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Abstract—The widespread use of powerful mobile devices has
deeply affected the mix of traffic traversing both the Internet
and enterprise networks (with bring-your-own-device policies).
Traffic encryption has become extremely common, and the quick
proliferation of mobile apps and their simple distribution and
update have created a specifically challenging scenario for traffic
classification and its uses, especially network-security related
ones. The recent rise of Deep Learning (DL) has responded to
this challenge, by providing a solution to the time-consuming
and human-limited handcrafted feature design, and better clas-
sification performance. The counterpart of the advantages is the
lack of interpretability of these black-box approaches, limiting
or preventing their adoption in contexts where the reliability
of results, or interpretability of polices is necessary. To cope
with these limitations, eXplainable Artificial Intelligence (XAI)
techniques have seen recent intensive research. Along these lines,
our work applies XAI-based techniques (namely, Deep SHAP) to
interpret the behavior of a state-of-the-art multimodal DL traffic
classifier. As opposed to common results seen in XAI, we aim at a
global interpretation, rather than sample-based ones. The results
quantify the importance of each modality (payload- or header-
based), and of specific subsets of inputs (e.g., TLS SNI and TCP
Window Size) in determining the classification outcome, down
to per-class (viz. application) level. The analysis is based on a
publicly-released recent dataset focused on mobile app traffic.

Index Terms—traffic classification; encrypted traffic; explain-
able artificial intelligence; deep learning; multimodal learning.

I. INTRODUCTION

The knowledge of the mix of traffic traversing a net-
work is instrumental to several management activities: Traffic
Classification (TC) has a key role in defining a “normal”
traffic profile for the purpose of anomaly detection, or to
extracting (or inferring) fingerprints for intrusion detection
and attack identification. Moreover, TC can be also exploited
for defining technical boundaries for censorship enforceability,
and assessing the effectiveness of surveillance and blocking
countermeasures. For these reasons TC has seen consistent
research and field adoption along the years, and is now seeing
a renewed blossoming of interest due to recent evolution of
network usage. Indeed, the widespread availability of well-
equipped smartphones has impacted both the Internet and
enterprise networks (due to bring-your-own-device policies),
presenting a highly dynamic and extensively encrypted mix of
traffic. On the other hand, new powerful Artificial Intelligence
techniques (namely Deep Learning, “DL” in the following)

have become available to face the new classification chal-
lenges. DL approaches are characterized by a fully-automated
feature extraction phase (with reduced need of human experts
in the loop) and a greater ability of learning from huge
volumes of data, that provides better performance than the
traditional Machine Learning (ML) approaches.

The highly desirable characteristics of DL come at the cost
of lack of interpretability of their results, as the black-box
nature of DL techniques hides the reason behind specific
classification outcomes. This impacts the understanding of
classification errors and the evaluation of the resilience against
adversarial manipulation of traffic to impair identification.
Moreover, by understanding the behavior of the learned model,
performance enhancements can be pursued with much more
focused and efficient research, compared with a less-informed
exploration of the (typically huge) hyper-parameters space. In
fact, DL approaches keep naturally hidden the answers to basic
questions like “which parts of a complex architecture mostly
contribute to the final decision?”, “which specific fields,
packets, protocols are the most important in the classification
process?”, or “which ones are responsible for classification
errors or circumvention?”.

The field of eXplainable Artificial Intelligence (XAI) con-
stitutes the answer to these needs, as it provides approaches
and techniques able to relate the structure of the model and
the input to the respective classification outcome, partially
revealing the (former) completely black box. The adoption of
DL and (consequently) of XAI is relatively new, especially in
the field of network traffic classification: with this work we
contribute to this step forward in the understanding of DL-
based network traffic classifiers.

To this aim, we perform the behavior interpretation of
a state-of-the-art DL architecture for TC we recently pro-
posed [1], analyzing the relative importance of inputs at fine
grain (i.e. per-class) in the challenging task of classifying
mobile apps. More specifically, we apply state-of-the-art XAI
tools (namely, Deep SHAP [2]) to quantify and understand
the importance of payload-derived and header-based inputs,
further deepening the analysis to specific subsets of the inputs
(i.e., TLS-SNI in the payload, and TCP Window Size and
Payload Length, and packet Inter-Arrival Time and Direction
for the header-based). To perform our experimental evaluation,
we leverage the public traffic dataset MIRAGE-2019 that
focuses on mobile-app traffic and is human-generated [3].

