV we describe
the preliminary experiments for studying MySQL aging
dynamics. Section V details the reproduction of Mandelbugs
and its effects on performance degradation; in Section VI we
discuss the key findings of the work and future direction.

II. RELATED WORK

Recent studies analyzed ARBs, and recognized that they
are a subclass of Mandelbugs [3], [4]. Aging factors, namely
the combination of events causing the activation of ARB,
were recognized to be complex since they can depend on:
i) the environment, e.g, the hardware [16], the OS [2], but
also on ii) the user behavior [17].

In the literature on software aging, besides these few
studies on Bohrbug/Mandelbug classification, the nature of
ARBs is not much addressed; authors mainly focused on
conceiving optimal rejuvenation strategies once an ARB
is activated. Since the first studies, the focus was: i) on
determining the best rejuvenation scheduling, i.e., maximiz-
ing system availability, solving analytical system models,
known as Model-based approach (e.g.,[13], [18]), or ii) on
predicting the time to resource exhaustion by adopting sta-
tistical or machine learning techniques on data coming from
system execution, known as Measurements-based approach
[1], [6], [7], [19]. Remarkable attempts have been made to
combine the benefits of both the previous approaches; hence,
describing the phenomenon analytically, and determining the
model’s parameters through measurement (e.g., [14], [20],
[21]). Since aging has been shown to be clearly correlated
with workload variation, several authors also accounted for
its impact, highlighting its dependency on aging effects and
thus on the failure rate. Examples are in [2], [14], [22],
where the estimate of the time-to-aging-failure at a given
time varies in function of the workload actually experienced
by the system.

Attempts to study aging from a different perspective
are in the works by Matias et. al. [23], where authors
try to accelerate the activation of aging bugs by means
of accelerated life tests (ALT), and in [7], [24], where
authors emulated aging effect by means of memory leak
injection. Although these studies aimed at reducing the time
for observing aging, they also deal with aging bugs whose
activation conditions are not complex, e.g., bugs activated
regularly by requesting a dynamic page to the web server
[23], or by serving a specific number of requests in a servlet
[7]: their effects on considered indicators (e.g., physical or
process memory) were therefore linear or piecewise linear.

All the mentioned work did not deal with the underlying
ARBs, but mostly with the mitigation and/or acceleration

of aging effects. Differently from the past, this work stud-
ies the aging effects when a complex class of bugs, i.e.,
concurrency ones (such as race conditions, deadlocks or
atomicity violation), are activated, in order to figure out if
current countermeasures are effective in aging treatment and
in avoiding system failures.

III. CASE STUDY

MySQL is a multi-threading DBMS that manages every
new connection by means of a separate thread, which
contends for access to different shared data structures. At the
startup, MySQL creates a pool of threads and keeps some
of them in a thread cache. Since we focus on aging due
to concurrency bugs, MySQL lends itself well to this type
of analysis. The experimental testbed consists of a server, in
which MySQL stable version 5.1 is executed, and two client
machines where we launch the traffic generators that are in
charge of making requests to the DBMS. Both clients and
server are connected through a dedicated Gigabit Ethernet;
thus there is no extraneous traffic generated during exper-
iments. All the machines are equipped with Intel Core 2,
Quad CPU Q8200, 2.33 GHz clock, 6GB of RAM, and 1 TB
HD disk, running Scientific Linux Operating System 64 bit,
kernel version 2.6.18-11 (http://www.scientificlinux.org/).
The server has been configured to work with a minimal
set of services, such as ssh, ftp and vncserver, so as to
minimize the resource consumption not related to MySQL.
As for the database structure, the load and the queries
we have implemented the TPC-E benchmark specifications
(http://www.tpc.org/tpce/default.asp), to model a brokerage
firm with customers generating requests related to trades,
account inquiries, and market researches.

IV. PRELIMINARY AGING ANALYSIS

As past studies demonstrated, resource depletion and per-
formance degradation are the most important aging effects
[6], [19], [25]. They can be measured by using several
indicators. In particular, to measure memory depletion, the
free physical memory (MF) is commonly sampled. As
for performance degradation, it can be measured at client
side by sampling the success rate of requests (SR). SR

accounts for the correct answers received over the number of
requests submitted to the server in a time unit. In a perfect
scenario, this indicator is always 1. It exhibits a negative
trend if the server performance is degrading. To take the
workload influence into account, different parameters have
been considered to analyze MySQL aging. Following the
procedure proposed in our previous study [22], we charac-
terize MySQL workload with the following parameters:

• Intensity. It represents the stress level of the server. In
absolute value, it is measured as number of queries
executed per seconds.

• Size. It indicates the amount of data exchanged between
the server and the clients (e.g., the amount of byte

inserted or updated by a query, or data returned through
a select);

• Type. It indicates the type of query that is processed by
the server (e.g., select, join, update, insert); this may
affect the different parts of the application code that
can be exercised during experiments.

• Variation. This parameter allows to control if MySQL
threads are concurrently serving different type of re-
quests. For instance, in experiments with variation the
threads that are serving different queries (e.g. a select
or an update) are also competing for acquiring shared
resources.

