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Abstract—Traffic Classification (TC), i.e. the collection of
procedures for inferring applications and/or services generating
network traffic, represents the workhorse for service management
and the enabler for valuable profiling information. Sadly, the
growing trend toward encrypted protocols (e.g. TLS) and the
evolving nature of network traffic make TC design solutions
based on payload-inspection and machine learning, respectively,
unsuitable. Conversely, Deep Learning (DL) is currently fore-
seen as a viable means to design traffic classifiers based on
automatically-extracted features, reflecting the complex patterns
distilled from the multifaceted (encrypted) traffic nature, implic-
itly carrying information in “multimodal” fashion. To this end,
in this paper a novel multimodal DL approach for multitask
TC is explored. The latter is able to capitalize traffic data
heterogeneity (by learning both intra- and inter-modality depen-
dencies), overcome performance limitations of existing (myopic)
single-modality DL-based TC proposals, and solve different traf-
fic categorization problems associated with different providers’
desiderata. Based on a real dataset of encrypted traffic, we report
performance gains of our proposal over (a) state-of-art multitask
DL architectures and (b) multitask extensions of single-task DL
baselines (both based on single-modality philosophy).

Index Terms—traffic classification; encrypted traffic; deep
learning; multitask learning; multimodal learning.

I. INTRODUCTION

The effectiveness of security and quality-of-service enforce-
ment devices, as well as network monitors, is limited (or
even hampered) when there is no accurate knowledge of the
application generating the traffic. Such process, known as
Traffic Classification (TC), has a long-established application
in several fields [1]. Sadly, the widespread adoption [2] of
encrypted protocols (TLS) as well as NAT and dynamic ports,
increases the difficulty to accurate TC, defeating established
approaches such as deep packet inspection and port-based
methods, and can be only bypassed in closed-world (e.g.
enterprise) scenarios by man-in-the-middle proxies [3]. On the
other hand, stronger privacy needs arose, against authoritarian
governments enforcing surveillance and censorship on the
Internet, and service providers negating network neutrality [4]:
the assessment of TC performance provides high value insight
for designers of (privacy-preserving) protocols, and obfusca-
tion and circumvention techniques.

In this complex scenario, Machine Learning (ML) classifiers
have proved to be the most appropriate for modern-traffic
classification, as they suit Encrypted Traffic (ET) while not
necessarily relying on port information [5]. However, their
use relies on handcrafted (domain-expert driven) features:

such process is unable to cope with modern network traffic
evolution, and impairs the design of both accurate and up-to-
date traffic classifiers [6] using “traditional” ML approaches.

Based on these considerations, in last years several works
started tackling TC via DL since the work [7], including
convolutional [8, 9] and recurrent [10] architectures. These
attempts revealed a low level of maturity in applying DL to this
specifically hard problem: we found in [11] how misguided
design choices led to biased conclusions. Also, DL approaches
provide new performance gain possibilities: by neglecting
these, designers would fail to harness the full potential offered
by DL. To face these shortcomings in TC state-of-art, in [11]
we laid a sound groundwork for the design of DL-based
classifiers aimed at highly-diverse traffic, both avoiding the
pitfalls of naïve adoption of DL to TC, and allowing for
best exploiting the potential of DL architectures. In [12] we
have leveraged on such groundwork to explore multimodal
approaches to enhance the performance of ET classification.
Herein, we further our exploration with multimodal multitask
approaches applied to the same goal, leading to the imple-
mentation of the DISTILLER (encrypteD multItaSk Traffic
classIfication via muLtimodaL dEep leaRning) proposal.

Multitask learning is an approach to inductive transfer that
improves learning for one task by using information in the
training signals of other related tasks. Besides reducing some
redundancy (sharing part of the feature-learning architecture),
this approach promises improved generalization and better
overall classification performance. To experimentally investi-
gate these properties, our work adopts a general architecture
for the simultaneous solution of multiple (related) encrypted
TC tasks via DL techniques (multitask), also able to best
exploit heterogeneous (multimodal) inputs. Based on the ISCX
VPN-nonVPN [13] dataset, we investigate the performance
of the proposed approach comparing it with the best seven
state-of-art multitask approaches, in fair conditions. To our
knowledge, no similar design and experimental investigation
have been presented in the encrypted TC scenario to date.1

The paper is organized as follows. Sec. II reviews litera-
ture on (encrypted) TC (including most relevant DL works),
whereas Sec. III describes our DISTILLER encrypted traffic
classifier; experimental evaluation is provided in Sec. IV;
Sec. V provides conclusions and future research avenues.

