
DISTILLER: Encrypted Traffic Classification via Multimodal Multitask Deep Learning

Giuseppe Acetoa, Domenico Ciuonzoa, Antonio Montieria, Antonio Pescapéa

aUniversity of Napoli “Federico II”, Italy

Abstract

Traffic classification, i.e. the inference of applications and/or services from their network traffic, represents the workhorse for
service management and the enabler for valuable profiling information. The growing trend toward encrypted protocols and the fast-
evolving nature of network traffic are obsoleting the traffic-classification design solutions based on payload-inspection or machine
learning. Conversely, deep learning is currently foreseen as a viable means to design traffic classifiers based on automatically-
extracted features. These reflect the complex patterns distilled from the multifaceted (encrypted) traffic, that implicitly carries
information in “multimodal” fashion, and can be also used in application scenarios with diversified network visibility for (simul-
taneously) tackling multiple classification tasks. To this end, in this paper a novel multimodal multitask deep learning approach
for traffic classification is proposed, leading to the Distiller classifier. The latter is able to capitalize traffic-data heterogeneity
(by learning both intra- and inter-modality dependencies), overcome performance limitations of existing (myopic) single-modal
deep learning-based traffic classification proposals, and simultaneously solve different traffic categorization problems associated
to different providers’ desiderata. Based on a public dataset of encrypted traffic, we evaluate Distiller in a fair comparison with
state-of-the-art deep learning architectures proposed for encrypted traffic classification (and based on single-modality philosophy).
Results show the gains of our proposal over both multitask extensions of single-task baselines and native multitask architectures.

Keywords: deep learning, encrypted traffic, traffic classification, multimodal learning, multitask learning.

1. Introduction

The clear understanding of the processes occurring in net-
works is of paramount importance for multiple stakeholders,
including network operators, who aim at the full visibility re-
quired by both network management and security. Indeed, the
effectiveness of security and quality-of-service enforcement de-
vices, as well as network monitors, is limited (or even ham-
pered) when there is no accurate knowledge of the application
generating the observed traffic.

The process of inferring such knowledge, known as Traffic
Classification (TC), has a long-established application in sev-
eral fields [1]. However, TC is severely challenged by both the
volume growth and the evolving nature of the traffic travers-
ing today’s networks, that in turn is impacted by the new ways
users behave, interact, and access the network [2]. Also, the
widespread adoption [3] of encrypted protocols (e.g., Transport
Layer Security) as well as network address translation and dy-
namic ports, increases the difficulty of accurate TC, defeating
established approaches such as deep packet inspection and port-
based methods, and can be only bypassed in closed-world (e.g.,
enterprise) scenarios by man-in-the-middle proxies [4].

Interestingly, the assessment of TC performance provides
valuable insight also to designers of privacy-preserving proto-
cols, and obfuscation and circumvention techniques [5, 6]. In-

Email addresses: giuseppe.aceto@unina.it (Giuseppe Aceto),
domenico.ciuonzo@unina.it (Domenico Ciuonzo),
antonio.montieri@unina.it (Antonio Montieri), pescape@unina.it
(Antonio Pescapé)

deed, stronger privacy needs have arisen in recent years, espe-
cially for anonymity tools and censorship evasion [7].

In this complex scenario, Machine Learning (ML) classifiers
have proved to be the most appropriate for modern-traffic clas-
sification, since they also suit Encrypted Traffic (ET) while
not necessarily relying on port information [8]. However,
their use relies on obtaining handcrafted (domain-expert driven)
features, which in TC context usually correspond to packet-
sequence statistics. Such feature engineering process is unable
to cope with modern network-traffic evolution, and impairs the
design of both accurate and up-to-date traffic classifiers [9] us-
ing “traditional” ML approaches [10, 11, 12].

