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Several studies have demonstrated that a fraction of soft-
ware failures is caused by software aging phenomena.
Software rejuvenation consists in proactively restoring a
clean state of the system, via reboot/restart, to avoid the
occurrence of these failures. A non-negligible fraction of
OS failures is caused by software aging. Since OS reju-
venation usually requires rebooting the OS, reducing the
reboot time becomes fundamental to minimize the down-
time.

Different approaches have been proposed to speed up
the reboot time of the OS. We refer to them as Fast OS
reboot techniques. Some of these techniques are suitable
candidates to implement and speed up the OS rejuvena-
tion. Actual approaches have pros and cons to be used
as a rejuvenation approach that need to be measured: the
performance loss during normal operation because of ex-
tra resources required by Fast OS reboot (Performance
Penalty); the extra work imposed to perform the OS re-
juvenation (Rejuvenation Overhead); and the capability
of the FR to restore a clean state of the system (Rejuve-
nation Coverage). We present the evaluation of the afore-
mentioned issues by means of an experimental campaign
to assess two Fast OS Reboot implementations for Linux
OSes: kexec and phase-based reboot. Results provide
useful insights to choose the most proper FR technique
and suggest possible directions of improvement.

1 Introduction

A non-negligible fraction of software failures is caused
by software aging [10, 14, 9]. Software aging is a phe-
nomenon that leads to the accumulation of errors in the
running software and operating environment by caus-
ing an increasing failure rate, degraded performance and
eventually systems hang and crash. The phenomenon
is due to the so called aging-related bugs [15], such as
memory leak, non-terminated process/threads, file de-

scriptors exhaustion, and memory fragmentation. Web-
servers [20], databases [6], network apparatus [8] and op-
erating systems [10, 33] have manifested software aging
symptoms.

Software rejuvenation [17] is the primary countermea-
sure to address software aging. Differently from reactive
techniques, it aims to proactively prevent or to postpone
aging failures. Software rejuvenation is based on stop-
ping the system, clean up its internal state, and resume
its normal operation. The growing importance of soft-
ware rejuvenation to improve the system availability has
been documented in recent papers [11, 1].

Nevertheless, software rejuvenation may have a non-
negligible overhead on the target system [2]. In
the particular case of operating systems, OS rejuve-
nation may impact on service disruption or down-
time, since it usually requires to stop all running pro-
cesses/services, reboot the OS, and thus restart/resume
the processes/services. This may impact the system
downtime even when fail-over procedures or redundancy
are implemented [7]. For this reason, reducing the OS
reboot time becomes fundamental to speed up the reju-
venation process.

The use of skip-based techniques is a promising ap-
proach to shorten downtime of OS reboots. Several fast
OS reboot (FR) techniques have been proposed so far,
and can be divided into two approaches; reduce-based
approaches and skip-based ones. Reduce-based tech-
niques make use of special hardware or special config-
uration to optimize the execution of one or more boot
stages such as the kernel invocation [13, 19, 31, 12] and
the user initialization stage [18]. On the other hand,
skip-based approaches bypass several one or more boot
stages [35, 25]. Skip-based approaches do not require
any modification of application nor special hardware,
thus being much easier to apply than the reduce-based
techniques.

In this work, we comprehensively evaluate FR tech-
niques to reveal their abilities of software rejuvenation.



We use two skip-based FR techniques: Kexec [25] and
Phase-based Reboot (PBR) [35]. Although non addi-
tional overhead in using them is ideal, the techniques re-
quire extra resources and/or new software modules that
may introduce some performance overhead during nor-
mal operation. To know the abilities of software rejuve-
nation, we identify the three following important prop-
erties of FR technique which come from a typical reju-
venation model, and conduct experiments based on the
properties.

• the Performance Penalty: the performance loss ex-
perienced during normal operation because of the
extra resources (e.g., memory, cpu and disk band-
width) required by the FR;

• the Rejuvenation Overhead: the extra work im-
posed to the system to trigger and to carry out the
rejuvenation;

• the Rejuvenation Coverage: the capability to restore
a clean state of the system after the rejuvenation is
carried out.

The results obtained reveal that FR are successful in
reducing the downtime. In particular, Kexec provides an
average 77% reduction when compared with the reboot;
while, PBR gives an average 79% reduction if compared
with VM reboot facility. These results confirm the results
obtained in the previous papers [25, 35]. However, our
results identify possible directions of improvement. The
PBR analysis shows that, if compared with VM-Reboot,
there is an increase of IO operations of 140%, on aver-
age. The percentage of the CPU usage devoted to IO
also increases. As for Kexec, surprisingly no impact on
the performance metrics (i.e., Throughput and Response
time) is observed. On the contrary, the average system
load an CPU usage using kexec is reduced by 33% and
30%, respectively.

The contributions of this paper are as follows;

• We defined metrics to quantitatively evaluate a soft-
ware rejuvenation scheme.

• We evaluated two actual FR OS rejuvenation tech-
niques based on the metrics and revealed character-
istics of them in the context of software rejuvena-
tion.

• We provided insights into design of more sophisti-
cated FR OS techniques.

The rest of the paper is organized as follows. Sec-
tion 2 provides background notions on boot stages and
the related work on FR. Section 3 describes the se-
lected FR techniques and motivates the study of these
FR techniques. Section 4 and 5 presents the experimental

methodology and technical details, respectively. Section
6 analyzes the results and discusses the findings. Con-
clusions are in Section 7.

