
Solving Parity Games: Explicit vs Symbolic?

Antonio Di Stasio1, Aniello Murano1, Moshe Y. Vardi2

1Università di Napoli “Federico II”, 2Rice University

Abstract. In this paper we provide a broad investigation of the symbolic
approach for solving Parity Games. Specifically, we implement in a fresh
tool, called SymPGSolver, four symbolic algorithms to solve Parity Games
and compare their performances to the corresponding explicit versions
for different classes of games. By means of benchmarks, we show that for
random games, even for constrained random games, explicit algorithms
actually perform better than symbolic algorithms. The situation changes,
however, for structured games, where symbolic algorithms seem to have
the advantage. This suggests that when evaluating algorithms for parity-
game solving, it would be useful to have real benchmarks and not only
random benchmarks, as the common practice has been.

1 Introduction

Parity games (PGs) [12, 24] are abstract games with a key role in automata
theory and formal verification [7, 9, 18, 19, 23]. PGs are two-player turn-based
games played on directed graphs whose nodes are labeled with priorities. Players
take turns moving a token along the graph’s edges, starting from an initial node.
A play induces an infinite path and Player 0 wins the play if the smallest priority
visited infinitely often is even. Solving a PG amounts checking whether Player 0
can force such a winning play. Several algorithms to solve PGs have been proposed
aiming to tighten the asymptotic complexity of the problem, as well as to work
well in practice. Well known are Recursive (RE) [24], small-progress measures
(SPM) [14], and APT [10, 18], the latter originated to deal with the emptiness
of parity automata. Notably, all these algorithms are explicit, that is, they are
formulated in terms of the underlying game graphs. Due to the exponential growth
of finite-state systems, and, consequently, of the corresponding game graphs, the
state-explosion problem limits the scalability of these algorithms in practice.

Symbolic algorithms are an efficient way to deal with extremely large graphs.
They avoid explicit access to graphs by using a set of predefined operations
that manipulate Binary Decision Diagrams (BDDs) [3] representing these graphs.
This enables handling large graphs succinctly, and, in general, it makes symbolic
algorithms scale better than explicit ones. For example, in hardware model
checking symbolic algorithms enable going from millions of states to 1020 states

? Work supported by NSF grants CCF-1319459 and IIS-1527668, NSF Expeditions
in Computing project ”ExCAPE: Expeditions in Computer Augmented Program
Engineering” and GNCS 2018: Logica, Automi e Giochi per Sistemi Auto-adattivi.

and more [4, 20]. In contrast, in the context of PG solvers, symbolic algorithms
have been only marginally explored. In this direction we just mention a symbolic
implementation of RE [2,16], which, however, has been done for different purposes
and no benchmark comparison with the explicit version has been carried out.
Other works close to this topic and worth mentioning are [5,8], where a symbolic
version of SPM has been theoretically studied but not implemented.

In this work we provide the first broad investigation of the symbolic approach
for solving PGs. We implement four symbolic algorithms and compare their
performances to the corresponding explicit versions for different classes of PGs.
Specifically, we implement in a new tool, called SymPGSolver, the symbolic ver-
sions of RE, APT, and two variants of SPM. The tool also allows to generate random
games, as well as compare the performance of different symbolic algorithms.

The main result we obtain from our comparisons is that for random games, and
even for constrained random games (see Section 4), explicit algorithms actually
perform better than symbolic ones, most likely because BDDs do not offer any
compression for random sets. The situation changes, however, for structured
games, where symbolic algorithms sometimes outperform explicit algorithms.
This is similar to what has been observed in the context of model checking [11].
We take this as an important development because it suggests a methodological
weakness in this field of investigation, due to the excessive reliance on random
benchmarks. We believe that, in evaluating algorithms for PG solving, it would
be useful to have real benchmarks and not only random benchmarks, as the
common practice has been. This would lead to a deeper understanding of the
relative merits of PG solving algorithms, both explicit and symbolic.

2 Explicit and Symbolic Parity Games

Explicit Parity Games. A Parity Game (PG, for short) is a tuple G , 〈P,
P,Mv , p〉, where P and P are two finite disjoint sets of nodes for Player 0 and
Player 1, respectively, with P = P ∪ P, Mv ⊆ P × P is the binary relation of
moves, and p : P→ N is the priority function. By Mv(q) , {q′ ∈ P : (q, q′) ∈ Mv}
we denote the set of nodes to which the token can be moved, starting from q.

