
MIRAGE:
Mobile-app Traffic Capture and Ground-truth Creation

Giuseppe Aceto1,2, Domenico Ciuonzo1, Antonio Montieri1, Valerio Persico1, Antonio Pescapé1,2
1University of Napoli “Federico II” (Italy) and 2NM2 s.r.l. (Italy)

{giuseppe.aceto, domenico.ciuonzo, antonio.montieri, valerio.persico, pescape}@unina.it

Abstract—Network traffic analysis, i.e. the umbrella of proce-
dures for distilling information from network traffic, represents
the enabler for highly-valuable profiling information, other than
being the workhorse for several key network management tasks.
While it is currently being revolutionized in its nature by the
rising share of traffic generated by mobile and hand-held devices,
existing design solutions are mainly evaluated on private traffic
traces, and only a few public datasets are available, thus clearly
limiting repeatability and further advances on the topic. To this
end, this paper introduces and describes MIRAGE, a reproducible
architecture for mobile-app traffic capture and ground-truth
creation. The outcome of this system is MIRAGE-2019, a human-
generated dataset for mobile traffic analysis (with associated
ground-truth) having the goal of advancing the state-of-the-art
in mobile app traffic analysis. A first statistical characterization
of the mobile-app traffic in the dataset is provided in this paper.
Still, MIRAGE is expected to be capitalized by the networking
community for different tasks related to mobile traffic analysis.

Index Terms—Android apps; encrypted traffic; mobile apps;
mobile traffic; reproducible research; open dataset; traffic clas-
sification;

I. INTRODUCTION

As in almost all experimental-research fields, replicability
and reproducibility are critical concerns in achieving signif-
icant and grounded progress [1]. Accordingly, a strong push
for them is currently observed, with research artefacts being
also evaluated in the standard peer-review process [2]. In
fact, provisioning datasets as well as carefully documenting
workflows for obtaining them, are critical to foster repli-
cability and reproducibility, respectively, with both fueling
research dissemination. Indeed, by leveraging wisely sourced
and constructed datasets that are available to the research
community, research outcomes become (i) easier to reproduce,
(ii) comparable against other studies, and (iii) generalizable
to other data/systems not studied yet.

These possibilities have been sorely missing for a long
time [3] in the field of network traffic analysis (i.e., distilling
information to perform key management and profiling tasks,
such as traffic classification, modeling, and prediction). In spite
of this huge interest, the availability of data for performing
research within this field has remained quite limited. Many
appealing research solutions have been (and are) mostly val-
idated on private datasets, thus precluding repeatability and
safe advances on the topic. Still, it is shared opinion that this
aspect contributes to slow down and limit the understanding
of the tackled problems, since it constitutes a severe drawback
in both design and experimental validation phases.

Even worse, in recent years new challenges have arisen.
Smartphones have become the main medium of communi-
cation, providing means for connecting groups of users as
well as users to services. According to Ericsson mobility
report [4], the number of smartphone subscriptions is expected
to reach 7.2 billions by 2024, with a corresponding +30%
predicted compound annual growth rate of traffic generated
by mobile networks. Due to the users massive shift toward
mobile devices and the mobile applications (in short, apps)
running on them, overall network traffic reached huge volumes
and started evolving at an unprecedented pace. Such rate of
change is further increased for mobile apps due to the software
distribution systems (the apps marketplaces), that have fos-
tered one-click installation and quick-paced automatic updates.
The encryption mechanisms being increasingly adopted further
impair the analysis, while unprecedented privacy concerns
limit the collection and publishing of raw mobile traffic traces.
These challenges call even more for the availability of mobile-
traffic datasets, considering that even when they are made
available to the community, the presence of bot-generated
traffic or experiments run in controlled environments limit the
validity of the proposed analysis or design solutions.

The contribution of this paper is fourfold: (i) we survey the
encrypted-traffic datasets publicly available, highlighting their
main characteristics as well as main shortcomings and limita-
tions; (ii) we present and describe our reproducible MIRAGE
architecture for generating new mobile-app traffic datasets and
automatically creating the related high accurate ground-truth.
The focus is on apps running on Android, currently retaining
the 76% of the whole market share1; (iii) we release the
MIRAGE-2019 dataset2, thus fostering the replicability of the
analysis and its extension to multiple use cases; (iv) we provide
a characterization for MIRAGE-2019, according to metrics
of interest at three different granularities (flows, packets, and
metadata), thus proving its suitability for a wide range of tasks.

The rest of the paper is organized as follows: Sec. II
reviews current publicly-available datasets for encrypted (and
possibly mobile) traffic analysis; Sec. III describes the whole
MIRAGE architecture involved (including capture and ground-
truth building phases), with Sec. IV describing the release
format of the MIRAGE-2019 dataset. Then, Sec. V presents
example tasks enabled by MIRAGE-2019, by means of mobile

1http://gs.statcounter.com/os-market-share/mobile/worldwide
2MIRAGE-2019 is publicly released at http://traffic.comics.unina.it/mirage.

978-1-7281-0875-9/19/$31.00 ©2019 IEEE.

Table I: Summary of previous datasets on encrypted traffic analysis.

