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A B S T R A C T

Wireless sensor networks (WSNs) are currently adopted in a vast variety of domains where sensor energy
consumption is a critical challenge because of the existing power constraints. Sleep scheduling approaches have
recently attracted the interest of the scientific community, as they give the opportunity of turning off the
redundant nodes of a network to save energy and prolong the lifetime of the network without suspending the
monitoring activities performed by the WSN.

Our study focuses on the problem of partial coverage, targeting scenarios in which the continuous
monitoring of a limited portion of the area of interest is enough. In this paper we present PCLA, a novel
algorithm that relies on Learning Automata to implement sleep scheduling approaches. It aims at minimizing
the number of sensors to activate for covering a desired portion of the region of interest preserving the
connectivity among sensors. Simulation results show how PCLA can select sensors in an efficient way to satisfy
the imposed constraints, thus guaranteeing good performance in terms of time complexity, working-node ratio,
scalability, and WSN lifetime. Moreover, compared to the state of the art, PCLA is able to guarantee better
performance.

1. Introduction

Wireless sensor networks (WSNs) have gained the attention of the
research community in the last years and can currently be adopted in a
vast variety of domains such as surveillance, health care, and environ-
mental monitoring (Wang, 2011). Indeed, they have revealed to be a
pillar for the Internet of Things and the variety of smart applications
stemming out from it (Atzori et al., 2010; Botta et al., 2014, 2016).

Wireless network performance (Karrer et al., 2006, 2007) and
sensing system lifetime (Ren et al., 2007; Mao et al., 2007) are critical
concerns in many typical applications, since WSNs are made up of
nodes with low energy. The placement of nodes in improper places and
difficulties in changing batteries further exacerbate lifetime-related
issues. Therefore, strategies for the optimal energy consumption are
essential, especially considering that WSNs cannot properly work after
a fraction of nodes has run out of energy. Challenges are mainly related
to determining whether some portions of the area of interest covered by
a sensor are also covered by other sensors, and to determining the
order of sensor activation or deactivation (Wang, 2011). Node activity
scheduling, i.e. the ability of temporarily turning off just a part of

deployed nodes without suspending the monitoring activities per-
formed by the WSN, represents a way to save energy under given
constraints (e.g., area coverage, redundancy requirements, etc.)
(Akbari Torkestani, 2013).

While full coverage applications of WSNs require 100% of the area
of interest to be monitored, monitoring only a limited percentage of it
is enough for some other applications. This is commonly known as
partial coverage problem (Yardibi and Karasan, 2010). For instance,
the requirements of a WSN aimed at monitoring the environmental
temperature or the humidity can be satisfied when just 90% of the zone
of interest is covered (Demirbas et al., 2006). Partial coverage
scheduling is able to guarantee a longer lifetime to a WSN placing
more relaxed constraints on it. Fig. 1 reports a generic example for the
partial coverage problem. The figure shows a zone of interest divided
into four portions requiring different levels of coverage. For instance,
on the one hand, B2 has 90% coverage requirement being a critical
area. On the other hand, monitoring 50% of A2 is enough. If we had
control on the placement of the sensors, we would scatter more sensors
in B2 and less in A2 to either reduce equipment costs or prolong the
network lifetime under the same hardware cost. Unfortunately, this
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situation is uncommon: once sensors have been randomly scattered
(e.g, from an airplane), a proper solution has to be found ex post.
Considering that each sensor is able to cover a certain area according to
its sensing range, partial coverage approaches aim at identifying which
sensors have to be activated to respect the existing constraints.
Moreover, since wireless sensors have limited communication ranges,
applications often have connectivity requirements, i.e. active sensing
nodes have to be placed in the communication range of another active
node, at least.

In this paper, we extend our previous work presented in Mostafaei
et al. (2016) that addresses the problem of partial coverage in WSNs
and propose PCLA (Partial Coverage with Learning Automata), a novel
and efficient algorithm. The proposed solution takes advantage of
Learning Automata (LA) to properly schedule sensors into active or
sleep state in order to extend the network lifetime. In more details,
each node runs the PCLA algorithm that first creates a backbone by
selecting a number of nodes and leveraging the coverage graph of the
network. Then, these nodes use their neighbors to meet the network
coverage and connectivity requirements. Simulation results show how
PCLA can select sensors efficiently to satisfy partial coverage require-
ments, thus guaranteeing better performance in terms of the number of
nodes to activate, with respect to state-of-the-art solutions.

This paper extends our previous work (Mostafaei et al., 2016) in a
number of additional contributions: the correctness of the proposed
solution has been formally demonstrated; the theoretical framework in
which our work lies has been detailed, also providing analytical models;
the theoretical complexity of the proposed algorithm has been inves-
tigated and compared to the state of the art; additional results related
to both scalability of the solutions and lifetime have been reported in
the proposed evaluation.

The reminder of this paper is organized as follows. In Section 2 we
survey the related literature. Section 3 reports the formal definition of
the problem of partial coverage and its related concepts. Section 4
introduces LA. Section 5 presents the PCLA algorithm to solve the
partial coverage problem. Simulation results are illustrated in Section
6. Finally Section 7 reports the concluding remarks.

2. Related work

This section provides an overall picture of the literature related to
the coverage problems in WSNs, specifically focusing on partial cover-
age.

Coverage problems have been widely studied in WSNs during
recent years (Wang, 2011). Three main classes of problems can be
identified: (i) target coverage, (ii) barrier coverage, and (iii) area
coverage. The objective of target coverage is to monitor a set of targets
with sensor nodes. Recently, novel solutions to this problem have been
proposed (Mostafaei and Meybodi, 2013; Mostafaei et al., 2015;
Mostafaei and Shojafar, 2015). Differently from partial coverage, target
coverage problems require all and only deployed targets to be

monitored. On the other hand, barrier coverage problems aim at
minimizing the probability of undetected penetration through a sensor
barrier (Li and Shen, 2015; Mostafaei, 2015). In the context of barrier
coverage, at least k distinct sensors have to detect a penetrating object
before it reaches the area of interest.