These parameters are used to plan the experiments with the
aim of stressing the system in a broad way (i.e., with various
workload configurations).

A. Workload-based Experiments

The objective of this initial analysis is to detect and to
assess aging trends in the MySQL DBMS. The experiment
planning is carried out by means of the Design of Experi-
ments (DoE) technique [26], so as to have a set of orthogonal
experiments with respect to the mentioned workload param-
eters. Two levels are defined for the considered workload
parameters: Low and High. They respectively represent the
unloaded and loaded operational modes, except for Variation
(the level are in this case expressed by “yes” or “no”,
indicating “variation” and “no variation”).

Given factors and levels, we generated the plan with
the support of DoE aiding tool. Typically, a full factorial
design, which accounts for the effects of all factors and all
interactions on response variables, requires a large number
of treatments; hence designers choose to reduce this number
by ignoring the analysis of interactions among factors, and
relying on tools guaranteeing the statistical significance of
response [26]. Design reduced in such a way is referred to
as fractional factorial design. We chose to ignore 3-factors
interaction and obtained a fractional factorial design with
a total of 8 treatments. Table I summarizes the considered
experimental plan.

Table I: Experimental plan. L=Low, H=High

Exp Intensity Size Type Variation
1 L H L Y
2 H L H N
3 L H H N
4 H H L N
5 L L L N
6 L L H Y
7 H L L Y
8 H H H Y

Before executing the experiments, we need to “translate”
High and Low levels of the parameters into concrete values.
Moreover, to avoid failures due to excessive stressful work-
load (which is not related to aging failures), we also need

to determine what is the maximum capacity for the system
under test. To these aims, capacity tests are performed,
according to the procedure described in our previous work
[22], in order to define the limits of MySQL server deployed
in our testbed. To evaluate the actual limit (i.e., maximum
number of requests correctly served in a time unit), we need
to take into account the levels of other workload parameters
(such as request types and exchanged data size), because
different limits can be reached depending on them. As for
the Size parameter, as suggested in preliminary experimental
analyses [26], we simply choose two values sufficiently
distant to observe any impact of the workload parameter
on aging indicators.

Table II: Results of Capacity tests, with Size parameter being
Low and High, respectively

Query Type
Intensity

Size Low Size High
Select 150 80
Update 150 25

Nested Select 150 30
Join 150 22

As for the request types, we consider four types of request,
namely: select, update, nested select, join. The results of the
capacity tests with these configurations are summarized in
Table II, which reports, for each type of query and amount
of data exchanged, the maximum number of requests served.
Hence, depending on the configuration of request Type and
Size parameters, the value of the Intensity of requests has to
be chosen properly. The measures of the Intensity parameter
is defined in [22] as the percentage of the maximum system’s
capacity. For High level we use the 80% of the limit, while
the 10% of the limit is used for the Low level.

Finally, since we consider two levels (Low and High) for
each parameter, we collapsed the four request types into
two levels, i.e., a “loaded” and “unloaded” levels of the Type
parameter. To assess wether a request type belongs to loaded
or unloaded level, we sample, for each type, the average
success rate, SR, the average time elapsed to establish a
connection, LC , and the average time required for processing
the request and send data back to the client, ST . By sampling
these values in a series of experiments, and clustering the
results into two groups, we evaluate the request complexity
as High or Low. To apply this procedure, we executed 4
short experiments (one for each type of request), each one
repeated ten times. In such experiments, the selected type
of request was submitted to the server for 5 minutes, by
setting the levels of other parameters to High. We evaluated
the average and the standard deviation of SR, LC , and ST .
By applying the k-means algorithm [27], with k = 2, on the
resulting 40 samples, 2 clusters were obtained. In the former
one, namely the unloaded cluster (Low level), there are the
majority of Select and Update queries; in the latter (namely,

the High level), Nested select and Join queries.
As for the Variation parameter, for the No level we

randomly select one type of queries (namely, between Select
or Update for the unloaded cluster, and between Join or
Nested select for the loaded one). On the contrary, for
the Yes level all the queries in a cluster were randomly
executed. Based on these preliminary tests, we instantiated
and then executed the treatments reported in Table I. The
duration time of each experiment was set to 24 hours (for
a total amount of 192 hours), since we observed a memory
depletion trend within that time in the experiment with the
least stressful workload (i.e., exp 5). Therefore, by assuming
that the more intensive workload, the higher aging trends
are [22], 24 hours suffice to observe aging effects in all the
experiments.

B. Analysis of Preliminary Experiments

Aging indicators samples were collected each 30 seconds,
then stored in .csv files. We use the Mann-Kendall test
and the non-parametric Sen’s procedure [28] to verify the
hypothesis H1: there is a trend in data, and, if confirmed, to
estimate the trend. We choose this procedure because, even
if it is computationally heavy, it does not assume normally
distributed measurement errors, and it is not sensitive to
outliers.