Ref Dataset Capture Span Æ ♂ TO R
aw

Pk
t

TO
st

at
s

M
et

a

Task Diversity R

[5] ISCXVPN2016 Mar. ’15 - Jun. ’15 # B Ë Ë TI&TC 7 TTs G#
[6] ISCXTor2016 Lug. ’15 - Feb. ’16 # B Ë Ë TI&TC 8 TTs / 18 apps G#
[7] Anon17 ’14 - ’17 # F Ë Ë Ë TI&TC 3 ATs / 8 TTs / 21 apps G#
[8] QUIC Mar. ’18 # # B Ë TI&TC 5 QUIC services G#
[9] MTD Oct. ’16 - Mar. ’17 B Ë Ë TI&TC 12 Apps / 10 DEVs / 10 EXPs G#
[10] UNSWIoT Oct. ’16 - Apr. ’17 G# B Ë DevID 28 DEVs
[11] NTD Reddit Apr. ’18 - May ’18 # # W Ë WebAN 5 BWs G#
[12] Video Streams Aug. ’15 - May ’16 # # F Ë VidID 2.1k VTLs
[13] Youtube Video Sep. ’17 - Feb. ’18 # P Ë Ë VT-QoE 3 VTLs / 374 h
[14] Netflix UE Oct. ’18 - Feb. ’19 # # F Ë VT-QoE 10 LOCs / 2.6k VTLs G#
Ours MIRAGE-2019 May ’17 - May ’19 B Ë Ë Ë TI&TC 40 apps / 3 DEVs / 280+ EXPs

Traffic Nature: Æ = Mobile, ♂ = Human-generated. Traffic Object (TO): BF = Biflow, F = Flow, P = Packet, W = Webpage. Released Data: Raw = PCAP
files, Pkt = Packet-level data, TO stats = TO statistics, Meta = Metadata. Task: DevID = Device Identification, TI&TC = Traffic Identification and
Classification, VidID = Video Identification, VT-QoE = Quality-of-Experience in Video Traffic, WebAN = Website Analysis. Diversity: AT = Anonymity
Tool, BW = Browser, DEV = Device, EXP = Experimenter, LOC = Location, TT = Traffic Type, VTL = Video Title. Reproducibility (R).

traffic characterization & modeling attempts, whereas Sec. VI
discusses the ethical considerations concerning the acquisition
phase. Finally, Sec. VII provides concluding remarks.

II. RELATED WORK

This section reviews the most related public traffic datasets
and categorizes them according to the taxonomy defined in
Tab. I. Only datasets collecting encrypted network traffic
have been considered. Other datasets e.g., related to network-
anomaly detection or attack classification have not been taken
into account, due to their peculiar focus on network security.
In detail, we categorize each dataset based on whether (a)
it focuses on the mobile scenario, (b) it is generated by real
human experimenters (as opposed to bots or scripts) and (c)
the description of the capture system employed for generating
the traffic makes it partially/completely reproducible. As a
complementary information, we also provide the capture span
for each dataset, either explicitly specified in the corresponding
paper or obtained by direct inspection of the artifacts. Addi-
tionally, we surface (i) the traffic object considered (i.e. the
traffic segmentation criterion used), (ii) the type(s) of released
data, and (iii) the diversity of the collection space. Specifically,
with respect to point (ii), we classify the form of released
data in Raw (PCAP files are available), Pkt (fields from each
packet are available), TO stats (i.e. summarizing statistics for
each traffic object are available) and meta (complementary
metadata are available). Differently, referring to point (iii),
we provide the number of different services/applications or
types of objects considered. Finally, an explicit mention to the
main intended task approached is provided.

First, referring to the capture span, we observe that all the
datasets considered have been collected in the last five years
(2014–19), reflecting the only recent trend toward the growing
adoption of encrypted protocols (e.g., TLS) [15]. Further, we
observe that the experimental campaigns last from months
to years, with longer ones typically associated with human
interaction (see later discussion). A similar rationale applies

to MIRAGE-2019, collected in the last two years and expected
to reflect better the current nature of mobile traffic.

Differently, focusing on network traffic generated exclu-
sively by mobile (handheld) devices, it is apparent that only
the datasets MTD [9] and MIRAGE-2019 (ours) have captured
this type of traffic. The only exceptions are represented by
UNSWIoT [10] (in which some background traffic is gener-
ated from mobile devices) and Youtube Video [13] (where
streaming video was analyzed on smartphones).

As anticipated, not all the considered datasets have been
generated by human users. Indeed, we point out that the
above feature may be crucial when analyzing traffic generated
by complex interaction patterns from the users, as in the case
of anonymity tools [5, 7] and mobile applications (object of
this work) [9] with automated tools non reflecting completely
the above complex behaviour. For example, [8, 11, 12, 14]
have employed Selenium3 for automating web browsing.

Referring to traffic object segmentation, most of the works
consider either flows [7] or biflows as the relevant traffic
analysis unit, with the sole exception of [11] using webpages
as the relevant object of analysis.

Referring to the main task approached, most of the datasets
have been collected with the aim of performing and evaluating
traffic identification and classification, with specific focus on
anonymity tools (to assess their degree of anonymity) [6, 7],
specific traffic services (e.g. Google QUIC protocol) [8],
Virtual Private Networks (VPNs) [5] or mobile apps classifica-
tion [9]. Differently, other datasets are specifically focusing on
(encrypted) video traffic analysis, with either considering title
fingerprinting [12] or Quality-of-Experience (QoE) prediction
[13, 14]. Finally, some works focus on identifying specific
devices generating traffic, e.g. IoT devices [10], and other
delve into website analysis [11].

