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Abstract—The lockdowns and lifestyle changes during the
COVID-19 pandemic have caused a measurable impact on
Internet traffic in terms of volumes and application mix, with
a sudden increase of usage of communication and collaboration
apps. In this work, we focus on five such apps, whose traffic
we collect, reliably label at fine granularity (per-activity), and
analyze from the viewpoint of traffic classification. To this aim,
we employ state-of-art deep learning approaches to assess to
which degree the apps, their different use cases (activities),
and the pairs app-activity can be told apart from each other.
We investigate the early behavior of the biflows composing the
traffic and the effect of tuning the dimension of the input,
via a sensitivity analysis. The experimental analysis highlights
the figures of the different architectures, in terms of both
traffic-classification performance and complexity w.r.t. different
classification tasks, and the related trade-off. The outcome of
this analysis is informative for a number of network management
tasks, including monitoring, planning, resource provisioning, and
(security) policy enforcement.

Index Terms—communication apps; collaboration apps;
COVID-19; deep learning; encrypted traffic; multimodal tech-
niques; traffic classification.

I. INTRODUCTION

The outbreak of the COVID-19 pandemic has induced gov-
ernments worldwide to impose lockdown periods, that forced
millions of citizens to stay at home, and also study/work from
there if possible. As a consequence, Internet traffic from res-
idential users has witnessed a significant growth (+15− 20%
in terms of volume) [1] as people engaged in remote work,
education, commerce, and entertainment activities. The sudden
change in the timing and mix of online presence has had
a measurable impact on network performance in terms of
increased variability of delay and loss rate [2]. This shift in
both volume and nature of the Internet traffic poses a challenge
to efficient network resource management, that in turn calls for
enhanced network monitoring capabilities. More specifically,
when observing network traffic the possibility to infer the
application or the type of application that generated it (the
process of Traffic Classification, TC in the following) becomes
paramount to most management and planning actions. While
TC has been a hard problem and an active field of research
for decades, its application is further challenged by specific
characteristics of communication and collaboration apps: con-
sistent use of encryption; common usage of application-level
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protocols as transport sublayers (namely, TLS and HTTP);
different functioning modes (activities) for a single applica-
tion; execution from mobile devices (platforms characterized
by frequent and automated software updates). These chal-
lenges are now pushing toward the adoption of advanced
Deep Learning (DL) approaches, able to cope with frequently
changing input nature, and offering promising performance
when dealing with complex and hard-to-model problems [3].
Thus, on the one hand, a better understanding is required of the
traffic of applications that have seen a surge in utilization after
the COVID-19 pandemic. On the other hand, an assessment
of modern TC approaches is needed, applied to this specific
scenario.

To respond to these needs, with this work we target
five communication and collaboration apps (GotoMeeting,
Skype, Teams, Webex, and Zoom), that have seen dramatic
increase of usage in correspondence to lockdowns. We analyze
their traffic and assess the performance of the state-of-art
of TC approaches for classifying the specific app, the kind
of activity (Webinar, Video-call, Video-conference) or the
combination app×activity (finest grain). More in details, the
contributions of this work are summarized in the following.
(i) We collect a dataset of mobile-app traffic traces, that is
human-generated, recent, and reliably labeled with both the
application that generated the traffic and the activity that was
performed by the user. (ii) For each activity, we analyze the
traffic in terms of (payload-carrying) packet direction, payload
length, payload content, TCP window size, and inter-arrival
time, for the initial part of the biflow (early behavior analysis).
(iii) We apply state-of-art DL architectures (an 1D-CNN, a
hybrid 2D-CNN + LSTM, and the multimodal MIMETIC [4])
to the dataset, to classify the traffic at app, activity, and
app × activity granularity. (iv) We compare and discuss the
results of the different approaches, deriving conclusions on the
nature of the traffic of communication and collaboration apps,
on the performance of the considered approaches, and future
avenues of research.

II. RELATED WORK

A. Impact of COVID-19 on the Nature of Internet Traffic

Following the global spread of the COVID-19 pandemic,
several works have analyzed its impact on the Internet, focus-
ing on the nature of the traffic and on network performance.