Therefore, Deep Learning (DL) has emerged as the method-
ological set of algorithmic solutions toward the fulfillment of
high performance in the dynamic and challenging (encrypted)
TC contexts. Indeed, DL allows to train classifiers directly from
input data by automatically distilling structured and complex
feature representations [13]. Accordingly, in the last few years
several works have started tackling TC via DL [14, 15, 16, 17].
However, these attempts revealed a low level of maturity in ap-
plying DL to this specifically hard problem: we found in [18]
how misguided design choices in this field led to biased con-
clusions or inflated classification outcomes. Moreover, DL ap-
proaches provide new performance enhancement possibilities:
by neglecting these, designers would fail to harness DL full po-
tential.

To face these shortcomings in TC state-of-the-art, in [18] we
laid a sound groundwork for the design of DL-based classifiers
aimed at highly-diverse traffic. The objective was two-fold: (i)

Preprint submitted to Journal of Network and Computer Applications February 13, 2021

avoiding the pitfalls of naïve adoption of DL to TC and (ii)
allowing for best exploiting the potential of DL architectures.
Then, in [19] we have leveraged such groundwork to explore
multimodal approaches to enhance the performance of ET clas-
sification. Indeed, we have proved multimodal approaches to
be able to leverage traffic data according to the different in-
put information (e.g., payload bytes or header fields), i.e. to
represent the same concept according to different “views” or
“modalities”. Hence, a multimodal DL traffic classifier can au-
tomatically learn a hierarchical representation exploiting jointly
all the available modalities, without the need for handcraft-
ing modality-specific and ad-hoc features for a certain ML ap-
proach.

However, the sophisticated management required by next-
generation networks relies on the accomplishment of a num-
ber of diversified network visibility tasks [20, 21]. This moti-
vates the need for solving several traffic-analysis tasks, there in
included a number of different TC tasks, each associated to a
given visibility viewpoint. In order to meet the above desider-
ata, the aforementioned tasks need to be performed with a sat-
isfactory accuracy and reasonable complexity.

Accordingly, in this paper, we broaden our exploration with
multimodal approaches applied to TC, additionally investigat-
ing multitask learning. Multitask learning is an approach to
inductive transfer that improves learning for one task by using
information in the training signals of other related tasks [22].
This is accomplished by learning tasks in parallel while using a
shared representation. On the one hand, compared with multi-
ple single-task models, multitask learning can reduce computa-
tional overhead, because only one—comprehensive—model is
learned (resp. used) in the training (resp. testing) phase. This
has the benefit of limiting redundancy by sharing part of the
feature-learning architecture. On the other hand, this approach
promises improved generalization and better overall classifica-
tion performance.

More specifically, the main contributions provided by our
work are summarized as follows:

• We capitalize the joint and effective adoption of multitask
and multimodal deep learning to devise the Distiller (en-
crypteD multItaSk Traffic classIfication via muLtimodaL
dEep leaRning) classifier. The proposed classifier relies
on a general DL architecture which provides the simulta-
neous solution of multiple (related) ET classification tasks
(multitask) via the effective exploitation of heterogeneous
(multimodal) inputs. Our proposal thus provides support
to application scenarios with diversified network visibility
by accomplishing automatic feature learning from hetero-
geneous and structured traffic input data.

• We propose a learning procedure for Distiller classifier
based on a wise two-step training phase, made of pre-
training and fine-tuning. Such procedure avoids conver-
gence of the learning process to suboptimal parameter
values, as a result of the overfitting toward the strongest
modality [13]. The reason for a pre-training phase is
the need for correctly distilling discriminative information
from each modality so as to later capitalize the advantage

of the multimodal traffic representation during the fine-
tuning.

• We experimentally compare a specific instance of
the Distiller architecture on the public dataset ISCX
VPN-nonVPN [23] to validate our proposal, collecting traf-
fic from activity of real human users. Such well-known
dataset naturally surfaces the multitask goals related to net-
work monitoring, and provides a supporting example for
the motivations of this work.