Referring to diversity, datasets provide information with
different degrees of variety, also according to the goal and
the scope of the work they are proposed with. Overall,

3https://www.seleniumhq.org

different applications/services/contents are considered, as well
as multiple experimenters (in case of human-generated traffic),
capture devices, and locations. For instance, ISCXTor2016 [6]
contains 8 different traffic traffic types (browsing, audio, etc.)
corresponding to 18 applications which are run under two
different scenarios (one to detect Tor traffic flows and the
other to detect the application type). Differently, Anon17 [7]
contains info about the traffic types and applications running
on Tor, I2P and JonDonym is provided in the form of 3-
level labels for each flow. However, each dataset focuses on
a limited set of the mentioned aspects in line with the nature
of the problem to investigate. In fact, none of those surveyed
covers all these aspects at best. At most, 21 applications [7],
28 devices [10], and 10 experimenters [9] are considered.
MIRAGE-2019 takes into consideration traffic generated by
280+ experimenters using 40 applications via 3 devices.

Finally, referring to reproducibility, it is apparent that not
in all the cases the details, the setup and the procedures
required to reproduce the same experimental setup for the
capture have been reported. Nonetheless, in some cases, a
detailed description of the whole experimental setup has been
provided, see e.g. [10, 12, 13].

III. THE MIRAGE ARCHITECTURE

At a high level, the MIRAGE system architecture consists of
two main components: the Capture System and the Analysis
System. Figure 1(a) shows the architecture of the Capture
System. The capture server is a workstation equipped with
an IEEE 802.11g access point, which provides connectivity
to the mobile devices that generate the traffic when human
experimenters operate the apps. A wired connection brings
the access of the capture server to the public Internet, per-
forming Network Address Translation (NAT). Notably, the
upstream connections to the public Internet do not constitute

Rooted Android device

USB hub

Internet
Experimenter

Analysis System

WiFi access point

Capture SystemCapture server

(a) MIRAGE architecture.

PCAP
trace

strace
log-file

Traffic
generation

Experimenter

Traffic
capture

Traffic
segmentation

System-call
filtering

Labeling Dataset
extraction

Capture phase GT building phase Dataset extraction phase

MIRAGE-2019
dataset

(b) MIRAGE-2019 dataset building.

Figure 1: The MIRAGE architecture: (a) diagram of main components
and (b) workflow of dataset building.

a bottleneck in terms of bandwidth, thus not impacting the
properties of the traffic stream flowing through the access
WLAN. Each mobile device is also physically attached to the
capture server through the USB hub; this allows leveraging the
Android Debug Bridge (ADB) to send commands from the
capture server to the attached devices and receive responses
on an off-band channel. Such procedure requires the devices
to be rooted in order to successfully run the traffic capture.
Notably, our architecture is able to handle traffic capture of
multiple devices simultaneously. The captured traffic is then
processed by the Analysis System (in our prototype, hosted
on the capture server itself) to produce MIRAGE-2019.

In detail, the MIRAGE architecture builds the dataset in three
phases as shown in Fig. 1(b): (1) Capture phase: traffic traces
are collected in PCAP format together with strace log–
files keeping track of network system-calls. (2) GT building
phase: PCAP traces are segmented and log-files are filtered.
this information is then combined to produce labeled traffic
objects. (3) Dataset extraction phase: labeled traffic objects
are processed to extract the information of interest (including
statistical features) to be used as input data for exploratory
analysis or machine learning tasks. The next subsections
provide details about these three phases.

A. Capture phase

A capture session begins when an experimenter connects a
mobile device to the USB hub: this procedure automatically
kicks off the capture of the network traffic as well as the log-
ging of the system calls. In detail, the traffic is captured on the
wired interface of the capture server by means of tcpdump4

Leveraging traffic filters based on the MAC address of the
connected devices allows to collect the traffic generated by
multiple devices at the same time, without any ambiguity. On
the other hand, the system-call tracing is enabled on the mobile
device itself by using the strace utility via ADB5 strace
is set to log network-related and process-management system
calls (e.g., connect, bind, getsockname, fork, wait,
exec, etc.), also logging the related <IP:port> pairs and
associating each socket descriptor to the name of the Android
package which originates the call.6 As a result, this phase
provides an strace log-file with ground-truth information
for each PCAP trace collected (see Fig. 1b). This kernel-based
mechanism for gathering information being given, the finest
granularity we can achieve is the (bi)flow level.

The described capturing system allows the capture of
mobile-app traffic when accessing the Internet through a Wi-
Fi channel. In principle, the behavior of the apps could be
different from the one shown when connecting through 3G/4G
channel. Indeed, Android applications may detect the type
of network that is used to transport their data, telling apart
Wi-Fi, Mobile, and VPN connections and potentially acting

4http://www.tcpdump.org/.
5https://developer.android.com/studio/command-line/adb.html
6To this aim, we monitor the Android zygote process that handles the

forking of each new application process. Then we extract the Android package
names from the PIDs returned by the fork system calls.

in different ways according to that.7 Other mobile-app traffic
capture approaches leverage an encrypted connection (VPN)
that tunnels the traffic over 3G/4G to a gateway/capture server
[9]. Compared to our method, the VPN-based ones not only
suffer from the identical issue (apps are able to know if the
transport network is a VPN the same way), but possibly add
uncontrolled changes to the statistical properties of captured
traffic due to the underlying tunneling protocol mechanics
and the network between the mobile device and the capture
gateway, resulting in a traffic timing less accurate and possibly
traces less representative of plain 3G/4G setups.