2 Background and Related Work

Since the operating system (OS) plays a key role on the
availability and reliability of the systems, different ap-
proaches have been proposed to develop more reliable
OSes [28, 29, 16, 30]. These approaches present dif-
ferent mechanisms to make possible to restart faulty OS
components without needing to restart the OS subsumed
layers. However, these approaches are not yet in general
use.

OS reboot as a proactive and reactive mechanism to
deal with failures and their underlaying faults has been
demonstrated effective. However, it is not uncommon to
expect a downtime period during the OS reboot. Further-
more, usually the updates and patches installed on the
OS (specially in the kernel) require rebooting the OS, re-
ducing the reliability and availability of the OSes. For all
these reasons, an important effort from researchers and
practitioners has been dedicated to develop faster OS re-
boot mechanisms [35, 18, 25, 13, 19, 31, 12]. The Fast
OS reboot techniques can be divided into two main cate-
gories: skip-based techniques which bypass one or more
time consuming boot stages [35, 25]; and reduce-based
techniques which optimize the execution of one or more
boot stages such as the kernel invocation [13, 19, 31] or
the user initialization stage [18]. Some techniques use
specialized hardware components; e.g., in [12] exploits
the DMA to reduce the kernel loading phase. In this pa-
per, we have concentrated on the first category.

2.1 Skip-based Fast OS Reboot techniques

The Linux Boot process is typically divided into five
main stages: i) system startup, ii) Stage 1 bootloader, iii)
Stage 2 bootloader, iv) Kernel, and v) Init or User-space
initialization (See Figure 1, adapted from [21]).

Briefly, the system startup phase starts in the BIOS,
which checks the hardware and enumerates and initial-
izes the local devices. The main job of Stage 1 boot
loader is to find and load the second stage boot loader.
The second-stage bootloader basically loads the Linux
kernel, for this reason this stage is also known as kernel
loader. The first and the second-stage loaders together
are called Linux Loader (LILO) or Grand Unified Boot-
loader (GRUB), depending the Linux distribution used.
Once the kernel is loaded, the kernel stage starts. The
kernel stage job is to decompress the kernel and place
it into the memory. Then, the kernel is booted and ini-
tialized. Once the kernel is booted and initialized, the
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Figure 1: Linux boot stages overview

user-space application is started. After that, the Linux
OS is ready to be used.

The two techniques under analysis in this paper have
concentrated on skipping one or more of these time con-
suming stages and thus reducing significantly the boot
time.

kexec [25] consists in the replacement of the kernel at
runtime during normal system operation. As performing
the warm reboot, the internal state of OS is refreshed but
no hardware initialization is performed, namely the bios
and the devices check are skipped. Live-booting can be
applied in non-virtualized and in full-virtualized environ-
ments. Kexec skips the first stage of the classical Linux
Boot process previously described.

In [35], the authors propose Phase-Based Reboot
(PBR). PBR consists in dividing the boot in many se-
quences that are saved through checkpoints. To speed up
the reboot, the last restorable checkpoint is restored by
reproducing the same effect of the boot. PBR is based on
Xen virtualization technology and in the current imple-
mentation works for para-virtualized guest OS.

Since Kexec is not possible to deploy on a virtual ma-
chine yet, it is not possible to compare them about the
Performance Penalty, Rejuvenation overhead or down-
time reduction of the both techniques under the same en-
vironment. For this reason, our experimental study has
concentrated on measuring these three metrics for Kexec
vs. classical OS reboot system call, and PBR vs. regular
virtual machine (VM) restart system call from at hyper-
visor level.

2.2 Related work
In [25], kexec solution was presented and its reboot time
was compared with a regular OS reboot. Kexec effec-

tiveness was measured under different hardware archi-
tectures and different Linux distributions. The results
showed a reboot time reduction up to 75%. However,
other relevant metrics were not measured (e.g., perfor-
mance penalty). In [35], the VM booting time reduc-
tion was also measured under a specific architecture and
Linux distribution. Although, the VM boot time reduc-
tion was approx. 45%, it was also noted that the boot
time reduction of PBR mainly depends on the memory
size of the virtual machine.

Few papers have addressed an experimental compar-
ison of different rejuvenation strategies [3, 27, 2]. In
[3, 27], a software rejuvenation strategy for web appli-
cation and Grid services was analyzed from the Perfor-
mance Penalty, Rejuvenation overhead and coverage as
well as downtime observed. In [2], different OS rejuve-
nation strategies were measured in terms of number of
web requests rejected during the rejuvenation.

However, to the best of our knowledge, there is any
study analyzing in detail different Fast OS rejuvenation
strategies from different perspectives in order to imple-
ment a fast and effective software rejuvenation strategy
for operating systems.

3 Internals of the Experimented FR

The FR selection has been made by considering few re-
quirements that a FR technique should satisfy:

• application independence: the capability to execute
the FR is not influenced by the type and the number
of running applications;

• No extra hardware needed: avoid the integration of
novel dedicated hardware;

• Simple installation/configuration: minimize the ad-
ministrator’s effort for the installation and configu-
ration;

• Application transparence: avoid the reengineering
of the application or of the system services.