The paper is organized as follows. Section II surveys first978-1-7281-5684-2/20/$31.00 ©2021 IEEE



attempts of XAI application to networking and TC, positioning
our work against related literature. Section III describes the
considered XAI-based TC methodology, while the dataset
employed and the experimental results are discussed in Sec. IV.
Finally, Sec. V provides conclusions and future perspectives.

II. BACKGROUND AND RELATED WORK

The huge success in several tasks such as image classi-
fication and speech recognition has paved the way to the
use of AI for activities related to decision making, cost
reduction, risk management, etc. However, models resulting
from complex AI algorithms have a black-box nature which
leads to an undesired lack of interpretability. As a result,
in the last years many efforts have focused on assessing
the transparency, causality, bias, fairness, and safety of the
obtained solutions [4]. Investigating the working behavior of
already-trained models allows to (i) assess the robustness of
AI systems; (ii) evaluate their resilience to drifting data per-
turbations; (iii) verify legal, safety, and security requirements;
(iv) complement human-expertise in decision making and even
provide scientists with novel insights.

A particularly important separation of interpretability meth-
ods is based on the type of algorithm that could be applied:
model-specific methods can be applied only to some specific
models, whereas model-agnostic methods can be virtually
applied to every possible ML/DL algorithm. Another com-
plementary taxonomy of these methods is based on the inter-
pretation scale: local methods provide an explanation only for
a specific sample, whereas global methods attempt to explain
the overall model behavior. Accordingly, different families of
approaches have emerged with the aim of shedding light on
ML/DL outcomes via post-hoc explanations [5].

Hereinafter, we discuss recent works investigating the inter-
pretation of computer network tasks via the aforementioned
XAI techniques. Indeed, in recent years several data-driven
solutions based on either ML or DL have been proposed for
various network-related problems such as resource allocation,
routing, video-rate selection, congestion control [6], traffic
classification [7, 8] and prediction [9]. However, the main rea-
sons hindering these solutions to be widely adopted in produc-
tion environments [10] is their general lack of interpretability
as well as potential behavioral uncertainties. Nevertheless, an
initial corpus of works has provided a first effort towards the
interpretation of data-driven black-box models developed for
networking problems as briefly discussed in the following.

Meng et al. [11] propose Metis, a framework for inter-
pretability of local and global control networking problems.
Metis exploits decision-trees- and hypergraph-based distilla-
tion to obtain interpretable rule-based controllers and sup-
port design, debugging, deployment, and ad-hoc adjustment
of Deep Neural Networks (DNNs). Similarly, Zheng et al.
[10] face the resource allocation problem by inspecting the
behavior of a DNN trained to minimize the average job
duration. They utilize saliency maps (showing impact of each
input feature on the output) and inspect the activation of
intermediate neurons in hidden layers to reveal what features a

DNN depends on. Morichetta et al. [12] define the EXPLAIN-
IT methodology for the explainability of unlabeled data.
EXPLAIN-IT provides explanations for clustering results re-
lated to the analysis of QoE in YouTube video streaming. The
proposed approach uses clustering results to train a classifier
for video quality prediction, which is then explained via black-
box XAI approaches. Dethise et al. [6] analyze the behavior of
a model based on reinforcement-learning agents and aiming at
video bit-rate adaptation. The investigation observes agent’s
decisions to understand how input features contribute to the
decisions. The study exploits data inspection and visualization
and leverages LIME [13] as XAI strategy. Focusing on network
cyber security, Amarasinghe et al. [14] propose a frame-
work for anomaly detection based on DNNs which provides
post-hoc explanations for the detected anomalies to improve
users’ trust. The Layer-wise Relevance Propagation (LRP)
method [15] is used to compute the relevance of input features.

More recently, a number of research contributions have
investigated interpretability in traffic identification and classifi-
cation. Beliard et al. [7] demonstrate how simple visualization
tools (e.g., to represent the 1D original space and feature
projections at intermediate layers) can be helpful in clarify-
ing the inference process of Convolutional Neural Networks
(CNNs). Wang et al. [8] explore DL methods (autoencoders
and convolutional and recurrent networks) for mobile-app TC
and use Deep SHAP [2] to explain the outcomes obtained
through a 1D-CNN. The analysis focuses only on WeChat
app and is limited to four (representative) outcomes, being the
approach sample-dependent (viz. a local explanation method).
In [9], we leverage Markovian distillation for interpreting
traffic prediction results. In more detail, we compare Markov
Chains and ML concordant/discordant predictions to highlight
and interpret ML predictive patterns (focusing on outcome dis-
agreements) by observing Markovian transition probabilities.