B. GT building phase

In the GT building phase, first the PCAP traces are seg-
mented to obtain traffic objects. Then, each of these objects
is labeled taking advantage of the information extracted from
the associated strace log-file.

PCAP traces are segmented into biflows, that is we group
together all the packets having the same 5-tuple (source IP and
port, destination IP and port, and transport-level protocol),
with source and destination addresses and ports that can
be swapped. As opposed to common heuristics leveraged to
define the 5-tuple that identifies each biflow (i.e. first packet
captured, TCP SYN, etc.) [3], we are able to order the items
consituting the 5-tuple based on the knowledge of IP addresses
of the Android devices used for the captures. Therefore, in the
dataset the addresses in biflows are ordered in the upstream
direction (i.e. local-to-remote, with reference to the mobile
terminal). Note that biflow segmentation is a common choice
for traffic objects [3, 16] and perfectly fits the metadata
extracted from the network (viz. socket) system-calls.

Then, each biflow is labeled with the Android package-
name that exactly matches the 5-tuple in the strace log-
file, considering getsockname and connect system calls.
In the case a perfect match cannot be found in the log-file
for some biflows8, the procedure assigns labels according to
a heuristic, i.e. labeling these biflows with the most-common
label (i.e. package name) in the PCAP trace. As this approach
can potentially cause mislabeling, the case of heuristic labeling
is explicitly marked as such in the dataset, allowing the final
user to decide between considering in the GT all traffic objects
(possibly noisy) or keep only strict matching ones.

C. Dataset extraction phase

This phase is in charge of taking each labeled traffic object
and extract the relevant information to feed any potential
application of the collected data (e.g., exploratory mobile-
app traffic analysis or machine learning algorithms to solve

7The ConnectivityManager method getType() returns, among
the others, TYPE_WIFI, TYPE_MOBILE, TYPE_VPN according to the
active connection type (see https://developer.android.com/reference/android/
net/ConnectivityManager for API level before 21, or https://developer.android.
com/reference/android/net/NetworkCapabilities for the analogous constants
prefixed with TRANSPORT_ in API level 21 and following).

8 This could be caused by either the pre-existence of these biflows before the
capture started or by a failure of the strace in following the corresponding
child-processes forked by zygote.

10 100 1000 10000

PCAP-trace duration [s]

0

0.2

0.4

0.6

0.8

1

C
D

F

Figure 2: Cumulative distribution of the duration (s in log-scale) of
the PCAP traces collected. The diamond marker reports the average,
whereas the shaded box highlights the (5, 95)th percentile region.

specific tasks). The output of this phase constitutes the final
MIRAGE-2019 dataset. Since the traffic objects here consid-
ered correspond to biflows, information can be drawn in the
form of summarizing statistics from the whole traffic object, of
from a subset of the constituting packets. The specific types
of information provided for MIRAGE-2019 and the related
context are described in full details in the following section.

IV. DATASET DESCRIPTION

We have collected the MIRAGE-2019 dataset in the AR-
CLAB laboratory at the University of Napoli “Federico II”.
The capture sessions (cf. Sec. III-A) span from May 2017 to
May 2019. We employed three devices to generate the mobile
traffic, namely: (i) Xiaomi Mi5, (ii) Google Nexus 7, and
(iii) Samsung Galaxy A5. In detail, we installed the custom
firmware CyanogenMod v13.0 (corresponding to the Android
version 6.0.1) on all the devices and enabled the root mode.

More than 280 experimenters took part to the dataset
construction on a voluntary basis, by performing one or two
experimental sessions each. The experimenters involved in this
activity were students of three different courses9 held at the
University of Napoli “Federico II”, aged 19÷25 years, with a
85/15% share between males and females. Each experimental
session lasted two hours, at most. Altogether, during each
experimental session, each experimenter performed 12 capture
sessions of 5÷10 minutes (each resulting in one PCAP traffic
trace and one strace log-file, cf. Sec. III). In each capture
session the experimenter was asked to perform activities
mimicking common uses of a single app with the intent to
explore its functionalities in addition to first-time install, login,
registration. We report the ethical considerations underlying
the aforementioned traffic-capture procedure in Sec. VI.

Overall, the MIRAGE-2019 dataset gathers the traffic gen-
erated by 40 Android apps belonging to 16 different categories
according to Google Play apps distribution portal [17]. Before
each experimental session, the exercised app is updated to
the latest version available on the Italian Play Store. The
MIRAGE website (http://traffic.comics.unina.it/mirage) reports
the detailed app metadata together with the links to their pages

9Namely: Computer Architectures, Computer Networks, and Internet Anal-
ysis and Performance.