Table III: Results of trend evaluation for each experiment

MF (KB/h) SR (Req/hour) TTF (days)
1 −1.44E + 04 - 16
2 −4.64E + 03 −7.88E − 03 50
3 −1.12E + 04 −9.81E − 04 21
4 −5.20E + 03 −2.46E − 02 45
5 −4.74E + 02 - 492
6 −2.97E + 04 - 8
7 −1.45E + 04 - 16
8 −1.12E + 04 - 21

Avg −1.14E + 04 −4.18E − 03 20

Table III lists significative trends for the MF and SR in-
dicators for each experiment. Figure 1 and 2 show snapshots
of some resource depletion and performance degradation
trends, which were observed during the experiments. In
particular, Figure 1 shows MF for experiments 5, 6 and
7; Figure 2, plots the average throughput for the experiment
4. Results show that the most relevant trends occurred for
memory depletion. The phenomenon is not negligible, since
the TTF may reach even 8 days (see exp 6 of Table III).
As for performance-related indicator, we also found some
trends (in experiments 2,3,4) but not in all the experiments.
The most severe performance degradation was experienced
in the treatment number 4, with a trend of performance loss
of about 2.5E-02 requests per hour. In this experiment, we
also observed a DBMS failure; the server stopped serving
requests even if the MySQL process did not crash.

Observing the behavior in experiments 2, 3 and 4, perfor-
mance loss is apparently in contrast with resource depletion;
server rate losses are observed together with the less relevant
memory depletion trends, and always with a Variation level
low (whereas the most relevant resource depletion trend was
revealed in experiments with High Variation). To explain
this behavior, as well as the failure observed in experiment
4, and to verify if it is caused by complex bugs, we
inspected the MySQL bug report. As discussed by MySQL
developers, we found that the observed degradation, and
the resulting failure, are caused by the activation of the
bug #22868, which has been classified as a concurrency
bug with server impact on the system performance. In fact,
this fault is activated under hard-to-reproduce conditions
related to heavy I/O-bound workloads (more than 50 threads
concurrently serving queries) such as the ones recreated in
experiment 4. To better analyze aging effects due to this type
of bugs, further experiments have been planned. These are
discussed in the next section.

0 5 10 15 20 25
4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

x 10
6

time [h]

M
F
 [
K

B
]

Exp 5

Exp 6

Exp 7

Figure 1: Snapshot of experiments with some relevant mem-
ory depletion trends

5 10 15 20

63.5

64

64.5

65

65.5

66

time[h]

#
R

e
p
ly

Value

SenSlope

CIlower

CIupper

Figure 2: Snapshot of experiments 4, which has the most
relevant performance degradation trend

V. AGING ANALYSIS DUE TO COMPLEX BUG

The previous experiments, other than revealing the pres-
ence of aging in the memory depletion trends, show that in

some cases also performance degradation was experienced.
In one experiment we also observed a DBMS failure. Data
analysis and bug reports revealed that the failure is due to
a concurrency bug. In this Section, we exploit these first
results to reproduce more likely conditions activating this
concurrency bug: the goal is to analyze the effect of its
activation on aging trends. First, we identify what are the
potential indicators most suitable to detect the bug activation
and the aging effects in this case. Then, new experiments
are planned and executed trying to replicate the Mandelbug
activation; finally, a cross-analysis is carried out with respect
to the selected indicators.

A. Preparation phase

1) Aging indicators: to better understand the observed
behavior we monitor other indicators during system execu-
tion, which could be useful to detect the bug activation and
its effect on the system. In particular, we monitor indicators
related to resources consumed by the MySQL process.
Examples of such indicators include: virtual memory size,
memory actually in RAM, current number of allocated
threads, number of file handlers, shared memory segments,
semaphores. As for performance indicators, we monitor: the
success rate of requests (SR); the average response time to
establish a connection (LC); the average response time to
process the request and send data back to the client (ST).
LC and ST , which regard both response time, are accounted
separately in order to distinguish the following two cases: i)
response times are high because the DBMS is still serving
old accepted requests (i.e., the DBMS is busy); ii) response
times are high because the DBMS, even being not busy,
is not using available resources in the best manner. The

Table IV: Monitored variables during system operation

Name Description Name Description

VmPeak Virtual memory Peak Wrtback Memory written back to the disk
VmSize Virtual memory AllocFH #allocated file handler
VmLck Locked memory Proc-fd #file descriptors

VmHWM Peak resident set size Slab In-kernel data structures cache
VmRSS Resident set size PgTab Amount of memory dedicated

to the lowest level of page
VmLib Shared library code size CommAs Memory allocated, but not used
VmPTE Page table entries size Shm #shared memory segments
Threads #Threads in the process Sem #semaphores
MF Available Memory in RAM Queue #queues

Buffers Relatively temporary storage AnonPg Non-file backed pages mapped
for raw disk blocks into userspace page tables

Cached In-memory cache for files Mapped Files which have been mapped
read from the disk such as libraries

Swap Mem. swapped back in LC Time elapsed to accept
Cached but still in the swapfile a new connection
Active Most recently used memory ST Time for processing the

request and send data
Inactive Least recently used memory SR Percentage of requests that

are correctly served
Dirty Non-file backed pages mapped Errors #errors returned

into userspace page tables to the clients

exhaustive list of memory and performance related indicators
is reported in Table IV.