1Extended results from this study have been published as journal publica-
tion [14].



II. RELATED WORK

Several works face the problem of TC by means of ML-
and (more recently) DL-based approaches. After exploratory
attempts, some works started considering multitask architec-
tures as well [15]: we hereafter describe the most relevant.

Different DL architectures for encrypted TC are proposed
by Lopez-Martin et al. [10], combining Long Short-Term
Memory (LSTM) and 2D-convolutional layers. The proposals
are evaluated on a real traffic (from academic backbone net-
work). The results show high performance, also highlighting
a penalty associated to the use of inter-arrival times as input.

Wang et al. [8] apply DL to malware TC, proposing a
method based on 1D-Convolutional Neural Network (CNN)
tailored for ET. The experimental evaluation is conducted
on a selection of the ISCX VPN-nonVPN dataset [13]
and is divided in four different classification problems: (i)
VPN/nonVPN, (ii) 6 encrypted traffic classes, (iii) 6 VPN-
tunneled traffic classes, and (iv) 12 encrypted applications.
Different inputs are considered, including biased ones [11].

More recently, Huang et al. [16] have applied the multitask
learning paradigm to solve (i) malware detection (binary),
(ii) VPN-encapsulation recognition (binary), and (iii) Trojan
classification (9 classes) tasks. The proposed DL algorithm
is a 2D-CNN, tested on an assembled dataset obtained from
CTU-13 (malware) and ISCX VPN-nonVPN [13] datasets.
Following the work in [8], biased input data are employed.

A multitask DL architecture is proposed by Zhao et al. [17]
in the context of Federated Learning. This scenario, mainly
motivated by privacy concerns, performs model learning in a
distributed fashion, preventing local data (e.g., traffic traces)
to be shared, and communicating and merging only the partial
models learned locally. The considered tasks are: anomaly
detection (binary), VPN recognition (binary), and TC (6
classes). Notably, a set of statistical features are defined on
the biflow (partially defying the feature learning capability
of DL algorithms). The performance has been compared
with centralized (i.e. non federated-learning based) methods
showing slight improvement (maximum 1.5% on accuracy or
recall), but a significant reduction in training time with respect
to the baseline architecture (single-task Deep Neural Network).

Rezaei and Liu [18] propose an architecture to simultane-
ously classify the traffic (aggregated in 5 application cate-
gories) and predict biflow bandwidth and duration (quantized
over 5 and 4 intervals, respectively). Performance is evaluated
in a transfer learning setup, with one of the classification tasks
limited by a scarce ground-truth.

The same set of classification tasks is considered by Sun
et al. [19], but for both duration and flow rate a quantization at
two levels is investigated; the application type spans between
11 and 50 classes, according to the specific dataset (4 datasets
are employed, collected between 2003 and 2010). In this case
as well, a preliminary feature selection is performed referring
to previous ML literature, including statistical preprocessing
and transport-layer ports. Again, we highlight how this is a
misguided approach when leveraging DL architectures. More-
over the inclusion of transport-level ports does not abide by

modern traffic nature (NAT, mobile apps, tunneling, encryp-
tion). The authors evaluate performance in terms of perplexity,
and also training time, not always obtaining gains compared
with single-task baselines. Performance is evaluated also in
transfer learning and one-shot learning scenarios, highlighting
the effectiveness of the multitask approach in facing ground-
truth scarcity for a single task.

Compared with the above state-of-the-art, our contributions
are manifold: (i) we substitute the preliminary (manual) feature
selection with a more apt Deep Neural Network; (ii) we adopt
a multimodal architecture to process input data—the combi-
nation of (i) and (ii) allows for automatic feature learning
from heterogeneous data input; (iii) we feed the architecture
with simple unbiased inputs; (iv) we experimentally compare
our proposed DISTILLER classifier with the best proposals
from the state-of-the-art, implementing all with the same
technologies and feeding and evaluating all in fair conditions.

III. MULTIMODAL MULTITASK
DEEP LEARNING–BASED TRAFFIC CLASSIFICATION

A. Overall Architecture

In this section, we describe the proposed methodology for
multipurpose encrypted TC via multimodal multitask DL.
Herein, we assume that we are required to solve v = 1, . . . , V
different TC problems (tasks). Formally, given each TC object
observed [1], the vth TC problem (Tv) consists in assigning a
label among Lv classes within the set {1, · · · , Lv}.