• We favorably compare our approach with state-of-the-art
multitask DL traffic classifiers [15, 17, 20, 21, 24, 25, 26],
showing Distiller achieves gains over all the TC tasks
considered, while having appreciably-lower complexity
than the best performing baseline. Additionally, the out-
come of an in-depth analysis concerning the fine-grained
behavior of such classifiers highlight that our proposal re-
ports also improved per-class performance, a better soft-
output behavior, and improved calibration in the associ-
ated classification confidence. Finally, an investigation of
the tasks’ relationship and the degree of knowledge trans-
ferred among them highlights the advantage in solving
multitask problems by means of multimodal approaches.

The rest of the paper is organized as follows. Sec. 2 reviews
the literature on ET classification, including most relevant DL
works, and details the paper contribution; Sec. 3 describes our
Distiller encrypted-traffic classifier; the experimental setup is
described in Sec. 4, while discussion of the results is reported in
Sec. 5; finally, Sec. 6 provides conclusions and future research
avenues.

2. Related Work and Contribution Positioning

Several recent works have faced the problem of TC by means
of ML-based [33] and DL-based approaches [14, 17, 27]. Some
works have leveraged DL approaches specialized for time-
series [17, 31]. Also, reflecting the modern nature of traffic,
most approaches have focused on ET [15, 30, 33, 34, 35]. We
report relevant works in these lines of research in Tab. 1, that
summarizes the key aspects of each paper.

Notably, the vast majority of these works have adopted
publicly-available datasets (Open column) for validating and
assessing the performance of their proposals, save from a few
cases [14, 17, 29, 21]. With few exceptions [16, 21], the traffic
object (TO column) usually considered—both for extracting in-
put data and assigning classification labels—is the bidirectional
flow, or biflow. Additionally, the input data are mostly provided
to the classifiers as Raw inputs, as opposed to the inefficient
ad-hoc feature extraction [20, 25, 26, 28]. Indeed, this latter
procedure partially defeats a major advantage of DL methods,
namely the automatic extraction of features from input data and
the consequent reduced need of human-expert intervention in
this process.

A great deal of variation can be found regarding the spe-
cific algorithms proposed for the classification task (DL Clas-
sifier column), including Deep Neural Networks (DNNs), dif-

2

Table 1: Related and notable works adopting DL for TC. Papers are grouped based on the type of architecture adopted: the first group
encompasses single-modal/single-task architectures, the second group multimodal/single-task (or partially multitask) architectures,
the third group single-modal/multitask architectures. The last row summarizes the present paper. Within each group the works are
reported in chronological order. Columns and acronyms meaning is reported hereafter.
Open: publicly available dataset.
Traffic object (TO): biflow (BF), flow (F), HTTP session (H), packet (P), Transport Block Size aggregation (T).
Input Data: Raw data of PCAP trace (PCAP), Xth layer of ISO/OSI model (LX).
DL Classifier: AutoEncoder (AE), Auxiliary Classifier Generative Adversarial Network (AC-GAN), Bidirectional Gated Recurrent
Unit (BiGRU), Convolutional Neural Network (CNN), Deep Belief Network (DBN), Deep Neural Network (DNN), Hierarchical
Attention Network (HAN), Long Short-Term Memory (LSTM), MultiLayer Perceptron (MLP), Stacked AutoEncoder (SAE), Varia-
tional AutoEncoder (VAE); + symbol indicates hybrid architectures; & symbol indicates intermediate fusion of input data.
Multimodal (MM). Multitask (MT), Supervised Shared Representation (SSR), Training-Phase Specification (TPS).
 present, # lacking, G# partial, — not applicable.

MM MT Open TO Input Data Raw DL Classifier SSR TPS Research

BF TCP payload [1000 B] SAE — Z. Wang, 2015, Briefing Black Hat USA [14]

BF 6 fields [20 packets] 2D-CNN+LSTM — M. Lopez-Martin et al., 2017, IEEE Access [17]

F/BF PCAP [784 B]
L4 payload [784 B]

 1D-CNN — W. Wang et al., 2017, Proc. IEEE ISI [15]

H HTTP fields [28×36 B] VAE — D. Li et al., 2017, Proc. IEEE CIS [27]