Feldmann et al. [1] inspect network flow data from multiple
vantage points and analyze the effect of the lockdown on
traffic shifts: an increase in European Internet traffic is found,
mainly associated to VPN and videoconferencing applications
(+200% in volume). In addition, Lutu et al. [5] analyze the
changes in mobility (−50%) and their impact on the cellular
network traffic, finding notable variations of voice and data
traffic volumes, and packet loss. Additional degradations of
network services are highlighted by Böttger et al. [6], who
investigate Internet traffic growth (as seen from Facebook edge
network) at the beginning of the pandemic, and observe a
correlation between the phase of traffic growth and the spread
of COVID-19. Moreover, the study by Candela et al. [2]
assesses the impact on Internet latency due to the changes in
users’ behavior during COVID-19 restrictions. Favale et al. [7]
analyze the effect of lockdown measures on an Italian campus
network, showing how the increased use of collaboration
platforms, VPNs, and remote desktop services has pushed to
unprecedented peaks of 1.5Gbit/s, with few cases of poor
experienced performance. Finally, Affinito et al. [8] consider
websites and domains used during the enforcement of the so-
cial distancing measures, showing that Youtube, Netflix,
Facebook, Whatsapp, Skype, and Zoom result among the
most used applications.

In line with these studies, the object of our work is the
analysis of the network traffic generated by the most pop-
ular communication and collaboration mobile apps, whose
pandemic-driven surge deeply shapes the nature of Internet
traffic and potentially relates to performance issues.

B. DL-based Traffic Classification

Recently, several works have faced TC via DL approaches.
Wang [9] has first used a Stacked AutoEncoder (SAE) for un-
encrypted traffic identification, achieving superior performance
w.r.t. standard neural networks (≥ 90% precision and recall).
Encrypted TC is targeted by Wang et al. [10], who propose
a method based on 1D Convolutional Neural Network (1D-
CNN)—outperforming the 2D variant—to tackle different TC
tasks related to encrypted and VPN-tunneled applications and
traffic classes. Similar tasks are tackled by Lotfollahi et al.
[11] proposing Deep Packet (based on 1D-CNN and SAE),
able to outperform Machine Learning (ML)-based classifiers
for encrypted TC at packet granularity. Recurrent Neural
Networks have been considered by Lopez-Martin et al. [12],
proposing different hybrid DL architectures that combine Long
Short-Term Memory (LSTM) and 2D-convolutional layers.

Focusing on the classification of mobile-app traffic, Rezaei
et al. [13] leverage a CNN fed with the header and the
payload of the first six packets of a biflow. Similarly, Liu et al.
[14] devise FS-Net, an encoder-decoder architecture based on
Bidirectional Gated Recurrent Units (BiGRU) taking as input
IP-packet sizes of flow sequences. In this context, in our
previous work [3], we define a systematic framework to dissect
the encrypted mobile TC using DL, and compare a number
of the aforementioned techniques for a comprehensive eval-
uation. Common usage of biased inputs (e.g., local-network
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Figure 1: Communication and collaboration apps considered. Per-
formed activities, number of biflows (left-bar) and number of packets
(right-bar) are reported for each app. Note that the log scale is used
to report the packets’ number.

metadata [10], or source and destination ports [12]) inflating
TC performance is also discussed and discouraged.

Multimodal DL solutions have been recently proposed to
face mobile-app TC. We propose MIMETIC [4], a general
framework for capitalizing the heterogeneous views associated
with a traffic object, along with a novel training procedure
based on pre-training and fine-tuning. Experimental results
show that MIMETIC classifier outperforms single-modal, ML-
based, as well as late-combination of traffic classifiers both in
terms of TC performance and training complexity. Following
along the same research direction, Wang et al. [15] pro-
pose App-Net, consisting of two modalities: a (bidirectional)
LSTM and a 1D-CNN. Experimental results show that App-
Net outperforms ML-based and single-modal DL-based traffic
classifiers, while performing almost on par w.r.t. MIMETIC.

Capitalizing on the latest advancements on TC solutions
via DL, we investigate the performance of a state-of-art
multimodal architecture and compare its performance against
some other recent but simpler proposals.

III. EXPERIMENTAL SETUP

A. Dataset Collection and Ground Truth Generation

The dataset was collected by students and researchers within
April–June 2021 leveraging the MIRAGE architecture [16]
(conveniently optimized to capture traffic of communication
and collaboration apps) in the ARCLAB laboratory at the
University of Napoli “Federico II”.1 Experimenters used three
mobile devices: a Google Nexus 6 (Android 10) and two Sam-
sung Galaxy A5 (Android 6.0.1). In each capture session—
whose duration spanned from 15 to 80 minutes based on
the activity—the experimenters performed a specific activity,
so as to obtain a traffic dataset that reflects the common
usage of considered apps.2 Each session resulted in a PCAP
traffic trace and additional system log-files with ground-truth
information. Based on the latter, each biflow3 was reliably

1We highlight that the captures were carried out by adhering to the
distancing/mask-wearing rules prescribed by regional/national decrees in force
at the moment of the collection.