Area coverage problems can be divided into full coverage and
partial coverage (also known as p-percent coverage). While full
coverage problems require to continuously monitor the whole of the
area of interest (Akbari Torkestani, 2013; Qianqian et al., 2015), partial
coverage problems need to monitor a given percentage of the area,
usually known in advance. To the best of our knowledge a limited
number of works focus on partial coverage, although many works about
full coverage in WSNs exist. Some of these works also require that
connectivity among nodes is preserved. For instance, Shan et al. Shan
et al. (2008) devised two algorithms that can maintain the network
connectivity while monitoring the network area, guaranteeing a certain
percentage of coverage. The first one enforces a centralized approach,
while the second one solves the problem in a distributed fashion. Li
et al. Li et al. (2011) proposed two methods to obtain partial coverage
in WSNs. Their algorithms can guarantee both coverage and connec-
tivity requirements, but fail in achieving low time-complexity. The
concept of Connected Dominating Set (CDS) has been often leveraged.
A CDS is a subset of vertices such that every vertex is either in the
subset or adjacent to a vertex in the subset and the subgraph induced
by the subset is connected. For instance, the algorithm proposed by
Donghyun et al. Donghyun et al. (2009) creates a virtual backbone in
the network identifying a CDS. Considering the two solutions presented
by Wu et al. Wu et al. (2008) to address connected partial coverage
problem in WSNs, pPCA implements a greedy approach, while CpPCA-
CDS acts in a distributed way and is based on the construction of a
CDS. The main drawback of these solutions is the dependence upon the
depth-first search (DFS) that heavily impacts the time complexity (for
this reason, hereafter we refer to CpPCA-CDS simply as DFS).
Information about neighbor nodes is often used to preserve coverage
and connectivity in WSNs. Yardibi and Karasan (2010) developed a
Distributed Adaptive Sleep Scheduling Algorithm (DASSA) for WSNs.
In their approach each node uses the remaining energy levels and a
feedback from the sink node to schedule the activity of its neighbor
nodes. Probabilistic approaches have been also proposed (e.g., to find
redundant sensor nodes in a network while preserving partial coverage
requirements). Hafeeda and Ahmadi (Hefeeda and Ahmadi, 2010)
studied coverage problems under both disk sensing and probabilistic
sensing models and propose a Probabilistic Coverage Protocol (PCP)
that computes the maximum possible distance between sensors to
avoid holes in coverage. Xing et al. Xing et al. (2005) devised a
Coverage Configuration Protocol (CCP) to provide different degrees of
coverage to the applications. The approach proposed by Gupta et al.
Gupta et al. (2013) is fully distributed and each sensor node does not
need any geographical information to find redundant nodes and put
them to the sleep state. However the algorithm does not guarantee the
connectivity among sensor nodes. Ammari et al. Ammari and Das
(2012) consider the identification of redundant sensors based on a
geometric approach. Finally, WSN lifetime proved to be an important
aspect to consider, indeed. Ren et al. (2007) studied partial coverage
considering network lifetime issues. Mao et al. Mao et al. (2007)
analyzed the relation between the desired sensing coverage fraction
and the minimum number of working sensors. They devised an Energy
Aware Partial Coverage Protocol (EAPC) which chooses the minimum
number of working sensors based on the residuary energy of the nodes.

This paper addresses the problem of partial coverage in WSNs
extending the work proposed in Mostafaei et al. (2016). PCLA leverages
the probabilistic framework of LA to find a convenient subset of sensor
nodes to ensure partial coverage. The main objective of the proposed
approach is to use the smallest number of sensors at any given time,
thus extending WSN lifetime. PCLA is able to preserve both coverage
and connectivity. In more details, it uses the coverage graph of the

Fig. 1. Partial coverage with four sub-regions having different levels of coverage.
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network to identify the nodes to build a backbone. LA running on
backbone nodes rely on the coverage information of their neighbor
nodes to construct a connected set that is able to obtain and preserve
the partial coverage required.

To the best of our knowledge, recent solutions have largely focused
on sensing models that deal with the problem of the full area coverage
that exposes different requirements and thus requires different ap-
proaches than partial coverage (Wang, 2011). Therefore, in this work
we compare PCLA to the algorithms presented in Donghyun et al.
(2009) and in Wu et al. (2008) We have chosen these works as they
leverage the coverage graph and model the WSN similarly to the
proposed PCLA approach. Moreover, they are both two-phase algo-
rithms (as PCLA is), with a first phase addressing the connectivity
among nodes, and a second one aimed at obtaining the required
coverage. Table 1 summarizes the main characteristics of PCLA and
state-of-the-art partial coverage algorithms taken into account. As
shown, they all use a binary sensing model and ensure also the
connectivity of the nodes. In PCLA however, the selection of the
backbone nodes and the fulfilment of the partial coverage requirement
are accomplished with the aid of LA. On the other hand, both CDS- and
DFS-based approaches construct a connected dominating set which
constitutes the backbone assuring the connectivity. In more particulars,
the former leverages the neighbor nodes in order to obtain an
increment of the coverage until the desired one is met, while the latter
performs a depth-first search to reach the required percentage of area
to be covered.

3. Preliminaries and definitions

In this section, we define the problem of partial coverage also
introducing the main related concepts.

A WSN is modeled by an undirected connected graph, namely
Coverage Graph CG V E= ( , ), where V S S S= { , ,…, }N0 1 includes all the
randomly deployed nodes. Each node can sense every event that occurs
within its sensing range and can communicate with other nodes within
its communication range. Sensing and communication ranges are
defined as the circles with radius Rs and Rc, respectively. E represents
the set of the communication links between nodes. For any pair of
nodes u and v, the edge u v E( , ) ∈ if and only if u and v are within the
communication range of each other. More formally, the sensing region
γi of the node Si is defined as the circle with center in Si and radius Rs.
Consequently, the coverage function C x y( , )i of each node Si can be
defined as:

⎧⎨⎩C x y
x y γ

( , ) =
1, if ( , ) ∈
0, otherwisei

i

(1)

In other words, the point (x,y) is covered by Si if it lies in the sensing
region of the node.