BF Flow-based statistics # AC-GAN — L. Vu et al., 2018, Proc. ACM SoICT [28]

BF IP packet lengths BiGRU — C. Liu et al., 2019, Proc. IEEE INFOCOM [29]

BF PCAP [900 B]† 1D-CNN,
LSTM, SAE

— Y. Zeng et al., 2019, IEEE Access [30]

BF L4 payload [10×1500B]
L2 payload� [10×1500B]

 Attention-based LSTM,
HAN

— H. Yao et al., 2019, IEEE TBD [31]

P L2 payload [1500 B] SAE, 1D-CNN — M. Lotfollahi et al., 2020, Soft Computing [16]

 # G# BF L4 payload [516 B]
4 fields [12 packets]

 1D-CNN & BiGRU — G. Aceto et al., 2019, Elsevier ComNet [19]

 G# — ˚
L4 payload [Nb B]

Packet fields [Np packets]
 Generic Framework — # G. Aceto et al., 2020, Elsevier NEUCOM [32]

BF PCAP [1024 B] 2D-CNN H. Huang et al., 2018, IAOE iJET [24]

BF Flow-based statistics # DNN H. Sun et al., 2019, IEEE Access [25]

BF Flow-based statistics # DNN Y. Zhao et al., 2019, Proc. ACM SoICT [26]

BF
Packet length, direction

Inter-arrival Time
Flow-based statistics

1D-CNN S. Rezaei and X. Liu, 2020, Proc. IEEE ICCCN [20]

T Transport Block Size
[#Bytes / 1 second]

 AE,
Seq2seq-AE w/ LSTM

A. Rago et al., 2020, IEEE TVT [21]

 BF L4 payload [784 B]
4 fields [32 packets]

1D-CNN & BiGRU

1D-CNN?, 2D-CNN?

MLP?, 2D-CNN+LSTM?
 This Paper

† TCP/UDP headers and MAC addresses are removed.
� IP addresses are removed.
? Baselines for performance comparison.

3

ferent variants of AutoEncoders (AEs), both one- and two-
dimensional Convolutional Neural Networks (1D- and 2D-
CNNs), different types of Recurrent Neural Networks (RNNs),
and Generative Adversarial Networks (GANs).

Finally, regarding the proposed architectures, only few works
have considered multimodal inputs (MM column) [19, 32],
with the lower layers being trained on specific subsets of the—
heterogeneous—inputs. Relatively more works have devised
multitask architectures (MT column) [24, 25, 20, 26, 21]: here-
inafter we discuss them in detail.

Before doing that, for completeness, we also briefly discuss
the works [15, 17], providing single-task architectures (MT =

“#”) belonging to two relevant DL approaches, whose multi-
task extensions are described (resp. evaluated) in later Sec. 4
(resp. Sec. 5) as baselines. In detail, Wang et al. [15] have ap-
plied DL to malware-traffic classification, proposing a method
based on 1D-CNN tailored for ET. The experimental evalu-
ation has been conducted on a selection of the public ISCX
VPN-nonVPN dataset [23] and is divided in four different TC
problems: (i) VPN/nonVPN, (ii) 6 encrypted traffic classes,
(iii) 6 VPN-tunneled traffic classes, and (iv) 12 encrypted ap-
plications. Different inputs have been considered, including
biased ones [18]. Conversely, Lopez-Martin et al. [17] have
proposed different hybrid DL architectures originating from the
combination of Long Short-Term Memory (LSTM) and 2D-
convolutional layers. The proposals, evaluated on real traffic
(from an academic backbone network, not publicly available)
have shown high performance, also highlighting a penalty as-
sociated to the use of inter-arrival times as input. Unluckily,
also in [17] biased inputs encompassing source and destination
ports have been used.

Recently, Huang et al. [24] have applied the multitask learn-
ing paradigm to solve the tasks of (i) malware (binary) detec-
tion, (ii) recognition of VPN-encapsulation (binary), and (iii)
Trojan classification (9 classes). The proposed DL algorithm
is a 2D-CNN, tested on an assembled dataset obtained from
the CTU-13 (malware) and ISCX VPN-nonVPN traffic datasets.
Also in this case, following the work in [15], biased input data
have been employed.