5-tuple

packet
data

[Table II]

flow
features

flow
metadata
[Table IV]

packet
length

iat

biflow
[Table III]

upstream
flow

[Table III]

downstream
flow

[Table III]

biflow
[Table III]

upstream
flow

[Table III]

downstream
flow

[Table III]

Figure 3: Structure of the JSON files constituting MIRAGE-2019.

on Google Play. As a whole, a total of 4606 PCAP traces were
collected within MIRAGE-201910.

Figure 2 shows the cumulative distribution of the duration
of the traces collected, having an average duration of 370 s.
It can be noted that the majority of traces has a duration
corresponding to that prescribed for capture sessions (i.e.
5 ÷ 10 min.), being the median equal to 329 s and the
5- and 95-percentile equal to 213 s and 674 s, respectively.
Differently, outliers are due to unintended disconnections from
the traffic capture system, erroneous procedures carried out
by the experimenters, but also specific experimental scenarios
(e.g., prolonged video-playing, calls, etc.).

We release the MIRAGE-2019 dataset in JSON format to
foster its compatibility and increase its usability: one JSON file
corresponds to one PCAP trace captured (i.e. a self-contained
capture session). In detail, for each biflow—identified by its
5-tuple—we have extracted: (i) per-packet data, (ii) per-flow
features, and (iii) per-flow metadata. Figure 3 shows the
structure of each JSON file. The successive paragraphs provide
details about released data and their format.

Per-packet data: We extract 6 informative header fields and
the L4 payload of the first 32 packets of each biflow. Table IIa
describes the data Di extracted. In detail, each Di identifies
a list of up to 32 elements. Researchers performing traffic
classification [18, 19] and website fingerprinting [20] via
machine and deep learning used these inputs in their works.

Per-flow features: To provide information on the whole biflow
and corresponding upstream and downstream flows, we select
17 statistical features computed on the sets of upstream,
downstream, and complete (i.e. both of them) IP packet lengths
and inter-arrival times, for a total of 102 per-flow features.
Table IIb reports the per-flow features Fi extracted. Previous
works in the field of traffic classification via machine learning
successfully leveraged these features to feed the classification
algorithms they devised [16, 21–23].

Per-flow metadata: Table IIc describes per-flow metadata
complementing per-flow features, being also related to com-
plete biflow and upstream/downstream flows. GT (viz. the

10We have filtered out the PCAP traces having an strace log-file less
than 200 kB or a duration less than 10 seconds. We plan to continue the
experimental activities and update the MIRAGE-2019 dataset over time.

Table II: The MIRAGE-2019 dataset. Di, Fi, and Mi report the
dict-keys in the released JSON files.

(a) Per-packet data extracted from the first 32 packets of each biflow.

Di Description

src_port Source transport-layer port
dst_port Destination transport-layer port

packet_dir Packet direction (0 upstream, 1 downstream)
L4_payload_bytes Number of bytes in L4 payload

iat Inter-arrival time
TCP_win_size TCP window size (0 for UDP packets)

L4_raw_payload Byte-wise raw L4 payload (integer ∈ [0, 255])

(b) Per-flow features extracted from the sets of upstream, downstream,
and complete IP packet lengths and inter-arrival times.

Fi Description

min Minimum
max Maximum
mean Arithmetic mean
std Standard deviation
var Variance
mad Mean absolute deviation

skew Unbiased sample skewness
kurtosis Unbiased Fisher kurtosis

q_percentile qth percentile (q ∈ [10 : 10 : 90])

(c) Per-flow metadata Mi related to the complete biflow (BF) and
upstream (UF) and downstream (DF) flows.

Mi Description

BF_label Android-package name
BF_labeling_type Exact or most-common labeling

{BF,UF,DF}_num_packets Number of packets
{BF,UF,DF}_IP_packet_bytes Total bytes in IP packets
{BF,UF,DF}_L4_payload_bytes Total bytes in L4 payloads

{BF,UF,DF}_duration (Bi)flow duration in seconds

biflow-label extracted) granularity (i.e. exact or most-common)
refers to the GT-building procedures described in Sec. III-B.

V. EXAMPLE TASKS ENABLED BY MIRAGE-2019

The dataset we release can suit different kinds of tasks,
ranging from app traffic modeling and prediction, to biflow-
based traffic classification. Herein, we present an app traffic
characterization that can be directly derived from the dataset,
concerning per-packet data (Sec. V-A), per-flow features
(Sec. V-B), and per-flow metadata (Sec. V-C). While providing
a detailed characterization of MIRAGE-2019, our analyses
also point at tasks enabled by the released dataset.

A. Per-app modeling based on per-packet data

Modeling network traffic represents a key task in the study
and design of Internet architectures, as realistic (yet manage-
able) traffic models are needed to predict, interpret, and solve
performance-related issues of current and future networks.

To prove the suitability of MIRAGE-2019 to support this
class of tasks, we provide a preliminary study aimed at
devising per-app traffic models by means of Markov Models,
similarly as done in [24]. In detail, for each app we consider
the sequence of the L4_payload_bytes of each biflow (i.e.

10 50 90 130 170 300 700 1100 1500
Next Payload Length [B]

10

50

90

130

170

300

700

1100

1500

C
ur

re
nt

 P
ay

lo
ad

 L
en

gt
h

[B
]

5% 10% 20% 50% 100%

(a) com.dropbox.android.