Positioning of our contribution: similarly to the final
works previously reported, we focus on TC and utilize XAI
techniques to obtain insights regarding the behavior of a
(multimodal) DL architecture. Also, we exploit Deep SHAP
to infer the importance of a set of inputs for certain samples
(a local approach), as in [8]. However, differently from Wang
et al. [8], we use this sample-dependent information to extract
global explanations, which allows to explain the general
correct behavior of the classifier, also in terms of varying
input granularity. Moreover, our analysis is not limited to
one app, but is related to a selection of the 41 mobile apps
encompassing the MIRAGE-2019 dataset. Finally, for the
experimental evaluation, we adopt an open dataset, focused
on human-operated mobile apps. This choice sets our work
apart from almost the totality of other works (saved for our
own previous contribution on traffic prediction) using private
(or partially-private) datasets or simulated data.

III. MULTIMODAL DEEP LEARNING–BASED
EXPLAINABLE TRAFFIC CLASSIFICATION

In this section, we describe the proposed contribution.
Specifically, in Sec. III-A, we describe the MIMETIC classifier,



particularly its architecture and training procedure; then, in
Sec.III-B, we introduce the concept of interpretability in DL
architectures and describe our approach for interpretability
based on the Deep SHAP technique.

A. Mobile Traffic Classification via MIMETIC

MIMETIC is a multimodal DL traffic classifier that exploits
multiple modalities (viz. views) of traffic data, to capitalize
their heterogeneous nature via intermediate fusion [16] of
(automatically extracted) features.1 Herein, we leverage XAI
techniques to interpret the behavior of the aforementioned
state-of-the-art traffic classifier [17]. This classifier operates
at biflow level: a biflow (viz. a bidirectional flow) is a traffic
object encompassing all the packets sharing the same 5-tuple
(i.e. source and destination IP address, source and destination
port, and transport-level protocol) in both upstream and down-
stream directions [18]. Hence, the mobile TC task consists of
assigning to each biflow a class within the set {1, . . . , L}, with
L denoting the number of different apps.

MIMETIC consists of two single-modality (viz. input-
specific) branches that extract the corresponding intra-modality
features. Each branch is fed with one input type chosen
among unbiased inputs [18]. The input of the first branch
(henceforth named PAY-modality) is constituted by the first Nb

bytes of transport-layer payload arranged in byte-wise format,
whereas for the second branch (HDR-modality) we consider
some informative header fields of the first Np packets.2 In
detail, we consider the first Nb = 576 bytes and Np = 12
packets, respectively.3 To capture inter-modality dependencies,
the abstract features extracted by the single-modality branches
are joined via a concatenation layer and fed to a shared
dense layer before performing the classification through a
softmax. MIMETIC is trained via a two-phase procedure: (i) an
independent pre-training of each single-modality branch and
(ii) a subsequent fine-tuning of the whole architecture.

B. Interpreting DL-based Traffic Classifiers via Deep SHAP
The starting point for interpreting complex DL architectures

is to consider a simpler explanation model g(·), which is
designed to closely-approximate the original model f(·).

In this paper, we focus on local methods, which try to ex-
plain the original model in the neighborhood of each particular
instance x, using the so-called simplified inputs x′ that map
to the original ones through a mapping function.

Most of the interpretability techniques assume a peculiar
functional form for the explanation model g(·), which led to
the definition of Additive Feature Attribution (AFA) methods
which are linear functions of binary variables, i.e.

g(z
′
) = φ0 +

M∑
m=1

φm z
′
m (1)

1This peculiar procedure optimizes the less sophisticated early (or data)
fusion and late (or score/decision) fusion that are not able to fully exploit the
potentiality of multi-modality.

2Number of bytes in transport-layer payload, TCP window size (set to zero
for UDP packets), inter-arrival time, and packet direction ∈ {−1, 1}.

3We underline that these choices have been driven by both our past
experience [3, 18] and further preliminary analyses (not shown for brevity).

where z
′ ∈ {0, 1}M , M denotes the number of simplified

inputs, and φm ∈ R. AFA methods provide an explanation
model attributing an “effect” φm to each input, and summing
the effects of all input attributions approximates the original
model output f(x). The most used interpretability techniques
(LIME, DeepLIFT, etc.) belong to this family of explanation
models. Additionally, when the functional form in Eq. (1)
is required to satisfy (i) local accuracy, (ii) missingness,
and (iii) consistency properties, there exists a unique AFA
solution satisfying them [2]. Such solution coincides with the
computation of the well-known Shapley values.

