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Abstract—The increasing diffusion of mobile devices has dra-
matically changed the network traffic landscape, with Traffic
Classification (TC) surging into a fundamental role while facing
new and unprecedented challenges. The recent and appealing
adoption of Deep Learning (DL) techniques has risen as the
solution overcoming the performance of ML techniques based on
tedious and time-consuming handcrafted feature design. Still, the
black-box nature of DL models prevents its practical and trustful
adoption in critical scenarios where the reliability/interpretation
of results/policies is of key importance. To cope with these limi-
tations, eXplainable Artificial Intelligence (XAI) techniques have
recently acquired the interest of the community. Accordingly,
in this work we investigate trustworthiness and interpretability
via XAl-based techniques to understand, interpret and improve
the behavior of state-of-the-art multimodal DL traffic classifiers.
The proposed methodology, as opposed to common results seen
in XAl, attempts to provide global interpretation, rather than
sample-based ones. Results, based on an open dataset, allow to
complement the above findings with domain knowledge.

Index Terms—traffic classification; encrypted traffic; explain-
able artificial intelligence; deep learning; multimodal learning.

I. INTRODUCTION

NTERPRETING and assessing the behavior of networks

is paramount to a wide set of activities and research
topics, including—to name a few—network planning and
management, network and application security and privacy,
social adoption and impact of network technologies, and future
progress roadblocks and possibilities. Traffic Classification
(TC) is central to these activities, and has witnessed significant
recent research activities due to both new challenges—as the
rise of mobile traffic—and new powerful tools, e.g. those
fueled by Artificial Intelligence (AI) techniques. Indeed, the
widespread usage of smartphones has deeply changed the
Internet traffic landscape, due to the variety of mobile apps
and the ease of installation and automatic update allowed by
mobile apps distribution systems (“app stores”). The sum of
an expanded and more diverse use base, an increased time and
variety of on-line activities, and fast-pace creation, diffusion,
and update of apps has resulted in an extremely challenging
scenario for TC. A much needed response to such challenges
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has been recently provided by Deep Learning (DL) techniques,
characterized by a fully-automated feature extraction phase
that significantly lowers the involvement of human experts in
the loop, and a great power in learning (unforeseen) relations
among huge volumes of training data, offering significantly
better performance with respect to traditional Machine Learn-
ing (ML) approaches. These characteristics are making DL the
tool of choice to face the highly dynamic nature of modern
network traffic. On the other hand, the black-box nature of
DL techniques impairs the understanding of the reason behind
specific classification outcomes, including errors and/or over-
optimistic guarantees, and even resilience against intentional
adversarial manipulation of traffic to prevent correct identifi-
cation.

The lack of interpretability of the classification models
built by DL techniques prevents their applicability to critical
scenarios. Indeed, regulatory and standardization bodies in
the specific field of telecommunications have considered this
issue, highlighting explainability of Al as the basis for the
necessary accountability, responsibility, and transparency of
processes including Al components [1]] such as the “Network
Data Analytics Function” [2]. Similarly, for cybersecurity
applications the lack of explainability is troubling to the point
it can be leveraged to hide attacks [3]], besides posing legal and
ethical issues. As a consequence, network equipment manufac-
turers are starting to include eXplainable Artificial Intelligence
(XAI) in their design [4]. In addition to this, in research
contexts where TC is an instrument of analysis and knowledge
discovery, the aforementioned lack severely undermines the
validity of inferred information and the following analyses
and deductions. From a complementary viewpoint, even when
interpretability cannot be guaranteed (or it is not required),
ensuring the trustworthiness of the classification is important
for its “safe” usage to end-users. By trustworthiness, in this
work we mean to which extent the confidence associated to a
given decision by an opaque solution can be deemed reliable—
i.e., low (resp. high) confidence in labeling a certain app
actually leads to low (resp. high) accuracy in classifying it In-
deed, the latter property is crucial as it informs decisions with
impact on user experience and economic efficiency of network
management. Finally, the understanding of the behavior of
the learned model enables focused performance enhancements,

'We would like to emphasize that the notion of (AI) trustworthiness starkly
contrasts with the same term when used in network security contexts.
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much more efficient than a less-informed search over the huge
hyper-parameters space.

In response to these needs arising from DL adoption, the
field of XAI is providing approaches and techniques able to
link the outcome of the classification to the structure of the
model and the input, shedding light over some aspects of
the (former) completely black box. As the adoption of DL
is relatively new, even more so in the field of network traffic
analysis, it is no wonder that XAI has not yet found significant
application to TC as well, despite its acute need: with this
work we move an important step in the direction of tackling
this open challenge.

To this aim, we perform (7) fine-grained performance eval-
vation, (4¢) behavior interpretation, and (z:¢) trustworthiness
analysis of an enhanced (multimodal) DL architecture for TC.
The above analysis includes different level of granularity or
viewpoints: (a) relative importance of different input modal-
ities, and down to specific parts of each modality, (b) per-
class, and (c) per-protocol analysis. Equally important, in the
analysis we highlight and quantify the use of encryption in the
real-world and recent dataset we base the evaluation on, and
interpret the results in the light of this property.

These contributions are the more significant and timely
considering the rise of adoption of TLS, gQUIC, and FB-Zero
in modern mobile-generated Internet traffic [J5} |6]].

In detail, the contributions of this paper can be summarized
as follows:

o In order to apply the explainability analysis to a
practically significant experimental scenario, we design
MIMETIC-ENHANCED, a novel architecture for TC op-
erating at biflow level. Based on our recently pro-
posed Multlmodal DL-based MobilE Trafflc Classifica-
tion (MIMETIC) general framework, the architecture is
designed to effectively exploit the heterogeneous nature
of the different views of a traffic object, by distilling
both intra- and inter-modalities dependence [7]. Our
proposal leverages the multimodal paradigm and consists
of two branches being fed (i) with the first bytes of the
payload of the biflows and (ii) with informative fields
extracted from the sequence of the first packets of each
biflow. More specifically, we have improved our previous
proposal based on the MIMETIC framework from both the
architectural and training-procedure viewpoints.

« We systematically evaluate the proposed MIMETIC-
ENHANCED TC architecture and compare the achieved
performance against state-of-art TC baselines, including
MIMETIC [7], App-Net [8]], and FS-Net [9].

o We deepen our performance analysis at a finer-grain,
inspecting soft classification values to understand (i)
behind-the-curtain behavior of TC classifiers when in-
specting the traffic of each class and (ii) misclassification
patterns possibly imputed to specific protocol usage.
Indeed, thanks to a heuristic we propose, we assess how
challenging is to classify the traffic of each app, by
relating its share of encrypted packets and associated
encrypting protocol.

o We evaluate the trustworthiness of the proposed TC
architecture through a calibration analysis, in order to

assess the reliability of the provided predictions based
on the related confidence. This analysis supports further
improvements of the proposed MIMETIC-ENHANCED by
leveraging Focal Loss and Label Smoothing techniques
to improve the generalization capability of the model
(e.g. reducing the excessive confidence associated with
predictions and reducing overfitting).

« We investigate the rationale of the working behavior
of MIMETIC-ENHANCED, by applying state-of-art XAl
tools (i.e. Deep SHAP, capitalizing the integration of
Shapley-based importance attribution with deep archi-
tectures [10]) to understand input importance in both
branches, and within the single branch.

o The experimental campaign is conducted leveraging
MIRAGE-2019, a publicly-released human-generated
mobile-app traffic dataset, to foster reproducibility [[11]].

The paper is organized as follows. Section |lIf surveys first

attempts of XAl application to networking and TC, positioning
our work against related literature. Section describes the
considered XAl-based TC methodology; the dataset employed
and the experimental results are discussed in Sec. [V} finally,
Sec. provides conclusions and future perspectives.

II. BACKGROUND AND RELATED WORK

In this section, we first provide the background on (¢)
interpretability and (i7) trustworthiness of data-driven models
(Sec.[[I-A). Then, we discuss the most related work addressing
those problems in computer networks, providing a final focus
on XAI for TC (Sec. [[I-B). Finally, we end the section with
a clear positioning of our work w.r.t. the computer network
literature described in the second subsection (Sec. [[I-C).

A. Background: Making Data-Driven Al Models Human-
Interpretable and Trustworthy

In line with the unprecedented and growing availability
of huge amounts of data in a number of critical knowledge
fields (e.g., mobile applications, speech recognition, biological
science, Internet of Things) and fostered by the tremendous
success in image recognition, enormous incentives exist to use
Al as a valuable tool for decision making, cost reduction,
risk management etc. However, the adoption of complex Al
algorithms inherently leads to the generation of black-box
models which result in untrustworthy behaviors and undesired
(and often even unacceptable) lack of transparency. This
issue affects complex AI models characterized by a high-
dimensionality of the inputs and therefore especially includes
cutting-edge DL models.

As a result, in the last years a strong push towards XAl
by both governmental entities and the research community
was observed, in order to address problems related to trans-
parency, causality, bias, fairness, and safety of the obtained
solutions [22f]. Investigating the working behavior of already-
trained models allows to (i) assess the robustness of the
Al system (e.g. to measure artifacts or adversarial perturba-
tions); (ii) evaluate its resilience to drifting data perturbations;
(iii) verify legal, safety, and security requirements; (iv) com-
plement human-expertise in decision making and even provide
scientists with novel insights embodied in the model.
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Table I
RELATED WORKS ADOPTING XAI IN CONJUNCTION WITH VARIOUS NETWORKING PROBLEMS SOLVED VIA DIFFERENT LEARNING TECHNIQUES. THE
PAPERS ARE REPORTED IN CHRONOLOGICAL ORDER. ACRONYMS MEANING IS REPORTED AT THE BOTTOM OF THE TABLE.

Paper Networking Problem Open Mobile Interpret Trustwrt XAI Strategy Paradigm Technique
K. Amarasinghe et al., 2018, Proc. IEEE HSI [12] Anomaly detection () O ] O LRP SL DNN
Y. Zheng et al., 2018, Proc. ACM APNet (3] Task allocation - 0 ° o  Saliency Maps, UL DNN
Activation Maximization
A. Dethise et al., 2019, Proc. ACM NetAl [14] Video bitrate adaptation @ O [ ) O LIME RL A3C (Pensieve)
. . o . X . . HAC-Ward, HAC-Single,
A. Morichetta er al., 2019, Proc. ACM Big-DAMA |15 Video quality prediction © © [ ] O LIME UL K-means, BIRCH
S. Rezaei et al., 2019, IEEE Access [16] Traffic classification o) [ [ ] O Occlusion Analysis SL 1D-CNN
i 1 . ssificati Al : Alveis 1D-CNN, RE,
G. Aceto et al., 2020, Elsevier NEUCOM |17 Traffic classification © [ ) O O Calibration Analysis SL MM CNN & BiGRU
C. Beliard et al., 2020, Proc. IEEE INFOCOM WKSHPS [I8]  Traffic classificaton O O ° o Feawre Map Wsualization, g CNN
Global and local DT-Distillation, A3C (Pensieve),
Z. Meng et al., 2020, Proc. ACM SIGCOMM |19 work conteal e O ° e} Hypergraph-Distillation, RL DNN (AuTO),
network contro LIME*, LEMNA* GNN (RouteNet)
X. Wang et al., 2020, Hindawi WCMC [20] Traffic classification [ [ © O Deep SHAP SL SDAE, 1D-CNN, LSTM
G. Aceto et al., 2021, IEEE TNSM [21] Traffic prediction [ [ © O Markovian-Distillation SL MC, RFR
Calibration Analysis, MIMETIC-ENHANCED,
; cificat: Calibration Improvement SM 1D-CNN*, HYBRID*,
This Paper Traffic classification [ [ ) [ (w/ FL & LS), SL SM MLP-1*. FS-Net*,
Deep SHAP MM MIMETIC*, App-Net*

Open: publicly available data. Mobile: mobile-app traffic data. Interpret: Interpretability analysis. Trustwrt: Trustworthiness analysis.

XAI Strategy: Decision Tree (DT), Focal Loss (FL), Local Explanation Method using Nonlinear Approximation (LEMNA), Label Smoothing (LS), Local Interpretable Model-Agnostic
Explanations (LIME), Layer-wise Relevance Propagation (LRP), SHapley Additive exPlanations (SHAP), t-Distributed Stochastic Neighbor Embedding (t-SNE).

Paradigm: Reinforcement Learning (RL), Supervised Learning (SL), Unsupervised Learning (UL).