2) Experiments: to increase the probability of reproduc-
ing concurrency bugs, we increase the duration of the experi-
ments, and recreate the experienced conditions of activation.
Therefore, we planned longer experiments, lasting each one
60 hours, and set the level of workload parameters according
to the results of the previous analysis. Specifically, Table
III in the previous Section highlighted that the most severe
performance degradation is experienced in the treatment
number 4, whose parameters configuration was: Intensity,
Size to high, Type to low, and no Variation. In the following
two experiments, number 9 and 10, we adopted the same
setting. To verify if the performance degradation also persists
under a lighter workload, we act as follows: if we detect a
degradation in the first 30 hours of the experiment, then, at
the 30th hour, we decreased the load by setting the Intensity
and Size to the low level. Hence we measure performance
degradation again during this second interval of observation.
Moreover, to verify if the activation of concurrency bugs is
due just to the heavy workload, we also performed one more
long running experiment with a “light” load, in which we set
Intensity, Size and Type to low, and no Variation (experiment
number 11).

Summarizing, experiments 9 and 10 are performed to
activate concurrency bugs, having the following parameter
setting: intensity H, size H, type select and variation No.
Instead the experiment 11 is performed to verify if concur-
rency bugs can be activated with a lighter workload, namely
intensity L, size L, type select and variation No.

B. Analysis of Results

By performing the new experiments we observed again
i) the activation of the concurrency bug ii) memory deple-
tion and performance degradation trends, and iii) database
failures (the database cannot serve any incoming requests).
Memory depletion trends for experiment 9, 10 and 11 are
respectively: -1.51E+03, -1.06E+04 and -1.62E+03; instead
performance degradation trends, in terms of request per
hour, are: -2.32E-02, -1.03E-02 and -8.26E-07. It is worth
noting that SR trends were computed considering either
the end of the experiment or the system failure. Figure
3 shows that: i) in the experiment 9, although the load
was drastically decreased at its 30th hour of operations,
the DBMS unexpectedly failed at about the 35th hour of
execution: the concurrency bug activation caused the DBMS
entering a state in which the workload is no longer influential
to determine the degradation trend; ii) in the experiment 10,
we observed a failure earlier, at the 7th hour of operation;
iii) in the experiment with light load (i.e., number 11) the
DBMS failed at its 32nd hour of operation. The latter failure
was transient, because the DBMS restarted serving requests
again after few minutes (there is a spike in the throughput,
see Figure 3).

Results of trend analysis for these treatments is summa-
rized in Table V; indeed, they highlight that TTFs estimated

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

time [h]

re
p
 /
 s

e
c

9

10

11

Figure 3: Service rate in long running experiments. Failures
can be observed at about the 8th, 32th and 35th hours

Table V: Trends of memory depletion and performance
degradation, estimated TTF and observed failure time

Exp MF SR Estimated Failure
(KB/h) (Req/hour) TTF (days) Time (h)

9 −1.51E + 03 -2.32E-02 154 35
10 −1.06E + 04 −1.03E − 02 22 7
11 −1.62E + 03 −8.26E − 07 143 32

by means of memory depletion trend analysis are highly
inaccurate when this kind of bugs are activated. Therefore
different indicators and techniques should be taken into
account for preventing DBMS failures. To figure out what
are the most suitable indicators to detect this behavior among
the monitored ones (see the previous Section, Table IV), we
perform both correlation and graphical analyses; then, we
examine collected data with the selected indicators. Corre-
lations between monitored indicators, MF , and SR is carried
out by computing Pearson and Spearman coefficients [29] in
each treatment experiencing performance degradation, i.e.,
number 2, 3, 4, 9, 10, 11. Table VI lists for each experiment
the top ten correlations, which are significant at α = 0.05
(i.e., 95% confidence level), between MF and the collected
indicators. Results show that memory-related variables were
highly correlated to MF . Namely, if Cached, Buffers,
Slab and V mHWM increased, available free memory
decreased (negative correlation). This correlation applies
almost for each experiment. Such a behavior is expected
because it is consistent with the way Linux manages the
available memory. Trends in the cache variables are not
related with aging, because the operating system stores data
read recently from the disk in the main memory (i.e., the
cache) to speed up successive accesses.

As for performance degradation (see Table VII), correla-
tion coefficients turns out to be much lower than the ones for
memory. However, some of the indicators correlating with
MF are also correlated with SR, such as V mHWM and
Threads. Thus we focus the attention on these indicators.
Figure 4 shows the behavior of the peak of MySQL memory,

0 5 10 15 20 25 30 35
1.5

2

2.5

3

3.5

4

4.5

5

x 10
4

time [h]

K
B

VmHWM

9

10

11

Figure 4: VmHWM in long running experiments. Failures
can be observed at about the 8th, 32th and 35th hours

29.1 29.2 29.3 29.4 29.5 29.6 29.7 29.8 29.9 30

0

200

400

600

800

1000

1200

1400

time [h]

#Threads
S

T
 (msec)

L
C
 (msec)

Figure 5: Snapshot of experiment 9 ST and LC vs. Threads

i.e. V mHWM , during the experiments. It can be noticed
that there was a sudden increase just few minutes before
every failure. At the same time, the other indicator, i.e.,
Threads, had an abnormally increase, hence the process
memory increment was due to the data structures allocated
by the creation of novel threads. Analyzing the number of
threads against the two performance indicators, ST and LC

(Figure 5), it can be noted that as soon as the connection
latency and the service time increased, the very same behav-
ior is noticed for threads, which started increasing in order
to augment the DBMS ability in serving requests. However,
the system service rate (SR) did not get any benefit form
this thread increasing (see Figure 6); instead, it became even
worse.