Shapley values originate from cooperative game theory [19]
and identify the contribution of player m to the payoff v(P)
achieved by the overall coalition P . To do so, this method
assesses the payoff of every subset of cooperating players S ⊂
P and tests the effect of removing/adding the player m to S
on the total payoff v(S) obtained by S if they cooperate.

When transposing the method to the task of explaining
a DL-based model, the input data maps into the players of
the cooperative game, whereas the DL architecture output
f(x) corresponds to the payoff function. Unluckily, the time
required for the exact computation of Shapley values grows
exponentially with the input size M .

Conversely, SHapley Additive exPlanation (SHAP) approx-
imates these quantities via the conditional expectation [2]

f(hx(z
′
)) ≈ E {f(z)|zS} (2)

where S denotes the set of non-zero indices within z
′
. This

approximation allows to compute the above quantity in a
computationally-efficient fashion and eliminates the need to
re-train the models. The computation is also simplified by as-
suming statistical independence among the inputs and linearity
of the model [2], i.e. f(x) =

∑M
m=1 wmxm+b. Indeed, when

both these assumptions hold, it can be shown that φm’s are
in closed-form and equal to φm(f,x) = wm pxm − E {xm}q.
The aforementioned simplification for φm’s is capitalized as
described next.

Herein, we rely on DeepLIFT [20] for the explicit and
recursive computation of SHAP values. Indeed, the latter is
an AFA DL-explanation method which attributes to each input
xm a value C∆xm∆o that represents the effect of that input
being set to a reference value (an uninformative background
value) as opposed to its original value. Accordingly, DeepLIFT
can be used to obtain a compositional approximation of SHAP
values (i.e. using output expectation as a reference value
and resorting to explicit Shapley equations, for consistent
linearization), leading to DeepSHAP [2], a fast-approximation
of SHAP values. Specifically, this approach will be used to
assess the importance of inputs selected from the raw traffic
data (e.g., related to PAY or HDR modalities of MIMETIC) of
a given biflow in classifying the app generating it.

Therefore, to explain the predictive behavior of DL-based
traffic classifiers, the prediction model f(x) is chosen as the
soft-output associated to the generic ith app, i.e. pi(x). Hence,
we interpret the SHAP value φm as the importance value of the
mth input in forming the confidence associated to labeling the



biflow (whose overall input is x) with the ith app. We recall
that, since φm can be also negative, they should be interpreted
as follows: positive (negative) values increase (decrease) the
confidence pi(x) in the ith app with respect to its average
value E{pi}.4 Herein, for each biflow, we focus on explaining
the soft-output associated to the predicted app p̂(x), as this
represents the most relevant (and highest) output for TC.

Once we have obtained a local explanation for a single
instance, our proposed global explanation approach relies on
aggregating (viz. pooling) explanations over different samples
x1, . . . ,xN . The aggregation step is however carried out on
normalized SHAP values, obtained by dividing each SHAP
value by their overall sum, namely rφm fi φm /

∑M
m=1 φm.

Considering rφm allows focusing on the relative importance of
each input (indeed, for each sample, the sum of the importance
values equals one). Additionally, as in [8], we aggregate only
on correctly-classified samples to focus on the correct behavior
of MIMETIC and to allow to interpret its counter-intuitive
(while right) decisions a posteriori.

IV. EXPERIMENTAL ANALYSIS

This section describes the experimental setup and inter-
pretability results. Specifically, in Sec. IV-A a brief descrip-
tion of the MIRAGE-2019 dataset is provided. Then, the
interpretability of MIMETIC TC-results is discussed, focusing
on relative contribution of each modality, and per-modality
investigation of corresponding inputs (Sec. IV-B). Finally,
referring to the PAY-modality, an in-depth TLS-based analysis
is performed (Sec. IV-C).

A. Dataset Description and Experimental Setup

This study leverages MIRAGE-2019, an open dataset
containing mobile-app traffic.5 280+ human experimenters6

(mimicking the typical usage of each app by testing most-used
functionalities) contributed to the collection of the dataset at
the ARCLAB laboratory of the University of Napoli “Fed-
erico II” within May’17–May’19, exploiting the MIRAGE
architecture [3]. As a whole, MIRAGE-2019 encompasses the
traffic generated by 41 Android apps (newest app versions
available at time of capture were used) belonging to 16
categories according to the Google Play Store7. The dataset
contains ≥ 4.6k traffic traces, each generated in a capture
session of 5÷ 10 mins, and ≈ 96.5k biflows.

