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Abstract—In this work, we address the characterization and
modeling of the network traffic generated by communication
and collaboration apps which have been the object of recent
traffic surge due to the COVID-19 pandemic spread. In detail,
focusing on five of the top popular mobile apps (collected via
the MIRAGE architecture) used for working/studying during
the pandemic time frame, we provide characterization at trace
and flow level, and modeling by means of Multimodal Markov
Chains for both apps and related activities. The results highlight
interesting peculiarities related to both the running applications
and the specific activities performed. The outcome of this analysis
constitutes the stepping stone toward a number of tasks related
to network management and traffic analysis, such as identifica-
tion/classification and prediction, and modern IT management in
general.

Index Terms—communication apps; collaboration apps;
COVID-19; encrypted traffic; Markov models; traffic charac-
terization; traffic modeling;

I. INTRODUCTION

Due to the COVID-19 pandemic, many governments have
imposed lockdown periods that have forced millions of citizens
to spend more time at home and adopt “smart working” modes
wherever possible. The implementation of these restrictions
has generated increased demand in terms of Internet traffic
from residential users [1] for remote working, entertainment,
commerce, and education. In addition, the sudden change
imposed on the lifestyles of millions of people has generated
abrupt and noticeable changes to the nature of the traffic flow-
ing through the Internet. Recent studies show that these events
have also had a non-negligible impact on the performance
of networks, which, having to cope with a suddenly higher
demand, have guaranteed lower performance levels compared
to the period immediately before (e.g., showing increases in
delay variability and loss rates) [2]. As networks have to
respond to a greater and qualitatively different demand, new
tools are needed for the effective and efficient management of
traffic generated by users when accessing remote services. This
situation therefore introduces new and interesting research
challenges, aimed at identifying innovative solutions that sup-
port the monitoring, management, and engineering activities
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of the networks themselves, in order to guarantee their correct
functioning while respecting the expected security levels.

In view of these considerations, the contributions of this
work can be summarized as follows:

• we investigate reports of mobile apps’ usage increased
during COVID-19 lockdown, and select five mobile apps
among the most used in the category communication and
collaboration;

• we collect and reliably label network traffic generated
by the selected mobile apps by means of a dedicated
architecture (MIRAGE);

• we characterize the collected traffic in terms of bi-
trate, packet-rate, and upstream/downstream ratio (in bit
volume and packet volume), at different granularities,
namely at trace and flow level, for both apps and related
activities;

• we model the sequence of packet sizes, inter-arrival times,
and directions with Multimodal Markov Chains, at per-
activity granularity.

The resulting analysis highlights similarities and differences
among the apps and the activities, of interest for app classi-
fication and identification, network and service planning and
management, and for IT managers in general.

The paper is organized as follows. Section II surveys
related studies characterizing and modeling encrypted traffic
during/after the pandemic phase, positioning our work against
related literature. Section III describes the considered capture
and ground-truth generation architecture, as well as the dataset
collected. The experimental analysis is provided in Sec. IV.
Finally, Sec. V provides conclusions and future perspectives.

II. RELATED WORK

Following the spread of the COVID-19 pandemic on a
global scale, several works have analyzed its impact on the
Internet. In this regard, Feldmann et al. [1] show that during
the March-June 2020 lockdown period, the volume of Euro-
pean Internet traffic increased by up to +20%. This increase is
mainly due to residential traffic generated by applications for
social interaction and smart-working (up to +200%), while
there was a reduction in traffic from educational networks
(−55%). Complementary results are reported by Lutu et al.
[3], which analyze trends in mobile traffic, highlighting, in