Based on the different FR approaches, the FR tech-
niques satisfying these criteria were Kexec and PBR.
These techniques only require patching the kernel and
the installation of some user-level tools.

3.1 Kexec
Kexec is a technique developed at Open Source Devel-
opment Labs (OSDL) to allow a linux kernel loading
another kernel from the main memory, by skipping the
BIOS and the bootloader phases. It has been developed
to support the rebooting of binary images that conform
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to the ELF format; hence, in principle, non-Linux kernel
images could be used.

The goals of Kexec are both (i) to reduce the down-
time of enterprise applications that need to reboot and
(ii) to reduce the kernel developer turn-around time. In
this study, we focus on the first feature of the technique.

As described in Section 2, the reboot process for Linux
OS can be divided in five main stages (see Figure 1).
Kexec is designed to totally skip the first two phases, i.e.,
the system startup, which consists of the hardware reset
and the devices detection and configuration steps, and the
1st bootloader stage, which carries out the loading of the
bootable image from disk or network.

To fulfill these goals, OSDL developers have realized
a kernel patch and some user-level programs. In partic-
ular, the kernel-level code can be summarized in the fol-
lowing system calls, which are enabled by configuring
the CONFIG KEXEC kernel option:

• sys kexec load() , which allows to load a kernel im-
age and the needed kernel modules into memory;

• sys kexec reboot() , which actually boot the loaded
kernel.

As for userspace code, there is a collection of tools,
known as kexec-tools. The most important for our
study is the kexec. When executed with the op-
tion -load, it can be used for loading the kernel into
the main memory since it call the aforementioned
sys kexec load() syscall. When executed with -exec,
it executes the loaded kernel by calling the sys reboot()
system call with the LINUX REBOOT CMD KEXEC
command argument that prepare the later call for the
sys kexec reboot() syscall.

Currently, Kexec runs on several platforms (e.g.,
ARM, IA-64, MIPS, PowerPC, S/390, SH, Tile, x86).
However, not all the implementations are stable. For
instance, with xen hypervisor kexec works well under
dom0 with old style Xenlinux patches but it does not
work properly for paravirtualized OS.

3.2 Phase-based Reboot
The PBR concept was introduced by the research group
of professor Kono from Keio University in [35]. The ba-
sic idea is simple: (i) separate the reboot stages, (ii) save
the result of each stage, and (iii) reuse them in subse-
quent reboots. PBR has been designed with the aim to
speed up the reboot of virtual machine and, in particular,
to shorten the downtime of reboot-based recovery.

The different reboot points, called restartable candi-
dates, are saved by means of the snapshot facilities of-
fered by the Xen hypervisor. Then, the restartable candi-
date that reproduces the same effect of a regular virtual

machine reboot is is restored. Of course PBR needs to
guarantee that only reboot-consistent images are reused.
To be reboot-consistent the restartable candidate, when
restored, needs to reproduce the same effect, i.e., the
same state, of a regular reboot.

To accomplish this goal PBR offers (i) a collection of
facilities for efficiently saving different restarable candi-
dates and (ii) a method to automatically check reboot-
consistent images and to select the most appropiate one.
These different tasks are performed by means of a collec-
tion of kernel-level patches, at guest OS, and user-level
utilities that are summarized in Figure 2.
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Figure 2: PBR architecture

The facilities to save restartable candidates are both
at kernel-level and user-level. The guest OS kernel is
explicitly modified by adding a new module: the object
manager. This module instructs the hypervisor to skip
the storing of free pages and cache objects when a snap-
shot is taken; it also modifies the P2M mapping table
by means of the balloon driver [34]. This mechanism
is useful to both reduce the amount of memory neces-
sary to save restartable candidates and to reduce the time
to restore the chosen image. In particular, the following
system calls are added:

• sys sonicshot() , which flushes dirty buffers and free
unnecessary pages (i.e., cache and free pages);

• sys flush log() , which save the list of opened file to
a given file name;

• sys set operating() , to enable or disable the moni-
toring activities needed by PBR.

Another important functionality added to the kernel is
the file access module. This module monitors all files ac-
cessed during the reboot by storing the absolute path, the
i-node number, and the last modication time of each file.
To avoid unnecessary overhead due to the monitoring ac-
tivity during operation (i.e., after a restartable candidate
is taken), the file access module can be stopped by calling
the sys set operating() syscall.

The userspace code is made of a simple server and
some utilities. The server program waits for requests to
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save restartable candidates. The requests are made by a
client application running at dom0. The server satisfies
the request by calling the sys sonicshot() syscall that
allows to prepare the environment for taking a snapshot.
The user-level utilities are a collection of scripts to save
accessed files and the necessary information to select the
most proper reboot-consistent image when the fast re-
boot is trigger.

The restoring of the most proper restartable candidate
is made at dom0 by means of the file update checker.
This modules identifies when the considered image is
reboot-consistent or not by comparing the modification
time of logged files and the one obtained by mounting
the virtual disk.

The current implementation works for Xen 3.4.1and
para-virtualized linux 2.6.18.

4 The Experimental Methodology

The plan and the execution of the experiments is accom-
plished using the Design of Experiments (DoE) method-
ology. DoE helps to minimize the experimental error and
to get statistically significant answers in the investigation
of systems or processes [23].