Given a two-dimensional region of interest ϑ (whose area is equal to
Aϑ) and a WSN made up of N sensors (each able to cover an area of
πRs

2) the WSN partial coverage problem we aim at solving can be
defined as “finding a connected set of nodes VΨ ⊆ such to minimize

ϕ =
N
|Ψ| and guarantee the coverage of the desired portion P As ϑ of the

region of interest”.

P A

Objective: Minimize number of nodes in Ψ, subjected to :
−Ψ is a connected set of nodes;
−Ψ covers at least the area of ϑ.s ϑ

Some useful metrics in this framework are: (i) the Average Region

Coverage Degree (Wu et al., 2008), i.e. D = NπR
Aϑ

s
2

ϑ
, where N is the

number of sensors deployed in region ϑ, each having a sensing range
Rs; (ii) the Working-node Ratio (Wu et al., 2008), i.e. the fraction

N
|Ψ| ,

whereΨ is the set of the active nodes able to cover the fraction Ps of the
area of interest ϑ. The former is an index of the resources (i.e. sensing
nodes) scattered on the region of interest and takes into account also
their sensing capabilities (i.e. the sensing range); the latter is an index
of the efficiency of the coverage algorithm.

According also to Younis et al. Younis et al. (2008) ϑ is divided into
small squared cells that are R

5
s on a side. This allows a node to

completely cover neighbor cells in the four main directions.
We can therefore extend the definition of coverage function for the

ith node as follows:

⎧⎨⎩C j
j γ

( ) =
1, if ∈
0, otherwisei

i

(2)

where j cells∈ is one of the cells the area is divided into.
Accordingly, the second constraint can be written as:

C j
cells

P i S j cells
⋃ ( )

| |
≥ , where | ∈ Ψ, ∈i j i

s i
,

(3)

Symbols and definitions are summarized in Table 2.

4. Basics on learning automata

An automaton is a machine designed to automatically follow a
predetermined sequence of operations or respond to encoded instruc-
tions. Learning Automata (LA) do not follow predetermined rules, but
adapt to changes in the Random Environment (RE). This adaptation is
the result of the learning process.

LA are designed to select optimal actions among the set of allowable
actions. In more details, a learning automaton has a finite number of
actions that can operate. A probability is associated to each of them.
Once an action is applied to the environment, the latter generates a
reinforcement signal. The reply generated by the environment is used
by the automaton to update its action probability vector. By running
this procedure, the automaton learns to optimally choose actions
among its action-set. The interaction between a learning automaton
and the random environment is shown in Fig. 2.

The environment is described as a triple α β c= { , , } where
α α α α= { , ,…, }N1 2 indicates the finite input set (i.e. the actions),
β β β β= { , ,…, }N1 2 indicates the output set (i.e. the reinforcement
signals), and c c c c= { , ,…, }N1 2 indicates a set of penalty probabilities,
where each element ci corresponds to one input action αi. The
probability of the action αi is pi(n), and the corresponding vector
p(n) defines the action probability vector.

Table 1
Comparison of PCLA with state-of-the-art algorithms for partial coverage in WSN.

Algorithm PCLA CDS (Donghyun
et al., 2009)

DFS (Wu et al.,
2008)

Model Binary
sensing
model

Binary sensing
model

Binary sensing
model

Connectivity Yes Yes Yes
Backbone selection

method
LA CDS approach CDS approach

Desired coverage
method

LA Neighbor nodes DFS search on
neighbors

Table 2
Symbols and definitions.

ϑ Region of interest
Aϑ Total area of the region of interest
Ps Portion to cover of the region of interest
N Number of sensing nodes
Rs Nodes' sensing range
Rc Nodes' communication range
γi Sensing region of the node Si
C S( )x y i( , ) Coverage function of the node Si
Ψ Connected set of nodes that guarantees partial coverage
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For our solution, we consider variable-structure automata
(Narendra and Thathachar, 1989) and a P-model environment (i.e.
we assume that βi can be either 1 or 0).

A learning algorithm T can be defined as in Eq. (4):

p n T p n α n β n( + 1) = [ ( ), ( ), ( )] (4)

where p(n) and p n( + 1) are the action probability vectors at the nth

and n( + 1)th cycle, respectively. The automaton operates as follows.
Based on the action probability vector p(n), the automaton randomly
selects an action α n( )i , and performs it on the environment. After
receiving the environment's reinforcement signal, automaton updates
its action probability vector based on Eqs. (5) and (6):

⎪

⎪

⎧
⎨
⎩p n

p n a p n j i
a p n j j i

( + 1) =
( ) + (1 − ( )) =

(1 − ) ( ) ∀ , ≠j
j j

j (5)

⎪

⎪⎧⎨
⎩

p n
b p n j i

b p n j j i
( + 1) =

(1 − ) ( ) =

+ (1 − ) ( ) ∀ , ≠j
j

b
r j− 1 (6)

where pi(n) and pj(n) are the probabilities of action αi and αj,
respectively, and r is the number of actions. In these two equations,
a and b are the reward and the penalty parameter respectively.

5. PCLA

In this section we describe the PCLA algorithm designed to address
the partial coverage problem in WSNs. The main idea behind PCLA is
to first identify a set of nodes to build a backbone able to guarantee the
connectivity among all the nodes. Then, if partial coverage is not
satisfied, additional nodes are activated. In the following, we first
describe the phases the algorithm is composed of. Then, we discuss its
correctness and complexity.

5.1. Algorithm

PCLA consists of two phases: (i) learning phase and (ii) partial
coverage phase.

Learning phase. The aim of the learning phase is selecting a
convenient (i.e. limited in number) set of nodes as the backbone. This
phase consists of an iterative procedure aimed at finding a backbone set
that fits with predefined constraints. The learning phase ends when the
selected backbone satisfies the constraints and a predefined stop
condition is met.