Technique: Asynchronous Advantage Actor-Critic (A3C), Bidirectional Gated Recurrent Unit (BiGRU), Convolutional Neural Network (CNN), Balanced Iterative Reducing and Clustering using
Hierarchies (BIRCH), Deep Neural Network (DNN), Graph Neural Network (GNN), Hierarchical Agglomerative Clustering (HAC), Long Short-Term Memory (LSTM), Markov Chain (MC),
MultiLayer Perceptron (MLP), Multimodal (MM), Random Forest Regressor (RFR), Reinforcement Learning (RL), Stacked Denoising AutoEncoder (SDAE), Single-Modal (SM). @ present,

O lacking, © partial, — not applicable.
* Baselines for performance comparison.

Focusing on trustworthiness, a natural desideratum for Al
algorithms is to design a black-box model whose outputs
adhere to some reliability requirements. In the context of
classification, given the probabilistic nature of ML/DL outputs,
it is rightful to ask whether the probabilistic outcomes are
calibrated, i.e. the confidence actually reflects the reliability
of the provided decision. Referring to calibration, current
research is oriented toward methods for (a) assessing cal-
ibration of designed models and (b) for improving it by
making the corresponding ML/DL model close-to-trustworthy.
Regarding the former aspect, a set of evaluation metrics for
assessing the classification confidence have been proposed,
including different notions of calibration [23] (e.g. multi-class,
class-wise and confidence), calibration diagrams and related
metrics [24]], and statistical tests [25] to verify such property.
Regarding the latter aspect, recent studies have attempted to
design evolved learning procedures to instill calibration, such
as Dirichlet-based methods [23]], focal loss [26]] and label
smoothing [27].

Another critical aspect in XAl is represented by the pur-
pose that these methods were created to serve and the ways
through which they accomplish this purpose, namely their
interpretability. Accordingly, four major categories for this
class of methods have been identified: (i) methods for ex-
plaining complex black-box models, (ii) methods for creating
white-box models, (iii) methods that promote fairness and
restrict the existence of discrimination, and, lastly, (iv) meth-
ods that analyze the sensitivity of model predictions. An
especially important separation of interpretability methods is
based on the type of algorithm that could be applied: methods

whose application is restricted to some specific models (model-
specific) or approaches which can be virtually applied to every
possible ML/DL algorithm (model-agnostic). A complemen-
tary taxonomy of such methods is based on the interpretation
scale: local methods provide an explanation only for a specific
sample, whereas global methods attempt to explain the whole
model behavior.

Accordingly, a number of families of approaches have
emerged aiming at shedding light on ML/DL outcomes via
post-hoc explanations. These can be Classiﬁe as follows:

¢ Occlusion Analysis [29] is a particular type of pertur-
bation analysis where the effect on the neural network
output of occluding patches or individual features in
the input is tested. Attribution based on Shapley values
(Kernel SHAP, Deep SHAP) can also be seen as an
occlusion analysis [[10].

« Interpretable Local Surrogates aim to replace the
decision function with a local surrogate model whose
functional form is self-explanatory itself (e.g. a linear
or a tree model as used by LIME [30] and LORE [31]],
respectively).

« Integrated or Smoothed Gradients [32] provide an
explanation by (a) integrating the </f(x) along some
trajectory in input space connecting some root point &
(a non-informative baseline input) to the data point  to
be explained or (b) performing an expectation of </ f(x)
when some noise-distributional perturbation is applied.

2For a detailed discussion regarding different post-hoc explanation tech-
niques we point the interested readers to Samek et al. [28§].
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« Layerwise Relevance Propagation (LRP) [33] explicitly
uses the layered structure of the neural network and op-
erates in an iterative manner to produce the explanation.

Next subsection will position recent works on XAl applied
to computer network problems in terms of trustworthiness and
interpretability.

B.  Related Work: Explaining Al Decisions Supporting
Computer-Network Problems

A large number of data-driven solutions based on either
ML or DL have been recently proposed for several network-
related problems such as resource allocation, routing, video
rate selection, congestion control [14], traffic classification [[18|,
20|, and traffic prediction [21].

However, general lack of interpretability as well as potential
behavioral uncertainties (e.g., in conditions different than those
in which the system is trained) and difficulties in integrating
domain-specific (hand-crafted) insights into Deep Neural Net-
work models (DNNs) represent the main reasons hindering
these solutions and systems to be widely adopted in production
environments so far [13} [34].

The applicability of more easy-to-interpret models has been
investigated, such as techniques being more interpretable in na-
ture than DL (e.g., those based on either decision trees [35] 36]]
or Markov models [21} [37]). These techniques represent an
alternative walkable path due to their simplicity and inter-
pretability, despite the expected reduced performance and the
resulting need for engineering hand-craft features. On the other
hand, a first wave of works has provided an initial effort
towards the interpretation of data-driven black-box models
when applied to computer-networks problems.

Table [[] summarizes the most-related work and reports the
main aspects of interest, and in the following we discuss in
detail each listed work.

Meng et al. [19] propose Metis, a framework that pro-
vides interpretability for networking problems related to lo-
cal and global control. Metis performs decision-trees- and
hypergraph-based distillation and allows to convert DNN
policies to interpretable rule-based controllers for several use
cases, supporting design, debugging, deployment, and ad-
hoc adjustment of DL-based networking systems. Results
highlights improved performance or reduced computational
requirements in change of limited performance degradation.
Zheng et al. [13] inspect the behavior of a DNN trained
to minimize average job duration in a resource allocation
problem. They remark that saliency map (showing impact of
each input feature on the output) and inspecting the activation
of intermediate neurons in hidden layers are valuable tools to
reveal what features a DNN depends on. The authors also
propose a method aimed at improving robustness, training
efficiency, and transferability (e.g. avoiding overfitting) by in-
tegrating DNNs with domain knowledge. Morichetta et al. [[15]]
investigate explainability for unlabeled data via EXPLAIN-IT
methodology: this aims at providing explanation for clustering
results attainable in the analysis of QoE in YouTube video
streaming. The proposed approach uses clustering results to
train a classification model to predict video quality, which

is then explained through black-box XAI approaches. Thus,
the approach overcomes the limitation deriving from the lack
of a ground truth which hinders the adoption of supervised
quality metrics without incurring the limitations of structured
insights achievable with unsupervised metrics. Dethise et al.
[14] inspect the behavior of a model based on reinforcement-
learning agents and targeting video bit-rate adaptation. The
investigation is aimed at observing agent’s decisions and
understanding how individual input features contribute to
decisions as well as the broader relationship between feature
values and decisions. The study leverages data inspection and
visualization and takes advantage of LIME [30]. Focusing on
traffic identification and classification, Amarasinghe et al. [12]]
propose a framework for anomaly detection based on DNNs
which provides explanations for the detected anomalies. In
detail, the framework provides post-hoc explanations for DNN
predictions (in terms of feature relevance scores) in order to
improve users’ trust. Input feature relevance is calculated via
a method named Layer-wise Relevance Propagation (LRP).
Tackling robustness to adversarial samples, Sadeghzadeh
et al. [38] craft network traffic aimed at fooling DL-based TC
methods, focusing separately on perturbating payload, packet
size (padding), and flow statistical features (bursts). Their
experiments show that DL-based TC is vulnerable to universal
adversarial perturbation.

Recently a number of research contributions have investi-
gated interpretability and trustworthiness aspects in TC.
Beliard et al. [18]] demonstrate how basic visualization tools
(e.g., to represent the 1D original space, feature projections
at intermediate layers, as well as the arc representation of
the output confusion matrix) can be helpful in clarifying the
inference process in TC tasks based on CNNs. Wang et al. [20]]
explore DL methods (SDAE, 1D-CNN, and LSTM) for mobile
app TC. In addition, the authors uses Deep SHAP [10] to
explain the outcomes obtained through 1D-CNN. The analysis
focuses on a specific application (WeChat) and is limited to
four (representative) outcomes, being the approach sample-
dependent (viz. a local explanation method). The analysis (that
focuses on both TLS and non-TLS traffic flows) highlights the
importance of a number of byte chunks associated with either
unknown byte sequences, or the location of specific protocol
fields such as TLS SNI and Cipher Suite extensions.
Rezaei et al. [[16] consider a CNN model for the classification
of mobile-app traffic, which is fed with the header and the
payload of the first six packets of a biflow. The occlusion
analysis they perform allows to inspect how the proposed
architecture can classify SSL/TLS traffic flows, revealing that
certain handshake fields can leak information leveraged in the
classification process.

More specifically, concerning interpretation and trustwor-
thiness of TC results, in previous work [17, 21] we have
preliminary considered both. In Aceto et al. [21], we leverage
Markovian distillation for interpreting traffic prediction results.
In more detail, we compare Markov Chains and ML con-
cordant/discordant predictions to highlight and interpret ML
predictive patterns (focusing on outcome disagreements) by
observing Markovian transition probabilities. In Aceto et al.
[L7], we analyze the reliability of DL-based TC framework
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via calibration analysis, although this is not leveraged for any
improvement of the architecture.

C. Positioning of Our Work

Like the last works reported in the aforementioned section,
we focus on TC and leverage XAl techniques to get insights
on the behavior of a DL architecture. Therefore we can
compare our work more directly only with Aceto et al. [17],
Beliard et al. [18], and Wang et al. [20]. The first work re-
gards a novel TC architecture, whose experimental evaluation
demonstrated its better calibration compared with the state-
of-art (the evaluation has been performed on a different—
partially covered by NDA—dataset). However, the present
work only focused on analyzing calibration a-posteriori, while
not explicitly instilling the calibration in the learning process.

Additionally, in the present work, we adopt Deep SHAP to
infer the importance of a set of inputs for specific samples
(a local approach), similarly to Wang et al. [20]. Differently
from Wang et al. [20], though, we use this sample-dependent
information to get to global explanations, allowing to interpret
(and explain) the general correct behavior of the classifier, also
in terms of varying input granularity. Moreover, in Wang et al.
[20] the XAI analysis is only limited to a single application,
whereas we report results related to 6 protocols (composing
the =~ 99% of biflows of the 41 mobile apps of MIRAGE-
2019 dataset) and some exemplifying apps. Differently than
in Rezaei et al. [[16], our investigation on interpretability lever-
ages Shapley-based importance attribution to inputs rather than
occlusion-analysis approaches, thus applying a complementary
methodology.

Another significant difference with the cited work regards
their lack of calibration analysis, that—as will be shown in
Sec. and thereafter—is fundamental for trustworthiness
analysis. More in general, the calibration step is missing
from all the related works despite its center role in explain-
ing TC performance. While we assess the trade-off between
calibration versus performance, Meng et al. [19] evaluate
performance versus interpretability (as they adopt a different
family of XAI approaches, impacting classification accuracy).

Finally, our adoption of an open dataset, focused on human-
operated mobile apps, for the experimental evaluation sets our
work apart from almost the totality of other works (saved for
our own previous contribution on traffic prediction).

III. MULTIMODAL DEEP LEARNING—BASED
EXPLAINABLE TRAFFIC CLASSIFICATION

In this section, we describe the proposed contribu-
tion. Specifically, in Sec. we introduce MIMETIC-
ENHANCED and describe its peculiar and novel character-
istics. Then, in SecllII-B] we introduce the concept of in-
terpretability in DL architectures and describe our approach
for interpretability based on Deep SHAP technique. Finally,
in Sec. [MI-C| we motivate the role of trustworthiness and
introduce metrics to assess—and techniques to improve—the
calibration properties of DL-based TC approaches.

A. Multimodal Deep Learning Traffic Classification

A multimodal DL traffic classifier exploits the multifaceted
information extracted from multiple modalities (viz. views) of
traffic data, with the aim of capitalizing their heterogeneous
nature via intermediate fusion [39] of (automatically extracted)
features. [’| Herein, we leverage (and then explain via XAI
techniques) a novel architecture for multimodal TC, proposing
an enhanced version of a classifier based on the recently-
proposed generic MIMETIC framework [7]].

Going into details, the generic MIMETIC framework con-
sists of P different inputs (modalities) for each traffic object to
be classified. Such DL architecture is first composed by a num-
ber of single-modality (viz. input-specific) layers, allowing to
extract in an increasingly-abstract fashion the discriminative
features pertaining to the p** view to capitalize intra-modality
dependence. On the top of these layers, the abstract features
are joined via a merge layer (e.g., concatenation), which
channels the modality-specific distilled information toward a
joint multimodal representation. Finally, the architecture is
completed with a few shared-representation layers, distilling
features capturing inter-modality dependencies, and the usual
softmax layer associated to the mobile TC task considered. In
what follows, we describe the MIMETIC-ENHANCED classifier
based on the framework previously-recalled.