As a necessary prerequisite, raw traffic is first segmented via
traffic object segmentation into distinct TC objects [1], each
constituting a subset of network packets sharing some common
properties (defined by the segmentation rule). Most works
tackling DL-based TC (see Sec. II) considered either flows
or biflows, with the latter outperforming the former. A flow
is defined as a stream of packets sharing the 5-tuple: source
(IP, port), destination (IP, port) and transport-level protocol.
Differently, a biflow includes also packets with source and
destination pairs exchanged.

We remark that DL-based traffic classifiers learn the distinc-
tive fingerprint of each traffic type/application via a training
set. Hence, for notational convenience, we define the mth

TC object of the training set (made of M samples) as
x(m) while the corresponding label of vth classification task
`v(m), belonging to one out of Lv different classes (i.e.
`v(m) ∈ {1, . . . , Lv}). The main advantage of DL (as opposed
to ML) approaches for TC is to overcome the little-adaptable
feature design process [11]. This is due to their ability to learn
traffic fingerprints in a end-to-end fashion, i.e. directly from
the type of input selected. Still, traffic data is intrinsically
highly-structured, as each sample contains information from
the whole protocol stack. As a result, early fusion by a
monolithic DL architecture taking the whole input coming
from a TC object in bulk is likely to be suboptimal. Indeed,
the parameter set would overfit to one input subset while
underfitting the others. Conversely, late fusion via the capi-
talization of score-results of DL-based traffic classifiers built
on different modalities, does not fully exploit the benefits of
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Figure 1: Architectural view of DISTILLER classifier. (a) depicts the architecture by highlighting single-modality representation layers,
differentiated as those that are only pre-trained (IM1) and those that are also fine-tuned (IM2), and shared representation-layers (MM−MT ),
along with the corresponding parameter set. (b) and (c) depict the proposed training procedure based on pre-training and fine-tuning.

multi-modality. Accordingly, we foresee multimodal multitask
DL as the appealing means toward a sophisticated intermediate
fusion [20], overcoming these limitations by offering a flexible
tool for practical encrypted TC, able to solve multiple tasks
by processing heterogeneous inputs.

The architecture of our DISTILLER classifier is depicted
in Fig. 1(a) at an abstract level and described hereinafter.
DISTILLER is fed with P different inputs (modalities) for each
TC object to be classified, with the pth modality provided from
Input-datap extraction block. The first part (IM1+IM2) of
our deep network architecture consists of Jp single-modality
(SM) layers, which are input-specific and allow to extract
in an increasingly-abstract fashion the discriminative features
pertaining to the pth modality alone. The trainable parameters
of the first part are collected in θp. On top of these layers, the
abstract features are joined via a merge layer, which represents
the first layer channeling the modality-specific distilled infor-
mation toward a joint multimodal representation.2 Differently,
the second part (MM-MT) of the architecture consists of S
shared-representation (SR) layers, distilling features captur-
ing inter-modality dependencies and Uv task-specific (TS)
layers, synthesizing the task-oriented features (of the vth task)
from the shared ones. Finally, the architecture is completed
with a softmax layer for each encrypted TC task to solve,
returning the corresponding soft-output (prediction) vector.
The trainable parameters of the second part are collected in
θ0. We recall that common choices for elementary DL layers
are dense, convolutional, pooling, and recurrent layers, which
can be jointly employed within a hybrid DL architecture3

capitalizing the “connectionist” philosophy [21].

B. Loss Function Definition and Training Procedure

The training procedure proposed for our DISTILLER clas-
sifier consists of a two-stage phase: (i) pre-training and (ii)

2Although the most general choice is represented by a concatenation
operation, other options may be pursued in case the features originating from
different modalities have the same size (e.g. average, entry-wise maximum).

3Also, to promote regularization (to avoid overfitting), dropout between
successive layers and early-stopping techniques are adopted [21].

fine-tuning (Figs. 1(b) and 1(c), respectively). Indeed, pre-
training allows the DL branch of each modality to be able
to acceptably solve—by itself—all the considered tasks [21].