Another multitask DL architecture has been proposed by
Zhao et al. [26] in the context of federated learning. This sce-
nario, mainly motivated by privacy concerns, performs model
learning in a distributed fashion, preventing local data (e.g.,
traffic traces) to be shared, and communicating and merging
only the partial models learned locally. The considered tasks
are: anomaly detection (binary), VPN recognition (binary), and
TC (6 classes). Notably, a set of statistical features is defined
on the biflow, partially defying the feature learning capability
of DL algorithms. The performance has been compared with
centralized (i.e. non federated-learning based) methods show-
ing slight improvement (maximum +1.5% on accuracy or re-
call), but a significant reduction in training time with respect to
the baseline architecture (i.e. a single-task DNN).

We also report for completeness a recent work by Rezaei
and Liu [20], where a 1D-CNN architecture has been pro-
posed for classifying the traffic (aggregated in 5 traffic cate-
gories) and also “predicting” biflow bandwidth and duration

(quantized over 5 and 4 intervals with saturation at 1 Mbps
and 60 s, respectively). The traffic categories from the ISCX
VPN/non-VPN dataset are defined according to QoS charac-
teristics. The performance has been evaluated in a transfer-
learning setup, with one of the tasks (i.e. traffic-category clas-
sification) limited by a scarce ground-truth.

A similar set of classification tasks (i.e. duration, flow rate,
and application) has been considered by Sun et al. [25]. For
both duration and flow rate, a two-level quantization (binary
classification) has been applied. Conversely, for application-
traffic classification, the authors have considered between 11 ∼
50 classes according to the specific dataset used. Like several
others works on DL applied to TC, inefficient ad-hoc feature
engineering (e.g., feature selection and statistical preprocess-
ing) has been performed referring to previous ML literature.
In addition to this, transport-level ports have been used as in-
put: a choice hardly in line with realistic traffic scenarios (e.g.,
mobile apps, encryption, tunneling, NAT). The above approach
has been evaluated in transfer-learning and one-shot learning
schemes, leveraging the multitask approach to improve perfor-
mance in case of ground-truth scarcity for a single task.

Recently, Rago et al. [21] have devised a link-level multi-
task approach for application classification and prediction. The
input data are extracted from the sequence of Transport Block
Size values (a field of the LTE downlink control channel) aggre-
gated on a 1-second interval. This traffic object can be equated
with a byte-rate measurement over fixed time intervals. The
dataset has been collected by the authors and it is not publicly
available. The proposed method learns the shared features by
either (a) standard or (b) Seq2seq AEs (implemented via LSTM
layers). Specifically, this work has tailored a multitask model
running directly at the edge of the network to foresee the traffic
type to be served and the resource allocation pattern of each ser-
vice during its execution. Furthermore, the impact of the slid-
ing observation-window on classification and prediction perfor-
mance, as well as complexity, has been also investigated.

Notably, by looking at the above literature tackling diversi-
fied TC tasks via multitask DL, it is apparent that almost all the
works exploit the multitask concept with a supervised aim (col-
umn SSR), except for [21]. In detail, in the supervised case, the
set of layers constituting the shared representation is obtained
by enforcing the solution of the considered tasks, rather than in
an unsupervised fashion. Hence, by doing so, better-performing
shared representations can be attained.

Unlike the above literature, in our previous work [32], we
have discussed a general framework to effectively apply DL
to modern TC tasks, focusing only on the architectural view.
While proposing a multimodal and multitask framework, in said
work we have investigated its effectiveness in a multimodal (ex-
perimental) setup only, to tackle mobile-ET classification. Con-
sequently, the aforementioned study (due to its more general
and architectural focus) is the only one not providing a rigorous
training-phase specification (TPS column) of the architecture.