addition to a predictable decrease in user mobility (−50%),
a substantial increase in voice traffic (+120%) that impacted
network performance, with evidence of packet loss, albeit for a
limited period of time. Further degradation of network services
was seen in regions with less developed infrastructures, while
North American and European networks returned to pre-
COVID levels of operation relatively quickly [4]. As far as
Italy is concerned, Favale et al. [5] show how the increased
use of digital tools such as collaboration platforms, VPNs and
remote desktop services has impacted the university network
of the Politecnico di Torino, which reached traffic peaks of
1.5 Gbit/s during March/April 2020, while still managing
to guarantee the operation of services. Nevertheless, Candela
et al. [2] show that in Italy there has been an increase in
both latency variability and packet loss rates, thus exacerbating
concerns about the digital divide. Finally, Affinito et al. [6]
analyze the impact on the use of different categories of
Internet applications (i.e. Video, SocialMedia, Messaging, and
Collaboration Tool), by analyzing websites and domains used
during the enforcement of the lockdown and other social
distancing measures. They show that during the lockdown
period, the most used applications were those for online video
content (i.e. Youtube and Netflix) and social interaction
(i.e. Facebook, Whatsapp, and Skype). In particular, they
also highlight the increased usage of Zoom in the second
half of March 2020, in conjunction with the beginning of the
adoption of the tool for smart-working and e-teaching.

With respect to the aforementioned work, in this paper
we focus on characterizing the traffic of communication and
collaboration apps that experienced the most increase in usage,
with significant concordance with Affinito et al. [6] (4 out of 5
of the domain names they consider in the “collaboration tool”
group correspond to the apps we analyze). The other works fo-
cus on different traffic characteristics, namely volumes [1, 3, 5]
and delays [2, 5], in a diverse set of network infrastructures. As
our analysis employs a dataset we collected from the campus
network, our networking scenario is more similar to the one
in Favale et al. [5], with which we have also one analyzed
application in common (namely, Teams).

From the methodological viewpoint, the closest related work
is Aceto et al. [7], our previous contribution focusing on
mobile video traffic modeling and prediction. With respect
to that work, we here focus on characterization (rather than
prediction), and consider a different set of apps (selected
according to their sudden increase in popularity associated to
lockdown). Moreover, we deepen the analysis at per-activity
granularity (a level of detail unavailable in the previous work),
characterizing the traffic for different usages of each app
(namely, webinar, video-call, and video-conference).

III. DATASET

Herein we describe the dataset leveraged to conduct the
analyses, briefly detailing also the architecture utilized for its
collection in Sec. III-A. Apps’ selection rationale and details
on activities performed are then given in Sec. III-B.

Rooted Android device

USB hub

Internet
Experimenter

Analysis System

WiFi access point

Capture SystemCapture server

Figure 1: Bird’s eye view of MIRAGE architecture [8].

A. Traffic Collection and Ground Truth Generation

The dataset was collected leveraging the MIRAGE archi-
tecture [8] (conveniently optimized to capture video traffic) in
the ARCLAB laboratory at the University of Napoli “Federico
II”, using three mobile devices: a Google Nexus 6 (Android
10) and two Samsung Galaxy A5 (Android 6.0.1). MIRAGE
architecture is depicted in Fig. 1 and consists of two main
components: the Capture System and the Analysis System.
The Capture System provides connectivity (via a WiFi access
point) to rooted mobile devices that generate the traffic when
human experimenters utilize the video apps, and sends/receives
commands/responses (with the Android Debug Bridge via an
USB hub) on an off-band channel. The simultaneous capture
of multiple devices is handled via their MAC addresses.

The dataset has been constructed by involving students and
researchers1 from the University of Napoli “Federico II” who
took on the role of experimenters. Specifically, in each capture
session the experimenter performed a specific activity, so as
to obtain a traffic dataset that reflects the common usage of
considered apps (see Tab. I).2 The duration of each capture
session (spanning from 15 to 80 minutes) depends on the
type of activity carried out using the specific application, each
resulting in a PCAP traffic trace and additional system log-files
with ground-truth information.

Such log-files are exploited to reliably label each biflow
with the corresponding Android package-name that matches
the 5-tuple by considering established network-connections
via netstat. To this end, the Analysis System extracts the
Android package to which the socket belongs, namely which
is listening on the <IP:port> pair of the socket.