10 50 90 130 170 300 700 1100 1500
Next Payload Length [B]

10

50

90

130

170

300

700

1100

1500

C
ur

re
nt

 P
ay

lo
ad

 L
en

gt
h

[B
]

5% 10% 20% 50% 100%

(b) air.com.hypah.io.slither.

Figure 4: Transition matrices of payload lengths. Axes are divided in
two different linear scales. The color-bar is in log-scale.

focusing on the first 32 packets, see Sec. IV) and derive the so-
called transition matrix, whose (X,Y)th entry represents the
probability that next packet comes with Y bytes of payload
if the last observed packet has a payload of X bytes (save
from rounding errors due to binning). Notably: (i) packets
with null payload are filtered out (i.e. only packets transferring
contents generated by the application layer are retained [22],
while signaling such as TCP SYNs, RSTs, and pure ACKs
are discarded, as not of interest for this analysis); (ii) the
payload-size interval between 1B and 1500B is divided in 33
non-uniform bins, namely: bins from 1 to 20 (resp. from 21 to
33) are 10B (resp. 100B) wide. This scheme allows to better
appreciate the model dynamics by mitigating the impact of the
high presence of packets with null or very-small payload.

As an example, Fig. 4 reports the transition matrices for
Dropbox (Fig. 4a) and Slither.io (Fig. 4b). By looking at
the two matrices, the following observations can be derived:
(i) the presence of high values (darker colors) along the
diagonal witnesses the tendency to remain in the same state,
i.e. sending/receiving consecutive packets of similar sizes. This
observation holds for both apps, and becomes evident for very-
small values (top-left corner) as well as for very-large values
(bottom-right corner). (ii) Vertical patterns highlight the trend
in entering to a specific state, whichever the current payload
length. This is particularly evident for Fig. 4a (next expected
payload length is within 30–40B when current payload length
lies within 300–1400B) and in both apps when the current
payload belongs to 1400–1500B. (iii) Finally, scattered darker
points highlight app-specific patterns.

B. Per-flow statistic characterization

Characterizing mobile-app traffic based on its statistical
features is a capability of the utmost importance that mitigates
a number of issues and benefits different tasks in network
administration. For instance, trends in network applications
and protocol design (e.g., protocol encapsulation, encrypted
transmission, use of non-standard ports, concerns about users’
privacy) heavily challenge traffic classification when exploit-
ing some of the developed techniques (e.g., port-numbers and

payload inspection). In fact, approaches based on statistical
properties of network traffic provide viable alternatives [3, 22].

Leveraging the information directly provided by MIRAGE-
2019, the mobile-app traffic can be modeled at different gran-
ularities, considering both the apps and the related categories.
As an interesting example, Fig. 5 reports the joint scatter
plot (per biflow) of the mean packet lengths and inter-arrival
times for three different app categories: Productivity
(Fig. 5a), Sports (Fig. 5b), and Games (Fig. 5c). Each figure
reports the apps with different colors, while the kernel density
estimation of the marginal distributions is shown in the side
plots. Several considerations can be drawn from this analysis.

First, given the different spatial concentration of the points
over the plane, different categories result in different joint
scatter plots. For instance, while points in Games mostly lie
within [50, 400] B (x-axis) and [10ms, 100 s] (y-axis), the same
does not apply for the other two categories.

Secondly, apps within the same category often show their
own peculiar statistical profile. For example, in Fig. 5b,
OneFootball (de.motain.iliga) updates generate points
mostly concentrated at 100B and 100ms, as opposed to
Diretta (eu.livesport.Diretta_it). Differently, for
Games (Fig. 5c), while inter-arrival time does not hold great
discriminating power, the packet length allows to separate
biflows associated to the two considered games easily enough.

Finally, this rationale is not as much evident for apps
within Productivity (see Fig. 5a, except for Dropbox).
Indeed, the presence of traffic generated by several (similar)
apps is one of the main challenges of mobile-app traffic
analysis. This results in very-complex patterns of current traffic
which cannot be appropriately captured by common statistical
features. Accordingly, the application of novel machine- and
deep-learning based techniques is foreseen to be the effective
workhorse to cope with this challenge [16].

C. Per-flow volume distribution

The info in MIRAGE-2019 also enables a characterization
of the traffic based on the transferred volumes. Figure 6a shows
the volume of the biflows in MIRAGE-2019, reporting the
histogram of their sizes (bin width: 2 MB) which range from
few bytes to several megabytes. In general terms, voluminous
flows are less frequent than (possibly short-lived) biflows
transferring a limited amount of bytes (e.g., due to request-
response interactions). As more than 88% of the biflows have
volumes ≤ 100 kB, Fig. 6b reports the histogram (bin width:
1 kB) for such dataset portion, revealing that biflows with
volumes within [5, 10] kB are the most common.

To deepen the nature of the exchange, Fig. 6c reports (in
the form of cumulative distributions) the share ρd of the
downstream bytes for each biflow (i.e. ρd , Bd

Bd+Bu
, where

Bd and Bu are the number of downstream and upstream
bytes of the biflow, respectively) for the whole MIRAGE-2019
(≈ 270k biflows). On average, downstream traffic accounts for
≈ 65% of the volume of the whole biflow traffic. However,
a clear pattern can be noticed when considering biflows with
different volumes: the smaller the biflow volume, the smaller

0 200 400 600 800 1000 1200 1400

Mean IP Packet Length [B]

1 µs

10 µs

100 µs

1 ms

10 ms

100 ms

1 s

10 s

100 s

1000 s

M
ea

n
In

te
r-

A
rr

iv
al

T
im

e

com.dropbox.android

com.trello

com.microsoft.skydrive

com.google.android.apps.docs

(a) Productivity.