A play over G is an infinite sequence π = qq . . .∈Pω of nodes that agree
with Mv , i.e., (qi, qi+) ∈ Mv , for each i ∈ N. By p(π) = p(q)p(q) . . . ∈ Nω we
denote the priority sequence associated to π, and by Inf(π) and Inf(p(π)), the
sets of nodes and priorities that occur infinitely often in π and p(π), respectively.
A play π is winning for Player 0 if min(Inf(p(π))) is even. Player 0 (Player 1)
strategy is a function str : P∗P → P (str : P∗P → P) that agrees with Mv .
Given a node q, play(q, str, str) is the unique play starting in q that agrees with
both str and str. Player 0 wins the game G from q if a strategy str exists such
that, for all strategies str it holds that play(q, str, str) is winning for Player 0.
Then q is declared winning for Player 0. By Win(G) we denote the set of winning
nodes in G for Player 0. Parity games enjoy determinacy, i.e., for every node q,
either q ∈Win(G) or q ∈Win(G) [12]. Also, if Player 0 has a winning strategy
from a node q, then she has a memoryless one from q [24]. A strategy str is

2

memoryless if, for all prefixes of plays ρ, ρ, it holds that str(ρ) = str(ρ) iff
last nodes of ρ and ρ coincide. Then, one can use str defined as str : P → P.

Symbolic Parity Games. We start with some notation. In the sequel we use
symbols xi for propositions (variables), li for literals, i.e., positive or negative
variables, f for a generic Boolean formula, ||f || for the set of interpretations that
makes the formula f true, and λ(f) ⊆ V for the set of variables in f .

Definition 1. Given a PG G , 〈P,P,Mv , p〉, the corresponding symbolic PG
(SPG, for short) is the tuple F = (X ,XM , fP0 , fP1 , fMv , ηp) defined as follows:

– X = {x1, . . . , xn}, with n = dlog2(|P|)e, is the set of propositions used
to encode nodes in G, i.e., to each v ∈ P we associate a Boolean formula
fv = lv,1 ∧ ...∧ lv,n where lv,i is either xi or xi. We also associate to v the in-
terpretation Xv ∈ 2X , i.e., the subset of variables appearing positively in fv.

– XM = {x′1, ..., x′n}, with n = dlog2(|P|)e, is the set of propositions used to
encode the successor nodes such that X ∩ XM = ∅. We extend to XM the
definitions of fv and Xv as used in the previous item.

– fPi , for i ∈ {0, 1}, is a Boolean formula such that ||fPi ||=Pi.
– fMv is a Boolean formula over the propositions X ∪XM such that ||fMv ||=Mv.
– ηp is the symbolic representation of the priority function p; formally, it is a

function ηp : 2X → N associating to each interpretation Xv a natural number.

Fig. 1. A parity game

Example. Consider the PG depicted in Fig. 1. It has
P = {q0, q2} (circles) and P = {q1} (squares); Mv is given
by arrows; and p(qi) = i, for 1 ≤ i ≤ 3. The correlating
SPG F = (X ,XM , fP0 , fP1 , fMv , ηp) is as follows: X =
{x1, x2} and XM = {y1, y2} are the set of propositions;
fP0

= (x1 ∧ x2) ∨ (x1 ∧ x2) and fP1
= (x1 ∧ x2) are

Boolean formulas representing P0 and P1, respectively;
fMv = (x1 ∧ y1 ∧ x2 ∧ y2)∨ (x1 ∧ y1 ∧ x2 ∧ y2)∨ (x1 ∧ y1 ∧

x2∧y2)∨ (x1∧y1∧x2∧y2)∨ (x1∧y1∧x2∧y2)∨ (x1∧y1∧x2∧y2) is the Boolean
formula for Mv ; finally, the function ηp, given by ηp(0, 0) = 0, ηp(0, 1) = 1 and
ηp(1, 0) = 2, represents the priority function p.

To solve an SPG we compute the Boolean formulas fWin
over X that is

satisfied by those interpretations that correspond to winning nodes for Player 0.
For technical reasons, we also need the definition of symbolic sub-games.

Definition 2. Let G , 〈P,P,Mv , p〉 be a PG and U ⊆ P. By G \ U = (P0 \ U,
P1 \U,Mv \ (U ×P∪P×U), p|P\U) we denote the PG restricted to nodes P \U .

Let fU be a Boolean formula such that ||fU || = U and F = (X ,XM , fP0
, fP1

,
fMv , ηp) be the corresponding SPG of the PG G. By FP\U = (X ,XM , f

′
P0
, f ′P1

, f ′Mv ,
η′p) we denote the SPG of G \ U , where:

– f ′Pi
= fPi ∧ ¬fU , for i ∈ {0, 1}, is the Boolean formula for nodes v ∈ Pi \ U ;

– fMv ′ = fMv ∧¬(fU ∨ f ′U), where ||f ′U || = U and λ(f ′U) = XM , is the Boolean
formula representing moves restricted to Mv \ (U × P ∪ P× U);

– η′p = 2X → N is the symbolic representation of p|P\U that associates to the
interpretations Xv satisfying the Boolean formula fP∧¬fU a natural number.