B. Apps’ selection rationale

Conference and collaboration tools have experienced a huge
increment of their utilization when “stay-at-home” orders were
issued worldwide. Indeed, during this time-frame, they have
been used to conduct both online meetings in businesses and
classes in schools and universities, in addition to maintain
social interaction. Herein we focus on five conference and col-
laboration apps, reported in Tab. I: GotoMeeting, Skype,

1We highlight that the captures were carried out by adhering to the
distancing/mask-wearing rules prescribed by regional/national decrees in force
at the moment of the collection.

2Each traffic capture session has been performed with the up-to-date version
of the app. Also, to limit background traffic, network access has been disabled
for all the apps but the one under test.



Table I: Communication and collaboration apps considered. Per-
formed activities, number of packets (#pkts), total duration (Dur),
and traffic volume (Vol) are reported for each app.

App Webi VCall VConf #pkts [M] Dur [H:m] Vol [GB]

GotoMeeting X 7.32 9:54 1.94
Skype X X X 2.21 3:55 1.41
Teams X X X 10.27 14:01 5.65
Webex X X X 2.60 3:30 1.84
Zoom X X X 5.46 6:31 4.26

Teams, Webex, and Zoom. These apps have been selected
considering both popularity and utilization increment.

Specifically, according to the latest Sandvine report [9],
Zoom has obtained the steepest increment with its traf-
fic scaling to orders of magnitude, followed by Webex,
GotoMeeting, Teams, BlueJeans (whose traffic we are
currently collecting), and Skype. More specifically, the App
Annie’s market analysis [10] reports that during 15th–21st
March 2020, Zoom was downloaded (from the Google Play
Store) 14× more than the weekly average during Q4 2019
in the US, 20× more in the UK, and impressively 55×
more in Italy. Similarly, Teams also experienced significant
growth in France and Italy with 16× and 30× more downloads
than the Q4 2019 weekly average, respectively. Last but not
least, the considered apps have been extensively exploited for
remote teaching in Italian [11] (employing the national GARR
network) and European [12] institutions and universities.

Table I summarizes the mobile apps used in this study,
highlighting also the activities carried out with each, and the
amount of traffic collected in terms of packets, duration, and
volume. Specifically, the activities performed are:

• Webinar (Webi): a live event involving many attendees
and one presenter who transmits his/her own audio to-
gether with slides and/or his/her own video (e.g., seminar
or online lesson).

• Video-call (VCall): a live event involving just two partic-
ipants who transmit both audio and video traffic.

• Video-conference (VConf): a live event involving more
than two participants broadcasting audio/video traffic.

IV. EXPERIMENTAL ANALYSIS

In this section, we provide a characterization analysis—both
at trace (Sec. IV-A) and flow level (Sec. IV-B)—and modeling
evaluation (Sec. IV-C) of the considered apps/activities. The
provided analysis can be useful for different network-related
tasks supporting the detailed understanding of the network
traffic, which is critical for properly managing the network, as
well as for identifying peculiarities (e.g., network fingerprints)
of both apps and specific activities which can be leveraged
for modeling purposes to support traffic classification and
identification tasks.

A. Per-trace characterization

Hereinafter we perform a characterization of the collected
traffic in terms of (a) bitrate and (b) packet-rate. In detail, we
refer to aggregated rates, i.e. computed by considering the

whole traffic either generated or received by the app (i.e. in-
cluding concurrent bidirectional flows) during a traffic capture.
In the following, aggregate metrics are computed considering
a (non-overlapping) window size ∆ = 5 s.3 Formally, for a
capture starting at time t0 and having duration D, the ith

aggregation interval gathers all packets whose arrival time falls
within [t0 + (i− 1)∆, t0 + i∆), with i ∈ {1, 2, · · · dD∆e}. Fig-
ures 2a–2b and 2d–2e report the boxplots of bitrate and packet-
rate (both computed over 5-second intervals), respectively,
considering upstream and downstream directions separately.
For each app, the distribution is broken down across the
specific activities highlighted with different colors.