The first step in planning such experiments is the for-
mulation of a clear statement of the objectives of the in-
vestigation. Then, the experimenter needs to identify the
response variables and the factors of interest that can po-
tentially affect the response variables. The value of the
factors chosen in the experiments are called levels. When
response variables, factors, and levels are identified, the
test plan is completely determined by defining a list of
experiments, called treatments

4.1 Objectives, Factors and Response Vari-
ables

The objectives of our study are two-fold: i) assessing if
FR influences system performance during normal oper-
ation and ii) evaluating if FR has an impact on the re-
juvenation overhead and rejuvenation coverage. Since
the objectives are orthogonal we plan one experimental
campaign to evaluate the Performance Penalty and an-
other campaign to assess the Rejuvenation Overhead and
the Rejuvenation Coverage.

The factor of interest in our analyses is the technique
to rejuvenate the OS. The considered levels are: Reboot,
Kexec, VM Reboot and PBR. Since the considered FR
techniques work in different environments we have per-
formed two different sets of treatments: Kexec and Re-
boot treatments are executed in a non-virtualized server,
while VM Reboot and PBR are executed in a virtualized
environment.

All treatments consists of a client application request-
ing web pages to a HTTP server. As for Rejuvenation
Coverage treatments, we also injected memory leaks at
server side in order to verify the capability to recover the
wasted memory.

The response variables have been classified into
server- and client-side. In particular, to evaluate the Per-
formance Penalty we have sampled the Throughput and
the Response Time at client side; while, we have sam-
pled the CPU, Free Memory, I/O, and the Load at server-
side. It is noteworthy that for PBR and VM Reboot treat-
ments, the server-side response variables are sampled at
both guest VM and dom0.

As for the response variables of the Rejuvenation
Overhead and Rejuvenation Coverage campaign, we
have measured the downtime the recovered leaked mem-
ory, respectively. Further details about the testbed, re-
sponse variables of interest and the monitoring infras-
tructure are introduced and discussed in Section 5.

4.2 Null Hypothesis Formulation
The following null hypothesis is tested for the Perfor-
mance Penalty campaign: the FR technique does not in-
fluence the performance of the system. The rejection of
the null hypothesis means that at least one of the col-
lected performance metrics is influenced when FR is ap-
plied.

As for the Rejuvenation Overhead a similar null hy-
pothesis is formulated: the FR technique does not influ-
ence the rejuvenation overhead. In this case, if the null
hypothesis is rejected it means that the downtime is in-
fluenced when FR is applied.

Finally the null hypothesis for Rejuvenation Coverage
is formulated as follows: the FR technique does not influ-
ence the rejuvenation coverage. The rejection of the null
hypothesis imply that the amount of recovered memory
is influenced by the FR technique.

4.3 Experimental Plan and Analysis
The treatments executed for the described campaigns are
divided in four plans, obtained by assigning a level to
the factor of interest. The experimental plans need to ad-
here to the principles of DoE. Hence, we adopt the tool
JMP (http://www.jmp.com/) to generate four plans hav-
ing randomization and orthogonality properties [23] and
n replicated treatments. The significance level α and the
power of the test are set to 0.05 and 0.90, respectively.
This means that the Pr(re ject H0 | H0 true), or type
I error, is 5% and the 1− Pr (accept H0 | H0 f alse)
is 90%. The list of treatments obtained with JMP is re-
ported in Table 1. Columns report the involved factor, set
with a given level value. This set of treatments has been
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obtained considering that the minimal number of replica-
tion n necessary to detect a 15% increase in the standard
deviation of the response variable is n = 16 [23].

The Performance Penalty experimental campaign con-
sists of 32 experiments and 32 hours of execution for
each environments, i.e., virtual and non-virtual; while,
the Rejuvenation Overhead and Rejuvenation Coverage
campaign is made of 32 experiments and 16 hours for
each considered environments. The former campaign
last more than the latter since to evaluate the performance
of the web server it is usually preferred to wait for the ex-
piration of the warm up period. Indeed, during the warm-
up period performance could be worst because buffers
and cache are usually empty.

The method identified for the comparison of the treat-
ments is the one-way analysis of variance (ANOVA) on
each response variable. It consists in the comparison of
different levels of the factor and measuring the response
variable. The hypothesized model is: yi = µ + Fj + εi, j.
Where µ is the overall mean, Fj is the effect of the FR
technique and εi, j is the random experimental error.

One-way ANOVA highlights which response variable
is influenced by the integration of the FR technique.
However, this method only works for one response vari-
able. When measuring more than one response variable,
the chosen significance level α needs to be appropriately
corrected by using Bonferroni’s procedure [5]. This con-
sists in dividing α by the number of response variables.
Nevertheless, Bonferroni’s correction method may be-
come too conservative when many response variables are
considered since it may need too small α to reject the
null hypothesis. This could be the case in Performance
Penalty treatments.

An alternative method that can be used with mul-
tiple response variables is the Multivariate ANOVA
(MANOVA). MANOVA consists in the analysis of a
linear combination of the response variables. Unfortu-
nately, this method has some drawbacks too. Indeed, it is
not particularly suited i) to test non linear effects and ii)
in scenarios when there are many “weak” variables that
can mask the effect of other variables.