In order to perform the PCLA algorithm in a distributed fashion,
each node requires to store the data structure detailed in the following:

• Ps, the desired level of coverage in terms of portion to cover of the
region of interest;

• Pthreshold, a threshold value defining the maximum possible value
for the product of the probabilities of the actions chosen by LA of
each node in Ψ; it is used to enforce the first stop condition of the
learning phase;

• Tk, a threshold value defining the maximum number of cycles for
the PCLA algorithm; it is used to enforce the second stop condition
of the learning phase;

• Ψ, the set of nodes chosen by PCLA and updated in each cycle of the
evolution of LA;

• Γ, the set of nodes not chosen by PCLA and made up by the
unselected neighbors of the nodes in Ψ;

• EΨ , the average residual energy of nodes in Ψ; this parameter is
useful to select a set of backbone nodes with a high residual energy
to keep the connectivity for a longer period of time;

• Tn, a dynamic threshold storing the cardinality of the Ψ set selected
at the nth cycle in the learning phase of PCLA; its value is initialized
to V| |;

• En, a dynamic threshold storing the average residual energy of the
nodes in the Ψ set selected at the nth cycle in the learning phase of
PCLA; its value is initialized to 0;

• n, a counter which keeps the number of cycles of the PCLA algorithm
and used to check the stop condition.

This set of global variables is established at the beginning of the
initialization step. A HELLO message containing the values of Ps,
Pthreshold, Tk is broadcast within the network. After receiving this
message, PCLA on each node starts the process initializing the global
variables, and gets a snapshot from the CG in order to know node's
neighbors. This is a key step of the overall algorithm, because it starts
from the CG of the network to find suitable nodes with the final goal to
meet the partial coverage requirement.

Let Ψ denote the set that PCLA builds and updates iteration by
iteration. For each node, each action αi consists in adding the neighbor
node Si to Ψ. The action probability vector p(n) is initialized as follows:

p n
r

i( ) = 1 ∀i (7)

where r indicates the action-set count, that is equal to the number of
neighbor nodes at this initialization step. For example, if node Si has
five neighbor nodes, the action probability vector for this node is
initially set to {0.2, 0.2, 0.2, 0.2, 0.2}. This means that node Si has five
equiprobable actions.

The main goal of the learning phase is to find redundant sensors in
the network area Aϑ. LA running on each node helps to identify the
convenient backbone. After the initialization step, a randomly chosen
node is added to Ψ.

Each sensor (say Si), in order to form its action-set, propagates a
DISCOVERYmessage to its neighbors (i.e. to the nodes placed within its
transmission range). Upon receiving the message, each node replies to
the sender Si that thus forms its action-set based on the received
messages by its neighbors. The action-set size of each LA thus depends
on the degree of corresponding nodes and consequently of the network
density. Its action-set being given, in turn, the LA of a node chooses
one of the neighbors to be added to Ψ accordingly to its action
probability vector p(n). The selected neighbor is added to Ψ, while
other unselected neighbors are added to another set Γ. Then, the
selected node iterates the procedure by selecting one of its neighbors
not already contained in Γ.

This process continues until VΨ ∪ Γ = . Note that, after this step,
each node in the CG belongs to either Ψ or Γ. Upon selecting an action
by LA of each node, it updates its data structure (i.e. the values for
global variables). In this phase, if no action is available (e.g., if all the
neighbors of the selected node are already contained in Ψ or Γ and

VΨ ∪ Γ ≠ ) then the selection procedure is traced back and restarted
from another node, to ensure eventually the successful selection of the
backbone nodes. Moreover, after a node has been chosen, LA of each
node prunes its action set by disabling the action corresponding to the
selected node. In this way, the nodes already selected cannot be chosen
anymore and the generation of loops is avoided, increasing also the
convergence speed of the PCLA algorithm.

As soon as a candidate backbone has been identified, the suitability
of Ψ is evaluated. At each cycle n, the number of nodes in Ψ is
compared with a threshold value Tn (that can be initially set to V| |). If
|Ψ|< Tn and the average residual energy of nodes in Ψ (EΨ) is greater
than En, all selected actions αi in Ψ are rewarded from the environ-

Fig. 2. The relationship between the learning automaton and the random environment.
The automaton learns to optimally choose actions α n( ) based on the reinforcement

signals β n( ) provided by the environment.
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ment (β n( ) = 0i ). Otherwise, these actions get a penalty from the
environment (β n( ) = 1i ). In the former case, each node in Ψ broadcasts
a REWARD message among its active neighbors and updates accordingly
its action probability vector using Eq. (5). It also updates the values of
the global variables. This procedure helps PCLA to keep the connectiv-
ity of the network for a longer period of time. In the latter case instead,
a PENALTY message is broadcast among active nodes in Ψ. It is worth
noting that the PCLA algorithm uses the LR−I reinforcement schema for
each LA in order to update its action probability vector. Therefore,
upon receiving a PENALTY message, the probability of the selected
actions remains fixed in Ψ and the disabled actions of activated LA will
be enabled again. The update of the action probability vector in this
case can be done by setting b parameter to zero in Eq. (6). Updating
these values, the learning procedure is implemented.

This process continues until the stop condition is met. In the
following this stop condition is exhaustively described. First, the
probability of the selected nodes during the last cycle is computed.
This probability value can be defined as the product of the probabilities
of the chosen actions by LA of each node during the last cycle. It can be
computed as follows:

∏ α
i

best
i

=1

|Ψ|

(8)

where |Ψ| is the number of nodes in Ψ and αbest
i is the best action of LA

of node Si. If the probability value is greater than a threshold defined
by Pthreshold, the stop condition is met. Second, the number of cycles
reaches a maximum value defined by Tk. Note that PCLA needs some
cycles to converge to a stable set. Therefore, this process continues
until the nodes in Ψ do not change for ten consecutive cycles. Indeed,
in this state, the product of the probabilities of the best action of LA in
each node reaches the threshold value. At the end of this phase, the
nodes in Ψ are able to preserve the connectivity and identify the
desired backbone. In detail, an ACTIVATION message is broadcast
among all the nodes in Ψ (i.e. each node sends the message to all its
neighbors in Ψ); thus the nodes receiving this message will be active.
Other nodes can switch to the idle state in order to save their energy.