2Each traffic capture session has been performed with the up-to-date version
of the app. Also, to limit background traffic, network access has been disabled
for all the apps but the one under test.

3A bidirectional flow (biflow) encompasses all the packets sharing the same
5-tuple (i.e. source and destination IP address, source and destination port,
and transport-level protocol) in both upstream and downstream directions [3].



labeled with the corresponding Android package-name by
considering established network-connections (via netstat).
This information was further enriched with a label referring
to the specific activity performed by the user operating the
device (see Sec. III-B).

B. Apps’ and Activities’ Selection Rationale

Communication and collaboration apps—used for business
meeting, classes, and social interaction—have experienced a
huge utilization increment when “stay-at-home” orders were
issued worldwide. Based on both popularity and utilization
boost, herein we focus on five of them: GotoMeeting (Gm),
Skype (Sk), Teams (Tm), Webex (Wb), and Zoom (Zm).
Indeed, Zoom has obtained the steepest increment with its
traffic scaling to orders of magnitude, followed by Webex,
GotoMeeting, Teams, BlueJeans (whose traffic we are
currently collecting), and Skype [17]. Also, during 15th–21st
March 2020, Zoom was downloaded 14×, 20×, and 55× more
than the weekly average during Q4 2019 in the US, UK, and
Italy, respectively [18]. Similarly, Teams also experienced
significant growth in Italy (resp. France) with 30× (resp. 16×)
more downloads. The considered apps have been extensively
exploited for remote (and blended) teaching in Italian4 and
European5 institutions and universities.

Specifically, according to the observed app usage, the ex-
perimentation covered the following activities (all related to
live events): Webinar (Webi)—involves many attendees and
one presenter transmitting his/her own audio together with
slides and/or his/her own video (e.g., seminar or online lesson);
Video-call (VCall)—involves just two participants transmitting
both audio and video; Video-conference (VConf)—involves
more than two participants broadcasting audio/video.

Figure 1 summarizes the mobile apps used in this study,
highlighting also the activities carried out with each, and the
amount of traffic collected in terms of biflows and packets.

C. Traffic Classification Methodology

In the following, we consider state-of-the-art classi-
fiers selected among the best single-modal and multimodal
alternatives—based on extensive performance evaluation car-
ried out in our previous works [3, 4]—in terms of both DL
architecture and unbiased input data. According to the results
of previous work, we leverage the biflow as the relevant traffic
object of our TC tasks.

Going into details, we consider an 1D-CNN fed with the
first Nb bytes of transport-layer payload (PAY) of each biflow,
and having an architecture analogous to that proposed in [10]
in terms of both elementary layers and related hyperparam-
eters. Moreover, we evaluate a hybrid composition of 2D-
CNN + LSTM (named HYBRID hereinafter), having as input:
(i) the number of bytes in transport-layer payload (PL), (ii) the
TCP window size (TCPWIN, set to zero for UDP packets),
(iii) the inter-arrival time (IAT), and (iv) the packet direction
(DIR) ∈ {−1, 1} of the first Np packets of each biflow, as

4Fondazione CRUI – COVID-19 | Strumenti per la didattica digitale.
5European University Institute – Software available at the EUI.

proposed in [12]. Finally, we also consider the multimodal
MIMETIC classifier we proposed [4]. MIMETIC consists of
two modalities fed each with one of the input types used for
the other classifiers, and is trained via a two-phase procedure
consisting of pre-training of individual modalities and fine-
tuning of the whole architecture.

To foster a fair comparison, all the classifiers are trained
(via a 10-fold cross-validation procedure) for a total of 90
epochs (for MIMETIC, we consider 25 epochs for pre-training
of each modality and 40 epochs for fine-tuning) for minimizing
categorical cross-entropy loss, and exploit the Adam optimizer
(with a batch size of 50) and the early-stopping technique to
prevent overfitting.