For the aforementioned reasons, since our believe is
that just few variables could be influenced by the FR, we
have conducted the analysis by applying the Bonferroni’s
correction method. Moreover, before using ANOVA we
have verified the applicability hypothesis of the test, i.e.,
the independence of observations, the random distribu-
tion of residuals and the homoscedasticity of variances.
The first assumption is guaranteed by using the tool to
randomly generate the treatments and by recreating the
same experimental conditions for each treatment. Then,
the other assumptions are verified to apply ANOVA.

Table 1: The experimental plans for the considered anal-
yses

Exp FR Exp FR Exp FR Exp FR
1 kexec 9 kexec 17 reboot 25 kexec
2 reboot 10 reboot 18 reboot 26 reboot
3 kexec 11 reboot 19 reboot 27 reboot
4 kexec 12 kexec 20 kexec 28 kexec
5 kexec 13 kexec 21 kexec 29 reboot
6 reboot 14 reboot 22 reboot 30 kexec
7 kexec 15 kexec 23 reboot 31 reboot
8 kexec 16 reboot 24 kexec 32 reboot

(a) Performance Penalty campaign in non-virtual environment

Exp FR Exp FR Exp FR Exp FR
1 pbr 9 pbr 17 pbr 25 pbr
2 vmr 10 vmr 18 vmr 26 vmr
3 vmr 11 vmr 19 vmr 27 vmr
4 vmr 12 pbr 20 pbr 28 pbr
5 pbr 13 pbr 21 pbr 29 vmr
6 pbr 14 pbr 22 vmr 30 pbr
7 pbr 15 pbr 23 vmr 31 vmr
8 pbr 16 vmr 24 pbr 32 vmr

(b) Performance Penalty campaign in virtual environment

5 Technical Details

5.1 The Experimental Testbed

jimgray: PowerEdge T310 8GB RAM Intel Xeon X3430
2.4 GHz, 8M Cache Turbo 1TB 7.2K RPM SATA
The virtual environment testbed is made up of two ma-
chines: (i) a server, equipped with an Intel Pentium 4 3.2
GHz CPU with Hyper-Threading, 4 GB RAM, 1 Gb/s
Network Interface and (ii) a client, equipped with an
Intel Pentium 4 2.4 GHz CPU, 2 GB of RAM, 1 Gb/s
Network Interface. The Guest OS is the paravirtualized
Linux version 2.6.18 provided by Xen and equipped with
PBR modules; while, the dom0 run the Xen 3.4.1 hyper-
visor.

The non-virtual environment testbed is made of a (i)
server with XX GB of RAM and X CPU, 1 Gb/s Network
Interface and running Scientific Linux 2.6.32 EL and a
(ii) client with 32 GB of RAM and Intel Xeon E5620
(16 core) 2.40GHz, 1 Gb/s Network Interface, also and
running Scientific Linux 2.6.32.

On the server machines of both virtual and non-virtual
environments we run an Apache HTTP server 2.4.2;
while at the client-side we use htt per f [24] as traffic
generator to request web pages of different size, i.e., few
bytes to some MB.
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Figure 3: The single OS view is not appropriate in virtual
environments. Figure taken from [26]

5.2 Response Variables Description
The Performance Penalty have been evaluated at both
client- and server-side in terms of the: Throughput and
Response Time, and , CPU I/O,Free Memory and Load
(see Table 5.2). These metrics are collected every δ sec-
onds.

The Throughput is measured at the application-level
and as the average number or reply over the number of
requests in the interval of time. This may be influenced
by the extra software required by the FR technique run-
ning at server-side. As for the response time, it is mea-
sured as the total time elapsed between the first byte sent
by the client and the first byte received by the server.

At server-side the CPU, the Load, the Free Memory
and the IO are collected. The CPU accounts for the
instantaneous consumption of the CPU for all running
processes; the Load, instead is the exponential moving
average of the number of processes ready to be executed,
giving more weight to the last 15 minutes samples;
the Free Memory is the amount of all available RAM
including buffer and caches; the IO accounts for the
number of blocks read from and write to the disk since
last reboot. In the case of virtual environments, the
VMM-level also needs to be monitored to capture the
Performance Penalty since extra resources not consumed
by the guest OS can be consumed by the VMM (see
Figure 3).

As for the Rejuvenation Overhead and the Rejuvena-
tion Coverage, we monitored the Downtime and the Re-
covered Memory, respectively. The downtime is evalu-
ated by measuring the seconds needed by the FR tech-
nique to reboot the system. This also includes the time to
prepare to reboot but not the time to set up the user en-
vironment, namely to run all the user-level processes. To
compute the recovered memory, we injected some mem-
ory leak at kernel level, then we evaluate if the amount
of wasted memory has been recovered after the reboot
by simply comparing the free memory values before and
after the treatment.

Table 2: Response variables to evaluate Performance
Penalty, Rejuvenation Overhead and Rejuvenation Cov-
erage

Metrics Unit of measure
Throughput (T) # Response per sec

Response time (RT) Seconds

(a) Client-side response variables

Metrics Unit of measure
CPU Percentage
Load # processes in ready queue

Free Memory (FM) Kilobyte
IO #Block from/to disks

Downtime (D) seconds
Recovered Memory (RM) percentage

(b) Server-side response variables

It is noteworthy that the response variables selected
to conduct the analysis are both coarse-grained and fine-
grained. The former, i.e., throughput and response time
and downtime, have the primary purpose to evaluate the
overall impact of each FR technique at the application
level. Then, to find out why a particular FR technique has
the observed behavior, the fine-grained response vari-
ables, such as Free Memory, IO and CPU and load, can
be used to conduct a deeper analysis trying to isolate the
root cause.