Considering the downstream bitrate (Fig. 2a), all the apps
and activities result in a median value between 200 Kbps
and 1.5 Mbps, with the highest values up to 4 Mbps. Neither
apps nor activities can be straightforwardly ranked according
to their downstream bitrate. Variability depends on the spe-
cific app and activity, with IQRs varying from 282 Kbps to
1.38 Mbps, and VCall bitrate always exposing higher vari-
ability (in terms of IQR) than VConf. All the apps but Teams
highlight higher downstream bitrate (on median) for VCall
traffic compared to VConf. This suggests different strategies
enforced when dealing with multiple parallel media streams
which are likely delivered at lower quality.

Moving to the upstream bitrate (Fig. 2b), observed values
span over a larger interval, with lowest median values as low
as less than 10 Kbps. Interestingly, Zoom and Skype do not
show differences between VCall and VConf in terms of median
values, in spite of a higher variability observed for VCall. On
the other hand, Teams and Webex traffic results in significant
discrepancies when comparing VCall and VConf upstream
bitrate. For all the apps, Webi activity is related to the lowest
bitrate observed, with values typically lying around 10 Kbps
(with the exception of GotoMeeting, having a median at
60–70 Kbps). Such an outcome is in line with the commonly
fewer interactions performed in the case of Webi activity.

Concerning downstream and upstream packet-rate
(Figs. 2d and 2e, respectively), all the apps receive traffic (i.e.
downstream direction) at 80–300 packets/s, on median. Look-
ing at packets in the opposite direction, their rate ranges—on
median—from few packets per second (≈ 5 packets/s) up to
≈ 140 packets/s. More specifically, the upstream packet-rate
seems to be strongly correlated to the specific activity (with
Webi always exposing the lowest rate). Remarkably, while no
major discrepancy can be spotted when considering VCall and
VConf activities for the same app, the VConf upstream traffic
on Teams is almost one order of magnitude lower, than the
VCall traffic generated by the same app, on median.

Finally, considering traffic direction, we quantify the frac-
tion of downstream volume and packet by means of ρd and γd,
which are defined as follows: ρd = Bd

Bd+Bu
and γd = Pd

Pd+Pu
,

where Bd and Bu refer to the number of downstream and
upstream bytes, respectively, and Pd and Pu refer to the

3Further significant values of ∆ = 10, 30, 60 s have been tested without
showing notable discrepancies.
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Figure 2: Downstream bitrate (a), upstream bitrate (b), percentage of downstream bitrate (c), downstream packet-rate (d) upstream packet-rate
(e), and percentage of downstream packets (f). Values are evaluated over time intervals of ∆ = 5 s. Boxes report the 1st and 3rd quartiles
(1Q and 3Q, respectively), while whiskers mark 1Q−1.5 IQR and 3Q+1.5 IQR, where IQR=3Q−1Q. Black diamonds highlight outliers.

number of downstream and upstream packets, respectively.
Accordingly, Figs. 2c and 2f report the distribution of these
two metrics computed over 5-second intervals. Focusing on
VCall and VConf activities, median values witness that the
usage of Zoom results in more balanced traffic in terms of di-
rection, with ρd ≈ 0.5. On the other hand, for both Teams and
Webex the median of the distribution of ρd sits on remarkably
higher values in case of VCall activity. Interestingly, this con-
sideration does not hold also for VConf. More in general, the
latter activity results in a more stable behavior (less variability
can be spotted when looking at IQR) with respect to VCall.
The above considerations about the resulting distribution also
apply to γd, suggesting the presence of almost-constant-sized
packets. Finally, traffic is remarkably unbalanced towards the
downstream direction when considering Webi traffic, with ρd
consistently ≈ 1 for all the apps but GotoMeeting (whose
median ρd ≈ 0.8). Still considering Webi, it is worth noticing
that γd spans over slightly-lower values, witnessing the non-
negligible presence of small upstream packets, likely due to
signaling operations.