Accordingly, based on the previous discussion, we position
our work against the state-of-the-art as detailed hereinafter:

• This paper tackles classification of ET via sophisticated

4

DL architectures. Hence, our proposal avoids the re-
dundant (and potentially-degrading) preliminary (manual)
feature engineering phase (as opposed to e.g. [20, 26]) and
feeds the architecture with unbiased inputs (as opposed to
e.g. [16]), strengthening both the significance and the gen-
eralization of the reported results.

• This paper investigates the joint and effective adoption
of multitask and multimodal learning to devise the Dis-
tiller classifier. Indeed, on the one hand, Distiller gen-
eralizes the adoption of multimodal architectures (previ-
ously conceived only for single-task TC [19]) to appli-
cation scenarios with diversified network visibility. This
is achieved by automatic feature learning from heteroge-
neous and structured traffic data given as input. On the
other hand, Distiller is able to overcome the limitations
of existing multitask architectures, based only on single-
modal DL [20, 21, 24, 25, 26]. Also, the resulting ar-
chitecture comes with the full specification of the (two-
step) training phase (differently from [32]). As a result,
we progress on both the nature of the classification goal(s),
and the associated overall architecture.

• This paper employs the public dataset ISCX
VPN-nonVPN [23] to validate our proposal, collect-
ing traffic from activity of real human users. Such
well-known dataset naturally surfaces the multitask goals
related to network monitoring, and provides a supporting
example for the motivations of our work.

• This paper experimentally compares a specific instance of
the Distiller architecture with the best proposals from the
state-of-the-art [15, 17, 20, 21, 24, 25, 26]—for a total of
eight baselines—implementing all with the same technolo-
gies and feeding and evaluating all in fair conditions. Our
comparison also includes an in-depth analysis of the fine-
grained behavior of such classifiers, dissected along the
considered tasks. Also, we investigate the tasks’ relation-
ship and the degree of knowledge transferred among them.

3. Multimodal Multitask Deep Learning–based Traffic
Classification

Herein, we describe the Distiller classifier, starting from
the overall architecture specification in Sec. 3.1 (depicted via
Fig. 1a). We then focus, in Sec. 3.2, on the general procedure
adopted for training it (see Figs. 1b and 1c). Finally, in Sec. 3.3,
we describe the specific instance of Distiller (see Fig. 2) cho-
sen for the considered multitask TC problem and evaluated in
later Sec. 5. For reader’s convenience, Tab. 2 summarizes the
mathematical notations used in the following.

3.1. Overall Architecture

In this section, we describe the proposed methodology for
multipurpose ET classification via multimodal multitask DL.
In detail, we assume that we are required to solve v = 1, . . . ,V
different TC problems (tasks). Formally, given each TC object

Table 2: Chart of the mathematical symbols and notations used in
the definition the Distiller architecture. Symbols and notations are
grouped based on their context: input data, architecture, and loss func-
tions & training.

Symbol Definition

In
pu

tD
at

a

V Number of TC tasks
M Number of training samples
Lv Number of classes of vth TC task
x(m) mth sample of the training set
`v(m) Label (true class) of x(m) for vth TC task
tv(m) One-hot representation of `v(m)

A
rc

hi
te

ct
ur

e

P Number of different modalities
Jp Number of single-modality layers of pth modality
S Number of shared-representation layers
Uv Number of task-specific layers of vth TC task
θp Parameters of the pth single-modality layer
θstub

p Parameters of the pth “stub” layer
θ0 Parameters of shared-representation and task-specific layers
θ↓p Parameters optimized only in pre-training
θ↑p Parameters optimized in pre-training and fine-tuning

L
os

se
s

&
Tr

ai
ni

ng Lp(·) Loss function minimized in pre-training of pth modality
L(·) Loss function minimized in fine-tuning
CE(t, c) Categorical cross-entropy between t and c
cv(m) Predicted class confidences of x(m) for vth TC task
λv Preference level of vth task in multitask objective function
θ̂p Pre-trained parameters of the pth single-modality layers
θ̂stub

p Trained parameters of the pth “stub” layer

observed [1], the vth TC problem (Tv) consists in assigning a
label among Lv classes within the set {1, · · · , Lv}.