Fig. 3 shows a descriptive example of the operating principles of the
PCLA algorithm when 16 nodes have been deployed. In detail, in
Fig. 3(a) the operations performed during the learning phase are
illustrated. At the beginning, the node S7 is randomly selected. Then, S7
chooses one of its actions (i.e. one of its neighbors) according to its
action probability vector, say node S6. This process continues until each
deployed node has been either selected (i.e. added to Ψ) or not (i.e.
added to Γ). Thus, S10 and S15 are chosen ending the first cycle of the

learning phase. At this point, the cardinality |Ψ| (in this example equal
to 4) and the average residual energy EΨ of the nodes in Ψ are
computed. On the one hand, if |Ψ| is less than the threshold value Tn
and EΨ is greater than the current residual energy En, a REWARD
message will be sent to the nodes in Ψ. On the other hand, if the
previous condition is not satisfied a PENALTY message is sent instead.
Upon receiving the REWARD or PENALTY message, each node updates
its action probability vector according to Eq. (5) or Eq. (6), respectively.
Additionally, in both cases they also update the value of the global
variables stored (in this example the value of Tn is set to 4, and En to
EΨ). This process continues until the stop condition is met, preserving
the connectivity among the chosen nodes.

The pseudo code for PCLA algorithm is reported in Algorithm 1.

Algorithm 1. PCLA Algorithm

Input:
CG V E= ( , ) ▹ Snapshot of the network
Ps ▹ Desired partial coverage
a ▹ Reward parameter for the update of the action
probability vector, where a0 < < 1
Tn ▹ Cardinality threshold value
En ▹ Energy threshold value
Output:
Ψ ▹ Selected nodes
Γ ▹ Unselected nodes
Initialization:
A HELLO message is broadcast within the network
for all nodes in V do

Ψ = ∅
Initialize Tk and Pthreshold

Send a DISCOVERY message

p (0) =i r
1 i∀ ▹ r is the number of neigh-

bors
end for
repeat

Randomly select and activate a node Si
repeat

while Si has no possible actions do
Activated nodes are traced back to find an automaton

with available actions
end while
Ψ=Ψ ∪Si
Si selects one of its neighbors Sj accordingly to its p(n)

Fig. 3. An illustrative example of the selection of nodes in PCLA. The two main phases of our algorithm are highlighted. Nodes selected in the learning phase are colored in green,
whereas those selected in the partial coverage phase in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Each automaton prunes its action-set to avoid the loop
Sj is activated
Γ=Γ ∪Unselected neighbors of Si
S S=i j

until V|Ψ ∪ Γ| < | |
EΨ is calculated
if T|Ψ| < n and E E> nΨ then

T = |Ψ|n
E E=n Ψ

β n i S( ) = 0 ∀ | ∈ Ψi i ▹ Reward

from the environment
Broadcast a REWARD message among all selected nodes in

Ψ
else

β n i S( ) = 1 ∀ | ∈ Ψi i ▹ Penalty

from the environment
Broadcast a PENALTY message among all selected nodes

in Ψ
end if
Enable all the disabled actions

until the stop condition is met.
An ACTIVATION message is broadcast among all the nodes in Ψ
FormPartialCoverage()

Partial Coverage Phase. At the end of the learning phase, PCLA
checks whether partial coverage is met. If partial coverage is not
satisfied, the FormPartialCoverage() routine is called. This func-
tion uses the nodes in Γ to meet the partial coverage requirement.
Specifically, FormPartialCoverage() leverages the coverage func-
tion and evaluates the number of cells that would be covered by
activating each of the nodes in Γ to finally identify convenient nodes to
be activated. More in details, a node is activated if it covers cells that
cannot be covered by its neighbors. At the end of this phase, nodes inΨ
will remain in the active state to monitor the network, while other
nodes will switch to the idle state in order to save energy. To this aim,
nodes already in Ψ send an ACTIVATION message to the nodes
selected during the partial coverage phase.

In Fig. 3(b) we provide an example for the partial coverage phase of
PCLA algorithm. Assuming that the set of nodes selected in the
learning phase (see Fig. 3(a)) does not satisfy the desired level of
coverage, additional nodes can be activated and added to this set. In the
proposed example since S4 and S12 can cover an area not yet covered by
their neighbors, they are chosen from Γ, activated, and added to Ψ. In
this way the partial coverage requirement of the network is met.

The pseudo code of FormPartialCoverage() is shown in
Algorithm 2.

Algorithm 2. FormPartialCoverage()

Input:
CG V E= ( , ) ▹ Snapshot of the network
Ps ▹ Desired partial coverage
Input/Output:
Ψ ▹ Selected nodes
Γ ▹ Unselected nodes
for all Sj in Γ do

if Ψ does not satisfy Ps then
if Neighbors of Sj cannot cover Sj area then

Ψ=Ψ ∪Sj
Send an ACTIVATION message to Sj

else
Deactivate Sj

end if
end if

end for

5.2. Correctness and time complexity

Before presenting the experimental results of the proposed ap-
proach, here we show how PCLA preserves both connectivity and
partial coverage. Moreover the complexity of the algorithm is evaluated
and compared with state-of-the-art solutions.

Correctness of PCLA. The obtained set Ψ from PCLA can
preserve both partial coverage and connectivity.

Proof. The connectivity among all the working nodes of the WSN is
guaranteed by PCLA by construction. Indeed, at the end of the
algorithm VΨ ∪ Γ = , i.e. each node belongs either to Ψ or Γ. Nodes
in Ψ are connected due to the iterative procedure adopted: at each
iteration i of the learning phase, Si selects a neighbor within its
communication range Rc and add it to the backbone set Ψ. Therefore
all the nodes in Ψ are connected. If the coverage constraints require
more nodes to be added to Ψ, the FormPartialCoverage() routine
activates other sensors and adds them to Ψ, until the required
percentage of partial coverage is reached. These additional nodes are
selected from those in Γ: considering that each node in Γ has at least
one neighbor in Ψ by construction, the connectivity is maintained.□.