B. Per-flow characterization

The aggregated behavior previously discussed is the result
of the mixture of multiple concurrent traffic flows between the
client running the communication and collaboration app and a
variety of servers. The amount and the characteristics of these
flows depends on the app and the activities.
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Figure 3: Amount of concurrent biflows (mean ± std across different
captures) in each 5-second slot.

Considering two exemplifying activities (i.e. Webi and
VCall), Fig. 3 shows the amount of concurrent bidirectional
flows (viz. biflows) considering non-overlapping 5-second
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Figure 4: Protocol distribution in terms of biflows. UNK stands for
unknown, SSL stands for undetected version of SSL/TLS.

windows as described in the previous section. The figure
reports the breakdown across the different apps by showing the
mean and the standard deviation of the (open) biflow count in
different captures. For both activities, a high number of biflows
is typically opened by the client at the very beginning of the
activity. These concurrent communications are possibly related
to authorization/accounting services, which are expected to be
located on dedicated hosts. Then, the number of open flows
settles to a lower value (which varies with both the activity
and the app and ranges from ≈ 6 to 15 biflows). While this
plateau value appears to be more stable for Webi, more evident
discrepancies across different captures are observed for VCall
(especially for Skype). Remarkably the above pattern does
not apply to Zoom, which at the beginning of both activities
incrementally opens concurrent flows up to the plateau value.

Figure 4 reports the traffic composition in terms of the
adopted protocols as obtained by leveraging the tshark
dissector. The reported breakdown highlights the remarkable
presence of SSL and TLS, which together account for a large
fraction of the biflows for all the apps (from 56% for Zoom to
83% for GotoMeeting). Also, both Webex and Zoom show
a non-negligible part of UDP traffic, which is possibly adopted
for delivering media streams without incurring the issues of
TCP closed loop. Finally, a minor fraction of Skype traffic
is delivered through (cleartext) HTTP.

Conversely, by zooming on the amount of information
exchanged across these flows, Fig. 5 reports the sequence of
payload length and direction of app-level packets (packets
with no payload are discarded since they reflect transport-layer
signaling which does not depend on the nature of the app or
the performed activity). In more detail, the analysis focuses
on the first 16 data packets of the biflows resulting from Webi
(Figs. 5a–5b) and VCall (Figs. 5c–5d) activities. Specifically,
for a given app, the figure reports the average value on all
biflows for each packet index.

Considering the payload length (PL), for both activities,
all apps show a similar behavior when observing the first
5 packets: a small PL (≈ 500 B) for the first packet fol-
lowed by 4 packets with larger size (≈ 1200 B, on average).
Considering also the direction (DIR), the recurrent pattern
(first packet in upstream direction followed by a number of
packets in the opposite direction) reflects a typical client-
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(b) Average DIR of the first 16 packets for Webi activity.
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(c) Average PL of the first 16 packets for VCall activity.
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(d) Average DIR of the first 16 packets for VCall activity.

Figure 5: Properties of biflows time series with respect to PL and
DIR: Webi (a, b) and VCall (c, d). The downstream and upstream
packet direction was mapped on +1 and −1 values, respectively.
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(b) Zoom (Webi).
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(c) Teams (Webi).
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(d) Webex (VCall).
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(e) Zoom (VCall).
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Figure 6: Transition matrices of payload length and packet direction
for Webex (a, d), Zoom (b, e) and Teams (c, f), and related to Webi
and VCall activities.

server interaction (e.g., TLS initial handshake). Finally, some
app-dependent patterns are also evident, e.g., packets #7 and
#14 for GotoMeeting (Webi activity) likely result to be in
upstream direction and of large PL (≈ 1000 B, on average).