0 200 400 600 800 1000 1200 1400

Mean IP Packet Length [B]

1 µs

10 µs

100 µs

1 ms

10 ms

100 ms

1 s

10 s

100 s

1000 s

M
ea

n
In

te
r-

A
rr

iv
al

T
im

e

eu.livesport.Diretta it

de.motain.iliga

(b) Sports.

0 200 400 600 800 1000 1200 1400

Mean IP Packet Length [B]

1 µs

10 µs

100 µs

1 ms

10 ms

100 ms

1 s

10 s

100 s

1000 s

M
ea

n
In

te
r-

A
rr

iv
al

T
im

e

air.com.hypah.io.slither

com.miniclip.eightballpool

(c) Games.

Figure 5: Joint scatter-plot of mean (payload length, inter-arrival time) of each biflow for three different app categories. The packet length
is reported in linear scale (x-axis), whereas the inter-arrival time is shown using a log-scale (10 log10(x)).

0 25M 50M 75M 100M 125M 150M 175M

Biflow Volume [B]

1

10

100

1000

10000

100000

#
B

ifl
ow

s

(a) Volume histogram of all biflows (bin width: 2
MB).

0 20k 40k 60k 80k 100k

Biflow Volume [B]

100

1000

10000

100000

#
B

ifl
ow

s

(b) Volume histogram of biflows with volume ≤
100 kB (bin width: 1 kB).

0 0.2 0.4 0.6 0.8 1
ρd

0

0.2

0.4

0.6

0.8

1

C
D

F

Total (276871)

< 1k (42914)

< 10k (170178)

≥ 10k (106693)

≥ 100k (32680)

(c) Cumulative distribution of ρd. Diamonds
mark the average.

0 0.2 0.4 0.6 0.8 1
ρd

0

0.2

0.4

0.6

0.8

1

C
C

D
F

Comics

Communication

Education

Games

Google Play Store

Lifestyle

Maps&Navigation

Music&Audio

News&Magazines

Productivity

Shopping

Social

Sports

Travel&Local

Video Players

Weather

(d) Complementary cumulative distribution of
ρd for each app category (biflows with volume
≥ 10 kB). Diamonds mark the average.

Figure 6: Per-flow characterization of MIRAGE-2019 biflows in terms of byte volume (a-b) and downstream volume share ρd (c-d).

the share of downstream traffic (ρd ≤ 0.5). Indeed, for biflows
very small in volume (i.e. ≤ 1 kB) ρd = 0.35 on average.
Notably, for around 5% of the biflows no downstream packets
were captured. As expected, all these communications are
very small in volume (i.e. ≤ 10 kB) and are the results of
anomalous conditions, with the mobile app asking for services
to external servers and no reply returned due to failures
possibly at the communication endpoint or along the path.
Differently, when only flows with larger sizes are retained
(≥ 10 kB and ≥ 100 kB), the downstream traffic accounts
for most of the volume (mean ρd equals to 0.77 and 0.89).

The analysis of the exchanged traffic volumes and of the
downstream-upstream (un)balance has an impact on access
link dimensioning (for the operator) and per-app traffic volume
costs, and transmission power consumed (for the user). Indeed,
breaking the above results down by different app categories
(see Fig. 6d), it is possible to quantify the expected difference
of transmission resources required. According to this analysis,

two categories (Comics and Maps&Navigation) show a
distinct distribution of ρd from the other ones (a higher mean
value and only ≈ 5% of the biflows with ρd ≤ 0.5).

VI. ETHICAL CONSIDERATIONS

Based on both the presented design choices and the exper-
imental setup, the capture process and the collected dataset
do not imply any ethical concern [1]. We remark that ex-
perimenters involved in the acquisition phase have been be-
forehand informed and warned about the objectives of their
activities (e.g. network traffic analysis) and the possible public
release of the corresponding traces for research purposes, even
in a complete form. Additionally, each experimenter received
a thirty-minutes training phase (with the help of a written
document listing all the instructions) regarding the capture
technologies employed and the related working principles.

Moreover, the employed mobile devices were provided and
used within the ARCLAB. The logged source IP addresses

belong to the private IPv4 space, with no privacy implications.
Equally important, purposedly-created app accounts were em-
ployed for the capture sessions. The GT building phase is au-
tomated and does not contribute any additional experimenter-
related information. Hence, no personal information of the
experimenters was involved at any time from the capture phase
to the dataset creation. Collected traces were made available
to experimenters that captured them for educational purposes
as well as to verify the non-sensitive nature of their contents.

VII. CONCLUSIONS

This paper introduces and details the reproducible MIRAGE
architecture for capturing mobile-app traffic and building the
related ground-truth. Leveraging the implemented architecture,
we collected mobile-app traffic for two years and release the
MIRAGE-2019 dataset, supporting and fostering replicable
traffic analysis. Example tasks enabled by the released dataset
with focus on traffic characterization and modeling are also
shown in this paper. We expect that the proposed dataset will
be used as a benchmark for future studies concerning mobile
traffic analysis. Our intention is to periodically release updated
(and enriched) versions of the dataset.