Precisely, each single-modality stack is first (pre-)trained
independently (Fig. 1(b)), i.e. without MM-MT (no SR and TS
layers) and by topping each modality chain with V different
softmax layer “stubs” (whose parameters are collected within
θstubp ). Specifically, the pth “stubbed” chain is trained to
minimize the classification loss function Lp(·) to promote
pth modality capability to solve the V different TC tasks
alone. Accordingly, we aim to minimize a weighted sum of
the categorical Cross-Entropy (CE) of each TC task (within
the curly brackets), namely:

Lp

´

θp,θ
stub
p

¯

fi

V∑
v=1

λv

{
M∑

m=1

CE(tv(m), cv(m) [θp,θ
stub
p ])

}
(1)

Such distance is measured via CE(t, c) fi −{
∑

`=1 t` log c`},
denoting the CE distance for the generic training sample.
In Eq. (1), the vector cv(m) fi

“

cv1(m) · · · cvLv
(m)

‰T

collects the predicted class confidences of DL classifier (which
depend on DL network parameters) for the label of the
mth training sample on the vth task. Differently, tv(m) fi
“

tv1(m) · · · tvLv
(m)

‰T
denotes the corresponding one-hot

representation of the label for vth classification task `v(m).
The aim of a high-performing traffic classifier on vth task is to
have the confidence cv(m) as close as possible to the (ground-
truth originated) one-hot vector tv(m). The learned parameters
from the above optimization are indicated with (θ̂p, θ̂

stub
p ).

Then, during the fine-tuning (Fig. 1(c)), the softmax stubs
are removed (i.e. θ̂stub1 , · · · , θ̂stubP are discarded from the op-
timization) and the whole DISTILLER classifier is trained (i.e.
including both the parameters θ1, · · · ,θP and θ0, associated
to MM−MT block). However, as a result of the pre-training,
a share of SM layers (the “low” layers in DL hierarchy, named
IM1) are typically frozen when fine-tuning is performed: low-
level layers refer indeed to intra-modality automatic feature
extraction. In other terms, within θp fi

“

θ↓p θ↑p
‰

only the
subset θ↑p is (further) optimized during fine-tuning (i.e. those



corresponding to IM2), while θ↓p is kept fixed to the value
learned during pre-training, i.e. θ↓p = θ̂↓p . As a result, the
following weighted form of the categorical CE is minimized:

L
´

θ↑1:P ,θ0
¯

fi

V∑
v=1

λv

M∑
m=1

CE(tv(m), cv(m)[θ↑1:P , θ0]) (2)

The loss functions concerning pre-training (single-modality
multitask, Lp(·)) and fine-tuning (multi-modality multitask,
L(·)) phases are minimized via standard first-order local opti-
mizers (e.g., SGD, ADAM, etc.), resorting to the usual back-
propagation for gradient evaluation [21]. Hereinafter, we detail
the specific instance obtained from the general architecture of
DISTILLER and used for experimental evaluation in Sec. IV.

C. Description of Proposed Instance
For a fair comparison with earlier works [8, 10, 11, 12],

this particular implementation of the proposed DISTILLER
classifier operates with biflow TC objects and is made of
P = 2 modalities.
The input data fed to the DISTILLER classifier belong to
two types4: (a) the first N bytes of transport-layer payload
(PAY) of the TC object [7, 8]; (b) informative protocol header
fields (HDR) of first Np packets [10]. In the first case, the
input is represented in binary format, arranged in a byte-
wise fashion and normalized within [0, 1]. The second type
of input data is constituted by: number of bytes in transport-
layer payload, TCP window size (set to zero for UDP packets),
inter-arrival time, and packet direction ∈ {0, 1}—of first
Np packets [10]. These specific input data derive from the
necessity of avoiding biased inputs (a common pitfall in
related works) included e.g. in PCAP metadata, data-link
layer, and some transport-layer header fields, as they may
lead to inflated performance, and lack of generalization [11].
We notice that the two considered input types (viz. “traffic-
originated” modalities) refer to different levels of abstraction
(biflow vs. packet) and standpoints (encryption-dependent vs.
encryption-independent) and are naturally conductive to the
multimodal approach. Also, they suit well “early” TC [22].
The architecture5 implements the SM layers of the “payload”
modality (p = 1) with two 1D convolutional layers (16 and
32 filters, respectively, with kernel size of 25 and unit stride),
each followed by a 1D max-pooling layer (with unit stride and
spatial extent equal to 3) and, finally, by one dense layer (128
nodes). On the other hand, the SM layers of the “protocol
fields” modality (p = 2) are, in order, a bidirectional GRU
(64 nodes and return-sequences behavior) and one dense layer
(128 nodes).6 The intermediate features of the two branches

4We underline that, in both cases, longer (resp. shorter) instances are
truncated (resp. padded with zeros) to the designed length of bytes or packets.