Time complexity analysis. PCLA algorithm is formed by two
nested loops: (i) the inner loop that has a running time proportional to
the number of nodes (N) and (ii) the outer loop whose running time
depends upon the number of cycles (I). Therefore the complexity of the
inner and of the outer loop is equal to O(N) and O(I), respectively.
Finally, the running time of FormPartialCoverage() routine is also
O(N). Due to these contributions, the time complexity of PCLA can be
expressed as O N I O N( × ) + ( ). Therefore, the overall time complexity
of PCLA algorithm is O N I( × ).

Experimental results showed how the number of cycles required by the
algorithm is markedly lower than the number of nodes in the WSN in most
of the cases. Fig. 4 shows the distributions of the number of
cyclesIperformed by PCLA for different values of N. For N=100
(N=1000) 17.5 (24.6) cycles are needed, on average. Cases with N=10
represent a notable exception due to the operating mode of PCLA (see
Algorithm 1). If we filter out non-realistic values of N, i.e. we consider only
larger values for it, we always obtain that I N⪡ and therefore we can
conclude that the time complexity of PCLA is O(N). In this case, if we
reward Ψ for I times, the product of the probabilities of actions in this set
reaches the threshold value and the stop condition of PCLA is met.

Compared to the state-of-the-art algorithms chosen as term of compar-
ison (see Section 6), PCLA leads to a better time complexity. The time
complexity of the CDS-based algorithm is O N Diam( + )1.6 , where Diam is
the diameter of the network (Donghyun et al., 2009). The complexity of the
DFS-based algorithm is O N E( + | |) (Wu et al., 2008), as the algorithm can
be divided in three main phases: the construction of a CDS (O(Diam)), the
building of a DFS search tree on the CDS nodes (O N E( + | |)), and the
addition of nodes to the CDS until the partial coverage requirement is met

Fig. 4. Distribution of the number of cycles (I) required by PCLA for WSNs having
different number of nodes (N). The number of cycles needed by the algorithm is markedly
lower than the number of nodes for WSNs having a realistic number of nodes
(N = 100, 1000).
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(O N E( + | |)). Table 3 summarizes the time complexity of the three
algorithms, showing how PCLA has a lower time complexity than state-
of-the-art partial-coverage solutions.

6. Performance evaluation

In this section, we provide a comprehensive performance evaluation of
the proposed solution. We first detail the experimental setup we leveraged
for the evaluation, also providing details about the implementation of the
methods we choose as a comparison (Section 6.1). Then we present
experimental results obtained through simulation, showing that PCLA
performs better than state-of-the-art partial-coverage solutions in terms of
working-node ratio and network lifetime (Section 6.2).

6.1. Evaluation setup

We used the WSN simulator (Stein, 2016) to evaluate the proposed
approach through simulation. PCLA has been compared to a method
based on that proposed in Donghyun et al. (2009)—whose implemen-
tation is detailed in the following—and the CpPCA-CDS algorithm
based on the DFS and introduced in Wu et al. (2008); hereafter we will
refer to those two approaches simply as CDS and DFS, respectively.

The three algorithms have been compared considering different condi-
tions, in terms of (i) network resources and (ii) coverage requirements. In
more details, we have considered as inputs for our simulations: (i) the
overall number N of randomly scattered nodes that make up the WSN; (ii)
the overall area Aϑ of the region of interest; (iii) the sensing range Rs and
(iv) the communication range Rc of each node; (v) the coverage require-
ment Ps demanded to the algorithm. Note that the random placement of
the nodes reflects the practical inability to place WSN elements in a
controlled manner which derives from common practices (e.g., sensor
deployment from an aircraft (Mostafaei et al., 2015)). All nodes’ sensing
and communication ranges are assumed to be equal. To compute the
network lifetime we used an approach similar to the Maximum Set Cover
(MSC) described in Mostafaei and Meybodi (2013), Mostafaei et al. (2015),
assuming a relative consume of energy of w for each node. Simulation
parameters and coverage requirements used in our simulations are
summarized in Table 4. All the obtained results have been averaged over
10 simulation runs with heterogeneous topologies.1

Fig. 5(a) shows an example of the simulation environment we used
to simulate the algorithms for the proposed evaluation. The figure
shows an example with a small number of nodes in the network in
order to better clarify the problem (Stein, 2016). Points represent
nodes. The nodes selected to monitor the portion of the network area
(i.e. nodes inside Ψ set of PCLA) are shown in Fig. 5(b) (red circles). As
shown in the figure, the selected nodes are connected to each other.

CDS-based partial coverage. We describe here the CDS-based
algorithm we adopted in our simulations as a basis for the comparison.

We obtained the CDS-based algorithm extending state-of-the-art
algorithms presented in Donghyun et al. (2009) such that a partial
coverage algorithm is devised. In more details, we took advantage of
the minimum weighted version method proposed in Donghyun et al.
(2009) to make a CDS starting from the CG of the network.

The algorithm works as follows: first a CDS is constructed leveraging
the initial algorithm presented in Donghyun et al. (2009); then some non-
CDS nodes are used in the deployed network to meet partial coverage.
Therefore also this algorithm has two phases: (i) constructing a CDS and (ii)
adding nodes to meet partial coverage. To construct a CDS upon the CG of
the network, the algorithm first selects a random node and adds this node
to CDS set (Υ). Then, this node selects one of its neighbor nodes and does
the same process (i.e. adds the selected node to CDS set). The remaining
neighbors of this node will be added to Ω set. This process continues until

the total amount of CDS and non-CDS nodes reaches V| |. At this point the
second phase starts where the algorithm adds a node to the active set if the
node generates a coverage increment.2 If the covered area of the selected
node is already covered by other active nodes, this node switches to the
inactive state to save its energy.