Figure 6 shows the normalized number of threads and the
throughput (i.e., SR multiplied for the number of queries
requested) for experiment 9. At about the 29th hour of
operation, the number of MySQL threads suddenly increased
(the non-normalized value is about 150), and we observed
a performance loss in terms of throughput. As explained
before, at the 30th hour the number of client requests
per seconds was decreased from 56 to 8 and the size
of exchanged data from 100Kb to 1Kb for each query.
Although the applied workload was lighter, the LC and ST

indicators show a positive trend, respectively, 9.89E01 and

25 26 27 28 29 30 31 32 33 34 35

10

30

50

60

time [h]

AvgThroughput (#Req)

Normalized#Threads

Figure 6: Snapshot of experiment 9: SR vs. Threads

6.02E01 msec per hour, hence confirming that the system
performance are degrading. Moreover, when the number of
threads increased again around the 35th hour, the DBMS
stopped serving incoming requests. A similar behavior was
also observed in the other experiments.

The multiple indicators analysis let us conclude that the
observed performance degradation, which can be reproduced
by increasing client requests and by using I/O bound work-
loads, is due to the activation of the discussed concurrency
bug: when some particular conditions occur (e.g., several
threads are serving I/O requests and the connections/s to
MySQL exceeds the thread cache) and MySQL cannot sat-
isfy the incoming requests, the server increases the number
of threads to satisfy the requests. However performance
continues decreasing with time, independently from the ap-
plied workload, because lots of threads perform some CPU
processing, wait for I/O, and then, after request processing
is completed, block again waiting for a new request.

As a further step, we evaluate MF trends. In particular, we
select experiments in the number of threads increment and
the performance degradation were observed, i.e., 4, 9, 10.
Hence, the analysis is performed on two disjoint intervals,
namely before and after the observed increment of threads.
Results in Table VIII show that, when memory depletion
trends were higher (in absolute value), the system entered in
the degraded state earlier. However, in contrast to what one
might expect, during performance degradation, namely after
thread increasing, we did not observed a greater memory
depletion trend, except for one experiment. This confirms
that the analysis of memory depletion trends by itself does
not suffice to avoid the failure of the DBMS.

To conclude the analysis, we conducted a further ex-
periment in which we try to remove/mitigate the aging
effect. In this experiment the DBMS failed because of
the excessive increment of threads (about 150); however,
when we restarted the network interface the number of
threads suddenly decreased and the DBMS restarted serving
requests. This is because the network restart causes the
termination of all MySQL threads and the re-initialization

of internal data structures of MySQL kernel, which manages
client requests.

Table VI: Top ten Pearson and Spearman coefficients between MF and indicators

Pe
ar

so
n

2 3 4 9 10 11
Buffers -1,00 Active -0,99 Slab -0,99 Cached -0,94 Buffers -0,98 Buffers -0,94
Slab -0,99 Buffers -0,98 Cached -0,98 Active -0,94 Active -0,98 Slab -0,91
Active -0,95 Slab -0,84 Inactive -0,98 Buffers -0,92 Inactive 0,97 Active -0,89
Cached -0,81 Inactive -0,72 Active -0,93 Slab -0,81 Cached -0,93 Cached -0,88
Mapped 0,60 Mapped 0,68 Buffers -0,76 VmPTE -0,77 SR 0,77 VmPTE -0,70
PgTab 0,56 PgTab 0,65 VmSize -0,54 VmSize -0,76 LC 0,77 VmPeak -0,69
VmPTE -0,54 VmHWM -0,65 CommAS -0,54 VmPeak -0,76 Slab 0,73 VmSize -0,69
VmSize -0,52 VmPeak -0,62 VmPeak -0,52 VmHWM -0,73 ST -0,63 CommAS -0,68
VmRSS -0,34 Cached -0,50 AnonPg -0,48 VmRSS -0,72 Proc-fd 0,54 VmHWM -0,68
AnonPg -0,31 VmPTE -0,47 VmPTE -0,45 CommAS -0,70 Threads 0,51 VmRSS -0,61