Based on the results of previous work [7} (8] |9, 140l |41]] and
to provide a coherent comparison with these baselines (cf.
Sec. [IV-B), our MIMETIC-ENHANCED classifier operates at
biflow level, namely the mobile TC task seeks to assign to each
biflow a class within the set {1,..., L}, with L denoting the
number of different apps. A biflow (viz. a bidirectional flow)
is a traffic object encompassing all the packets sharing the
same 5-tuple (i.e. source and destination IP address, source and
destination port, and transport-level protocol) in both upstream
and downstream directions [42].

In more detail, MIMETIC-ENHANCED consists of P =
2 single-modality branches for extracting the corresponding
intra-modality features. Each branch is fed with one input
type chosen among unbiased input data [42] recommended
in aforementioned related work, being either the first N,
bytes of transport-layer payload arranged in byte-wise format
(PAYy,) or informative fields extracted from the sequence of
the first N, packets (PSQy,) ﬂ Specifically, we consider the
first NV, = 576 bytes of transport-layer payload (PAYg7e) as
the input of the first branch, whereas the informative fields
extracted from the sequence of the first IV,, = 12 packets
(PSQ12) as the input of the second branch. In the following,
the above branches will be simply named PAY-modality and
PSQ-modality, respectivelyE]

3This peculiar procedure optimizes the less sophisticated early (or data)
fusion and late (or score/decision) fusion that are not able to fully exploit the
potentiality of multi-modality.

4Number of bytes in transport-layer payload, TCP window size (set to
zero for UDP packets), inter-arrival time, and packet direction € {—1,1}.
We stress that we neither consider IP addresses nor ports as relevant inputs.
Indeed, both would imply lack of generalization and lead to inflated results
not reflecting those attained in real deployment scenarios [42].

SWe underline that these choices have been driven by both our past
experience [[11} 42] and further preliminary analyses (not shown for brevity).
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First, to augment the information carried by input data, both
branches exploit a trainable embedding layer to embed each
input elemenﬂ into a vector of dimension e = 10. This results
in an overall embedding matrix £ € RY*¢ with N denoting
the input dimensionality, i.e. equal to 576 and 12 for the
PAY- and PSQ-modality, respectively. We emphasize that we
have considered both other embedding techniques (e.g., non-
trainable one-hot encoding) and other vector dimensions (i.e.
e = 5 and e = 30), obtaining worse TC performance or in-
creased (i.e. computationally unfeasible) training complexity.

Then, in the PAY-modality branch, the related embedding
matrix is fed to the following single-modality layers: two 1D
convolutional layers—made of 16 and 32 filters, respectively,
with kernel size of 25 and unit stride—each followed by a 1D
max-pooling layer—with unit stride and spatial extent of 3—
and, finally, by one dense layer with 256 neurons. Conversely,
the layers of the PSQ-modality branch are a Bidirectional Gated
Recurrent Unit (BiGRU)—with 64 units and return-sequences
behavior—and one dense layer with 256 neurons. To capture
inter-modality dependencies, the abstract features extracted by
the single-modality branches are joined via a concatenation
layer and fed to a shared dense layer—with 128 neurons—
before performing the classification through a softmax. All
the layers exploit Rectified Linear Unit (ReLU) activations
providing better performance than other tested variants (e.g.,
Scaled Exponential Linear Unit).

MIMETIC-ENHANCED is trained via a two-phase procedure:
an independent pre-training of each single-modality branch
(for 25 epochs) and a subsequent fine-tuning of the whole
MIMETIC-ENHANCED architecture (for 40 epochs) after freez-
ing the lower single-modality layers (i.e. the 1D convolutional
and BiGRU layers). In the former phase, the individual pre-
training of the p'* single-modality branch is achieved by
means of a softmax stub [1]. In Sec. |LII-B| we will discuss
how the latter (two) auxiliary outputs are exploited to provide
isolated (per-modality) interpretation analysis. Pre-training and
fine-tuning minimize respective categorical cross-entropy loss
functions [7] via the standard ADAM optimizer [43] (set
with a batch size of 50 samples). In more detail, MIMETIC-
ENHANCED adopts a learning-rate scheduler that halves the
learning rate every 5 epochs, starting with a value of 2- 1073
and 10~2 for pre-training and fine-tuning, respectively. This
variable learning rate shows improved TC performance com-
pared with a constant learning rate optimization, employed
e.g. in the original MIMETIC classifier (cf. Sec.|[V-B). Also, to
foster regularization and avoid overfitting, we add a dropout of
0.2 at the end of each single-modality branch and after every
dense layer, and adopt an early-stopping technique measured

To reduce the training complexity due to the explosion of input dimension-
ality, in the PSQ-modality we embed only the number of bytes in transport-
layer payload.

on the traininﬂ accuracy [46].

B. Interpreting the Working Principle of DL-based Traffic
Classifiers via Deep SHAP

For complex models, such as DL architectures, the trained
model f(-) cannot be used for explanation purposes, as its
internal behavior is hard to understand/interpret. Accordingly,
the key idea of interpretability techniques is to use a sim-
pler explanation model ¢(-), which is designed to closely-
approximate the original model f(-).

In the context of explaining the predictive behavior of DL-
based traffic classifiers, the model f(-) is chosen herein as
the soft-output associated to the generic i*" app, i.e. p;(-). By
doing so, we are able to explain which set of inputs contributes
the most to the confidence probability value associated to a
given app.

In this paper, we focus on local methods, which try to
explain the original model f(x) when the sample value x
is given as input, i.e. only in the neighborhood of this peculiar
value. Accordingly, the use of local methods in our case
corresponds to a per-biflow explanation. Specifically, (local)
explanation models use the so-called simplified inputs x'
that map to the original inputs through a mapping functlon
x = hy(2). Accordmgly, local methods try to ensure g(z) ~
f(he(z")) whenever z° = x'. The per-sample explanation
results based on local methods will be then aggregated (viz.
pooled) to reach global explanations, as explained at the end of
this subsection. Most of the interpretability techniques assume
a peculiar functional form for the explanation model g(-),
which is described hereinafter.

Additive Feature Attribution (AFA) Methods: Herein we
focus on the (wide) class of explanation models, referred to as
AFA methods, which are linear functions of binary variables,
ie.

M ’
=G0+ Y bmm, ()
m=1

where z' € {0,1}M, M denotes the number of simplified
inputs and ¢,, € R. AFA methods provide an explanation
model attributing an “effect” ¢,, to each input, and summing
the effects of all input attributions approximates the original
model output f(x). The most used interpretability techniques
(e.g., LIME, DeepLlIFT, etc.) belong to this family of explana-
tion models. Additionally, when the functional form in Eq. @
is required to satisfy (i) local accuracy (i.e. g(z") = f(ha(2))
when z' = '), (ii) missingness, and (¢2¢) consistency proper-
ties, there exists a unique AFA solution satisfying them [10].
Such solution coincides with the computation of the well-
known Shapley values.

Shapley values originate from cooperative game theory [47]]
and identify the contribution of player m to the payoff v(P)

7We highlight that the most common approach requires a validation set
to monitor early-stopping. However, due to the class-imbalance typically
encountered in mobile TC, some apps in the training set may have a limited
number of samples. Hence, using part of the (whole) training set for validation
could impair performance associated with minority classes. For this reason, we
use early-stopping on training data by monitoring the “knee” of the training
accuracy, and exiting when this condition is satisfied. Similar approaches were
also recently proposed in [44] [45]
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achieved by the overall coalition P. To do so, this method
assesses the payoff of every subset of cooperating players S C
P and tests the effect of removing/adding the player m to S
on the total payoff v(S) obtained by S if they cooperate.

When transposing the method to the task of explaining a
DL-based model, the input data maps into the players of the
cooperative game, whereas the DL architecture output f(x)
corresponds to the payoff function, and the m'" Shapley value
equals

ulfie) = Y o) |£o(z) - Loz \m)] @

z' Ca’

, \z’—1\1(M—|z'\—1)1
where p(z ) = i , and we have used the com-
pact notation for the composite functlon fa() = f(ha(: ))
Additionally, z \m denotes the Vector 2 in which the m!
entry has been set to zero, and |z’ | denotes the number of non-
zero entries of z . The sum is carried out over all 2z vectors
whose m!" component is non-zero. The Shapley value is the
weighted mean of all these contributions.

Shapley Values Computation with SHAP: Unluckily, the
time required for exact computation of Shapley values grows
exponentially with the input size M. Indeed, the computation
of fz(z") = f(hg(2)) would require the model to be trained-
tested with each subset of the inputs withheld. Conversely,
SHapley Additive exPlanation (SHAP) approximates these
quantities via the following conditional expectation [10]:

f(he(2) E{f(2)|zs} 3)

where S denotes the set of non-zero indices within z . The
above approximation thus eliminates the need to retrain the
model and allows the above quantity to be computed for all
the values of z’ in a computationally-efficient fashion (i.e. a
sample expectation w.r.t. the withheld inputs on the original
model f(+)).

The expression for f(hg(z')) is further simplified by as-
suming (a) statistical independence among the inputs and (b)
linearity of the model f(x) = Z%zl Wi Ty, + 0 [10]. Indeed,
when both these assumptions hold, it can be shown that ¢,,,’s
are in closed-form and equal to:

¢m(fv :I}) = Wm (mm -E {xm}) 4

The aforementioned simplification for ¢,,’s is capitalized
as described next.

From DeepLIFT to Deep SHAP: DeepLIFT represents a
recursive prediction explanation method for DL architectures
[33]], which attributes to each input x,, a value Ca,,, Ao that
represents the effect of that input being set to a reference value
as opposed to its original value. This means that for DeepLIFT,
the mapping @ = hg(x’) converts binary values into the
original inputs, where 1 (resp. 0) indicates that an input takes
its original (resp. reference) value. The reference value, though
being a user-defined parameter, is typically chosen to be an
uninformative background value for the m*" input. The input
effects obtained via DeepLIFT satisfy a “summation-to-delta”
property, namely Zn]\le Caz,,no = Ao, where 0 = f(x) is
the model output, Ao = f(x) — f(r), Az; = (z; —r;) and 7
is the reference input.

DeepLIFT capitalizes a linear composition rule for the cal-
culation of the Ca,,, Ao’s, Which is based on the linearization
of the non-linear components of a neural network, such as
(softymax, products, or divisions. The back-propagation rules
of the original DeepLIFT proposal (defining how each com-
ponent is linearized) were however heuristically chosen [33]].

Clearly, the above explanation model fits within the func-
tional form of AFA methods described via Eq. @), when
setting ¢g = f(r). Also, since DeepLIFT is an AFA method
that satisfies (¢) local accuracy and (z¢) missingness, Shapley
values represent the unique attribution solution that satisfies
consistency (ii¢). Accordingly, the adaptation of DeepLIFT to
become an analogous compositional approximation of SHAP
values (i.e. using output expectation as a reference value and
resorting to explicit Shapley equations, described in Eq. (@),
for consistent linearization), leads to Deep Shap [10], a fast
approximation algorithm for SHAP values which capitalizes
the connectionist nature of DL architectures ]

Therefore, this approach will be used to assess the impor-
tance of inputs selected from the raw traffic data (e.g., related
to PAY or PSQ modalities) of a given biflow in classifying the
mobile app generating it. The details are provided in what
follows.

Local Explanation of DL-based Multimodal Traffic Classi-
fiers: Based on the aforementioned discussion, we interpret the
SHAP value ¢,, as the importance value of the m*" input x,,
(belonging to the raw traffic data ) in forming the confidence
p; associated to the i** app for the biflow tested. We recall that,
since ¢, € R (i.e. values can be also negative), the meaning
of importance values should be interpreted as follows: positive
(resp. negative) values increase (resp. decrease) the confidence
in the 7*" app with respect to its average value. Indeed, the sum
of the SHAP values equals the considered soft-output value
(pi(x)) minus the so-called base output. The latter represents
the average of the same soft-output obtained in correspondence
of the samples associated to the background set, i.e. E{p;}.

In this work, for each biflow, we will focus on explain-
ing the soft-output associated to the predicted app p(x) =
max;—1,.. 1 pi(x), as this represents the most relevant (and
highest) output in the TC process.