C. Markov modeling of apps and activities

Herein we aim to bring out the peculiar characteristics of
each app by modeling its traffic through (Multimodal) Markov
Chains, following [7]. Specifically, for each app we consider
jointly the (transport-layer) PL and the DIR of the packets of
each biflow, and we derive the corresponding transition matrix,



where < (pi, di), (pj , dj) > represents the probability that the
next packet comes with a PL of pj bytes and a direction dj if
the last observed packet has a PL of pi bytes and a direction
di. To this end, we performed two pre-processing operations:
(i) removal of null-payload packets, that are assumed to be
non-informative since they do not reflect the behaviors of
the app but only the mechanisms of the transport layer; (ii)
discretization of the PL through an unsupervised adaptive
binning procedure based on K-means, leading to 80 bins.4

In Fig. 6, we show the transitions matrices obtained for, (a)
Webex, (b) Zoom, and (c) Teams by considering (i) Webi
and (ii) VCall activities separately. From visual inspection of
results (higher values are associated to darker color), different
patterns can be identified in the matrices depending on the
app and the activity considered. Specifically, in both cases, for
a given activity we can observe the presence of dark pattern on
the main diagonal (↗) and darker areas (blocks �) common
to Webex and Zoom where the former indicates the tendency
of the two apps to generate pairs of packets with equal PL
and DIR while the latter indicate that apps are more likely to
generate packets that match values that fall within a similar set
of values. Differently, in the case of Teams several vertical
patterns (↑) are visible in the II and IV quadrants, highlighting
the presence of highly probable-values of downstream (resp.
upstream) PLs within the observed traffic, namely independent
of the current upstream (resp. downstream) value.

Furthermore, by comparing the transition matrices corre-
sponding to different activities of the same app, we can
observe different patterns, underlining the peculiarities of the
specific activity. One relevant case is represented by Webex
and Zoom, whose diagonal patterns (↗) reflect the nature
of the activity carried out by the experimenter. Specifically,
considering the Webi activity, a diagonal pattern is obtained
only in correspondence of the downstream direction: this
can be explained since the experimenters were not active
during the traffic capture, thus implying low upstream traffic.
Conversely, in the case of VCall, the diagonal pattern appears
for both directions: indeed, such activity involves the active
(symmetric) participation of the users. Finally, Webi activity
on Teams implies several vertical patterns (↑), as opposed to
the sparser case of VCall, associated to the 1st (≈ 40B) and
30th (≈ 500B) bin in both directions.

V. CONCLUSIONS AND FUTURE DIRECTIONS

Network traffic composition underwent significant changes
due to the COVID-19 outbreak which has remarkably boosted
the popularity of C&C apps. Motivated by the fact that
knowing the characteristics and the peculiarity of the traffic
crossing the network is critical for a number of network-
related task such as identification/classification and prediction,
we addressed the characterization and modeling of the network
traffic generated by five C&C apps (GotoMeeting, Skype,

4Such choice was obtained by evaluating the quantization error of PL values
versus the number of bins and by choosing the value balancing the error and
the model complexity.

Teams, Webex, and Zoom) whose popularity suddenly in-
creased with the COVID-19 outbreak. We collected ≈ 40
hours of network traffic in the context of MIRAGE project
leveraging the volunteer experimenters. For each app, we con-
sidered three activities relevant for remote working/studying:
Webi, VCall, and VConf.

First, our study provided a characterization at trace level
of the traffic, identifying peculiar characteristics in terms of
downstream and upstream bit rate and packet rate as well as
downstream volume and packet fraction. Then, we inspected
the traffic at flow level, highlighting how the presence of con-
current biflows depends upon both app and activity, and also
follows interesting trends with the time. Also, we investigated
traffic composition in terms of adopted protocols, and noticed
the major presence of TLS and SSL biflows, save from some
notable exceptions (Zoom, Webex and Skype). Finally, we
provided a modeling analysis by means of Markov chains,
highlighting some similar transition patterns for different apps
performing the same activity (e.g. Webex and Zoom when
performing both VCall and Webi) and different patterns for
some apps (e.g. Teams).

Future directions of research will focus on capitalizing
this knowledge for fine-grained prediction and classification
of C&C apps (a) by Markov chains, (b) by adopting novel
machine/deep learning models and (c) even via hybrid (but
interpretable) combinations of both.
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