Sp
ea

rm
an

Active -1,00 Active -0,99 Cached -1,00 Active -0,99 Active -0,98 Active -1,00
Buffers -1,00 Buffers -0,99 Buffers -1,00 Buffers -0,98 Buffers -0,98 Buffers -1,00
Cached -1,00 Slab -0,98 Active -1,00 VmHWM -0,96 Inactive 0,98 Errors 0,66
Slab -0,98 VmHWM -0,76 VmHWM -0,98 VmRSS -0,96 Cached -0,98 Wrtback -0,65
VmSize -0,62 VmPeak -0,76 VmPeak -0,95 VmSize -0,96 SR 0,60 Slab -0,63
VmPTE -0,59 Inactive -0,40 Slab -0,95 VmPTE -0,96 AnonPg -0,60 SR 0,61
VmRSS -0,41 Mapped 0,37 Mapped -0,89 VmPeak -0,96 Slab 0,52 LC 0,57
AnonPg -0,37 VmPTE -0,36 VmPTE -0,87 Cached -0,88 Proc-fd 0,51 VmHWM -0,49
CommAS -0,32 Cached -0,20 VmSize -0,85 AnonPg -0,87 LC 0,50 Inactive 0,47
Mapped -0,20 PgTab 0,17 VmRSS -0,80 CommAS -0,86 Threads 0,49 VmRSS -0,44

Table VII: Top ten Pearson and Spearman coefficients between SR and indicators

Pe
ar

so
n

2 3 4 9 10 11
LC -0,80 ST -0,51 VmRSS -0,83 VmHWM -0,77 LC 1,00 Proc-fd -0,68
VmHWM -0,52 LC 0,29 AnonPg -0,77 AnonPg -0,75 Slab 0,97 Threads -0,65
VmPeak -0,52 Dirty 0,17 ST -0,76 VmRSS -0,74 Buffers -0,85 Active -0,28
Errors 0,52 Cached 0,16 LC -0,75 VmPTE -0,67 Active -0,84 Buffers -0,24
Cached -0,36 Inactive 0,15 VmHWM -0,72 VmSize -0,65 Inactive 0,84 VmRSS -0,23
ST 0,29 Errors 0,11 VmSize -0,68 CommAS -0,65 ST -0,81 VmPTE -0,23
VmSize -0,28 VmPeak -0,09 VmPTE -0,65 VmPeak -0,64 MF 0,77 VmSize -0,23
VmPTE -0,28 VmHWM -0,09 Proc-fd -0,63 LC -0,61 Cached 0,77 AnonPg -0,23
AnonPg -0,25 Threads -0,07 VmPeak -0,62 Threads -0,49 Proc-fd -0,76 CommAS -0,21
VmRSS -0,25 Proc-fd -0,06 Threads -0,60 Slab -0,47 Threads 0,70 MF 0,19

Sp
ea

rm
an

LC -0,70 ST -0,49 VmPTE -0,59 Slab -0,51 Slab 0,66 Errors 0,84
ST -0,11 Cached 0,35 VmSize -0,58 Wrtback -0,50 Buffers -0,65 Wrtback -0,83
Inactive 0,08 LC 0,33 VmPeak -0,54 Cached -0,47 Inactive 0,65 Buffers -0,64
VmPeak -0,06 Inactive 0,27 VmHWM -0,53 Errors -0,46 Cached -0,65 Active -0,64
VmHWM -0,06 Dirty 0,21 CommAS -0,52 Inactive 0,43 Active -0,65 LC 0,63
Dirty 0,05 VmSize 0,10 Buffers -0,52 ST -0,34 LC 0,64 MF 0,61
AnonPg -0,05 VmRSS 0,10 Cached -0,52 AnonPg -0,28 Proc-fd 0,63 Inactive 0,29
VmRSS -0,04 AnonPg 0,10 Active -0,52 Threads -0,26 Threads 0,62 Mapped 0,14
Cached -0,04 CommAS 0,06 MF 0,52 CommAS -0,25 ST -0,61 Cached 0,12
Buffers -0,04 Threads 0,05 VmRSS -0,51 MF 0,23 MF 0,60 AllocFH -0,12

Table VIII: Significative trends (p-value << 0.05) in the MF before and after Threads increment

Id 1th Interval 2th Interval
Length (h) slope− 5% slope (KB/h) slope + 5% Length (h) slope− 5% slope (KB/h) slope + 5%

4 15,5 -6.34E+03 -6.26E+03 -6.18E+03 9 -3.02E+03 -2.90E+03 -2.79E+03
9 29 -1.58E+03 -1.55E+03 -1.53E+03 6 -6.68E+02 -5.79E+02 -4.92E+02
10 7 –9.78E+03 -9.68E+03 -9.58E+03 1 -4.46E+04 -4.06E+04 -3.16E+04

Summarizing, the analysis shows that, as a consequence
of a complex bug activation: i) once the average number of
threads increases, MySQL is no longer capable to sustain the
load; ii) however, even by reducing the number of requests,
no gain is perceived because the server enters in a degraded
state; iii) in response to this, it creates more threads to satisfy
incoming requests, but the server performance, in terms of
SR, LC , ST , does not increase with time; on the contrary
it decreases, with no relation with the applied workload,
and eventually no more requests are served. This behavior
can be observed most probably under intensive I/O bound
workloads (i.e., serving more than 50 concurrent inserts)
that causes MySQL threads to content shared resources in
the MySQL kernel. This situation was also experienced by
MySQL developers, which called it Thread Thrashing, and
it was recognized as a server performance issue particularly
difficult to reproduce (bug #22868). As countermeasure, the
restart of the network interface proved to be a good mean to
restore a clean state for the database, and, since generally it
has very small overhead compared to system reboot and/or
database restarting, it could been preferred for preventing
DBMS aging-related failures caused by concurrency bugs.