Algorithm 3 shows the pseudo-code of this new algorithm.

Algorithm 3. Implemented Version of CDS Algorithm (Donghyun
et al., 2009)

Input:
CG V E= ( , ) ▹ Snapshot of the network
Ps ▹ Desired partial coverage
Output:

Υ ▷ Selected nodes

Ω ▹ Unselected nodes
repeat

Randomly select and activate a node Si
until Si has at least one neighbor

SΥ = Υ ∪ i

while V|Υ ∪ Ω| < | | do
Si randomly selects one of its neighbors Sj

SΥ = Υ ∪ j

Ω = Ω ∪Unselected neighbors of Si
Si=Sj

end while
repeat

for all Si ∈Ω do
if CI > 0i then ▹ CIi is the Coverage

Increment associated to the node Si
Activate Si
Υ = Υ ∪Si

else
Deactivate Si

end if
end for

until Υ satisfies Ps

Table 3
Time complexity of the analyzed algorithms.

Algorithm PCLA CDS DFS

Time complexity O(N) O N Diam( + )1.6 O N E( + | |)

Table 4
Simulation parameters for the first set of experiments.

(a) Resource constraints.

Parameter Values

Aϑ (m2) 400×400
Rs (m) 50
Rc (m) 100
α 0.1
w 0.2
N 31 63 105
Dϑ 1.5 3.0 5.0

(b) Coverage requirements.

Parameter Values

Ps 0.6 0.8 1.0

1 In more details, the position (x,y) of each node follows a uniform distribution in
X X[ , ]min max and Y Y[ , ]min max , respectively.

2 The coverage increment (CIi) is defined as the increment of coverage that would be
obtained by adding the node i to Υ.
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Fig. 5. Results of an example simulation. The circles around the nodes indicate their sensing range, while the numbers their IDs. Nodes selected by PCLA are depicted with red circles.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Impact of average region coverage degree (Dϑ) on working-node ratio (ϕ) for different values of Ps. ϕ exposes a decreasing trend on average for increasing values of Dϑ. PCLA

outperforms the other two algorithms in all the circumstances taken into account.

Fig. 7. Impact of coverage requirement (Ps) on Working-Node Ratio (ϕ) for different values of Dϑ. Increasing coverage requirements has a detrimental impact on the performance of all

the algorithms, with ϕ exposing an increasing trend on average for increasing values of Ps. This impact is mitigated by deploying a larger number of nodes, i.e. for greater values of Dϑ.
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6.2. Experimental results

In this section, the performance of PCLA is compared to other

existing algorithms under varying conditions. Simulation results show
that PCLA performs better than state-of-the-art partial-coverage solu-
tions in terms of working-node ratio, also for larger network sizes, and
in terms of network lifetime it is able to guarantee. Detailed results are
provided in the following.

Theoretical bounds for both lifetime and coverage exist. They
primarily depend by the placement of nodes in the WSN. Regarding
the coverage, the lower bound (worst case) is encountered when all the
nodes exactly lie in the same place (full overlap). The overall area
covered by the WSN is equal to πRs

2, i.e., to the sensing area of a single
node. According to the requirements in terms of the portion to cover
(Ps) the WSN could either meet or not the coverage goal. The upper
bound (best case) is met when the sensing areas of the nodes do not
overlap, while each node falls in the communication range of some
other nodes. The overall area covered by the WSN is equal to NπRs

2, in
this case. For what concerns the lifetime, assuming that each node has
a lifetime equal to T, we meet the lower bound (worst case) when all the
nodes are required to be active from the beginning. The minimum
lifetime of the WSN is therefore T. The upper bound (best case) is
encountered when only one node at a time is required to be active. In
this case the maximum lifetime is equal to NT.

Impact of the Average Region Coverage Degree and
Coverage Requirement. In the first set of experiments, we aim at
evaluating the effect of the Average Region Coverage Degree (Dϑ) on
the performance of PCLA. Note that—according to Section 3—Dϑ may
also be (indirectly) considered an input for our simulations, as being
function of N, Aϑ, and Rs. By varying the number of nodes, we have
defined three different configurations, corresponding to different
resource constraints: D = 5ϑ , D = 3ϑ , and D = 1.5ϑ (see Table 4a).
Moreover, we have tested the three solutions under three different
coverage-requirement levels: Ps=0.6, Ps=0.8, and Ps=1.0, i.e. full
coverage (see Table 4b).

Fig. 6 shows through the working-node ratio (ϕ) how the amount of
resources needed to reach the required coverage level varies with Dϑ for
the different coverage requirements considered (Ps=0.6, Ps=0.8, and
Ps=1.0, respectively) and for the three algorithms. As expected, for all
the three algorithms the simulation reported that ϕ exposes a decreas-
ing trend on average, for increasing values of Dϑ. Note that results for
D = 1.5ϑ and Ps=1 are missing because none of the algorithms satisfied
connectivity requirements under this configuration. As shown in the
figures, PCLA outperforms the other two algorithms, proving to be
always the one exposing the lowest values of ϕ in all the circumstances
taken into account. PCLA shows also the best relative decrement of ϕ
when passing from D = 1.5ϑ to D = 5ϑ . Indeed, the value of ϕ decreases
by 67.7% (60.6%) when Ps=0.6 (Ps=0.8).

Fig. 7 shows the simulation results obtained in terms of working
node ratio (ϕ), when varying the coverage requirements (Ps) for the
different Average Region Coverage Degrees considered (D = 1.5ϑ ,
D = 3ϑ , and D = 5ϑ , respectively). As expected, increasing Ps has a
detrimental impact on the performance of all the algorithms, as ϕ also
increases. However, this impact is mitigated when Dϑ is higher, i.e. by
deploying a larger number of nodes. In more details when D = 5ϑ ,
PCLA has the lowest performance decrease when passing from Ps=0.8
to Ps=1.0. Indeed, the value of ϕ increases by 12% for PCLA against a
20-percent and 30-percent increase obtained with CDS and DFS,
respectively.