5.3 Monitoring infrastructure

To quantitatively capture the aforementioned response
variables we instrumented the target systems at VMM-
OS- and application-level.

We use existing OS and VMM monitoring tools to
measure the metrics at the OS- and VMM-level, such as
top, free and vmstat. Instead, we exploit httperf built-
in facilities to measure at client-side the Throughput and
the Response Time.

As for the rejuvenation coverage campaign, the injec-
tion of kernel-level memory leaks has been performed by
a simple kernel module. The injection events consists of
the allocation and the initialization of a fixed amount of
memory and the times of the injection events are Pois-
son process. The treatments have been executed with
the tool configured to inject 1KB of memory leak having
the inter-arrival time of the injection events exponentially
distributed with λ = 1 minute.

The side effects of the monitoring infrastructure has
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also been evaluated. The impact on the application is
negligible since these tools just read some small files at
a predefined interval of δ = 15 seconds.

6 Results

In this section, we present the results obtained during the
experiments with Kexec and PBR approaches. The ex-
periments have been focused on the two metrics of in-
terest: Performance Penalty and Rejuvenation overhead.
Due to the incompatible scenarios of Kexec and PBR,
we cannot compare each other. The analysis has been
focused on measuring the Performance Penalty and Re-
juvenation overhead of the Fast OS reboot techniques
under study with the same scenario and OS without the
techniques deployed.

6.1 Kexec
6.1.1 Performance Penalty

AGGIORNARE
In order to measure the Performance Penalty introduced
by Kexec, we collect different performance and system
metrics during normal operation with Kexec installed on
the OS and without it.

The collected data has been divided into two types or
perspectives: user-based metrics and system-based met-
rics. User-based metrics are composed of Throughput
and Response time. On the other hand, system-based
metrics are composed of System load, CPU usage, I/O
usage, and Free Memory.

In Tables ?? and ??, The averaged user-based metrics
and system-based metrics are presented, respectively.

In Table ??, we observe that the throughput difference
is negligible. However, It seems that the difference in
terms of Response time can be significant. In the case of
Server-based metrics (see Table ??, we observe similar
results. But, it is interesting to observe that the Load and
I/O of the kexec OS system are lower than the classical
OS system.

In order to confirm or reject that intuition, one-way
ANOVA test is used to test if the difference on the aver-
age throughput and response time of Kexec OS and clas-
sical OS are significant at α = 0.05. However, it is re-
quired to use the Bonferroni correction [22] since we are
conducting multiple independent statistical tests simulta-
neously. Even when the α value is appropriate for each
individual comparison, it is not for the set of all compar-
isons. In order to avoid false positives, the α value needs
to be lowered appropriately, taking into account the num-
ber of comparisons (i.e., n = 6). So, based on the Bonfer-
roni’s correction, α = 0.05/6 = 0.0083. Table 3 presents
the one-way ANOVA results of user-based metrics. The

Table 3: Results of the Performance Penalty analysis
Source df SS MS F P-value
rej. tech. 1 1.91E-01 6.92E-01 4.17
error 30
total 30 xx

Means for one-way ANOVA
Level Avg Std Dev 95%CI− 95%CI+

pbr 1.97E-01 2.93E-03 1.91E-01 2.03E-01
vmr 2.14E-01 3.04E-03 2.08E-01 2.22E-01

(a) One-way ANOVA for Load

Source df SS MS F P-value
rej. tech. 1 1.67E01 4E-04 4.1708
error 30 xx
total 30 xx

Means for one-way ANOVA
Level Avg Std Dev 95%CI− 95%CI+

pbr 1.97E-01 2.93E-03 1.91E-01 2.03E-01
vmr 2.14E-01 3.04E-03 2.08E-01 2.22E-01

(b) One-way ANOVA for CPU

Source df SS MS F P-value
rej. tech. 1 1.67E01 4E-04 4.1708
error 30 xx
total 30 xx

Means for one-way ANOVA
Level Avg Std Dev 95%CI− 95%CI+

pbr 1.97E-01 2.93E-03 1.91E-01 2.03E-01
vmr 2.14E-01 3.04E-03 2.08E-01 2.22E-01

(c) One-way ANOVA for IO

Source df SS MS F P-value
rej. tech. 1 1.67E01 4E-04 4.1708
error 30 xx
total 30 xx

Means for one-way ANOVA
Level Avg Std Dev 95%CI− 95%CI+

pbr 1.97E-01 2.93E-03 1.91E-01 2.03E-01
vmr 2.14E-01 3.04E-03 2.08E-01 2.22E-01

(d) One-way ANOVA for Memory

Source df SS MS F P-value
rej. tech. 1 xxx xxx xxx
error 30 xx
total 30 xx

Means for one-way ANOVA
Level Avg Std Dev 95%CI− 95%CI+

pbr 1.97E-01 2.93E-03 1.91E-01 2.03E-01
vmr 2.14E-01 3.04E-03 2.08E-01 2.22E-01

(e) One-way ANOVA for Throughput

Source df SS MS F P-value
rej. tech. 1 1.67E01 4E-04 4.1708
error 30 xx
total 30 xx