3

3 Solving Parity Games: Explicit vs Symbolic Algorithms

3.1 Explicit Algorithms

Small Progress Measures Algorithm (SPM) [13]. The core idea of SPM is a
progress measure based on a ranking function that assigns to each node a vector
of counters collecting the number n of times Player 1 can force a play to visit an
odd priority until a lower priority is seen. If this value is sufficiently large, then
the node is declared winning for Player 1. SPM computes the progress measure
by updating the values of a node according to those associated to its successors,
i.e., by computing a least fixed-point for all nodes with respect to the ranking
function.

We fix some notation. Let G be a PG with maximal priority c and d ∈ Nc

be a c-tuple of non-negative integers. By < we denote the usual lexicographic
ordering over Nc. For all n ∈ N, by [n] we denote the set {0, . . . , n− 1}. For each
odd number i, by ni we denote the number of nodes in G with priority i. For i
even, we set ni = 0. The progress measure domain is defined as M>G = MG ∪{>}
with MG = (M0 × . . . ×Mc−1) and Mi = [ni]. The element > is the biggest
value such that m < > for all m ∈MG. For d = (d0, . . . , dc−1) and l < c, we set
〈d〉l = (d0, . . . , dl, 0, . . . , 0), i.e., all di>l in d are set to 0. By inc(d) we denote the
smallest tuple d′ ∈ M>G such that d < d′. This notion easily extends to tuples
in Nl by defining incl(d) with l > 0 to be the smallest tuple d′ ∈M>G such that
d <l d

′ iff 〈d〉l < 〈d′〉l. In particular, for d = > we have incl(d) = d. Otherwise,
incl(d) = 〈d〉l if l is even and min{y ∈ M>G |y >l d} if l is odd. To conclude we
introduce a ranking function % : P→M>G that associates to each node either a
c-tuple in MG or the value >, and a function Lift that defines the increment of a
node v based on its priority and the values of its neighbors. The formal definition
of Lift follows.

Lift(%, v)(u) =

incp(v)(min{%(w)|(v, w) ∈ Mv}), if v ∈ P0

incp(v)(max{%(w)|(v, w) ∈ Mv}), if v ∈ P1

%(u), otherwise

Lift is monotone and the progress measures over v is the least fixed point
of Lift(·, v). The solution algorithm starts by setting 0 to every node. Then,
it applies the lift as long as Lift(%, v)(u) > %(v) for some node v. Next lemma
relates the solution of a PG G with the least fixed point calculation of Lift.

Lemma 1 ([13]). If % is a progress measures function then the set of nodes v
with %(v) < > is the set of winning nodes for Player 0.

The APT Algorithm (APT) [10]. APT was first introduced by Kupferman and
Vardi in [18] to solve parity games via emptiness checking of parity automata. It
makes use of two special sets of nodes, V and A, called Visiting and Avoiding,
respectively. Intuitively, a node is visiting for a player at the stage in which it
is clear that, by reaching that node, he can surely induce a winning play. The

4

reasoning is symmetric for the avoiding set. The algorithm, in turns, tries to
partition all nodes of the game into these two sets. Some formal details follow.

Given a PG G, an Extended Parity Game, (EPG, for short) is a tuple 〈P,P,
V,A,Mv , p〉 where P, P, P = P ∪ P, Mv , and p are as in PG. Moreover, the
sets V,A ⊆ P are two disjoint sets of Visiting and Avoiding nodes, respectively.
For EPGs we make use of the same notion of play as given for PG. A play
π in P · (P \ (V ∪ A))∗ · V · Pω is winning for Player 0, while a play π in
P · (P \ (V ∪A))∗ ·A · Pω is winning for Player 1. A play π that never hits either
V or A is declared winning for Player 0 iff it satisfies the parity condition, i.e.,
min(Inf(p(π))) is even, otherwise it is winning for Player 1.

To solve an EPG, APT makes use of two functions: forcei(X) and Wini(α,V,A).
For X ⊆ P, forcei(X) = {q ∈ Pi : X∩Mv(q) 6= ∅}∪{q ∈ P1−i : X ⊆ Mv(q)} is the
set of nodes from which Player i can force, in one step, a move to X. The function
Wini(α,V,A) denotes the nodes from which Player i has a strategy that avoids
A, and either forces a visit to V or satisfies the parity condition α. Note that in
APT α is given as a finite sequence α = F · . . . · Fk of sets, where Fj = p−(j),
i.e., the set of nodes with priority j. Formally, Wini(α,V,A) is defined as follows.
If α = ε, then Wini(α,V,A) = forcei(V). Otherwise, if α = F ·α′, for some set F,
then Wini(α,V,A) = µY(P \ (Win−i(α

′,A ∪ (F \Y),V ∪ (F ∩Y)))), where µ is
the least fixed-point operator.