These results show how the proposed algorithm is able to better
utilize the available resources: (i) PCLA guarantees always better
performance than other algorithms; (ii) PCLA leads to markedly better
performance than other algorithms when more sensors are available
(e.g., D = 5ϑ ).

This evidence can be motivated by the following reasons: (i) PCLA
method uses the minimum possible number of nodes as backbone
nodes to reach partial coverage requirement and guarantee connectiv-
ity between them; (ii) PCLA tries to select the nodes with minimum
possible overlap (see Algorithm 2).

Fig. 8. Number of active nodes for different coverage requirements for a large network
(N=200, R = 50 ms ). As expected performance decreases for higher Ps. PCLA exhibits a

better trend and outperforms other algorithms.

Fig. 9. Number of active nodes for different network sizes (Ps=0.8, R = 50 ms ). When

more nodes are available, all the algorithms settle to slightly worse solutions in terms of
number of active nodes.

Fig. 10. Effect of varying the number N of nodes, keeping Dϑ fixed (D = 5ϑ , Ps=0.6).

Increasing the number of nodes—and reducing the sensing ranges accordingly—leads to
worse results in terms of ϕ.
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Scalability Analysis. In the following we report the results of
further investigations about the impact of the network size on the
performance of the three algorithms, considering networks with a
larger number of nodes.

Fig. 8 reports the number of the active nodes (|Ψ|) considering a
network with a high number of nodes (N=200) and coverage require-
ments varying from Ps=0.6 to Ps=0.9. As expected, for all the
algorithms, the number of active sensors is higher when the parameter
Ps increases, as a larger portion of the network area has to be
monitored. On the other hand, this result shows how the performance
of PCLA in terms of active nodes proved to decrease slower than the
ones of CDS and DFS when increasing the coverage constraints. The
improvement obtained by using PCLA respect to CDS (DFS) raises
when increasing the value for Ps: it amounts in terms of active nodes—
on average—to −3 nodes (−8.6) for Ps=0.6, and reaches −21.7 nodes
(−27.6) for Ps=0.9. The motivations behind these results can be
summarized as follows: (i) more active nodes are required to meet
the stricter coverage constraints when the value of Ps increases; (ii)
when the overlap between nodes raises—e.g., in networks dense as
much as the ones we considered in this analysis— PCLA performs a
more efficient selection of the nodes to activate checking continuously
for their suitability, as long as partial coverage requirement is met.

Fig. 9 shows how the number of active nodes changes with the size
of the network, for network sizes ranging from 40 to 250 nodes. When
more nodes are available, all the algorithms settle to slightly worse
solutions in terms of active nodes. This is due to the fact that in dense

networks the overlap between active nodes increases and cannot be
avoided. Nevertheless, PCLA outperforms the CDS and DFS algo-
rithms, mitigating this detrimental effect.

We have also investigated whether PCLA performs better when
leveraging more nodes with a limited sensing range, or—vice versa—
fewer nodes with higher sensing capabilities. In other words, we have
considered the effects of varying the number N of nodes, while keeping
Dϑ fixed. To this end, in each simulation we have modified the value of
the sensing range Rs depending on the value of N and according to the
definition of Dϑ (see Section 3). The outcome of this analysis is shown
in Fig. 10. As shown in the figure, keeping the value of Dϑ fixed leads to
limited variations of ϕ, which therefore has proved to mainly depend
on Dϑ and Ps. Interestingly, better performance in terms of ϕ can be
achieved for lower values of N and larger sensing range.

Lifetime analysis. As network lifetime—i.e., the time span from
the networks initial deployment to the first loss of coverage—is a
critical performance index for WSN, our evaluation also took it into
consideration. Figs. 11 and 12 compare the lifetime obtained with the
three approaches considered for different values of Dϑ (taking values in
{1.5, 3, 5}) and Ps (assuming values in {0.6, 0.8, 1.0}). As reported by
the analysis, we note that a larger Average Region Coverage Degree
leads to a longer lifetime for all the approaches considered. On the
contrary, the lifetime is shortened by an increase in coverage con-
straints. PCLA proved to perform better than both CDS and DFS in all
the circumstances considered. In more details, the lifetime enhance-
ment that PCLA is able to carry when adopted in place of CDS (DFS)

Fig. 11. Impact of average region coverage degree (Dϑ) on network lifetime for different values of Ps. The adoption of PCLA prolongs the network lifetime in all the circumstances taken

into account.

Fig. 12. Impact of coverage requirement (Ps) on the network lifetime for different values of Dϑ. Increasing coverage requirements has a negative impact on the lifetime of all the

algorithms.
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ranges from +15% (+34%) to +52% (+86%). The reason for this
lifetime enhancement can be found in the working principle imple-
mented by the inner loop of PCLA. Indeed, nodes in Ψ with higher Ci
are selected, thus requiring less of them to meet coverage require-
ments. In some cases only backbone nodes can reach the desired
coverage requirement. This allows to rely on a reduced number of
active nodes, and guarantees a higher number of idle nodes that can be
selected by PCLA in the subsequent cycles.

7. Conclusion

In this work, we have addressed the problem of partial coverage in
WSNs and have proposed PCLA, a solution based on Learning
Automata. Our algorithm finds a convenient set of sensors to activate
that is able to cover the desired portion of the region of interest and to
preserve the connectivity among active nodes.

According to experimental results, PCLA outperforms state-of-the-
art algorithms. Indeed, it exposes lower time complexity and better
performance in terms of working-node ratio and network lifetime in all
the circumstances taken into account. PCLA achieves also the best
relative performance enhancement when increasing the Average
Region Coverage Degree. Furthermore, when making coverage con-
straints more strict, PCLA performance decreases more slowly than
those of the other solutions evaluated. Accordingly, the benefit
obtained by using PCLA instead of the other algorithms increases
when increasing the value for Ps. These results still hold for larger
networks thus guaranteeing the scalability of the approach.
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