5We leveraged DL models provided by Keras (https://keras.io) Python API
running on top of TensorFlow (https://www.tensorflow.org/) to implement and
test the approaches described in this work. Hyperparameters are chosen based
on our experience with DL architectures for TC [11, 12], complemented with
a set of experiments tuning the parameters of the dense layers.

61D convolutional layers extract spatially-invariant patterns from the pay-
load, while GRUs capture long-term dependencies pertaining to the initial
segments of the biflow.

Table I: ISCX VPN-nonVPN Dataset Tasks and Classes.

Task Classes

T1 - Encapsulation VPN, nonVPN

T2 - Traffic Type Chat, Email, FileTransfer, P2P, Streaming, VoIP

T3 - Application
Aim, Email, Facebook, FTPS, Hangouts,
ICQ, Netflix, SCP, SFTP, Skype, Spotify,
Torrent, Vimeo, VoipBuster, YouTube

are then merged via a concatenation layer and fed to
a single (S = 1) SR dense layer (128 nodes). The latter
is connected to V layers, each constituting one TS dense
layer (128 nodes) for the vth task (Uv = 1), before the
corresponding softmax layer. In all the layers, the outputs
are obtained via ReLU activations. Finally, 20% dropout is
applied after (a) each dense layer (including the concatena-
tion layer) and (b) after flattening the 2D representation of
both the stack of convolutional/pooling layers and GRU. The
considered architectural instance is trained via the two-stage
phase previously described: during pre-training phase, each
single-modality stack is first (pre-)trained independently for
30 epochs each by topping V softmax layer stubs and by
minimizing the loss Lp(·) in Eq. (1). Then, fine-tuning of the
whole architecture is performed for 40 epochs by minimizing
the loss L(·) in Eq. (2), after freezing IM1 (corresponding to
the two 1D convolutional and GRU layers). For both phases,
we employ ADAM optimizer (batch size of 50) and early-
stopping technique (to prevent overfitting) measured on the
training accuracy of the hardest TC task (i.e. with the highest
number of classes Lv).

IV. EXPERIMENTAL EVALUATION

Herein we investigate and compare performance of one
classifier instance taken from the general architecture of DIS-
TILLER. The description of the human-generated dataset and
of the existing multitask baselines is given in Sec. IV-A;
corresponding results are discussed in Sec. IV-B.

A. Dataset and Baseline Description

The dataset employed herein is ISCX VPN-nonVPN [13]
collected at the Canadian Institute for Cybersecurity and
provided in raw PCAP format with trace-level labels (i.e. the
ground-truth is associated to a whole PCAP trace). It includes
human-generated traffic encompassing different traffic types,
captured via both regular sessions and sessions over VPN.
Given this structure, we can associate a three-view label
(encapsulation, traffic type, and application) to each biflow,
corresponding to likewise TC tasks to be tackled. We list the
classes associated to each task Tv in Tab. I.
Pre-processing operations: we have found that ≈ 65% of
biflows have only one UDP packet and destination (IP address,
port) equal to (255.255.255.255, 10505)7. Thus, as opposed to

7We have found that these packets are network broadcasts periodically sent
(every 2 seconds by default) by BlueStacks, an Android emulator for PCs.



Table II: Comparison of DISTILLER Accuracy, F-measure, and Run-Time Per-Epoch (RTPE) with state-of-the-art baselines. Results are in
the format avg. (± std.) obtained over 10-folds. Rank is based on average of all performance metrics on all tasks. Last row shows DISTILLER
Gain [%] on the overall-best baseline (ranking II). Highlighted values are: (?) overall best classifier and (†) best baseline, for each metric.