As depicted in Fig. 1a, when performing TC, a necessary pre-
requisite consists in segmenting the raw network traffic into el-
ementary entities constituting the samples of the learning task.
Such a process is known as traffic object segmentation and
it is in charge of “packing” the raw traffic into distinct TC ob-
jects [1], each constituting a subset of network packets sharing
some common properties defined by the segmentation rule.

We remark that DL-based traffic classifiers learn the distinc-
tive fingerprint of each traffic type/application via a training set.
In a multitask TC context, we make the assumption that each
traffic object of the above set is associated with as many labels
as the TC tasks to be solved. Hence, for notational convenience,
we define the mth TC object of the training set (made of M sam-
ples) as x(m), while the corresponding label of the vth classifi-
cation task as `v(m). The above label may belong to one out
of Lv different classes, namely `v(m) ∈ {1, . . . , Lv}. The main
advantage of DL (as opposed to ML) approaches for TC is to
overcome the little-adaptable feature design process [18]. This
is due to their ability to learn traffic fingerprints in an end-to-end
fashion, that is directly from the type of input selected. Still,
traffic data are intrinsically highly-structured, as each sample
x(m) contains information from the whole protocol stack. As a
result, early fusion by a monolithic DL architecture taking the
whole input coming from a TC object in bulk, is likely to be
suboptimal. Indeed, the parameter set would overfit to one in-
put subset while underfitting the others. This often precludes
reaping the true benefits of multi-modality. Conversely, late

5

PCAP Traces

Traffic
Object

Segmentation
Input-dataP
Extraction

SM
2

SM
2

SM
J1

M
erge Layer

SR
1

SM
JP

Frozen

Pretraining Fine-tuning

SR
S

Input-data1
Extraction

Stubs

(a)

(b) (c)

SM
1

SM
1

Soft
M

ax

TS
U
1

TS
1

1st TC task
(classes)

Vth TC task
(classes)

Multi-task
StubP

Multi-task
Stub1

Soft
M

ax

TS
U
V

TS
1

DISTILLER Architecture

Figure 1: Architectural view of the Distiller framework. (a) depicts the architecture by highlighting single-modality representation layers,
differentiated as those that are only pre-trained (IM1) and those that are also fine-tuned (IM2), and shared representation-layers (MM-MT), along
with the corresponding parameter set. (b) and (c) depict the proposed training procedure based on pre-training and fine-tuning.

fusion via the capitalization of score-results (viz. confidence
vectors) of DL-based traffic classifiers built on different modal-
ities, does not fully exploit the benefits of multi-modality (see
e.g. the results [19] pertaining to the single-task case). Ac-
cordingly, we foresee multimodal multitask DL as the appeal-
ing means toward a sophisticated form of information fusion,
termed intermediate fusion [36], overcoming these limitations
by offering a flexible tool for practical ET classification, able to
solve multiple tasks by processing effectively the heterogeneous
inputs available.

The architecture of our Distiller classifier is depicted in
Fig. 1a at an abstract level and described hereinafter. Dis-
tiller is fed with P different inputs (modalities) for each TC
object to be classified, with the pth modality provided from
Input-datap extraction block. The first part (IM1+IM2) of
our deep network architecture consists of Jp single-modality
(SM) layers, which are input-specific and allow to extract in
an increasingly-abstract fashion the discriminative features per-
taining to the pth modality alone. The trainable parameters of
the first part are collected in θp.

On top of these layers, the abstract features are joined via
a merge layer, which represents the first layer channeling the
modality-specific distilled information toward a joint multi-
modal multitask (shared) representation [37]. Although the
most general choice is represented by a concatenation opera-
tion, other options may be pursued in case the features originat-
ing from different modalities have the same size (e.g., average
and entry-wise maximum).