The additive form of Shapley values (as this method belongs
to the class of AFA methods) allows for readily evaluation
of the importance which can be attributed to non-overlapping
subset of inputs. Such analysis well suits assessing to which
degree the different modalities (as a whole) of a multimodal
DL traffic classifier contribute to the interpretation of the
predicted outcome (see e.g. later analysis in Sec. [V-E). To
do so, we denote the input subsets associated with the P
modalities considered as xi,...,xp, where x = U;I::l Tp.
Then, to quantify the importance of the p!" modality to
multimodal TC effectiveness, we resort to a pooled SHAP
value ¢aq,. This term represents the importance value of

8We highlight that since Deep SHAP relies on an approximate computation
of Shapley values, the local accuracy property f(x) = g(«) may be not satis-
fied with perfect equality. Still, experimental results reported in Secs.
and [V=G| show a negligible discrepancy. For instance, regarding Sec. [V-E|
this is quantified as a mean absolute percentage error (between original
and explanation models) equal to 0.86% and 0.84% for the explanation of
MIMETIC and MIMETIC-ENHANCED, respectively.
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the input subset x, (corresponding to the p‘" modality) in
classifying the biflow associated to the whole input & with
the label /. The aforementioned value is simply obtained
as dm, = D e M, ¢m, where M,, denotes the index set
associated to the p'”* input subset within z. Clearly, it holds
S oM, = Somer Om = (pi(x) —E{py(2)}). As a
result (and similarly to the unpooled case), a positive (resp.
negative) ¢4, increases (resp. decreases) the confidence in
the predicted app ? with respect to its average value.

In a complementary fashion, to focus exclusively on a
given modality and quantify the corresponding importance
contribution of individual inputs within each, we proceed as
follows. Specifically, we consider the stub output associated
to the p'" modality as our f(-), since the latter function (viz.
architecture branch) only depends on x,,. By doing so, we are
able to focus solely on the behavior of the p!’* single-modality
branch, i.e. before the combined effect of intermediate fusion
achieved by the shared(-representation) layers (see later anal-
yses in Secs. [V-F| and [V-G). This procedure thus isolates the
interacting effect of other modalities on the p*” modality, and
allows per-modality interpretation. The (isolated) importance
values associated to the input subset x, (feeding the p'"
modality) are represented by the SHAP values ¢£,’;>, where
m=1,...,|M,|.

The above methodology for interpreting the behavior of
multimodal DL-based traffic classifiers will be applied to both
MIMETIC and MIMETIC-ENHANCED in Secs. Still,
we remark that the proposed interpretability approach is quite
general and can be virtually applied to any multimodal DL-
based mobile TC architecture, especially those fitting within
the MIMETIC framework [7]].

From Local to Global Explanations: First of all, we notice
that a soft-output can assume a range of different values. Ac-
cordingly, the absolute importance of the m!" input may differ
from sample to sample. For this reason, our proposed global
explanation approach assumes the preliminary calculation of
normalized SHAP values, obtained by dividing each SHAP
value by their overall sum, namely

am e ¢m _ Om
St bm Yom—y (pe(@) — E{pe(x)})

Considering qwbm (as opposed to ¢,,), allows focusing on the
relative importance of each input (indeed, for each sample,
the sum of the importance values equals one). By doing
so, we are able to draw out importance measures which do
not depend on the peculiar architecture confidence (generally
higher or lower) by aggregating to obtain global explanation
over different samples x1, . . ., 5. Additionally, as in [20], we
solely focus on the aggregation of correctly-classified samples:
this choice allows focusing on the correct behavior of a given
DL-based traffic classifier, allowing to interpret its counter-
intuitive (while right) decisions a posteriori.

In detail, to obtain the global explanations pertaining to
different granularities, we will consider the following views
of aggregation: () over the whole MIRAGE-2019, (i) related
to a given protocol (e.g., TLS), and (:iz) focused on a
given app (e.g., Spotify). We would remark that no implicit

&)

assumption about the nature of the protocols is made: the
proposed explanation approach is protocol-agnostic. Indeed,
it can investigate input importance also when: () the protocol
conveying the traffic is unknown; (iz) the protocol conveying
the traffic is not open (proprietary protocols); (i¢¢) the protocol
adopts encryption; (¢v) the protocol fields have variable length.
Moreover, our input importance analysis can be leveraged—
without further assumptions on the protocol—for assessing the
robustness to adversarial attacks (or even detect them, as done
in [48])): we leave this to future work.

C. Calibration in Deep Learning

Other than the accuracy of the considered DL-based traffic
classifiers, it is of great importance to evaluate their relia-
bility [49]. Such a property is fundamental in many critical
scenarios and constitutes a building block of XAI since it
assesses the degree of trustworthiness in providing TC outputs
with high confidence (or not).

Metrics to assess calibration: Formally speaking, given
an input sample x to the DL-based traffic classifier under
analysis, we will analyze the trustworthiness of the whole
confidence vector (ie. p(x) = pi(x),...,pr(x)) and of
the confidence associated to the predicted app (i.e. p(x) =
max;—i,.. [, pi(x)). In what follows, we introduce a graphical
visualization and three metrics to assess calibration, with the
first two being related to a weaker definition of calibration,
and the third to a stronger one [23]].

Indeed, a miscalibrated classifier returns excessively op-
timistic or pessimistic confidence outputs associated to its
decisions. On the other hand, a confidence-calibrated classifier
is such that for each sample, the confidence in the predicted
app p equals Pr {é =/ ]3}, where ¢ is the true app and / is the
predicted label. That is, having e.g. 80% confidence leads to
80% accuracy. To visualize the above property for varying p,
we use the so-called reliability diagrams [24} 50]], which show
the accuracy as a function of the confidence (i.e. Pr {é =/ ]5}
vs. p). The obtained diagram is usually compared with the
ideal Pr{/ = €|ﬁ} = p identity line. Hence, a perfectly-
calibrated classifier entails a reliability diagram corresponding
to the identity function. These diagrams are evaluated by parti-
tioning the predictions into M equally-spaced bins (with extent
1/M) and computing the accuracy of each bin. Let B, be the
set of evaluated samples such that the confidence associated
to the predicted app falls within the interval I,,, & (Z%-%; 2],
the corresponding bin accuracy equals:

1

acc(Bm) Z 1(@(@ = f(n)) (6)

1Bl EF,

where /(,,) and é(n) 2 argmax;—1, 1 p;(n) are the true and
predicted labels for the n*" sample, respectively. Confidence
values range in [1/L, 1], where L is the number of classes
of the mobile TC task. Accordingly, the starting-point of the
confidence interval actually coincides with 1/L.

To obtain a concise metric of the deviation from
perfect calibration, we integrate the above diagrams
with the Expected Calibration Error (ECE), defined as
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E; {‘Pr {2 = £|]5} - ﬁ‘}, and the Maximum Calibration Er-

ror (MCE), defined as MCE £ max; ’Pr {fz E|ﬁ} —]3‘.
The former metric represents the expected absolute deviation
between the confidence and the confidence-conditional accu-
racy, whereas the latter is the maximum absolute deviation
from the identity line. The two aforementioned metrics can be
(approximately) calculated as

o~ |Bn
ECE =~ mZ:1 Tm lace(Biy,) — conf(B,,)] (7)
MCE =~ max |acc(Byy,) — conf (B, (8)

respectively. The above expressions are based on the overall
number of tested samples N and the averaged confidence
within bin B,,,, obtained as:

> b ©)

neB,,

conf(B,,) = Bl

1

|
where p(n) £ max;—1_. 1, p;(n) denotes the predicted confi-
dence of the n*" sample.

The ECE and MCE metrics only consider the confidence in
the predicted app, while ignoring the other scores in the soft-
max distribution. A stronger definition of calibration requires
the probabilities of all the classes in the softmax distribution to
be calibrated, namely to have p; equal to Pr {¢ = i|p;} for i =
1,...,L, i.e. having 80% confidence for the i*" app leads to
80% probability of observing that app. A concise metric which
relies on the above stronger calibration definition is the Class-
Wise Expected Calibration Error (CW-ECE) [26]], defined as
1 Zle E,, {|IPr{¢ =14|p;} — pi|}. Such a metric is evalu-
ated as the class-wise sum CW-ECE = %Zle CW-ECE;,
where:

M
~ |Bm,z|

CW-ECE; ~ mz::l N e(Brn.i) — conf(Bpi)| - (10)
In the latter definition, B,, ; denotes the set of samples whose
prediction for the i*" app p; falls within the m!* bin, and
conf(B,, ;) (resp. o(By,;)) the corresponding bin-averaged
confidence probability (resp. proportion of samples labeled as
the i" app).

Techniques to Improve Calibration: We now describe two
relevant techniques to improve calibration in DL-based archi-
tectures. According to the literature, all the methods to ensure
a better calibration of a classifier involve a modification of the
training process and/or of the training loss.

o Label Smoothing can be interpreted as a form of loss
regularization to improve the generalization ability
of models and reduce an excessively high prediction
confidence. Such a technique encompasses, during the
training phase, that the cross-entropy (CE) loss minimizes
the prediction w.r.t. a smoothed one-hot representation of
the ground truth ﬁ(n), calculated as

tis(n) = (1—a)t(n) + > 1p

I (1)
[t1(n)

where t(n) = tL(n)]T denotes the usual
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Figure 1. Number of per-app biflows in the MIRAGE-2019 dataset.
Table II
CLEARTEXT MESSAGES BY PROTOCOL.

Protocol Cleartext Messages

FB-Zero* CHLO, SNOM, SCFEG (heuristic)

gQUIC® CHLO, REJ

SSL® / TLS? CHLO, SHLO, Certificate, Server
Key Exchange, Server Hello Done,
Client Key Exchange, Change
Cipher Spec

STUN® all packets

HTTP' packets containing HTTP headers

2 https://engineering.fb.com/2017/01/27/android/building-zero- protocol- for-
fast-secure-mobile-connections
b|https://tools.ietf.org/html/draft-tsvwg-quic-protocol-02

¢ RFC 7568: https://tools.ietf.org/html/rfc7568

d RFC 8446: https://tools.ietf.org/html/rfc8446

¢ RFC 5389: https://tools.ietf.org/html/rfc5389

fREC 7235: https://tools.ietf.org/html/rfc7235

one-hot representation of the label £(,). The smoothing
parameter « defines the amount of uncertainty enforced
on the ground truth, with o — 0 collapsing to the usual
non-smoothed CE-based training procedure.

e Focal Loss is a suitably-defined loss function for clas-
sification tasks, and is one viable solution to deal with
class imbalance. However, in a recent work [26] it has
been demonstrated its successful application in improv-
ing calibration, capitalizing its implicit (entropy-based)
regularization properties. The explicit expression of the
focal loss for the generic n*" sample is

L
Lpr(n) = - Zti(n) (1 =pi(n))" log(pi(n))  (12)

The overall loss is then obtained as Lp;, =
25:1 Lrr(n). In this case, the parameter ~y controls the
impact of such a loss, with v — 0 collapsing to the usual
CE loss.
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IV. EXPERIMENTAL SETUP

This section describes the experimental setup considered in
this work. Specifically, in Sec. [V-A] a brief description of
the dataset MIRAGE-2019 is provided. Then, in Sec.
the considered DL-based traffic classification baselines (used
for comparative performance and interpretation analysis) are
introduced.

A. Dataset Description

The whole experimental campaign in this study lever-
ages the publicly released MIRAGE-2019 mobile-app traffic
dataseﬂ[ﬂ to foster reproducibility. The dataset was collected
by more than 280 experimenters at the ARCLAB laboratory of
the University of Napoli “Federico II” during the period May
2017-May 2019, exploiting the MIRAGE architecture [11].
The facility allows to collect mobile-traffic in PCAP format,
which is enriched with ground-truth information that labels
each biflow with the corresponding Android-package name.
During the collection, the experimenters have mimicked the
typical usage of each app by testing most-common function-
alities (e.g., service registration and login, habitual interactions
and use cases, etc.). Latest app versions available at time
of capture were used. Overall, MIRAGE-2019 encompasses
the traffic generated by 41 Android apps belonging to 16
categories according to the Google Play Store{ﬂ The dataset
contains more than 4600 traffic traces, each generated in a
capture session of [5, 10] minutes, 91778 TCP, and 4589 UDP
labeled biflows. Three distinct devices were used. For the sake
of brevity, the following experimental evaluation focuses on
the traffic captured with the Xiaomi Mi5.

Figure [I] details the number of biflows for each app,
spanning from 299 (for Maps) to 8246 (for Facebook).
Nevertheless, for 32 apps out of the 41 considered, MIRAGE-
2019 contains more than 1000 biflows per app. We remark
that, albeit roughly the same time has been allotted for the
usage of each application during the traffic capture time,
the number of biflows significantly depend on the specific
app considered: this constitutes a real-world and challenging
scenario for the interpretability analyses provided herein.

B. Traffic Classification Baselines

This section describes state-of-the-art baselines considered
in the following interpretability analyses and compared with
MIMETIC-ENHANCED. All single-modal baselines are fed
with either PAYy, or PSQy, (see Sec. for more details),
both normalized within [0,1]. On the other hand, similarly
to MIMETIC-ENHANCED, multimodal baselines are fed with
both types of input data [17]].