All the results in the following refer to a random (stratified)
dataset split with 90% (resp. 10%) instances allocated for
training (resp. testing). We highlight that, in the considered
case, the TC performance attained by MIMETIC were 88.74%,

4The sum of the SHAP values equals the considered soft-output value minus
the base output. The latter represents the average of the same soft-output
obtained in correspondence of the samples associated to the background set.

5http://traffic.comics.unina.it/mirage
6Experimenters have been informed about the objectives of their activities

and the public release of the corresponding traces for research purposes. Also,
no personal information was involved at any time of MIRAGE-2019 collection
(i.e. non-personal mobile devices, private IPv4 address space, purposedly-
created app accounts) [3].

7https://play.google.com/store/apps

20

40

60

80

Im
po

rta
nc

e 
[%

] PAY HDR

Figure 1. Modality contributions of MIMETIC in terms of importance rφm.
PAY-modality contributes with remarkably higher importance values than
HDR-modality.

87.83%, and 93.43% in terms of accuracy, F-measure, and G-
mean, respectively.

B. Interpretability Analysis for TC Decisions

In Fig. 1, we report the (relative) contribution of each
traffic modality (HDR or PAY) of MIMETIC. The results are
obtained by aggregating (over all the correctly-classified tested
samples), via a median statistic, the pooled SHAP values rφM
for each modality, obtained via DeepSHAP (cf. Sec. III-B). It
is apparent that PAY-modality always contributes with higher
importance values. Finally, we would also underline that
the complementary analysis performed on a per-app basis
(whose results are not shown for brevity), highlights analogous
patterns, remarking the major importance of PAY-modality
over the HDR one.

Hereinafter we firstly focus on the importance of inputs
associated with the HDR-modality of MIMETIC architecture.
Specifically, this modality is fed with 4 header fields extracted
from the first 12 packets of each biflow, namely inter-arrival
time (IAT), direction (DIR), TCP window size (TCP_WS),
and transport-layer payload length (PL). With this analysis,
we provide global explanations at app granularity. To this
aim, in the following we discuss the results obtained for some
exemplifying apps.

Figure 2 depicts the median importance values for each
element of the 4 × 12 matrix constituting the input of HDR-
modality. For Facebook (Fig. 2a), we can notice that the
importance is mainly related to PL and TCP_WS with a
decreasing importance of the packets after the very first ones
(this latter observation applies to all the fields but IAT which
is characterized by a more flat distribution). Overall, we can
notice that the first four packets are the most important.
A similar situation is observed for OneDrive (Fig. 2b):
TCP_WS and PL are the most important fields, whereas the
other two fields expose very minimal median scores, regardless
of the packet number. For the other apps, it is more challenging
to recognize the most important fields: for instance, matrix
elements of Hangouts (Fig. 2c) have no remarkable higher
values, beyond TCP_WS of the 2nd packet and PL of the initial
ones (i.e the first 5 packets). Similarly, the matrix of ilMeteo
(Fig. 2d) results scattered without fields with remarkably major
importance. A different situation is observed for Skype and
Trello. In the former case, DIR of the packets around the
7th is useful for the prediction. On the other hand, IAT plays
an essential role together with DIR for Trello. These results



confirm that all the considered fields can play a crucial role
in identifying the correct app generating the observed biflows,
even if with some differences among the apps.

Now we discuss the importance of inputs associated to
the PAY-modality, which relies on the first Nb = 576 bytes
of each biflow. In all the plots, sample-wise positive and
negative SHAP values are highlighted with red and blue colors,
respectively. These distributions are integrated with the median
importance value of each byte (over different samples), which
is reported as a solid black line. This helps understanding
regions that are more consistently influential for predictions
and assessing their variability.

In Fig. 3, we analyze the global explanations associated
with single apps, focusing on some remarkable examples
which are discussed in the following. For Dropbox (Fig.3a),
we notice an initial region attaining high per-sample positive
values witnessing that the first 200 bytes play, on average, a
crucial role in correctly identifying this app. Such an outcome
is also confirmed by the median value. On the opposite, the
median of the distribution for the other bytes is very low,
suggesting their poor relevance. However, the situation is not
always so neat: for a small group of apps (e.g., Spotify—
Fig. 3b), it is hard to identify regions that are consistently
influential, with the median that does not highlight specific
groups of bytes. For these apps, we often observe more dense
blue distributions, reporting the presence of input values that
confuse the network. We remark that this situation concerns a
limited group of apps.