Rank Multitask Classifier
T1 - Encapsulation T2 - Traffic Type T3 - Application

RTPE [s]
Accuracy [%] F-measure [%] Accuracy [%] F-measure [%] Accuracy [%] F-measure [%]

I DISTILLER 94.09 (± 0.84) ? 92.32 (± 0.97) ? 81.22 (± 0.73) ? 79.21 (± 1.50) ? 78.09 (± 1.00) ? 66.28 (± 1.61) ? 9.08 (± 0.15)

II 1D-CNN (PAY) [8] 88.06 (± 0.88) 84.41 (± 0.92) 73.59 (± 1.51) † 71.67 (± 1.58) † 73.32 (± 1.10) † 60.93 (± 2.00) † 13.25 (± 0.41)
III MLP (PAY) [17] 87.27 (± 0.91) 83.01 (± 1.05) 71.66 (± 0.86) 69.10 (± 0.82) 70.02 (± 1.55) 57.10 (± 2.45) 2.55 (± 0.03)
IV MLP (HDR) [17] 88.67 (± 1.11) † 84.90 (± 1.31) † 68.10 (± 1.30) 65.84 (± 1.05) 63.69 (± 0.85) 51.35 (± 2.15) 2.36 (± 0.02)
V MLP (PAY) [19] 85.81 (± 0.91) 81.52 (± 1.17) 68.63 (± 1.23) 65.97 (± 1.50) 66.70 (± 1.20) 53.06 (± 2.02) 0.91 (± 0.03)
VI HYBRID (HDR) [10] 87.69 (± 3.32) 83.98 (± 3.27) 67.23 (± 5.25) 63.65 (± 5.40) 63.09 (± 5.89) 51.42 (± 7.04) 2.91 (± 0.03)
VII MLP (HDR) [19] 86.76 (± 0.93) 82.15 (± 0.92) 63.55 (± 2.06) 59.95 (± 2.87) 59.78 (± 0.84) 45.37 (± 1.73) 0.83 (± 0.02)
VIII 1D-CNN (HDR) [18] 83.83 (± 1.47) 78.29 (± 2.02) 61.55 (± 2.35) 57.95 (± 2.93) 58.68 (± 2.32) 42.93 (± 2.34) 1.81 (± 0.02)

DISTILLER Gain + 6.03 (± 0.55) + 7.91 (± 0.85) + 7.63 (± 1.14) + 7.54 (± 1.21) + 4.76 (± 0.77) + 5.35 (± 1.22) - 4.16 (± 0.45)

other works leveraging the ISCX VPN-nonVPN dataset [16,
17, 18], we have performed a cleaning operation to remove
this noisy traffic and make our results more meaningful. As a
result the dataset contains 11.6k biflows.

We compare DISTILLER with several baselines proposed in
most-related (recent) literature [8, 10, 16, 17, 18, 19] fed with
the same input types (reported in brackets) whenever possible,
and considering N = 784 bytes and Np = 32 packets for PAY
and HDR, respectively. We do not employ biased input types
(e.g., raw PCAP data and ports [11]) and manually-extracted
features (e.g., PL/IAT stats). Indeed, such choices would
nullify a key benefit of DL: no need of human-expert inter-
vention for extracting informative features. Notably, we have
implemented multitask variants of state-of-the-art DL-based
single-task traffic classifiers, namely the 1D-CNN (PAY)
and the HYBRID 2D-CNN + LSTM (HDR) proposed in [8]
and [10], respectively. More important, we have also consid-
ered native multitask DL architectures proposed for TC, that
is the 1D-CNN (HDR)8 proposed in [18] and two variants of
the (deep) MLP (PAY/HDR) devised in [17, 19]. For the last
two baselines, we have considered two variants each, fed with
either input type, since the original proposals had handcrafted
PL/IAT stats as input. Last, we have discarded the proposal
[16], due to biased inputs, unjustified use of 2D convolutional
layers, and excessively ad-hoc architecture.

B. Classification Results and Discussion
For each considered analysis, our evaluation is based on a

(stratified on T3) 10-fold cross-validation, representing a stable
performance evaluation setup. As a consequence, we report
both the mean and the variance of each performance measure
as a result of the evaluation on the ten different folds.

Our first analysis assesses the performance of DISTILLER
in Tab. II, comparing it with most-related baselines (see
Sec. II). We compare them in terms of accuracy (the share
of samples properly classified) and macro (i.e. arithmetically-
averaged over classes) F-measure9 on the three tasks. We also

8For this baseline, to be as pertinent as possible to the original proposal,
we have used a subset of HDR encompassing signed PL (positive for upstream
and negative for downstream) and IAT as input.