Unless stated otherwise, all DL architectures are trained to
minimize a categorical cross-entropy loss function, and exploit
the Adam optimizer [43] and the early-stopping technique
to prevent overfitting. Specific training parameters of each

9http://traffic.comics.unina.it/mirage/

Whttps://ieee-dataport.org/open-access/mirage-mobile-app-traffic-capture-
and- ground- truth-creation

Uhttps://play.google.com/store/apps

baseline (e.g., learning rate, number of epochs, batch size,
etc.) are set based on the recommendation provided in the
respective original studies.

Single-Modal DL Traffic Classifiers: We have selected
the best single-modal DL classifiers according to extensive
evaluations performed in our previous works [7, 42]]. In more
detail, we consider the ID-CNN fed with PAY7g, [40] and
the 2D-CNN + LSTM (named HYBRID hereinafter) fed with
PSQao [41].

Additionally, we evaluate the Flow Sequence Network (FS-
Net) [9], having as input the IP packet size of the first IV, = 12
packets (PSj5). FS-Net consists of (i) an embedding layer
(with a 128-dimensional vector), (ii) an encoder followed by
(iii) a decoder (both a 2-layer BiGRU with 128 units) whose
output is given to (iv) a reconstruction layer (with softmax
activation), (v) a dense layer (with SeLu activation) combining
encoder and decoder outputs, and (vi) a classification layer
(with softmax activation). After each intermediate layer, a
dropout of 0.3 is employed to avoid overfitting. For FS-Net,
the loss function is the weighted sum of reconstruction and
classification categorical cross-entropy losses.

Finally, to investigate the performance of “shallow” learn-
ing, we consider a MultiLayer Perceptron encompassing one
hidden dense layer with 100 neurons (named MLP-I here-
inafter) trained with either PAY;g4 or PSQqo.

Multimodal DL Traffic Classifiers: MIMETIC-ENHANCED
is compared also with two multimodal baselines recently
proposed in related literature. The first baseline is the orig-
inal MIMETIC architecture we have previously proposed [7].
MIMETIC consists of two modalities using PAYs7s and PSQio
input type, respectively. The former is made up of two 1D
convolutional layers (with 16 and 32 filters, kernel size of 25,
and ReLu activation), each followed by a 1D max-pooling
layer, and a dense layer (with 256 neurons). The latter com-
prises a BiGRU (with 64 units) and a dense layer (with 256
neurons). The intermediate representations of the two branches
are concatenated and fed to a shared dense layer (with 128
nodes). A dropout of 0.2 is used at the end of each branch and
after each dense layer. Similarly to MIMETIC-ENHANCED,
the original MIMETIC is trained via a two-stage procedure
based on pre-training and fine-tuning phases. It is worth
noting that MIMETIC and MIMETIC-ENHANCED classifiers,
despite derived from the same general multimodal frame-
work [[7], significantly differ from both the architectural and
training-procedure viewpoints. In more detail, in MIMETIC-
ENHANCED, we better represent the information carried from
both input types—and consequently its explainability degree—
by exploiting a trainable embedding layer in both modalities.
Such an embedding layer changes the dimension of the input
vector fed to the subsequent layers, and introduces new param-
eters to be learned. Moreover, MIMETIC-ENHANCED employs
a novel training procedure based on an adaptive learning-
rate that is halved every 5 epochs, demonstrating a beneficial
effect on training with respect to simpler constant learning-rate
adopted in MIMETIC (see Sec. [[lI-A). Finally, we have also
applied a calibration procedure (based on different approaches,
namely focal loss and label smoothing) explicitly devised and
optimized for the training phase of MIMETIC-ENHANCED (see


http://traffic.comics.unina.it/mirage/
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Sec. [II-C).

The second baseline is the multimodal App-Net architec-
ture [8] which also has two modalities with PAY,o, and
PSi, as input, respectively. The first branch encompasses an
embedding layer performing one-hot encoding of the input and
two 1D convolutional layers (with 128 filters, kernel size of
15, and ReLu activation), each followed by a 1D max-pooling
layer. The second branch consists of an embedding layer (with
a 128-dimensional vector) and two BiLSTM layers (with 128
units). Lastly, the intermediate features are fused via a learned
weighted element-wise addition. Here too, a dropout of 0.5 is
used at the end of each branch. Unlike other baselines, App-
Net employs the stochastic gradient descent optimizer with a
variable learning rate which is halved every 3 epochs.

ML-based Traffic Classifiers: Additionally, we compare
MIMETIC-ENHANCED with a Decision Tree (DT) being a
simpler and (more) interpretable ML-based model. We un-
derline that the interpretability degree of the DT is strongly
dependent on (a) the feature set (i.e. the input dimensionality)
and (b) the tree depth: the more complex the DT, the less
interpretable its decision rules. Indeed, the number of leaf
nodes increases exponentially with the tree depth (i.e. by
QdEPth). Therefore, to foster a fair comparison, we feed the
DT with three different feature sets: (i) PAYs7g, (ii) flattened
PSQ4s, and (iii) PAYs7¢ +PSQ4o, where “+”° denotes a flattened
concatenation.

C. Implementation Details

To foster reproducibility, in addition to the public re-
lease of the MIRAGE-2019 dataset, we provide specific
implementation details on the whole experimental work-
bench. All the APIs refer to Python (3.7) program-
ming language. Specifically, we exploited the DL models
provided by Keras (https://keras.io) and TensorFlow 2
(https://www.tensorflow.org/), and ML models provided by
scikit—learn (https://scikit-learn.org/) to implement, test,
and calibrate the traffic classifiers described herein. Also,
we leverage the original Deep SHAP implementation avail-
able at https://github.com/slundberg/shap. Data pre- and post-
processing have been performed mainly by means of numpy
(https://numpy.org/) and pandas (https://pandas.pydata.org/)
libraries. Finally, the graphical data representation has been
obtained using matplotlib (https://matplotlib.org/) and
seaborn (https://seaborn.pydata.org/) libraries.

All the experiments refer to the same hardware architecture,
that is an OpenStack virtual machine with 16 vCPUs and 32
GB of RAM, and Ubuntu 16.04 (64 bit) operating system,
running on a physical server with 2 x Intel(R) Xeon(R)
E5-4610v2 CPUs @ 8 x 2.30 GHz and 64 GB of RAM.
Regarding the evaluation of (per-epoch) training complexity
of DL approaches, we highlight that all the execution times
have been computed via time.process_time () to take
into account only the actual runtime on the CPUs (i.e. in a
sequential fashion).

V. EXPERIMENTAL EVALUATION

This section reports and discusses the experimental eval-
uation performed in this work. The latter is based on a
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Figure 2. MIRAGE-2019 per-app traffic characterization.

stratified ten-fold cross-validation that keeps stable the share
of per-app samples among the folds and allows a TC per-
formance evaluation on the whole dataset. Hence, for each
considered metric we report the average—and, when needed,
the standard deviation—of the evaluations on the ten folds.
More specifically, in Sec. [V-A] a fine-grained characterization
of MIRAGE-2019 dataset is provided. Then, in Sec. [V-B]
we compare the proposed MIMETIC-ENHANCED against the
considered baselines in terms of TC performance. A first
in-depth analysis on the soft-output of our proposal is pro-
vided and discussed in Sec. [V-Cl The trustworthiness of
MIMETIC-ENHANCED predictions (against the baselines) is
quantified (and improved) in Sec. [V-D] Finally, the inter-
pretability of MIMETIC-ENHANCED TC-results is discussed
in Secs. [V-E] [V-F and [V-G] focusing on relative contribution of
each modality, and per-modality investigation of these inputs.

A. Dataset Characterization

In this section, we report the results of the dissection
of the app traffic in terms of adopted protocols, based on
the well-known tshark librarylzl We also discuss how we
infer the nature (clear vs. encrypted) of the payload at per-
packet granularity (based on identification of known protocol
messages).

Figure [2a] depicts the distribution of protocols in terms of
biflows for each app within the dataset. For each biflow, we

2In detail, PyShark (https:/kiminewt.github.io/pyshark) and Scapy
(https://kiminewt.github.io/pyshark) were employed.


https://keras.io
https://www.tensorflow.org/
https://scikit-learn.org/
https://github.com/slundberg/shap
https://numpy.org/
https://pandas.pydata.org/
https://matplotlib.org/
https://seaborn.pydata.org/
https://kiminewt.github.io/pyshark
https://kiminewt.github.io/pyshark

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. *, NO. *, MONTH 2021 12

es,

UNK protocel?

yes,

cleartext
message?

cleartext

cleartext

encrypted

o

Figure 3. Proposed heuristic to identify the encrypted portion of app traffic
in MIRAGE-2019.

consider the highest protocol in the stack the dissector is able
to interpret. For the sake of clarity, in the following we refer to
the protocol classes in our dataset reporting the TCP/IP stack
portion from transport layer and the one above, in the form
LA4:L5.

Firstly, we can notice that the Transport Layer Security
(TLS) protocol (TCP:TLS) constitutes ~ 80% of overall
biflows and each app has 15% TLS biflows, at least.

Inspecting the ~ 76k TCP:TLS biflows in the dataset,
94% employ the 1.2 version or above{ﬂ , while the remaining
6% the 1.0 version (in fact, only 3 TLS 1.1 biflows can
be found). Analyzing the latter 6% in more depth, 95% of
these biflows are associated with the sole Waze app, while
the remaining part is shared by eBay, Twitter, Tumblr,
TripAdvisor, Subito, OneDrive, Flipboard, and
Facebook. Notably, TLS 1.0 constitutes 93% of TLS Waze
biflows, while for the other mentioned apps, this protocol
accounts for smaller shares (less than 0.05% of the biflows
for all the mentioned apps but Facebook, for which TLS
1.0 represents 5% of the TLS traffic in terms of biflows).

According to the tshark protocol dissection, 19 apps
have at least one biflow marked as Secure Sockets Layer
(SSL) protocol (which conveys ~ 85% of the biflows for
Telegram, in particular)E We highlight that this naming
choice is due to the default labeling t shark adopts when the
dissector is unable to detect the specific version of SSL/TLS.
We have chosen to follow the same convention for coherence
with the usage of tshark response as ground truth for
protocol type, and report this undetected version of SSL/TLS
as TCP:SSL.

Other prominent protocols in the dataset are Facebook
Zero (FB-Zero) and Google Quick UDP Internet Connection
(gQUIC) (TCP:FB-Zero and UDP:gQUIC, respectively).
As expected, the former is used only by Facebook Inc.’s apps

13The TLS version 1.3 standard (RFC4886) mandates the usage of cleartext
protocol version field with the same value of TLS version 1.2, therefore the
tshark dissector we use as a ground truth cannot tell apart these two
versions.

“Most of Telegram traffic is labeled by t shark as “SSL Continuation
Data” despite the (open source) Telegram client supports TLS1.3 .

(i.e. Facebook, Instagram, and Messenger), whereas
the latter by Alphabet Inc.’s ones (i.e. Maps, PlayStore,
Hangouts, and YouTube). For these apps, up to ~ 37%
(for Facebook) and ~ 63% (for YouTube) of the biflows
utilize FB-Zero or gQUIC, respectively. Notably, 32 out of
41 apps present HTTP biflows (TCP : HTTP), with the highest
shares (> 30% of biflows) exhibited by Wish, Spotify,
AccuWeather, and Diretta. For a limited number of
biflows, the dissecting process could not go further the iden-
tification of the presence of the transport-layer headers with
TCP : UNK and UDP : UNK accounting for ~ 0.7% and =~ 0.2%
of the overall biflows. A more limited portion of the biflows
employ STUN protocol (UDP:STUN), which represent the
~ 24% of Messenger biflows. Finally, < 0.1% of the
biflows in the dataset do not match any of the mentioned
protocols and are grouped in OTHER : UNK.