In this study, we take advantage of the ground-truth in-
formation associated to each biflow (reporting both the app
generating the traffic and the activity performed) to instruct
and evaluate different supervised strategies corresponding to
three TC tasks: (i) classifying the app (App-TC), (ii) clas-
sifying the activity (Act-TC), and (iii) classifying both the
app and the activity (Joint-TC). Accordingly, we train the
above models with: (a) app-related ground truth only (APP),
(b) activity-related ground truth only (ACT), and (c) the
joint app-and-activity ground truth (APP×ACT). Note that
APP and ACT produce classifiers able to address only the
specific task they are trained for (i.e. classifying either apps or
activities), whereas when training the DL architectures based
on APP×ACT, all three TC tasks above-described can be
addressed.

IV. EXPERIMENTAL ANALYSIS

A. Biflow-level Characterization of Early Behavior

Based on the input fed to considered DL architectures,
we first focus on the possible structure within the infor-
mation exchanged across the biflows in the initial part of
the communication. To this end, we report the sequence of
PL/DIR/IAT/TCPWIN of the first 36 app-level packets6 and
the first 2048 payload bytes. Specifically, for a given app, we
report the average value on all biflows for each packet/byte
index. For brevity, the analysis depicted in Fig. 2 focuses on
Skype and Webex.7 For both the apps, the above information
is broken down into the considered activities (VCall, VConf
and Webi) and also reported in summary form (All).

Referring to All, it is apparent that there is an appreciable
difference between the behavior of the first and the second half
of the sequence (≈ 16 packets) in terms of PL/DIR/IAT (the
behavior is slightly less evident for TCPWIN), which highlights
the very initial part of the biflows. Indeed, during the second
half of the 36 packets, the trend is less structured and also
very similar among different activities. Conversely, looking
at the first 16 packets, the corresponding trend depends on
the specific app. For instance, for Skype there is a different
PL/DIR/IAT/TCPWIN signature for VCall, whereas Webi and

6Packets with no payload are discarded since they reflect transport-layer
signaling neither depending on the nature of the app nor the performed activity.

7A similar behavior as Webex was observed for GotoMeeting, Teams,
and Zoom.
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(a) Average PL [B] of the first 36 packets for Webex.
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(b) Average PL [B] of the first 36 packets for Skype.
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(c) Average DIR of the first 36 packets for Webex.
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(d) Average DIR of the first 36 packets for Skype.
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(e) Average IAT [ms] of the first 36 packets for Webex.
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(f) Average IAT [ms] of the first 36 packets for Skype.
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(g) Average TCPWIN of the first 36 packets for Webex.
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(h) Average TCPWIN of the first 36 packets for Skype.
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(i) Average PAY of the first 2048 Bytes for Webex.
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(j) Average PAY of the first 2048 Bytes for Skype.

Figure 2: Properties of biflows’ time-series with respect to PL, DIR, IAT, TCPWIN, and PAY for Webex (a, c, e, g, i) and Skype (b, d, f,
h, j) based on the activity-type and in summary (All) form. The downstream and upstream DIR is mapped on +1 and −1, respectively.

VConf appear more indistinguishable. Such signature seems
correlated for PL, DIR, and TCPWIN and related to the first 5
packets, whereas for IAT the peculiarity of VCall can be ob-
served in the index interval 8–16. On the contrary, for Webex,
there is a quite-similar pattern among the different activities
for all fields associated to the 36 packets. Finally, referring
to PAY, a similar observation applies to the identifiability of
VCall activity within Skype, whereas for Webex a slightly
distinctive behavior of Webi is apparent.

B. Sensitivity Analysis

Herein we perform a sensitivity analysis aimed at tuning the
dimension of the two types of input (cf. Sec. III-C) in terms
of number of bytes Nb and number of packets Np employed.
Figure 3 depicts the Accuracy and F-measure8 attained by
the 1D-CNN and HYBRID architectures, respectively when
varying Nb ∈ [256, 2048] B and Np ∈ [4, 36] packets.9 Also,
to highlight the input size-complexity trade-off, we also report

8Accuracy is the share of correctly-classified samples, while F-measure is
the harmonic mean of precision (the proportion of classifier decisions for a
given class which are actually correct) and recall (the per-class accuracy).

9We did not perform the same analysis also for MIMETIC due to the com-
binatorial complexity resulting from considering all the possible combinations
of Nb and Np, and the time needed to train/test each resulting classifier.
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(b) HYBRID.

Figure 3: Accuracy [%], F-measure [%], and number of trainable
parameters [k] of 1D-CNN (a) and HYBRID (b) when varying the
input dimensions Nb and Np, respectively. Results refer to the Joint-
TC task. The best trade-off value is highlighted via a ? marker.

the number of trainable parameters vs. the size of considered
input data. Results refer to the (hardest) Joint-TC task.