Recursive Zielonka Algorithm (RE) [24]. Introduced by Zielonka, RE makes
use of a divide and conquer technique. The core subroutine of RE is the attractor.
Intuitively, given a set of nodes U the attractor of U for a Player i represents
those nodes that i can force the play toward. At each step, the algorithm removes
all nodes with the highest priority p, together with all nodes Player i = p mod 2
can attract to them, and recursively computes the winning sets (W0,W1) for
Player 0 and Player 1, respectively, on the remaining subgame. If Player i wins
the subgame, then he also wins the whole starting game. Otherwise if Player i
does not win the subgame, i.e., W1−i is non empty, the algorithm computes the
attractor for Player 1− i of W1−i and recursively solves the subgame.

3.2 Symbolic Algorithms

We now describe symbolic versions of the explicit algorithms listed in Section 3.1.

SPG Implementation. An SPG can be implemented using Binary Decision
Diagrams (BDDs) and Algebraic Decision Diagrams (ADDs) [1] to represent and
manipulate the associated Boolean functions introduced along with its definition.
ADDs were introduced to extend BDDs by allowing values from any arbitrary
finite domain to be associated with the terminal nodes of the diagram, i.e., an
ADD can be seen as a BDD whose leaves may take on values belonging to a set
of constants different from 0 and 1. Given an SPG F = (X1,X2, fP0 , fP1 , fMv , ηp)
with maximal priority c, we use BDDs to represent the Boolean formulas fP0

,
fP1

and fMv , and an ADD for the function ηp. Moreover, we decompose the
function ηp into a sequence of BDDs B = 〈B0, . . . , Bc−1〉 where each Bi encodes

5

the nodes with priority i, to easily manage the selection of a set of nodes with
a specific priority. In the sequel, by BDD (resp., ADD) f, we denote the BDD
(resp., ADD) representing the function f.

Symbolic SPM (SSP) [5]. This is the first symbolic implementation of SPM we
are aware of, and which we describe with some minor corrections compared to
the one in [5]. Lift is encoded by using ADDs and the algorithm computes the
progress measure as the least fixed point fG of Lift(f, v) on a ranking function
here given by the function f : P→ D, with D = MG ∪ {∞,−∞}. The algorithm
takes as input an SPG F and returns an ADD representing the least fixed point
fG such that the set of winning nodes for Player 0 is {v|fG(v) < ∞}, and the
set of winning nodes for Player 1 is {v|fG(v) =∞}. See Algorithm 1.

Algorithm 1 Symbolic Small Progress Measures

1: procedure PARITY (F)
2: f =→ (fP,−∞);
3: repeat
4: fold = f ; f = false;
5: for j = 0 to c− 1 do
6: f = f OR MAXeo(fold, j) OR MINeo(fold, j);
7: until f = fold

The algorithm calls the procedure MAXeo (resp., MINeo), which given an ADD
f : P→ D, the BDD fMv , and 1 ≤ j ≤ k, returns an ADD that assigns to every
node v ∈ P1 (resp., v ∈ P0,), with p(v) = j, the value incj(max{f(v′)|(v, v′) ∈
Mv}) (resp., incj(min{f(v′)|(v, v′) ∈ Mv})).

MINeo (resp., MAXeo) aims at constructing an ADD that represents the ranking
function fmin(v) = min{f(v′)|(v, v′) ∈ Mv} (resp., fmax(v) = max{f(v′)|(v, v′) ∈
Mv}). To do this, given an ADD f : P→ D and the BDD fMv , it is generated
an ADD fsuc : (P × P) → D such that fsuc(v, v

′) = d if (v, v′) ∈ Mv and
f(v′) = d. Then, the ADD fsuc is given in input to the procedure MIN, described
in Algorithm 2, that constructs the ADD for fmin. The procedure MAX is defined
similarly. Let n be an ADD node, we refer to the left and right successors of n as
n.l and n.r, respectively, and refer to the variable that n represents as n.v.

Algorithm 2 Procedure MIN

1: procedure MIN(ADD n)
2: if n is a terminal node then
3: return n
4: if n.v is in X then
5: return (n.v AND MIN(n.r)) OR (NOT n.v AND MIN(n.l))

6: if n.v is in X ′ then
7: return MERGE(MIN(n.r), MIN(n.l)))

The procedure MIN calls the procedure MERGE, reported in Algorithm 3, that
gets in input the pointer to the roots n1 and n2 of two ADDs representing the
functions f1 and f2, both from some set U ⊆ P to D, and merges them to an
ADD in which every u ∈ U is mapped into min(f1(u), f2(u)).