The distribution of protocols shown in Fig. 2a] also provides
hints about the nature of the traffic: protocols that natively sup-
port payload encryption (i.e. TLS, SSL, FB-Zero, and gQUIC)
can be easily distinguished from those that do not (i.e. HTTP,
STUN, TCP, UDP). It is worth to notice that: (i) protocols
supporting payload encryption also dictate for portions of
the biflows to be conveyed in cleartext (e.g., messages that
establish the initial secure connection); (ii) applications may
exchange encrypted data through protocols that do not support
payload encryption (e.g. when content encryption is enforced
at application level). To provide a different viewpoint with
respect to protocols, i.e. to identify the encrypted portion of the
app traffic at a finer granularity, now we focus on L4 payload.
To count the encrypted packets we adopt a conservative ap-
proach that is based on packet dissection to detect application-
layer messages and takes advantage of known protocol charac-
teristics to classify a packet as clear, encrypted, or unknown,
according to an heuristic described as flow chart in Fig. [3]
Details about the messages considered to be in clear for each
protocol are reported in Tab. [[I] On the other hand, STUN only
uses cleaﬂextﬁ Besides such cleartext messages, the payload
of TCP:FB-Zero, UDP:gQUIC, TCP:SSL, and TCP:TLS
biflows is therefore considered to be encrypted. Note that for
biflows marked as TCP : SSL, usually the packet dissector does
not provide detailed information on the message type, thus
we could not infer the related packet nature. Moreover, from
version 1.3 the TLS standard mandates an opaque content type
header value corresponding to generic “application data”, no
longer revealing the actual TLS message type (now encrypted).
Differently, concerning HTTP, only the packet containing
HTTP headers is considered to be in clear, while the packets
delivering the body of the message are marked as unknown.
We report the results of the heuristic applied to the dataset in
Fig. 2B which depicts the percentage of clear, encrypted, and
unknown packets for each app. As expected, this information
is strongly related to the (per-biflow) protocol distribution
associated to each app: cleartext traffic constitutes =~ 5-10%
of per-app packets which correspond to the beginning of
TCP:FB-Zero, UDP:gQUIC, TCP:SSL, TCP:HTTP, and

ISSTUN protocol leverages TLS (DTLS) for encryption (RFEC7350), there-
fore UDP : STUN is in cleartext.
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Table III
PERFORMANCE METRICS AND DEFINITIONS.
Metric Definition
o - Sy tei
Accuracy aACC = e T T Ty
sr pree; rec,
F-measure F-meas — M
L /spec. Tec,
G-mean G-mean = w
L __tPi
Recall rec; = tPi+}”i
- _ tp;
Precision prec; = ¢
Specifici _ tng
pecificity SPEC; = TmiTrpy

True Positives, True Negative, False Posi-
tives, and False Negatives are denoted with
tp, tn, fp, and fn, respectively.

The 4 subscript refers to the it" class. L is
the total number of classes.

Table IV
COMPARISON OF MIMETIC-ENHANCED ACCURACY, F-MEASURE, AND
G-MEAN WITH STATE-OF-THE-ART BASELINES.

Traffic Classifier Accuracy [%] F-measure [%]

91.47 (& 0.27)

G-mean [%]
95.36 (£ 0.19)

MIMETIC-ENHANCED  92.14 (£ 0.28)

MIMETIC [7] 88.89 (4 0.25)  87.78 (& 0.45)  93.10 (£ 0.46)
App-Net [8] 88.25 (£ 0.21)  87.60 (& 0.38)  92.91 (£ 0.25)
FS-Net [9] 87.19 (£ 0.33)  86.23 (& 0.56)  92.38 (£ 0.41)
ID-CNN [40] 83.97 (& 0.54)  82.68 (& 0.84)  90.29 (£ 0.39)
MLP-1 (PAY7gs) 80.12 (& 0.64) 7879 (& 0.69)  87.70 (£ 0.36)
HYBRID 79.10 (& 0.83)  76.23 (& 1.09)  85.97 (£ 0.73)

MLP-1 (PSQz0) 59.47 (£ 0.61)

87.12 (£ 0.45)

54.51 (£ 0.87)
86.06 (& 0.48)

70.68 (£ 0.76)
92.49 (£ 0.28)

DT (PAYs76 + PSQ12)

DT (PSQ12) 85.28 (£ 0.32) 8335 (& 0.42)  90.99 (& 0.27)
DT (PAYs76) 84.10 (& 0.36)  83.02 (& 0.46)  90.81 (£ 0.31)
MIOBB +3.25 (£ 0.27) +3.68 (£ 0.37) + 2.26 (+ 0.31)

Results are in the format avg. (% std.) obtained over the 10-folds and refer to the
41-app mobile TC task.

Overall best classifier is highlighted in boldface.

Baselines are grouped based on their type (multimodal DL, single-modal DL, and
ML-based DT) and ranked according to TC performance.

The last row shows the Maximum Improvement Over the Best Baseline
(MIOBB) [%], namely MIMETIC-ENHANCED improvement over MIMETIC.

TCP:TLS biflows and to UDP:STUN. communications. In
fact, notable exceptions are Spotify and Wish for which
a remarkable amount of TCP:HTTP traffic is observed and
Slither.io and Telegram that present several TCP : UNK
and TCP : SSL biflows, respectively.

When performing protocol breakdown, the following anal-
yses will omit TCP:UNK, UDP:UNK, and OTHER:UNK as
the related amount of traffic in MIRAGE-2019 is negligible.
The analyses will focus on TCP:FB-Zero, UDP:gQUIC,
TCP:SSL, TCP:TLS, UDP:STUN, and TCP:HTTP whose
traffic will be simply referred to as FB-Zero, gQUIC, SSL,
TLS, STUN, and HTTP, respectively, for the sake of brevity.

B. Performance Comparison with State-of-the-art Baselines

In this section, we analyze in depth the performance of
MIMETIC-ENHANCED against the considered baseline archi-
tectures. Table [[V] summarizes wrap-up results in terms of the
typical classification performance metrics, whose definition is

—©— MIMETIC-ENHANCED
MIMETIC

—=— App-Net
—&— FS-Net

FB-Zero

TLS
Accuracy [%]

Figure 4.  Accuracy of MIMETIC-ENHANCED and best baseline traffic
classifiers divided by protocol.

briefly reported in Tab. [Tl In addition to the well-known Ac-
curacy (i.e. the fraction of correctly classified biflows over the
total number of biflows), we also leverage per-class measures,
namely F-measure and G-mean, which concisely take into
account recall, precision, and specificity. Specifically, for the
evaluation of multi-class traffic classifiers, we employ their
arithmetically-averaged (viz. macro) versions.

Experimental results witness that MIMETIC-ENHANCED
performs better than all the considered baselines according to
all the performance metrics. Indeed, it guarantees remarkable
improvements with respect to the best performing baseline
(that is MIMETIC in all the cases), reporting performance
improvements of +3.25%, +3.68%, and +2.26% in terms
of Accuracy, F-measure, and G-mean, respectively. More
in general, the performance-rank of the architectures con-
firms that multimodal approaches (i.e. MIMETIC-ENHANCED,
MIMETIC, and App-Net) are able to achieve better—and
typically less variable—performance. On the other hand,
simpler DT performs almost on par with single-modal DL-
based traffic classifiers when fed with the most complex
PAYg76+PSQy, feature set, but has worse performance than all
multimodal DL approaches, including MIMETIC-ENHANCED.
Interestingly, when limiting the DT maximum-depth to 10
(corresponding to 1024 leaf nodes) with the aim of retaining its
interpretability, we incur a significant decrease of performance
down to 41.37%, 39.00%, and 48.62% in terms of Accuracy,
F-measure, and G-mean, respectively, in the best configuration
(i.e. with PAYs7¢ + PSQ;, feature set as input).

To shed light on where this improvement sits, we break
the performance results down on the different protocols, as
reported in Fig. [ For brevity, we focus on the four best-
performing architectures and we only report the analysis
of the Accuracy, as same trends and observations can be
devised by the inspection of the other metrics. Investigating
the classification accuracy obtained by MIMETIC-ENHANCED
for app traffic conveyed by different protocols, we can notice
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Figure 5. Top-K accuracy of MIMETIC-ENHANCED and best baseline traffic
classifiers. Error bars report average + standard deviation.

that our architecture highlights different performance on vary-
ing protocols: (i) FB-Zero, gQUIC, and STUN biflows are
classified with ~ 99% accuracy; (ii) lower accuracy values are
obtained for SSL, HTTP, and TLS, with TLS traffic being the
most challenging to be classified by MIMETIC-ENHANCED
(attaining however 90.66% accuracy). Interestingly, this does
not hold for all the architectures (e.g., HTTP traffic specifically
challenges App-Net and FS-Net). On the other hand, TLS
traffic is classified with accuracy values not higher than
87.40% by the other architectures.

According to the protocol breakdown for the different ar-
chitectures, we can assert that MIMETIC-ENHANCED achieves
better performance than the baselines for all the proto-
cols. While the improvements of classification accuracy for
FB-Zero, SSL, STUN, and HTTP traffic appear limited
(£ 1% w.rt. the best performing baseline per-protocol), re-
markable accuracy enhancement can be observed for gQUIC
and TLS traffic (+4.65%, w.r.t. MIMETIC and +3.81% w.r.t.
App-Net, respectively).

Finally, focusing on complexity, our results show that the
benefits in terms of TC performance obtained by MIMETIC-
ENHANCED come at a limited complexity increase of the
training phase. Indeed, an increment of per-epoch training-
phase runtime limited to =~ 40% is observed w.r.t. MIMETIC.
This is paired with the number of trainable parameters of
the two architectures which do not differ significantly, being
0.98M and 0.96M for MIMETIC-ENHANCED and MIMETIC,
respectively. Still, MIMETIC-ENHANCED shows a training-
phase runtime more than 5.5x and 3.2x lower than App-Net
(1.77M trainable parameters) and FS-Net (6.39M trainable
parameters), respectivelym

C. Fine Grained Analysis based on Soft-Outputs

This section extends the performance analysis drawn in
Sec. providing a finer-grained study of the output of
the considered DL architectures by inspecting the soft-outputs
of the classifiers, rather than their sole final decision. Before
focusing on the class-wise trends and patterns highlighted by
the soft-outputs provided by MIMETIC-ENHANCED, we com-
pare the performance of the four best architectures—according

16This apparently counterintuitive outcome can be justified considering the
more complex elementary DL layers constituting the App-Net architecture
compared to FS-Net (and also w.r.t. MIMETIC and MIMETIC-ENHANCED),
namely larger embedding vectors, BiLSTM instead of simpler BiGRU, and
more complex trainable merge layer.

to the TC performance reported in Tab. [Vl—in terms of the
Top-K Accuracy. This metric relaxes the constraints imposed
in the accuracy analysis and defines a classification event
as correct if the actual app falls within the top-K predicted
labels (K < L is a free parameter). Accordingly, the Top-K
Accuracy provides hints about the general behavior of soft-
outputs (actual classes not chosen as the most likely output
are still considered correct when lying within the top-K). Note
that when K = 1 the metric results into the standard accuracy
already discussed, and that the larger the value chosen for K,
the higher the Top-K Accuracy, by construction.

Figure [3] presents the Top-K Accuracy obtained for K €
[1,5]. While the performance gain of MIMETIC-ENHANCED
w.r.t. the baselines decreases as K increases, MIMETIC-
ENHANCED outperforms the baselines for all the values of K
considered. Notably, for K = 3 both MIMETIC-ENHANCED
and MIMETIC achieve > 95% Top-K Accuracy, while the
best single-modal baseline (i.e. FS-Net) attains this result with
K =5.

Hence, in the following analysis, we focus on the Top-3
Accuracy which aims at deepening the soft-output behavior
of the best-performing DL architectures. In more details, for
each app (actual class) we have computed the most recurring
top-3 predictions based on the soft-output vectors provided
by the architectures. The results of this analysis are reported
in Figs. [6a] and [6b] for MIMETIC-ENHANCED and MIMETIC,
respectively (details for App-Net and FS-Net are omitted for
brevity). The values in the heatmaps represent the percentage
of occurrence of the predicted apps that most-likely fall among
the top-3 predictions for each actual class.

In line with the high TC-performance presented in Tab. [[V]
and Fig. 5] for both MIMETIC-ENHANCED and MIMETIC, the
correct label is always the most frequent in the top-3 (i.e.
it is ranked I). Notably, for 36 out of 41 apps, MIMETIC-
ENHANCED shows an occurrence of this most frequent (I)
correct prediction higher than MIMETIC. Major discrepancies
(w.r.t. MIMETIC) are observed for Viber (+5.79%) and
TripAdvisor (+4.15%). These results suggest that for a
consistent number of samples of certain apps (e.g., the above-
mentioned Viber and TripAdvisor along with Groupon
and LinkedIn), the actual label does fall in the top-3
for MIMETIC-ENHANCED, but not for MIMETIC. More in
general, with the exception of these notable cases, the trends
shown for the occurrences of the most recurring label (I) in the
top-3 are qualitatively the same for the four architectures (with
App-Net and FS-Net showing lower values than MIMETIC-
ENHANCED and MIMETIC in almost all the cases).

On the other hand, comparing the second and the third
most-likely predicted labels (II and IIT in Fig. [6] respectively)
provided by MIMETIC-ENHANCED and MIMETIC, they often
do not match. However, some predicted labels represent the
second or the third choice for most of the apps. For instance,
Flipboard appears for the ~ 49% of apps in II or III for
MIMETIC-ENHANCED and for the = 56% for MIMETIC.