Looking at Fig. 3a, we can notice that even if the best
Accuracy and F-measure are attained with Nb = 1024,
when considering Nb > 576 B, the performance is almost



insensitive to the higher input dimensionality: when passing
from Nb = 576 to Nb = 1024, the Accuracy (resp. F-measure)
raises by only +1% (resp. +2%). On the other hand, the same
variation of Nb causes a steep increment (4×) in the number
of trainable parameters, thus obtaining a much more complex
architecture with almost the same TC performance.

Regarding Fig. 3b, a more evident trend can be observed.
Indeed, by using Np = 8 or Np = 12, HYBRID attains the best
performance in terms of Accuracy or F-measure, respectively,
keeping also a limited (viz. manageable) number of trainable
parameters. Regarding the latter, a notable exception is given
by Np ∈ [4, 6] corresponding to a number of trainable
parameters comparable with Np = 12. The reason is that,
with such small inputs, we need to resort to a different
padding—implying additional complexity—to implement the
HYBRID architecture. In light of the above considerations, in
the next analyses—considering the F-measure as the target
performance measure, and to limit the complexity of obtained
classifiers—we employ Nb = 576 B and Np = 12 packets, if
not explicitly stated otherwise.

C. App and Activity Classification

Table I reports the performance of the three considered
architectures (i.e. 1D-CNN, HYBRID, and MIMETIC) in terms
of both Accuracy and F-measure. In detail, according to the
definition of the TC tasks we aim to tackle, the table reports the
performance for Joint-TC, App-TC, and Act-TC (in different
columns). Also, in line with the discussion in Sec. III-C, we
evaluate these attained performance figures when adopting
different training strategies: APP×ACT, APP, and ACT (in
“Training Strategy” column). Overall, it is evident that Joint-
TC is the hardest task to tackle by all the architectures, with
F-measure exposing lower values (in the range 50%–53%).
On the other side, for App-TC, all the classifiers achieve
remarkably higher F-measure values (95%–98%). Finally, Act-
TC performance sits in the middle of the other two (63%–
68% F-measure). While Joint-TC is expected to be a harder
task in nature (13 classes), Act-TC results in such a lower
performance figure in spite of a simpler problem (3 classes).
This result witnesses that different activities are hardly dis-
tinguishable, confirming the outcome of the early-behavior
characterization in Sec. IV-A.

Considering all TC tasks, MIMETIC always returns better
performance than the two competing approaches in terms
of both Accuracy and F-measure. Specifically, for Joint-TC,
MIMETIC achieves +3% F-measure w.r.t. both 1D-CNN and
HYBRID. Similarly, when focusing on App-TC, MIMETIC
shows +1% and +3% F-measure w.r.t. 1D-CNN and HY-
BRID, respectively, while on Act-TC, MIMETIC performs even
better than both 1D-CNN (+2% F-measure) and HYBRID
(+5% F-measure).

Interestingly, Tab. I also highlights that the training strategy
adopted may impact the performance achieved by the models.
Indeed, focusing on App-TC all the architectures achieve
better performance when relying on APP training strategy. On
the other hand, looking at Act-TC, APP×ACT training strategy
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(a) 1D-CNN.
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(b) HYBRID.
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(c) MIMETIC.
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(d) 1D-CNN.
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(e) HYBRID.
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(f) MIMETIC.

Figure 4: Confusion matrices of 1D-CNN (a, d), HYBRID (b, e),
and MIMETIC (c, f) considering the best training training strategy in
terms of F-measure. Results are reported on Joint-TC (a-c) and App-
TC (d-f). Note that the log-scale is used to evidence small errors.

results in better performance for HYBRID and MIMETIC,
whereas ACT is the best training strategy for 1D-CNN.

To detail the performance at a finer grain, Fig. 4 reports
the confusion matrices associated to the best training strategy
in terms of F-measure achieved by each architecture for both
Joint-TC and App-TC tasks. Referring to the hardest Joint-TC
task (Figs. 4a, 4b, and 4c), the performance figures reported in
Tab I are confirmed by the fact that MIMETIC can also substan-
tially reduce the misclassification patterns w.r.t. 1D-CNN and
HYBRID, confining the errors within the activities of the same
app. Similarly, for the App-TC task (Figs. 4d, 4e, and 4f), the
errors of MIMETIC are less severe than those of 1D-CNN
and HYBRID, confirming its specific suitability for such a
task. The difficulty in discriminating among the activities is
highlighted by the confusion matrices of the Act-TC task (not
shown for brevity) which show analogous misclassifications
for all the approaches, corroborating the traffic similarity of the
considered activities regardless of the specific app employed.