Means for one-way ANOVA
Level Avg Std Dev 95%CI− 95%CI+

pbr 1.97E-01 2.93E-03 1.91E-01 2.03E-01
vmr 2.14E-01 3.04E-03 2.08E-01 2.22E-01

(f) One-way ANOVA for Response Time
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Table 4: Welch’s test at Server-based metrics
Load3
F-ratio Test t Num. df T crit. P-value
3.801 7.8938 22 2.0738 2.3628*10−8

CPU
F-ratio Test t Num. df T crit. P-value
17.7381 4.965 17 2.1098 0.000117
I/O
F-ratio Test t Num. df T crit. P-value
63.125 3.1508 15 2.1314 0.00659
Free Mem.
F-ratio Test t Num. df T crit. P-value
82.338 0.0467 15 2.1314 0.9633

Figure 4: Example of I/O peak during warm-up period

ANOVA results for user-based metrics indicated null hy-
pothesis cannot be rejected (p−value≥ 0.0083) for both
response variables of interest. This result becomes rel-
evant because indicates that the user-perceived perfor-
mance of the system is not affected by installing Kexec.

In the case of system-based metrics, the hypothesis of
homoscedasticity required to perform one-way ANOVA
is not satisfied. For this reason, we have computed the
Welch’s test which does not requires homoscedasticity
hypothesis be satisfied. Table 4 presents the results of
Welch’s test. We observe significant differences accord-
ing to the statistic test results for Load3, CPU, and I/O.
So, we can reject the null hypothesis, indicating that
these system metrics are significantly affected by the fac-
tor under study (i.e., with/without Kexec). On the other
side, memory free is not significantly different between
both levels.

In order to explain the significant difference of Load3,
CPU, and I/O, we have studied the samples collected
along the experimental runs (see I/O example of one of
the runs in Figure 4. During the first minutes of the each
run (warmup period), a peak was observed for all these
three metrics. Hence, the greater values at the beginning
can bias the average values for the experiments. In any
case, these differences are not enough to affect the per-
formance of the system from the user perspective, which
is the desirable global result.

Table 5: Results of the Rejuvenation Overhead and Re-
juvenation Coverage analysis

F ratio Test t df Den. df P-value
8.46E03 9.20E01 1 24.83 1.00E-04

(a) Welch’s Test for Downtime

Source df SS MS F P-value
rej. tech. 1 xxx xxx 2.00E-01 4.17E00 4E-04
error 30 xx
total 31 xx

Means for one-way ANOVA
Level Avg Std Dev 95%CI− 95%CI+

kexec 1.97E-01 2.93E-03 1.91E-01 2.03E-01
reboot 2.14E-01 3.04E-03 2.08E-01 2.22E-01

(b) One-way ANOVA for Recovered Memory TO UPDATE

6.1.2 Rejuvenation Overhead and Coverage

The second campaign has been executed to investigate
the Rejuvenation Overhead and Rejuvenation Coverage.
We have conducted two statistical tests to verify if there
is any statistical evidence showing that the factor FR
technique has a statistical influence on the downtime and
on the recovered memory.

As for the downtime analysis, the hypothesis of ho-
moscedasticity required to perform ANOVA is not satis-
fied. In fact, three tests (i.e., O-Brien, Brown-Forsythe
and Levene’s tests) out of five that are usually performed
to verify that the variances of groups are homogeneous
have rejected the null hypothesis variances into groups
are equal. However, the tests not rejecting the null hy-
pothesis have a really p-value quite close to the critical
value (i.e., 0.05). For these reasons we have applied the
Welch’s test that does not assume homoscedasticity.

The results of the statistical tests are summarized in
Table 5. The upper table shows that when the rejuve-
nation is accomplished using Kexec the downtime is in
average 25.4 seconds; while, the downtime due to the re-
boot is in average 117.5 seconds. Hence, there is about a
77% reduction of the downtime when applying Kexec.

As for the Rejuvenation coverage, the wasted memory
due to the injected memory leaks has been totally recov-
ered in all the treatments. Indeed, the FR has no impact
on the capability to recover from memory leak at kernel
level.

6.2 Phased-based reboot

6.2.1 Performance Penalty

In this section, we present the results of the user and sys-
tem metrics used to measure the performance penalty of
the Phase-based reboot technique (PBR). Tables 6 and 7

9



Table 6: User-based metrics
PBR OS Regular VM

OS
Diff.

Avg. Throughput (req/sec) 32.525 32.45 0.075
Std. Dev. Throughput 0.1437 0.121
Avg. Response time (ms) 861.63 872.81 11.1875
Std. Dev. Response Time 10.763 9.893

Table 7: Server-based metrics
PBR OS Regular VM

OS
Diff.

DOMU Avg. Load3 0.023 0.005 0.017
DOMU Std. Dev. Load3 0.00544 0.0018
DOMU Avg. CPU 2.072 1.6275 0.4453
DOMU Std. Dev. CPU 0.101 0.000148
DOMU Avg. I/O 92.28 67.11 25.16
DOMU Std. Dev. I/O 3.029 52.316
DOMU Avg. Free Mem-
ory

1701909.57 1682972.15 18937.41

DOMU Std. Dev. Free
Memory

1786.15 46979.73

DOM0 Avg. Load3 0.0033 0.0015
DOM0 Std. Dev. Load3 0.0032 0.003
DOM0 Avg. CPU 0.3548 0.3375 0.017
DOM0 Std. Dev. CPU 0.14 0.05
DOM0 Avg. I/O 43.23 43.08 0.14
DOM0 Std. Dev. I/O 9.15 1.499
DOM0 Avg. Free Memory 181021.088 124050.661 56970.427
DOM0 Std. Dev. Free
Memory

32014.66 3680.35

summarize the average results obtained for user and sys-
tem (Dom U and Dom 0) metrics, respectively.