VI. DISCUSSION

The presented study has investigated the aging phe-
nomenon in the MySQL DBMS. We have conducted
workload-dependent experiments with the goal of highlight-
ing aging trends and evaluating aging effects when complex
bugs are activated. Our findings are as follows:

1) MySQL DBMS is affected by software aging. The eight
experiments presented in Section IV highlighted a memory
depletion trend in each experiment, with an estimated TTF
that, depending on the workload applied, may amount to
a minimum of 8 days (worst case) up to about 500 days
(best case). This highlights that the phenomenon might be
severe, and may affect of long-running software applications
running on top of MySQL.

2) The phenomenon is confirmed to be related to the
workload. In preliminary experiments MySQL, aging trends
and the estimated TTFs vary when different workload pat-
terns are applied. So far, many other systems affected by
aging experienced a similar behavior. Such type of trends
allows for accurate estimate of the expected TTFs. However,
by looking at performance degradation of some treatments,
we get inaccurate TTF estimates and observed atypical
behaviors that we investigated in the successive phase of
the analysis.

3) The considered workload parameters can be tuned to
increase the likelihood of activating concurrency bugs. The
analysis of the aging trends of first experiments and the in-
spection of MySQL bug report suggest that the performance
degradation, and hence the database failure, were related to
the activation of concurrency bug. Thus, we planned further
specific experiments, in which the workload parameters were

configured to activate concurrency bugs. The activation of
concurrency bugs is reproduced in three experiments: we
observed that the DBMS enters a degraded performance
state, i.e., the thread thrashing state, which eventually leads
to the failure of the DBMS.

4) TTF estimation by means of memory depletion analysis
is very inaccurate when MySQL is experiencing performance
degradation (Table V). This implies that, in such a case, the
rate of memory depletion is not the best aging indicator. As
consequence, rejuvenation techniques only based on memory
depletion analysis (e.g., [14]) could not be effective to avoid
the occurrence of failures. Instead, finer-grained indicators,
such as the number of threads in our case, should be taken
into account to prevent the failure.

5) Workload-based models, capturing the failure rate as
dependent on the instantaneous and/or mean accumulated
work, could be not accurate in the TTF estimation. In
other words, when more complex ARBs are activated, we
observed that, no matter the workload actually applied
or served, the failure rate increases (e.g., cf. with Figure
3). This may suggest to design different aging treatments:
workload-based models could be used to estimate TTF
during “normal” memory depletion trends; specific detectors
may be used to reveal atypical aging behaviors, and hence
to trigger the most proper countermeasures. In our case,
when an anomaly in the number of threads was detected,
the restarting of the networking interface was performed for
avoiding the failures.

In future studies we will analyze aging effects when
different types of ARB are activated. Our aim is to enforce
the knowledge on potential relationships between the root
cause of aging, e.g., a concurrency bug, and the observed
effects. Indeed, the conducted experiments showed that
different types of ARBs may require different detection
strategies, e.g., by monitoring additional indicators and/or
by using different models and statistical techniques for
TTF estimation. Thus, we will focus our analyses on the
activation of complex aging bugs on different systems, such
as middleware and application servers, in order to verify to
what extent the results of this study can be generalized.

ACKNOWLEDGMENT

This work has been partially supported by the Ital-
ian industrial research project “Iniziativa Software CINI-
Finmeccanica” and by the Italian Ministry for Education,
University, and Research (MIUR) in the framework of the
Project of National Research Interest (PRIN) DOTS-LCCI:
Dependable Off-The-Shelf based middleware systems for
Large-scale Complex Critical Infrastructures 2008 (dots-
lcci.prin.dis.unina.it).

REFERENCES

[1] L. Li, K. Vaidyanathan, and K. S. Trivedi, “An approach for
estimation of software aging in a web server,” in Proc. the
Int. Symp. Empirical Soft. Engineering, 2002, pp. 91–100.

[2] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo,
“Software aging analysis of the linux operating system,” in
IEEE 21st Int. Symp. Soft. Reliability Engineering, 2010, pp.
71–80.

[3] M. Grottke, A. Nikora, and K. Trivedi, “An empirical inves-
tigation of fault types in space mission system software,” in
IEEE/IFIP Int. Conf. on Dependable Systems and Networks
(DSN), 2010, pp. 447 –456.

[4] M. Grottke and K. S. Trivedi, “Fighting bugs: Remove, retry,
replicate, and rejuvenate,” Comp., vol. 40, pp. 107–109, 2007.

[5] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo,
“Software aging and rejuvenation: Where we are and where
we are going,” in IEEE Third Int. Workshop on Software
Aging and Rejuvenation (WoSAR), 2011, pp. 1 –6.