Interestingly, the frequency of occurrence of labels in II
and III is remarkably lower for MIMETIC-ENHANCED (30%
at most) than MIMETIC (whose values reach peaks of more
than 60% for 7 out of 41 apps). These results highlight that
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Figure 6. Most recurring top-3 predictions of MIMETIC-ENHANCED (a) and MIMETIC baseline (b) traffic classifiers.

‘x* and ‘1’ highlight apps (also) using gQUIC and FB-Zero protocol, respectively.
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present but less evident for MIMETIC-ENHANCED.

Indeed, to further deepen our analysis of fine-grained be-
havior of MIMETIC-ENHANCED, we have investigated the
error patterns of MIMETIC-ENHANCED in classifying the
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apps that (also) carry traffic through FB-Zero and gQUIC.

To this aim, Figs. [7a] and [T depict the confusion matrices

Predicted App

for the former group of apps (i.e. Facebook, Instagram,

(a) FB-Zero.

PlayStore, and YouTube), respectively. We recall that
confusion matrices allow to clearly highlight misclassifica-

tion patterns with a higher concentration where predicted
classes equal the actual ones implying better TC performance.
We can notice that most of the misclassifications happen

and Messenger) and for the latter (i.e. Hangouts, Maps,
within the same “protocol-group”,

100

|
@
2
S

dilqunt
Josinpydi ]
oj|3.1
[WSSGETETR
3ro)gns
Aynods
pnojopunos
orlauyls
ELISTS
3ppay
152.493Uld

10

11930043U0
3ALQAUO
yojewxisniy
J1abuassapy
ulpayur
3 weubejsu|
033!
uodnoi9
1 aAQgalboon
alenbsinoy
pleoqdil4
B joogadey
3 Aega
3 usim
1 obuljong
1 xoqdoiq
: enaig
3 $IWo)
bujoog
3 uozewy
13Y1eaMN2dY
3 100d||egg
M 2gnLnox
M ai0i5he|d
sdep
synobueH

0.1

Maps Wl

Hangouts 1l
PlayStore
YouTube

ddy |enyoy

that is wrongly assigning

Predicted App

to a biflow a label of an app using the same protocol.
This clusterization is particularly evident in Fig. [Ta] where
Facebook and Messenger are confused with each other,

while Instagram is misclassified with both of them. In-

terestingly, Fig. exhibits a slightly different behavior for

(b) gQUIC.

Confusion matrices of apps using FB-Zero (a) and gQUIC (b)

Figure 7.

protocols. Note that the log scale is used to evidence small errors.

the apps using gQUIC. In this case, the misclassifications are

prediction stability for MIMETIC-ENHANCED mostly relates

less frequent within the same protocol-group (with the notable
exception of YouTube and Maps), with PlayStore more

frequently misclassified as Facebook or Viber.

to top-1 predictions, but does not extend to the second

and third choices of the classifier. Also, inspecting the soft-

output behavior of MIMETIC, its higher values for II and

IIT most-frequent predictions are associated with evident app

D. Calibration Analysis

clusters of the same provider and sharing the same underlying
protocols e.g., Instagram, Facebook, and Messenger

(predicted among the top-3 for Instagram and Facebook)

of

of the calibration metrics

on assessing the trustworthiness

We now focus

MIMETIC
using FB-Zero, or Maps, PlayStore, YouTube, and defined in Sec. [[lI-C] namely the (i) ECE, (ii) MCE and

ENHANCED in terms
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(d) ECE Label Smoothing.

(e) MCE Label Smoothing.

(f) CW-ECE Label Smoothing.

F-measure [%]

G-mean [%]

o Accuracy [%]
0 92.14 (£ 0.28)
1 92.33 (£ 0.25)
¥ 2 9243 (£ 0.31)
&e 3 9221 (£ 021)
4 92.14 (£ 0.20)

5 91.90 (£ 0.33)

91.47 (£ 0.27)
91.68 (£ 0.34)
91.83 (£ 0.35)
91.61 (£ 0.20)
91.55 (£ 0.30)
91.32 (£ 0.41)

95.36 (& 0.19)
95.44 (£ 0.21)
95.50 (£ 0.19)
95.39 (£ 0.15)
95.36 (£ 0.16)
95.24 (£ 0.21)

« Accuracy [%]

F-measure [%]

G-mean [%]

0 92.14 (+ 0.28)

91.47 (£ 0.27)

95.36 (& 0.19)

o —® —021(£027) —021(£030) — 0.10 (£ 0.14)

(g) TC-performance Focal Loss.

00125 9222 (£ 0.28)  91.52 (£ 0.26)  95.37 (& 0.18)
& 0.025 9239 (£ 027) 9177 (£ 0.35)  95.41 (& 0.22)
005 9244 (£ 036)  91.90 (& 0.44)  95.44 (£ 0.28)
0.075 9247 (£ 0.24)  91.88 (£ 0.30)  95.40 (£ 0.19)

® 0.1 9258 (£ 026) 9201 (£ 031) 9548 (£ 0.21)
o —®  —019(£035 —024(E042) — 0.07 (& 0.26)

(h) TC-performance Label Smoothing.

Figure 8. Calibration sensitivity analysis of MIMETIC-ENHANCED in terms of ECE (a, d), MCE (b, e¢), and CW-ECE (c, f) when varying ~ for focal loss
(top row) and « for label smoothing (bottom row). Tables 8g and 8h show related TC performance using ¥ to indicate the best Accuracy, F-measure, and
G-mean [%] and &[& to indicate the best-calibrated configuration. The last row quantifies the TC-performance difference [%)] for each metric between the

best-calibrated and the best-performing configuration (§&¢ — ®).

Table V
CALIBRATION PERFORMANCE OF MIMETIC-ENHANCED WITHOUT AND
WITH FOCAL LOSS (FL) AND LABEL SMOOTHING (LS) OPTIMIZATIONS
AND OF RELATED BASELINES IN TERMS OF ECE, MCE, AND CW-ECE.

2019 dataset (in red) and (b) grouped by protocol. Since both
techniques modify the training process, for each of the con-
sidered values also the corresponding achieved Accuracy, F-

measure, and G-mean are reported in complementary Tabs. [Sg|

Traffic Classifier ECE [%]

MCE [%]

CW-ECE [%]

and

MIMETIC-ENHANCED
MIMETIC-ENHANCED w/ FL

441 (£ 0.25)
0.74 (£ 0.28)

MIMETIC-ENHANCED w/ LS 1.94 (£ 0.18)

35.16 (& 3.55)
10.47 (£ 3.96)
17.71 (& 3.64)

0.25 (£ 0.01)
0.13 (£ 0.01)
0.19 (£ 0.01)

By looking at the trend of the three calibration metrics
wrt. v and « over MIRAGE-2019, it is first apparent that

ECE and CW-ECE share a unimodal trend. A slight dif-
ferent observation holds for the MCE (which accounts for

MIMETIC [7] 1.97 (£ 0.33) 1244 (& 3.44) 0.17 (& 0.01)
MIMETIC [[7] w/ FL 342 (£ 0.37)  18.24 (£ 2.40) 0.25 (+ 0.01)
MIMETIC [7] w/ LS 1.67 (& 021) 1044 (£ 2.03) 0.18 (& 0.01)
App-Net [8] 416 (£ 021) 2403 (& 2.54) 0.25 (£ 0.01)
FS-Net (9] 6.29 (£ 0.30) 3007 (& 2.07) 0.35 (£ 0.01)
ID-CNN [40] 1278 (£ 0.47) 52.55 (& 1.74) 0.67 (£ 0.02)
MLP-1 (PAY7g4) 9.54 (£ 0.49) 27.64 (& 2.02) 0.54 (£ 0.03)
HYBRID 8.54 (£ 0.56) 22.18 (£ 1.98) 0.50 (& 0.03)
MLP-1 (PSQz0) 2.90 (& 0.50)  8.80 (£ 2.94) 0.43 (£ 0.04)
DT (PAYs76 + PSQ12) 12.88 (& 0.45) 44.19 (& 25.38) 0.63 (& 0.02)
DT (PSQ12) 1472 (£ 0.33) 57.17 (& 16.37) 0.72 (£ 0.02)
DT (PAYs76) 15.89 (£ 0.36) 48.83 (& 17.26) 0.78 (£ 0.02)

the extreme-valued calibration discrepancies), whose trend
appears to be less sensitive to v (and less obvious) when label
smoothing is considered. The optimal values in terms of the
three considered calibration metrics are obtained for v = 3 and
a = 0.025 for focal loss and label smoothing, respectively,
when considering the TC performance obtained on the whole
MIRAGE-2019 dataset. Focusing on TC calibration per proto-
col, there is a similar behavior for TLS biflows, representing

Results are in the format avg. (% std.) obtained over the 10-folds.
Overall best-calibrated classifier is highlighted in boldface.

the highest quota in the dataset considered (and also the most
used encryption protocol for mobile traffic). Conversely, when
considering SSL, there seems to be a detrimental effect of both
focal loss and label smoothing on ECE and CW-ECE, and

(ii17) CW-ECE. Specifically, we first focus on investigating the
calibration of MIMETIC-ENHANCED by varying relevant pa-
rameters in focal loss () and label smoothing () techniques.
The calibration sensitivity analysis is depicted in Fig. [§] by
reporting both the results on (a) the whole whole MIRAGE-

a weak-dependence of the MCE on these tuning parameters.
Interestingly, by matching calibration with TC performance,
the parameter ensuring the optimal calibration for each training
variant (y = 3 and o = 0.025) does not coincide with the
highest DL-based TC effectiveness observed for MIMETIC-
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(a) MIMETIC-ENHANCED. (b) MIMETIC-ENHANCED w/ Focal Loss. (c) MIMETIC-ENHANCED w/ Label Smoothing.

Figure 9. Reliability diagrams of MIMETIC-ENHANCED (a) and MIMETIC-ENHANCED with label smoothing (b) and focal loss (c) in their best configurations
(i.e. with v = 3 and a = 0.025, respectively). Confidence is divided in 10 bins, and it is > 1/L (vertical dashed line), with L being the number of classes.
Over and under gap represent an over-confident (optimistic) and under-confident (pessimistic) miscalibration pattern, respectively. The number at the bottom
of each bar reports the percentage of samples within the corresponding bin. The bottom row shows a 10x finer grained representation of the last bin (i.e.
[90, 100]). Synthetic ECE, MCE, and CW-ECE along with TC-performance measures are also reported for each case.

ENHANCED (v = 2 and a = 0.1). Still, as shown in the last metrics. This can be also appreciated by direct comparison of
row of Tabs. and the relative loss is always < 0.25% (in  the calibration diagrams. Indeed, looking at the whole predic-
absolute value) for all the three considered TC-effectiveness tion range, the calibration diagram of focal loss is closer to
metrics. the ideal accuracy = con fidence line. Also, focusing on the

We then delve into the calibration details of these two € [90,100]% bin, a similar reasoning applies for MIMETIC-
variants of MIMETIC-ENHANCED, using focal loss and label ENHANCED with focal loss, but with the latter having a
smoothing, and optimized w.r.t. tuning parameters to achieve slighter under-confident behavior (w.r.t. label smoothing) in
the optimal calibration. To appreciate the calibration effect of the range € [90, 95]%.
these, they are compared with a naive (non-calibrated) version Finally, Tab. [V] summarizes the results of the calibration
of MIMETIC-ENHANCED. The comparison is performed in analysis extended to all the baselines considered. More specifi-
terms of the relevant calibration diagrams associated to the cally, for both MIMETIC-ENHANCED and the best-performing
ECE (i.e. taking care of the calibration performance on the baseline (i.e. MIMETIC), we report the results attained with
probability associated to the predicted class), reported in the best-calibrated configurations with focal loss (v = 3 and
Fig. O] Given the high performance achieved by MIMETIC- ~ = 1 for MIMETIC-ENHANCED and MIMETIC, respectively)
ENHANCED, most of the classified biflows are predicted with and label smoothing (aw = 0.025 for both architectures), and
confidence values € [90,100]%: hence, the bottom row shows also without exploiting any calibration technique.
a 10x zoom of the diagrams for the aforementioned bin. Recalling the classification performance in Tab. [[V] the re-
For readers’ convenience, the corresponding TC-performance ported results highlight the existing trade-off between the accu-
metrics and calibration metrics for the three counterparts are racy of the provided predictions and the related confidence: in
reported in the bottom-wise tables. its native formulation, MIMETIC-ENHANCED exposes ~ 2X

First of all, it is apparent the non-perfect calibration of calibration error with respect to MIMETIC, witnessing that
MIMETIC-ENHANCED, when both considering the whole con- the achieved TC performance comes at the cost of reduced
fidence range and also focusing on the bin € [90,100]%. trustworthiness in the provided outcomes and thus calling for
Conversely, the calibration effect of the (optimized) focal methods to improve it. On the other hand, all the baselines
loss and label smoothing is evident for all the values of report calibration errors higher than MIMETIC-ENHANCED
the predicted confidence, as also witnessed by the concise with either focal loss or label smoothing (e.g., up to more
calibration metrics. For instance, the adoption of focal loss than 17X and 6Xx, respectively, in terms of ECE). It is worth
and label smoothing is able to achieve a 6x and 2.2x ECE noticing that among considered baselines the least calibrated
reduction with respect to the uncalibrated case, respectively approach is the (naturally interpretable) DT that tends to be
(similar loss cut is observed for MCE and CW-ECE). significantly over-confident in its predictions.