In the case of User-based metrics, the hypothesis of
homoscedasticity is satisfied and one-way ANOVA is a
valid test to probe the null hypothesis:the user metrics
have the same mean. Table 8 presents the ANOVA re-
sults for throughput and response time. We observe how
the null hypothesis cannot be rejected in the first case,
but it can in the second case. So, it can be concluded that
the average response time is affected by the integration
of PBR solution on the virtualized environment.

In the case of system metrics, we have observed that
the Dom U Load3 results satisfy the hypothesis of ho-
moscedasticity, but the rest of metrics do not. Table 9

Table 8: One-way ANOVA at User-based metrics
Throughput
Source df F P-value F crit
Between 1 2.547 0.1209 4.1708
Within 30

Response Time
Source df F P-value F crit
Between 1 9.369 0.0046 4.1708
Within 30

Table 9: One-way ANOVA at System-based metric
Load3
Source df F P-value F crit
Between 1 2.376 0.13362 4.1708
Within 30

Table 10: Welch’s test of Server-based metrics at Dom
U/Dom 0

DOMU-Load3
F-ratio Test t Num. df T crit. P-value
8.888 12.323 18 2.1009 3.284*10−10

DOMU-CPU
F-ratio Test t Num. df T crit. P-value
9.144 3.906 18 2.1009 0.00103
DOM0-CPU
F-ratio Test t Num. df T crit. P-value
8.5711 27 15 2.13144 3.9305*10−14

DOMU-I/O
F-ratio Test t Num. df T crit. P-value
17.2705 13.6089 16 2.1199 3.2575*10−10

DOM0-I/O
F-ratio Test t Num. df T crit. P-value
37.277 0.06375 16 2.1199 0.9499
DOMU-Free Mem.
F-ratio Test t Num. df T crit. P-value
691.803 1.611 15 2.13144 0.1279
DOM0-Free Mem.
F-ratio Test t Num. df T crit. P-value
75.669 7.0683 15 2.13144 3.8195*10−6

presents the one-way ANOVA test of Load3 at Dom U.
We observe that the null hypotheis cannot be rejected
with at α = 0.05.

Table 10 presents the Welch’s test results for the rest
of metrics at Dom U and Dom 0. At Dom U, we can
reject the null hypothesis in all the cases. The reason is
similar that presented in the Kexec case. At Dom 0, we
observe an interesting behavior. The I/O metric results
indicate that there is no significant difference on using
PBR or not. However, in the rest of metrics the null hy-
pothesis can be rejected. So, it is concluded from the
analysis conducted that PBR affects the system metrics,
like kexec does. However, PBR has a negative impact
on the user metric Response time. This limits the effec-
tiveness of the solution. On the other side, as it has been
indicated, it is not possible to deploy kexec in a VM. So,
PBR becomes an effective substitute, at least until kexec
would be available for these relevant scenarios.

6.2.2 Rejuvenation Overhead and Coverage

As for the downtime analysis in the virtual environment,
using PBR instead of the VM reboot provides an average
of 79% downtime reduction. Indeed, the average down-
time using PBR and VM reboot is 5.03 seconds and 23.9
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Table 11: PBR results for Rejuvenation Overhead and
Rejuvenation Coverage analysis

Source df SS MS F P-value
rej. tech. 1 xxx xxx 2.00E-01 4.17E00
error 30 xx
total 31 xx

Means for one-way ANOVA
Level Avg Std Dev 95%CI− 95%CI+

pbr 1.97E-01 2.93E-03 1.91E-01 2.03E-01
vmr 2.14E-01 3.04E-03 2.08E-01 2.22E-01

(a) One-way ANOVA for Downtime
Source df SS MS F P-value
rej. tech. 1 xxx xxx 1.67E01 4.00E-04
error 30 xx
total 31 xx

Means for one-way ANOVA
Level Avg Std Dev 95%CI− 95%CI+

pbr 1.97E-01 2.93E-03 1.91E-01 2.03E-01
vmr 2.14E-01 3.04E-03 2.08E-01 2.22E-01

(b) One-way ANOVA for Recovered Memory

seconds, respectively. The hypothesis of homoscedastic-
ity required to perform ANOVA is satisfied, all the tests
cannot rejected the null hypothesis variances into groups
are equal. Hence, the results of the statistical analysis by
applying ANOVA, which are summarized in Table 11,
highlight that the FR technique influences the downtime.

As for the Rejuvenation Coverage, the wasted memory
due to the injected memory leaks cannot be totally recov-
ered using the PBR. Indeed, if the snapshot is taken when
an injection has been performed, this wasted memory is
saved in the image. Hence, when the image is restored
when the memory leak cannot be cleaned. This behavior
is highlighted by the analysis summarized in Table 11.
There is a statistical evidence (p− value� α) that PBR
cannot recover all the injected memory leaks.

7 Conclusion
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