6

Algorithm 3 Procedure MERGE

1: procedure MERGE(ADD n1, ADD n2)
2: if n1 and n2 are a terminal nodes then
3: return min(n1, n2)

4: if o(n1.v) < o(n2.v) then
5: return (n1.v AND MERGE(n1.r, n2)) OR (NOT n1.v AND MERGE(n1.l, n2))

6: if o(n1.v) > o(n2.v) then
7: return (n2.v AND MERGE(n2.r, n1)) OR (NOT n2.v AND MERGE(n2.l, n1))

8: return (n1.v AND MERGE(n1.r, n2.r)) OR (NOT n1.v AND MERGE(n1.l, n2.l))

Set-Based Symbolic SPM(SSP2) [8]. This is a symbolic implementation of SPM
that has been introduced very recently. It allows to use only basic set operations
like ∪, ∩, \, ⊆, and one-step predecessor operations for its description. Unlike the
implementation described previously, the ranking function is implicitly encoded
by using sets of nodes. This allows representing the Lift operator just by BDDs.

To encode the ranking function the algorithm defines for each rank r ∈M>G
the set Sr containing the nodes with rank r or higher. Formally, given the ranking
function % : P→M>G , the corresponding sets are defined as Sr = {v|%(v) ≥ r}.
Conversely, given the family of sets {Sr}r, the corresponding ranking function,
say %{Sr}r , is given by %{Sr}r(v) = max{r ∈ M>G |v ∈ Sr}. This formulation
encodes the ranking function with sets but uses exponential in c many sets.

Space is reduced to a linear number of sets by encoding the value of each
coordinate of the rank r, separately. In detail, for each odd priority i, the algorithm
defines the sets Ci

0, . . . , C
i
ni

. Each set Ci
x with x ∈ {0, . . . , ni} contains the nodes

that have x as i-th coordinate of their rank. Therefore, the algorithm has to
construct the set Sr whenever it needs it.

Let Cprei(X) = {q ∈ Pi : X ∩Mv(q) 6= ∅} ∪ {q ∈ P1−i : X ⊆ Mv(q)} the
one-step controllable predecessor operator. The algorithm starts initializing the
sets Sr for r > 0 to empty, and S0 with the set of all nodes P. The rank r initially
is set to the second lowest rank inc((0, . . . , 0)). Then, at each iteration the set
Sr is updated for the current value of r by using the Lift encoded by the Cprei
operator. After the update of Sr, it is checked if S′r ⊇ Sr for all r′ < r, i.e., if
the property of the anti-monotonicity is preserved. Anti-monotonicity together
with the definition of the sets S′r allows to decide whether the rank of a node v
can be increased to r by only considering one set S′r. If the anti-monotonicity is
preserved, then for r < > the value of r is increased to the next highest rank and
for r = > the algorithm terminates. Otherwise the nodes newly added to Sr are
also added to all sets with r′ < r that do not already contain them; the variable
r is then updated to the lowest r′ for which a new node is added to S′r in this
iteration. Due to lack of space, we omit the algorithm (see [8] for more details).

Symbolic versions of RE (SRE) and APT (SAPT). RE and APT can be easily
rephrased symbolically by using BDDs to represent the operations they make use
of set basic operations like union, intersection, complement, and inclusion; the
controllable predecessor operators used to implement the function forcei in APT,
and the attractor in RE; the symbolic construction of a subgame used in RE and
implemented following the definition of symbolic subgame reported previously.

7

4 Experimental Evaluations: Methodology and Results

We now analyze the performance of the introduced symbolic approach to solve
PGs and compare with the explicit one. We have implemented the symbolic
algorithms described in Section 3.2 in a fresh tool, called SymPGSolver (Symbolic
Parity Games Solver). SymPGSolver1 is implemented in C++ and uses the
CUDD2 package as the underlying BDD and ADD library. The platform provides
a collection of tools to randomly generate and solve SPGs, as well as compare
the performance of different symbolic algorithms.

We have also compared them with Oink, a platform recently developed in
C++ by Tom van Dijk [22], which collects the large majority of explicit PGs
algorithms introduced in the literature [6, 14,15,24].

4.1 Experimental results

In this section we report on some experimental results on evaluating the perfor-
mance for the explicit algorithms RE, APT, and SPM as well as their corresponding
symbolic versions SRE, SAPT, SSP and SSP2. All tests have been run on an Intel
Core i7 @2.40GHz, with 16GB of RAM running macOS 10.12. We have used
different classes of parity games: random games with linear structures, ladder
games, clique games as well as games corresponding to practical model checking
problems. Random games are generated by SymPGSolver, while for ladder and
clique games we use Oink. We have taken 100 different instances for each class
of games and used the average time execution. In all tests, we use abortT to
denote an aborted execution due to time-out (greater than 200 seconds). On the
class of ladder games and in model checking problems the benchmarks have been
executed using the variable ordering given by the heuristic WINDOW2 module
available in the CUDD package.

Random Games with linear structure. Tabakov and Vardi showed that
in the context of automata-theoretic problems, explicit algorithms generally
dominate symbolic algorithms, as BDDs do not offer any compression for random
sets [21]. We found that the same holds for parity-game solving (we omit details
due to lack of space). In [21] it was observed that, in case of random games with
linear structures, the symbolic algorithms are the best performing ones. Hence,
we have investigated the same class here as well, but with a different outcome.