[6] R. Matias and P. Filho, “An experimental study on software
aging and rejuvenation in web servers,” in 30th Annual
Int. Computer Software and Applications Conference, vol. 1,
2006, pp. 189–196.

[7] J. Alonso, J. Torres, J. L. Berral, and R. Gavalda, “Adaptive
on-line software aging prediction based on machine learning,”
Int. Conf. on Dependable Systems and Networks, vol. 0, pp.
507–516, 2010.

[8] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar,
and I. Neamtiu, “Finding and reproducing heisenbugs in
concurrent programs,” in Proc. the 8th USENIX conference
on Operating systems design and implementation, 2008, pp.
267–280.

[9] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes:
a comprehensive study on real world concurrency bug char-
acteristics,” in Proc. the 13th Int. Conf. Architectural support
for programming languages and operating systems, 2008, pp.
329–339.

[10] [Online]. Available: http://www.mysql.com/why-
mysql/white-papers/

[11] M. Grottke, L. Li, K. Vaidyanathan, and K. Trivedi, “Analysis
of software aging in a web server,” Reliability, IEEE Trans.
on, vol. 55, no. 3, pp. 411 –420, 2006.

[12] G. Hoffmann, K. Trivedi, and M. Malek, “A best practice
guide to resource forecasting for computing systems,” Reliab.,
IEEE Trans. on, vol. 56, no. 4, pp. 615–628, 2007.

[13] S. Garg, A. Puliafito, M. Telek, and K. Trivedi, “Analysis
of preventive maintenance in trans. based software systems,”
Comp., IEEE Trans. on, vol. 47, no. 1, pp. 96 –107, 1998.

[14] K. Vaidyanathan and K. Trivedi, “A comprehensive model for
software rejuvenation,” Dependable and Secure Computing,
IEEE Trans. on, vol. 2, no. 2, pp. 124 – 137, 2005.

[15] D. Wang, W. Xie, and K. S. Trivedi, “Performability analysis
of clustered systems with rejuvenation under varying work-
load,” Perform. Eval., vol. 64, pp. 247–265, 2007.

[16] M. Zhivich and R. K. Cunningham, “Secure systems: The real
cost of software errors,” IEEE Security and Privacy, vol. 7,
no. 2, pp. 87–90, 2009.

[17] I. Cisco Systems, “Cisco security advisory: Cisco catalyst
memory leak vulnerability. document id: 13618,” 2001.

[18] S. Garg, C. Kintala, Y. Huang, and K. Trivedi, “Minimizing
completion time of a program by checkpointing and rejuve-
nation,” in Proc. the Int. Conf. on Measurement and modeling
of computer systems, vol. 24, no. 1, 1996, pp. 252–261.

[19] L. Silva, H. Madeira, and J. Silva, “Software aging and
rejuvenation in a soap-based server,” in Int. Symp. Network
Computing and Applications, 2006, pp. 56 –65.

[20] K. Vaidyanathan and K. S. Trivedi, “A measurement-based
model for estimation of resource exhaustion in operational
software systems,” in Proc. the 10th Int. Symp. Software
Reliability Engineering (ISSRE), 1999, pp. 84–93.

[21] H. Eto, T. Dohi, and J. Ma, “Simulation-based optimization
approach for software cost model with rejuvenation,” Lect.
Not. in Comp. Science, vol. 5060 LNCS, pp. 206–218, 2008.

[22] A. Bovenzi, D. Cotroneo, R. Pietrantuono, and S. Russo,
“Workload characterization for software aging analysis,” in
22nd Int. Symp. Software Reliability Engineering, 2011, pp.
240–249.

[23] R. Matias, K. Trivedi, and P. Maciel, “Using accelerated life
tests to estimate time to software aging failure,” in IEEE 21st
Int. Symp. Soft. Reliability Engineering, 2010, pp. 211–219.

[24] J. Zhao, Y. Jin, K. Trivedi, and R. Matias, “Injecting memory
leaks to accelerate software failures,” in 22nd Int. Symp. Soft.
Reliability Engineering, 2011, pp. 260 –269.

[25] A. Avritzer, A. Bondi, M. Grottke, K. S. Trivedi, and E. J.
Weyuker, “Performance assurance via software rejuvenation:
Monitoring, statistics and algorithms,” in Proc. the Int. Conf.
on Dependable Sys. and Networks, 2006, pp. 435–444.

[26] D. Montgomery, Design and Analysis of Experiments, ser.
Student solutions manual. Wiley, 2008.

[27] M. Steinbach, G. Karypis, and V. Kumar, “A comparison of
document clustering techniques,” in In KDD Workshop on
Text Mining, 2000.

[28] P. K. Sen, “Estimates of the regression coefficient based on
kendalls tau,” Journal of the American Statistical Association,
vol. 63, no. 324, pp. 1379–1389, 1968.

[29] N. E. Fenton, Software Metrics: A Rigorous and Practical
Approach, 2nd ed. Boston, MA, USA: Int. Thomson
Computer Press, 1996.