VIII. ACKNOWLEDGEMENTS

We are grateful to the students of ’17/’18 and ’18/’19
classes of “Internet Analysis and Performance”, “Computer
Architectures” and “Computer Networks” held at University of
Napoli “Federico II” for willingly participating to the capture
campaign needed to generate MIRAGE-2019.

REFERENCES

[1] V. Bajpai, A. Brunstrom, A. Feldmann, W. Kellerer,
A. Pras, H. Schulzrinne, G. Smaragdakis, M. Wählisch,
and K. Wehrle. The Dagstuhl beginners guide to repro-
ducibility for experimental networking research. ACM
SIGCOMM CCR, 49(1), 2019.

[2] A. Dainotti, R. Holz, M. Kühlewind, A. Lutu, J. Som-
mers, and B. Trammell. Open collaborative hyperpapers:
a call to action. ACM SIGCOMM CCR, 49(1), 2019.

[3] A. Dainotti, A. Pescapè, and K. C. Claffy. Issues and
future directions in traffic classification. IEEE Network,
26(1), 2012.

[4] F. Jejdling et al. Ericsson mobility report. Ericsson AB,
Business Area Networks, Stockholm, Sweden, Tech. Rep.
EAB-19, 3442, 2019.

[5] G. D. Gil, A. H. Lashkari, M. Mamun, and A. A.
Ghorbani. Characterization of encrypted and VPN traffic
using time-related features. In SciTePress ICISSP’16.

[6] A. H. Lashkari, G. Draper-Gil, M. Mamun, I. Saiful, and
A. A. Ghorbani. Characterization of Tor traffic using time
based features. In SciTePress ICISSP’17.

[7] K. Shahbar and A. N. Zincir-Heywood. Packet momen-
tum for identification of anonymity networks. Journal of
Cyber Security and Mobility, 6(1), 2017.

[8] V. Tong, H. A. Tran, S. Souihi, and A. Mellouk. A novel
QUIC traffic classifier based on convolutional neural
networks. In IEEE GlobeCom’18.

[9] R. Wang, Z. Liu, Y. Cai, D. Tang, J. Yang, and Z. Yang.
Benchmark data for mobile app traffic research. In ACM
MobiQuitous’18.

[10] A. Sivanathan, H. H. Gharakheili, F. Loi, A. Radford,
C. Wijenayake, A. Vishwanath, and V. Sivaraman. Clas-
sifying IoT devices in smart environments using network
traffic characteristics. IEEE Trans. Mobile Comput.,
2018.

[11] M. Lescisin and Q. H. Mahmoud. Dataset for web traffic
security analysis. In IEEE IECON’18.

[12] R. Dubin, A. Dvir, O. Pele, and O. Hadar. I know what
you saw last minute-encrypted HTTP adaptive video
streaming title classification. IEEE Trans. Inf. Forensics
Security, 12(12), 2017.

[13] T. Karagkioules, D. Tsilimantos, S. Valentin, F. Wamser,
B. Zeidler, M. Seufert, F. Loh, and P. Tran-Gia. A
public dataset for YouTube’s mobile streaming client. In
IEEE/IFIP MNM Workshop’18.

[14] S. C. Madanapalli, H. H. Gharakhieli, and V. Sivaraman.
Inferring netflix user experience from broadband network
measurement. In IEEE/ACM TMA’19.

[15] Sandvine. Global Internet Phenomena Spotlight: En-
crypted Internet Traffic., 2016.

[16] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapè. Mo-
bile encrypted traffic classification using deep learning:
Experimental evaluation, lessons learned, and challenges.
IEEE Trans. Netw. Service Manag., 16(2), jun 2019.

[17] 42matters. Google play categories. https:
//42matters.com/docs/app-market-data/android/apps/
google-play-categories, 2019.

[18] Z. Wang. The applications of Deep Learning on traffic
identification. BlackHat USA, 2015.

[19] A. Dainotti, F. Gargiulo, L. I. Kuncheva, A. Pescapé, and
C. Sansone. Identification of traffic flows hiding behind
tcp port 80. In 2010 IEEE International Conference on
Communications, May 2010.

[20] V. Rimmer, D. Preuveneers, M. Juarez, T. V. Goethem,
and W. Joosen. Automated feature extraction for website
fingerprinting through deep learning. In NDSS’18.

[21] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic. Ro-
bust smartphone app identification via encrypted network
traffic analysis. IEEE Trans. Inf. Forensics Security, 13
(1), 2018.

[22] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapè.
Multi-classification approaches for classifying mobile
app traffic. Journal of Network and Computer Appli-
cations, 103, 2018.

[23] V. Carela-Español, P. Barlet-Ros, M. Solé-Simó, A. Dain-
otti, W. de Donato, and A. Pescapé. K-dimensional trees
for continuous traffic classification. In Traffic Monitoring
and Analysis, Berlin, Heidelberg, 2010.

[24] A. Dainotti, A. Pescapé, P. Salvo Rossi, F. Palmieri, and
G. Ventre. Internet traffic modeling by means of hidden
Markov models. Computer Networks, 52(14), 2008.