A random game with linear structure is built by restricting the transition
relation as follows: a node vi can make a transition to node vj , where 0 ≤ i, j ≤
|P| − 1, if and only if |i− j| ≤ d, where d is named as the distance parameter.

Table 1 collects the running time of the symbolic algorithms on random games
with linear structures having priorities 2, 3, and 5, and distance d = 25. The
results show that SAPT performs better than the others in solving games with
n ≤ 10, 000 nodes and 2 priorities, while SRE is the best performing in all other
cases. Also, they show that SSP and SSP2 have the worst performances in all

1 The tool is available for download from https://github.com/antoniodistasio/sympgsolver
2 http://vlsi.colorado.edu/ fabio/CUDD/

8

2 Pr 3 Pr 5 Pr
n SRE SAPT SSP SSP2 SRE SAPT SSP SSP2 SRE SAPT SSP SSP2

1,000 0.04 0.03 29.89 0,95 0.05 0.10 18.9 1,44 0.05 0.45 15.75 abortT

2,000 0.14 0.12 128.06 2,87 0.13 0.18 79.22 26,24 0.12 1.34 69.6 abortT

3,000 0.25 0.23 abortT 10,15 0.21 0.41 193.06 75,49 0.21 2.03 135.04 abortT

4,000 0.33 0.30 abortT 32,42 0.28 0.60 abortT 146,58 0.3 3.01 abortT abortT

7,000 0.79 0.73 abortT abortT 0.65 1.44 abortT abortT 0.59 7.20 abortT abortT

10,000 1.16 1.12 abortT abortT 0.93 2.19 abortT abortT 1.08 11.72 abortT abortT

20,000 2.78 3.10 abortT abortT 2.33 6.34 abortT abortT 3.69 43.87 abortT abortT

100,000 19.21 24.4 abortT abortT 24.38 65.11 abortT abortT 24.89 abortT abortT abortT

Table 1. Runtime executions of the symbolic algorithms

instances, with SSP overcoming SSP2 of more than 200 seconds on games with
3, 000 nodes. In Table 2 we collect the execution time of the explicit algorithms
on the same set of games. The results highlight that the explicit algorithms are
faster than the symbolic ones in all instances.

2 Pr 3 Pr 5 Pr
n RE APT SPM RE APT SPM RE APT SPM

1,000 0.0008 0.0006 0.0043 0.0008 0.0007 0.0049 0.0008 0.0008 0.0053

2,000 0.0015 0.0012 0.0084 0.0017 0.0016 0.0096 0.0019 0.0029 0.011

3,000 0.0023 0.0017 0.012 0.0025 0.0022 0.014 0.0029 0.0073 0.020

4,000 0.0031 0.0022 0.016 0.0033 0.0028 0.019 0.0035 0.0066 0.027

7,000 0.0051 0.0039 0.025 0.0053 0.0048 0.032 0.0056 0.012 0.039

10,000 0.0065 0.0057 0.035 0.0067 0.0076 0.046 0.0069 0.018 0.051

20,000 0.013 0.011 0.078 0.014 0.021 8.32 0.17 0.019 107.2

100,000 0.094 0.081 0.44 0.099 0.10 1.47 0.10 0.59 80.37

Table 2. Runtime executions of the explicit algorithms

Ladder Games. In a ladder game, every node in Pi has priority i. In addition,
each node v ∈ P has two successors: one in P0 and one in P1, which form a node
pair. Every pair is connected to the next pair forming a ladder of pairs. Finally,
the last pair is connected to the top. The parameter m specifies the number of
node pairs. Formally, a ladder game of index m is G = (P0,P1,Mv , p) where
P0 = {0, 2, . . . , 2m− 2}, P1 = {1, 3, . . . , 2m− 1}, Mv = {(v, w)|w ≡2m v + i for
i ∈ {1, 2}}, and p(v) = v mod 2. Tables 3 and 4 report the benchmarks.

m SRE SAPT SSP SSP2

1,000 0 0.00013 24.86 0.47

10,000 0.00009 0.00016 abortT 41.22

100,000 0.0001 0.00018 abortT abortT

1,000,000 0.00012 0.00022 abortT abortT

10,000,000 0.00015 0.00025 abortT abortT

Table 3. Runtime executions of the sym-
bolic algorithms on ladder games.

m RE APT SPM

1,000 0.0007 0.0006 0.002

10,000 0.006 0.005 0.0017

100,000 0.057 0.054 0.18

1,000,000 0.59 0.56 1.84

10,000,000 6.31 5.02 20.83

Table 4. Runtime executions of the ex-
plicit algorithms on ladder games.

9

Benchmarks indicate that SRE and SAPT outperform their explicit versions,
showing an excellent runtime execution even on fairly large instances. Indeed,
while RE needs 6.31 seconds for games with index m = 10M , SRE takes just 0.00015
seconds. Tests also show that SSP and SSP2 have yet the worst performance.