9The latter is the harmonic mean of precision (the per-class fraction of
decisions being correct) and recall (the class-conditional accuracy).

investigate the computational complexity of the considered
(multitask) DL-architectures via their training phase runtime.
This is a key aspect in modern TC, where frequent re-training
is required, due to aging of training data as a result of fast-
paced evolution of network usage. Since training is performed
on multiple epochs, for conciseness we report the Run-Time
Per-Epoch (RTPE) in last column. All the classifiers (including
DISTILLER) are listed according to an average performance
ranking, i.e. by decreasing average of both performance met-
rics over all three tasks. This led to an overall-best performing
baseline classifier (1D-CNN (PAY) [8]). At the bottom of the
table, the performance gain of DISTILLER w.r.t. this overall-
best-performing baseline is summarized as well.

It can be noted that DISTILLER ranks first as overall-best-
performing classifier, showing significant performance gains
for all the metrics, for all the tasks, ranging from +4.8% to
+7.9%, w.r.t. the overall-best-performing baseline. DISTILLER
also obtains a reduction in the training time of −4.2 sec-
onds per-epoch, thus exhibiting lower empirical computational
complexity, when compared with the overall-best-performing
baseline.10 Even considering the classification performance for
each single task, DISTILLER always outperforms also the best-
per-metric baseline (marked with † in Tab. II).

To deepen the performance evaluation, Fig. 2 reports a
calibration analysis, assessing whether the class-probability
estimates are representative of the true-class (posterior) prob-
abilities, where a miscalibrated classifier (on a given task)
returns excessively optimistic or pessimistic decisions. Specifi-
cally, we consider reliability diagrams, that show accuracy as a
function of confidence and are obtained by partitioning the pre-
dictions into equally-spaced bins and calculating the accuracy
of each bin. Confidence ranges in [1/Lv , 1], where Lv is the
number of classes of task v. A perfectly-calibrated classifier
implies a diagram coinciding with the identity function, e.g.
operating with 70% confidence leads to 70% accuracy.

The above diagrams are complemented with the Expected
Calibration Error (ECE), i.e. the weighted (based on the
number of samples) sum of the difference between accu-

10Overall, DISTILLER has 0.99M trainable parameters against 1D-CNN
(PAY) [8] having 5.84M parameters.
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(a) DISTILLER T1-Encapsulation.
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(b) Baseline T1-Encapsulation.
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(c) DISTILLER T2-Traffic Type.
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(d) Baseline T2-Traffic Type.
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(e) DISTILLER T3-Application.
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(f) Baseline T3-Application.

Figure 2: Reliability diagrams of DISTILLER (a,c,e), and best overall
baseline (b,d,f) for the three tasks. Confidence is divided in 10 bins,
and is ≥ 1/Lv (vertical dashed line), with Lv being the number of
classes for task v. Under and over gap represent an under-confident
(pessimistic) and over-confident (optimistic) miscalibration pattern,
respectively. Synthetic ECE is reported for each case.

racy and confidence bin values. We compare our proposed
DISTILLER instance with the best overall baseline over the
three TC tasks considered. It can be seen that DISTILLER is
better calibrated with respect to the best baseline, showing
an ECE smaller than a third on T1 (resp. approximately a
half on T2, T3). Interestingly, both classifiers exhibit always
a miscalibration that tends to be over-confident (optimistic) in
predictions. This effect can be attributed to a slight overfitting
phenomenon and is one of the distinctive characteristics of DL
architectures (although our MM-MT architecture mitigates it).

All these results support our claim that using a principled
approach in structuring a DL architecture for TC tasks allows
to better exploit DL potential, while simultaneously avoiding
domain-specific pitfalls, and that a properly-structured multi-
modal multitask architecture can be effective in both raising
TC performance and lowering computational complexity.

V. CONCLUSIONS AND FUTURE DIRECTIONS

We tackled multipurpose encrypted TC via a general multi-
modal multitask DL architecture, based on a suitably-defined
training procedure which enforces information distillation
from each modality. The evaluation has been performed on a
dataset of human-generated traffic labelled according to three
different TC tasks. Results have shown performance gains by
DISTILLER over state-of-the-art multitask architectures up to

+7.9% (T1), +7.5% (T2), and +5.3% (T3) in terms of F-
measure, with very manageable training complexity. Also the
calibration analysis has underlined general improved behavior
on the three different tasks, due to the benefits of multi-
modality to solve multiple tasks. Future directions include: (i)
use of advanced DL layers (e.g. inception, residual, attention);
(ii) semi-supervised multitask learning; (iii) gray-box analysis
of DL traffic classifiers with explainable AI; (iv) open-set TC,
i.e. ability to handle classes not present in the training set; (v)
Big Data-enabled traffic classifiers drawn from DISTILLER.
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