Differently, focusing on the relative calibration performance Such an outcome thus remarks the utility of focal loss and
achieved by these two methods, the focal loss achieves the best  label smoothing to improve calibration performance, with their
calibration performance in terms of all the three considered usefulness being more limited when considering an approach
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Figure 10. Modality contributions of MIMETIC (a) and MIMETIC-ENHANCED (b). Importance 5 M,, for both PAY-modality and PSQ-modality is reported
for both the whole dataset (with red color) and grouped by protocol (with different colors). Whiskers show 5t and 95" percentiles.

which is already well-calibrated in its native variant. For
instance, when considering MIMETIC, only label smoothing is
able to attain a calibration improvement (up to —2% in terms
of MCE), whereas MIMETIC with focal loss is even less cali-
brated than its native formulation. Interestingly, experimental
observations witnessed also that the use of either focal loss or
label smoothing, regardless of whether they provide a remark-
able calibration improvement (as for MIMETIC-ENHANCED)
or not (as for MIMETIC), leads to an extremely-limited TC-
accuracy decrease, namely < 0.25% and < 0.33% loss for
MIMETIC-ENHANCED (cf. Tabs. [8g| and [8h) and MimETI(}
respectively.

E. Modality Contribution to Correct TC Decisions

In Fig. [T0] we investigate the (relative) contribution that
each traffic modality (PAY and PSQ) gives to TC, focusing on
MIMETIC (Fig. [I0d) and MIMETIC-ENHANCED (Fig. [I0D).
The analysis is obtained by evaluating the pooled SHAP values
¢ pm for each modality. The corresponding distributions (shown
via the boxplots) are then obtained by selecting the correctly-
classified tested samples of either (a) the whole MIRAGE-
2019 (in red) or (b) the single protocol (other colors).

Focusing on MIMETIC, it is apparent that PAY modality al-
ways contributes with higher importance values: the median is
~ 80% for all the considered protocols except for FB-Zero,
where it is =~ 60%. For this protocol, the PSQ modality has
higher values (median is = 40%).

A different situation is observed for MIMETIC-ENHANCED
(cf. Fig. [I0B): the importance of PSQ-modality increases
(thanks to the embedding layer used for PL values) and
the resulting distributions are wider than the previous ones.
For FB-Zero, SSL and STUN biflows, the aforementioned
modality overcomes the other (the median is ~ 70% for

17Specifically, MIMETIC experiences a performance drop on Accuracy, F-
measure, and G-mean of —0.23 (4 0.31), —0.10 (£ 0.39), and —0.11 (+
0.33) with focal loss (y = 1), and of —0.30 (& 0.24), —0.32 (£ 0.47), and
—0.08 (£ 0.42) with label smoothing (o = 0.025), respectively.

SSL). For gQUIC and HTTP in both architectures, the values
associated with PSQ modality are always small (the median
is &~ 20% and =~ 30%, respectively). Conversely, for TLS the
two modalities contribute almost equally to the correct TC
decision.

F. SHAP PAY-modality

In this section, we analyze the relative importance of inputs
(transport-layer payload bytes) associated to the PAY-modality,
based on Deep SHAP (cf. Sec. [l[-B). Specifically, we focus
on providing global explanations for MIMETIC-ENHANCED,
which relies on the first N, = 576 bytes of each biflow. For our
proposal, we provide global explanations pertaining to both (a)
per-protocol and (b) per-app aggregationm The corresponding
results are reported in Figs. [T1] and [12] respectively. In all
the plots, sample-wise positive and negative SHAP values are
highlighted with red and blue colors, respectively. Also, for
completeness, the median importance value of each byte (over
different samples) is reported as a solid black line. This allows
highlighting regions which are more consistently influential for
predictions and those having low/high variability. We remark
that a similar analysis (not shown) has been carried out also for
MIMETIC, since it uses the same input type for PAY-modality.
Still, experimental results have highlighted less appreciable
explanation patterns, due to the absence of the “focusing
effect” of the embedding layer not present in the MIMETIC
architecture.

Concerning FB-Zero (Fig. [[Ta), we observe two regions
attaining high per-sample positive values: one covers the first
100 bytes, whereas the other corresponds with bytes in the
interval [200, 300]. Looking at the median of the distributions
obtained for each byte, we see that such value is however low
for bytes associated to the second region. This is attributed
to a limited number of FB-Zero biflows having this profile.

18We remark that also per-protocol aggregation refers to the 41-app mobile
TC task. In other terms, the two analyses differ only in the subset of the
testing samples considered.
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Figure 11. Importance qgm of the payload-byte inputs (identified by their
position) for PAY-modality of MIMETIC-ENHANCED grouped by protocol.
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Figure 12. Importance $m of the payload-byte inputs (identified by their
position) for PAY-modality of MIMETIC-ENHANCED for exemplifying apps.

Specifically, the aforementioned biflows contain SCFG pack-
ets, and the second region is aligned to the relevant fields for
this packet, such as server certificates.

By observing the importance plot for gQUIC (Fig. [TTb),
it is interesting to observe an initial region (= 200 bytes)
whose values are significantly higher than the following ones.
The above importance values can be attributed to the fact
that gQUIC biflows start with a CHLO packet, having a fixed

payload length of 1350 bytes. This amount is filled with
padding bytes starting approximately from position 200. This
is the reason why bytes after this position have minimal
importance values. The first 200 bytes, instead, are a list of
tags employed in the packet, whose values are listed in the
final part of the packet, not observed due to the truncation
of the payload input type to N, = 576 bytes. Analogous
observations can be drawn for the STUN protocol (Fig. [TIc),
since the resulting profile is very defined and highlights that
the first bytes are given very-high values. Conversely, for
the profiles of the other three protocols (i.e. TLS, SSL, and
HTTP in Figs. [T1d] [TTf} and [TTe] respectively), consistently-
influential regions in the byte sequences are less evident:
higher values are associated with the first bytes, but with the
median behavior (viz. black line) reporting values < 1%. In
particular, concerning TLS, when comparing the distribution
of the position of the SNI field (starting at byte 107 and
spanning over 20 bytes, on average), we can observe that the
bytes exposing higher importance values dramatically match
those encoding this field.

Finally, in Fig. [[2] we analyze the global explanations of
PAY-modality associated to single apps, focusing on some
remarkable examples that we discuss in the following. Over-
all, the distributions of ¢,, report higher-importance values
(positive red points) in correspondence of the initial bytes
of the payload (< 200). For instance, the profile obtained
for Youtube (Fig. [[2Za) has similar characteristics to those
described for gQUIC biflows (Fig. [[Tb). On the other hand,
in other cases, in spite of the presence of peak values for
the first bytes, the median (black line) does not follow the
same trend, according to the mixture of protocols for a given
app. This behavior is exemplified, for instance in Fig. [12b|
(corresponding to the Diretta app), while the distribution
reports high values for the very first bytes (imputable to HTTP
biflows, cf. Fig. [[Te), the median does not follows the same
trend (because of the impact of TLS). Indeed, beside the initial
peak (centered around byte 100) the median highlights an
influential region around bytes 300—400. This witnesses the
importance of considering a value for N, > 400B, i.e. not
limited to the very first bytes of the payload.

G. Shap PSQ-modality

Similarly to the previous section, here we investigate the
importance of inputs associated with the PSQ-modality of
MIMETIC-ENHANCED. This branch of the architecture is fed
with 4 header fields extracted from the first 12 packets of each
biflow, namely inter-arrival time (IAT), direction (DIR), TCP
window size (TCP_WS), and transport-layer payload length
(PL). Results are compared with analogous ones obtained by
MIMETIC.

Considering the importance associated to these fields for
each biflow, Fig. [I3] shows the median importance values
for each element of the 4 x 12 matrix used as input for
this modality. In detail, the figure reports the per-protocol
breakdown¥H considering the most recurrent ones in the
dataset (i.e. FB—Zero, gQUIC, TLS, and SSL), for both
MIMETIC (a, b, ¢, d) and MIMETIC-ENHANCED (e, f, g, h).
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Figure 13. Importance ¢7m of the header-field inputs (identified by the respective packet) for P SQ-modality of MIMETIC (top row) and MIMETIC-ENHANCED

(bottom row) grouped by protocol.

Focusing on the former, it is evident how the header fields
of the first packets of the biflows (i.e. from the 1%¢ to the
5'") play a crucial role in identifying the apps. In detail,
for gQUIC (Fig. [I3D), the very first packet is essential to
correctly classify the biflows using this protocol: PL always
assumes the same value (1350 bytes) and the TCP_WS is set
to 0 because the transport-layer protocol is UDP. Concerning
FB-Zero (Fig. [134), the second packet of the biflows is the
most important one (high importance for PL, TCP_WS, and
IAT), and interestingly the DIR of the subsequent packets
(particularly from the 37 to the 8t") helps in predictions. The
second packet exposes higher importance, on average, also for
TLs (Fig. and SSL (Fig. [I3d). More in general, while
the elements with higher importance values change with both
the protocol as well as the header field, PL and TCP_WS show
median importance values higher than other fields, overall.

Moving to the results of MIMETIC-ENHANCED, Figs. [[3p—
h highlight that the distribution of field importance changes
dramatically, with a single feature (i.e. the PL) becoming
remarkably more important than the others. This result can be
justified by the introduction of the embedding layer for PL in
MIMETIC-ENHANCED (see Sec[llI-A). In addition, the packets
after the first ones also play a more important role exposing
higher relative importance values. On the other hand, the major
importance of PL related to the specific initial packets of the
biflows still holds in some of the cases: the 15¢ packet and
the 2@ packet for both FB-Zero (Fig. and gQUIC
(Fig. [I31) still expose the highest importance.

Finally, we would underline that the complementary anal-
ysis performed on a per-app basis (whose results are not

shown for brevity), highlights analogous patterns, remarking
the major importance of PL for MIMETIC-ENHANCED w.r.t.
MIMETIC and—more in general—of the header fields of the
first packets of the biflows.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we focused on interpreting the behavior
of mobile TC performed with DL approaches, and pro-
viding design insights toward performance improvement.
With the tools of explainable artificial intelligence we ana-
lyzed an evolved multimodal-DL approach, named MIMETIC-
ENHANCED. Evaluated on a publicly available recent dataset
of mobile-app traffic (consisting of 41 apps, mostly using 6
different protocols), the proposed architecture was shown to
outperform in all the cases a number of relevant DL-based
TC single-modal baselines proposed in literature [9] 410,
as well as most recent multimodal proposals, e.g. [, [8]]. Also,
fine-grained performance analysis revealed that MIMETIC-
ENHANCED provides a more consistent soft-output outcome
(in terms of top-K accuracy), and incurs misclassifications
mostly confined within the same protocol-group. Our proposal
was then investigated in terms of trustworthiness (i.e. how
reliably we can trust its confidence prediction, via calibration)
and interpretability (i.e. the underlying rationale which makes
them work effectively, via SHAP-based techniques). In the
former case, the calibration by focal loss achieves a 6x
reduction with respect to the uncalibrated case, obtaining a
significant gain in trustworthiness. Regarding interpretability,
a global explanation has been obtained for each modality
(payload-based and packet-sequence-based), quantifying the
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importance of each, and highlighting how the payload still
retains high importance, despite the vast majority of encrypted
traffic.

Future avenues of research will include (a) taking advantage
of the complementarity of different XAl approaches and ex-
tending the proposed interpretability analysis by implementing
(for the payload-modality) an occlusion analysis based on the
results of the importance analysis, as well as by performing
the importance analysis based on the position of specific
header fields rather than on byte position; (b) the investigation
of trustworthiness and interpretability for the analysis and
improved design of more challenging multi-task TC problems;
(c) the robustness assessment of multimodal DL-based traffic
classifiers to adversarial attacks; (d) the in-depth investigation
of focal loss and label smoothing impact on a larger pool of
DL architectures; (e) the design of (natively) self-explainable
DL traffic classifiers; (f) the design of self-explainable local
decisions; and (g) the design of lightweight architectures
originated from XAI techniques.
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