Finally, if we further enlarge the set of aspects of interest
in our investigation also taking into account the complexity
of the considered architectures, the analysis provides other
interesting pieces of evidence (last column of Tab. I). In fact,
the complexity highly varies with considered architecture: 1D-
CNN and MIMETIC are ≈ 20× and ≈ 4× more complex
than HYBRID, respectively, in terms of trainable parameters
(which are roughly proportional to both the training time and
the memory occupation). Hence, MIMETIC provides the best
trade-off between TC performance and complexity.

V. CONCLUSIONS AND FUTURE DIRECTIONS

The COVID-19 pandemic has caused a sudden—and possi-
bly non-temporary—surge of the usage of communication and



Table I: Accuracy, F-measure, and number of Trainable Parameters (#TP) comparison of the three architectures (1D-CNN, HYBRID, and
MIMETIC) when trained on different class-labels (i.e. related to APP×ACT, APP, and ACT) for different classification tasks. #TP depends on
the classification task, but for each classifier the variations are smaller than shown precision. Results are in the format avg. (±std.) obtained
over 10-folds. The best result per metric (column) is highlighted in boldface.

Classifier Training Strategy
Joint-TC App-TC Act-TC

#TP [k]
Accuracy [%] F-measure [%] Accuracy [%] F-measure [%] Accuracy [%] F-measure [%]

1D-CNN
APP×ACT 73.50(±1.95) 49.74(±3.41) 97.17(±1.08) 96.98(±1.25) 74.22(±1.81) 64.62(±2.36) 4261

APP - - 98.04(±0.94) 97.89(±1.16) - - 4253
ACT - - - - 74.83(±2.21) 65.89(±2.72) 4251

HYBRID
APP×ACT 72.69(±1.86) 49.99(±3.23) 95.45(±1.41) 95.08(±1.46) 74.38(±1.47) 63.38(±2.47) 222

APP - - 95.33(±1.96) 94.71(±2.25) - - 222
ACT - - - - 73.50(±2.27) 62.50(±2.89) 221

MIMETIC
APP×ACT 75.49(±1.84) 52.71(±3.75) 98.07(±0.90) 97.86(±1.16) 76.12(±1.69) 67.48(±2.12) 942

APP - - 98.49(±0.60) 98.30(±0.73) - - 937
ACT - - - - 75.58(±2.82) 66.87(±3.38) 936

collaboration apps, which has impacted the nature of Internet
traffic, calling for novel improved tools for network monitoring
and management.

In this work, we focused on the TC of the most popular
communication and collaboration apps via DL approaches.
We considered three TC tasks (Joint-TC, App-TC, and Act-
TC) and different training strategies based on the ground
truth. MIMETIC (a state-of-art multimodal TC approach) has
been compared against recent DL single-modal solutions (an
1D-CNN and a hybrid 2D-CNN + LSTM). The experi-
mental results—based on a newly collected dataset covering
five Android mobile apps (GotoMeeting, Skype, Teams,
Webex, and Zoom) and three user activities (Webi, VCall, and
VConf )—include the characterization of the early behavior of
biflows generated by specific activities and apps, the tuning of
the considered architectures with respect to the dimensionality
of the input parameters, as well as the resulting complexity.

While all the considered architectures achieve good perfor-
mance (95%–98% F-measure) when tackling App-TC, Joint-
TC represents the hardest task (50%–53% F-measure). Despite
the simpler TC problem (3 classes), the low performance of
Act-TC (63%–68% F-measure) highlights that user activities
are hardly distinguishable by the considered architectures via
the adopted input configurations.

Comparing the considered architectures, MIMETIC is the
best performing one for all TC tasks in terms of both Accuracy
and F-measure. In addition, when considering the complexity
aspects, MIMETIC proves to be even the best choice, exposing
a complexity ≈ 4× lower than 1D-CNN. Future directions of
research will account for (i) use of advanced learning strategies
encompassing multitask and hierarchical traffic classifiers; (ii)
use of advanced DL layers (e.g., inception, residual, attention);
(iii) further traffic analysis tasks as fine-grain modeling and
prediction.
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