Clique Games. Clique games are fully connected games without self-loops,
where P0 (resp., P1) contains the nodes with an even index (resp., odd) and
each node v ∈ P has as priority the index of v. An important feature of the
clique games is the high number of cycles, which may pose difficulties for certain
algorithms. Formally, a clique game of index n is G = (P0,P1,Mv , p) where
P0 = {0, 2, . . . , n−2}, P1 = {1, 3, . . . , n−1}, Mv = {(v, w)|v 6= w}, and p(v) = v.
Benchmarks on clique games are reported in Tables 5 and 6.

n SRE SAPT SSP SSP2

2,000 0.007 0.003 5.53 abortT

4,000 0.018 0.008 19.27 abortT

6,000 0.025 0.012 39.72 abortT

8,000 0.037 0.017 76.23 abortT

Table 5. Runtime executions of the sym-
bolic algorithms on clique games

n RE APT SPM

2,000 0.021 0.0105 0.0104

4,000 0.082 0.055 0.055

6,000 0.19 0.21 0.22

8,000 0.35 0.59 0.63

Table 6. Runtime executions of the ex-
plicit algorithms on clique games

Benchmarks show that SAPT is the best one among the symbolic algorithms
in all instances, SAPT and SRE outperform the explicit ones (as in ladder games),
and the symbolic versions of SPM do not show good results even on small games.

Finally, we evaluate the symbolic and explicit approaches on some practical
model checking problems as in [17]. Specifically, we use models coming from:
the Sliding Window Protocol (SWP) with window size (WS) of 2 and 4 (WS
represents the boundary of the total number of packets to be acknowledged by the
receiver), the Onebit Protocol (OP), and the Lifting Truck (Lift). The properties
we check on these models concern: absence of deadlock (ND), a message of a
certain type (d1) is received infinitely often (IORD1), if there are infinitely many
read steps then there are infinitely many write steps (IORW), liveness, and safety.
Note that, in all benchmarks, data size (DS) denotes the number of messages.

n Pr Property SRE SAPT SSP SSP2 RE APT SPM WS DS

14,065 3 ND 0.00009 0.00006 3.30 0.0001 0.004 0.004 0.029 2 2

17,810 3 IORD1 0.0003 0.0005 abortT 85.4 0.006 0.006 0.037 2 2

34,673 3 IORW 0.0006 0.0008 164.73 56.44 0.015 0.014 0.053 2 2

2,589,056 3 ND 0.0002 abortT abortT 0.29 1.02 0.93 9.09 4 2

3,487,731 3 IORD1 abortT abortT abortT abortT 1.81 1.4 17.45 4 2

6,823,296 3 IORW 0.3 abortT abortT abortT 3.87 3.13 22.26 4 2

Table 7. SWP (Sliding Window Protocol)

As we can see, by comparing Tables 7, 8, and 9, the experiments indicate
more nuanced relationship between the symbolic and explicit approaches. Indeed,

10

n Pr Property SRE SAPT SSP SSP2 RE APT SPM DS

81,920 3 ND 0.00002 31.69 1.37 0.0016 0.031 0.034 0.22 2

88,833 3 IORD1 0.0027 0.003 abortT abortT 0.036 0.0038 0.27 2

170,752 3 IORW 14.37 98.4 abortT abortT 0.07 0.07 0.47 2

289,297 3 ND 0.0001 154.89 12.3 0.0058 0.13 0.12 1.34 4

308,737 3 IORD1 0.0088 0.009 abortT abortT 0.14 0.13 1.37 4

607,753 3 IORW 43.7 abortT abortT abortT 0.29 0.27 2.06 4

Table 8. OP (Onebit Protocol)

n Pr Property SRE SAPT SSP SSP2 RE APT SPM DS

328 1 ND 0.00002 0.002 0.005 0.00002 0.0001 0.0001 0.0004 2

308 1 safety 0.00002 0.003 0.028 0.00002 0.0001 0.0001 0.0004 2

655 3 liveness 0.00008 0.0001 5.52 0.09 0.0003 0.0002 0.001 2

51.220 1 safety 0.0001 1.48 32.14 0.00002 0.01 0.01 0.09 4

53.638 1 ND 0.0001 0.2 4.67 0.0001 0.017 0.015 0.07 4

107,275 3 liveness 0.005 0.001 abortT abortT 0.03 0.03 0.18 4

Table 9. Lift (Lifting Truck)

they show a different behavior depending on the protocol and the property we are
checking. Overall, we note that SRE outperforms the other symbolic algorithms
in all protocols, although the advantage over RE is discontinued. Specifically, SRE
is the best performing in checking absence of deadlock in all three protocols, but
for IORD1 in the SWP protocol with WS = 2, or for IORW in the OP protocol,
RE exhibits a significant advantage. Differently, SAPT and SSP2 show better
performances on a smaller number of properties. Moreover, the results highlights
that SSP exhibits the worst performances in all protocols and properties.