Finally, for the other apps including Trello (Fig. 3c), the
observed behavior is different; in such cases, we can clearly
observe a central region (corresponding with bytes in the
interval [300; 400]B) that supports correct predictions. This
observation underlines the importance of considering a value
for Nb no less than 400B (as in MIMETIC), i.e. not limited to
the very first bytes of the payload.

C. Analysis of TLS Biflows

In the following analysis, we focus on TLS biflows (which
altogether constitute ≈ 80% of the dataset) and investigate
the benefits to TC effectiveness deriving from Server Name
Indication (SNI) extension. We focus on the latter because
the bytes highlighted by DeepSHAP belong to this particular
extension in many local (viz. per-sample) explanations.

In detail, the SNI allows to specify which hostname the
client is attempting to connect to. Apart from a few biflows not
using this extension (None), we can divide the biflows in our
dataset into two groups: those (i) with App-Specific SNI (i.e.
used only by a particular app) and those (ii) with Common SNI
(found in more than one app, by definition). Concerning the
latter, the most used is www.google.it, shared by 28 apps,
while the majority of the Common SNIs are related to Google
and Facebook domains. On the other hand, the presence of
peculiar SNI-related information (i.e. App-Specific SNIs) is
expected to carry remarkable benefits.

To provide a quantification, we have evaluated the perfor-
mance of MIMETIC’s PAY-modality for biflows with either
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(b) OneDrive.
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(c) Hangouts.
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(d) ilMeteo.
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(e) Skype.
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(f) Trello.

Figure 2. Importance rφm of the header-field inputs (identified by the
respective packet) for HDR-modality of MIMETIC for exemplifying apps.

App-Specific SNIs or Common SNIs. Results witness that TC
accuracy appreciably differs between the two aforementioned
groups: for the former, it is surprisingly high, i.e. ≈ 94%,
whereas considering the latter, it decreases to ≈ 69%.

In order to highlight the distribution of different SNI-type-
carrying biflows, Fig. 4 reports their subdivision for each app.
In detail, four apps, namely Waze, Dropbox, eBay, and
Diretta, show a very high App-Specific SNI rate (> 80%),
with Waze having ≈ 95% of biflows exposing SNIs found
only in biflows of the same app. For the other apps, this
rate gradually decreases down to Slither.io which reports
exclusively Common SNIs.

As expected, the share of biflows with App-Specific SNIs
impacts the per-app classification performance. Focusing on
the above-mentioned four apps exposing the major share
of these biflows, the resulting accuracy lies in the range
[92%; 98%] (up to +10% w.r.t. the average accuracy over the
whole dataset). On the other hand, considering the other side
of the spectrum, Slither.io (whose traffic is characterized
by the sole presence of Common-SNI biflows) results in 84%



(a) Dropbox. (b) Spotify. (c) Trello.

Figure 3. Importance rφm of the payload-byte inputs (identified by their position) for PAY-modality of MIMETIC for exemplifying apps.
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Figure 4. App-Specific and Common SNI distribution for the 41 apps
composing the MIRAGE-2019 dataset.

accuracy (−4% w.r.t. the average).
While these results cannot be exclusively imputed to the

SNI values observed in the biflows neither to the sole PAY-
modality, they further highlight the centrality of SNI-related
information, which are fruitfully leveraged by the TC models.

V. CONCLUSIONS AND FUTURE DIRECTIONS

We focused on explaining the black-box behavior of DL-
based traffic classifiers, exploiting our previous state-of-the-
art proposal MIMETIC, using tools from XAI domain, and
evaluating our methodology on an open dataset of mobile-app
traffic (encompassing 41 apps). Based on DeepSHAP, we were
able to obtain global explanations (from the interpretability
viewpoint) which allowed us to assess the weight of each
modality and the importance of input data fed to HDR (resp.
PAY) modality, quantifying the importance of each header
field (resp. payload byte). Delving into the latter aspect, we
performed a domain-based TLS analysis focusing on SNI to
reach a human-understandable interpretation of these results.
Future avenues of research will include (i) investigating trust-
worthiness of traffic classifiers (via calibration analysis), (ii)
comparing global explanations obtained via other XAI tools
(e.g., LRP [15]), and (iii) applying XAI techniques to other
network traffic analysis tasks (e.g., prediction).
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