5 Concluding Remarks

In this paper we have compared for the first time the performances of different
symbolic and explicit versions of classic algorithms to solve parity games. To this
aim we have implemented in a fresh tool, which we have called SymPGSolver, the
symbolic versions of Recursive [24], APT [10,18], and the small-progress-measures
algorithms presented in [5] and [8].

Our analysis started from constrained random games [21]. The results show
that on these games the explicit approach is better than the symbolic one,
exhibiting a different behavior than the one showed in [21]. To gain a fuller
understanding of the performances of the symbolic and the explicit algorithms,
we have further tested the two approaches on structured games. Precisely, we
have considered ladder games, clique games, as well as game models coming from
practical model-checking problems. We have showed several cases in which the
symbolic algorithms have the advantage over the explicit ones.

Our empirical study let us to conclude that on comparing explicit and symbolic
algorithms for solving parity games, it would be useful to have real scenarios and
not only random games, as the common practice has been.

11

References

1. R. Iris Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. Pardo, and
F. Somenzi. Algebraic decision diagrams and their applications. Formal Methods
in System Design, pages 171–206, 1997.

2. Marco Bakera, Stefan Edelkamp, Peter Kissmann, and Clemens D. Renner. Solving
µ-calculus parity games by symbolic planning. In MoChArt 2008, pages 15–33,
2008.

3. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comput., pages 677–691, 1986.

4. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 10ˆ20 states and beyond. In LICS 1990, pages 428–439, 1990.

5. D. Bustan, O. Kupferman, and M. Y. Vardi. A measured collapse of the modal
µ-calculus alternation hierarchy. In STACS 2004, pages 522–533, 2004.

6. C. S. Calude, S. Jain, B. Khoussainov, W. Li, and F. Stephan. Deciding parity
games in quasipolynomial time. In STOC 2017, pages 252–263, 2017.

7. P. Cermák, A. Lomuscio, and A. Murano. Verifying and synthesising multi-agent
systems against one-goal strategy logic specifications. In AAAI 2015, pages 2038–
2044, 2015.

8. K. Chatterjee, W. Dvorák, M. Henzinger, and V. Loitzenbauer. Improved set-based
symbolic algorithms for parity games. In CSL 2017, pages 18:1–18:21, 2017.

9. E.M. Clarke and E.A. Emerson. Design and Synthesis of Synchronization Skeletons
Using Branching-Time Temporal Logic. In LP 1981, LNCS 131, pages 52–71, 1981.

10. A. Di Stasio, A. Murano, G. Perelli, and M. Y. Vardi. Solving parity games using
an automata-based algorithm. In CIAA 2016, pages 64–76, 2016.

11. C. Eisner and D. A. Peled. Comparing symbolic and explicit model checking of a
software system. In SPIN 2002, pages 230–239, 2002.

12. E.A. Emerson and C. Jutla. Tree Automata, µ-Calculus and Determinacy. In
FOCS 1991, pages 368–377, 1991.

13. M. Jurdzinski. Deciding the Winner in Parity Games is in UP ∩ co-Up. Inf. Process.
Lett., 68(3):119–124, 1998.

14. M. Jurdzinski.Small Progress Measures for Solving Parity Games. In STACS 2000,
LNCS 1770, pages 290–301, 2000.

15. M. Jurdzinski and R. Lazic. Succinct progress measures for solving parity games.
In LICS 2017, pages 1–9, 2017.

16. G. Kant and J. van de Pol. Generating and solving symbolic parity games. In
GRAPHITE 2014, pages 2–14, 2014.

17. J.J. A. Keiren. Benchmarks for parity games. In FSEN 2015, pages 127–142, 2015.
18. O. Kupferman and M. Y. Vardi. Weak Alternating Automata and Tree Automata

Emptiness. In STOC 1998, pages 224–233, 1998.
19. O. Kupferman, M.Y. Vardi, and P. Wolper. An Automata Theoretic Approach to

Branching-Time Model Checking. Journal of the ACM, 47(2):312–360, 2000.
20. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
21. D. Tabakov. Evaluation of explicit and symbolic automata-theoretic algorithm.

Master’s thesis, Rice University, 2005.
22. Tom van Dijk. Oink: An implementation and evaluation of modern parity game

solvers. In TACAS 2018, LNCS 10805, pages 291–308. Springer, 2018.
23. T. Wilke. Alternating Tree Automata, Parity Games, and Modal µ-Calculus.

Bulletin of the Belgian Mathematical Society Simon Stevin, 8(2):359, 2001.
24. W. Zielonka. Infinite Games on Finitely Coloured Graphs with Applications to

Automata on Infinite Trees. Theor. Comput. Sci., 200(1-2):135–183, 1998.

12