Differently, the second part (MM-MT) of the architecture
consists of S shared-representation (SR) layers and Uv task-
specific (TS) layers. The former set of layers distills the fea-
tures capturing inter-modality dependencies. Conversely, the
latter set of layers synthesizes the task-oriented features (of
the vth task) from the shared ones. Accordingly, Distiller
is based on a hard parameter sharing approach, based on
the categorization in [22]. Finally, the architecture is com-
pleted with a softmax layer for each ET classification-task to
solve, namely returning the corresponding soft-output (predic-
tion) vector cv fi

“

cv
1 · · · cv

Lv

‰

(with cv ∈ [0, 1]Lv) for task v.

The trainable parameters of the second part are collected in θ0.
We recall that common choices for elementary DL layers are
dense, convolutional, pooling, and recurrent layers, which can
be jointly employed within a hybrid DL architecture1 capitaliz-
ing the “connectionist” philosophy [13].

3.2. Loss Function Definition and Training Procedure

The training procedure proposed for our Distiller classi-
fier consists of a two-stage phase: (i) pre-training and (ii) fine-
tuning (Figs. 1b and 1c, respectively). The reason for a prelimi-
nary pre-training procedure is to correctly distill discriminative
information from each modality so as to capitalize the advan-
tage of the multimodal traffic representation. In other words,
pre-training allows the DL branch of each modality to be able
to acceptably solve—by itself—all the considered tasks [13].

Precisely, each single-modality stack is first (pre-)trained
independently (see Fig. 1b), that is without MM-MT (corre-
sponding to SR and TS layers) and by topping each modal-
ity chain with V different softmax-layer “stubs”. The train-
able parameters of the V stubs (for pth modality) are collected
within θstub

p . Specifically, the pth “stubbed” chain is trained to
minimize the classification loss function Lp(·) to promote pth

modality capability to solve the V different TC tasks alone. Ac-
cordingly, we aim to minimize a weighted sum of the categori-
cal Cross-Entropy (CE) of each TC task, namely:

Lp
`

θp, θ
stub
p

˘

fi

V∑
v=1

λv

 M∑
m=1

CE(tv(m), cv(m) [θp, θ
stub
p])

 (1)

Such a distance is measured via the functional CE(t, c) fi

−
{∑

`=1 t` log c`
}
, denoting the CE distance for the generic

training sample. In Eq. (1), the vector cv(m) fi
“

cv
1(m) · · · cv

Lv
(m)

‰T
collects the predicted class confidences

of the DL classifier (which depend on DL network parameters)

1Also, to promote regularization (to avoid overfitting), dropout between
successive layers and early-stopping techniques are commonly adopted [13].

6

for the label of the mth training sample on the vth task. Differ-
ently, tv(m) fi

“

tv
1(m) · · · tv

Lv
(m)

‰T
denotes the correspond-

ing one-hot representation of the label for the vth learning task
`v(m). The aim of a high-performing traffic classifier on the vth

task is to have the confidence vector cv(m) as close as possible
to the (ground-truth originated) one-hot vector tv(m). Finally,
since our architecture is in charge of solving multiple learning
tasks at once, the weight λv represents the preference level of
the vth task in the multitask objective function to be optimized.
The learned parameters from the above optimization are indi-
cated with (θ̂p, θ̂

stub
p).

Then, during the fine-tuning (see Fig. 1c), the softmax stubs
are removed (i.e. θ̂stub

1 , · · · , θ̂stub
P are discarded from the opti-

mization) and the whole Distiller classifier is trained (i.e. in-
cluding both the parameter sets θ1, · · · , θP and θ0, associated
to the IM1+IM2 and MM-MT blocks, respectively). However,
as a result of the pre-training, a share of SM layers (the “low”
layers in DL hierarchy, named IM1) are typically frozen when
fine-tuning is performed: low-level layers refer indeed to intra-
modality automatic feature extraction. In other terms, within
θp fi

“

θ↓p θ↑p
‰

only the subset θ↑p is (further) optimized during
fine-tuning (i.e. the parameters corresponding to IM2), while
θ↓p is kept fixed to the value learned during pre-training, i.e.
θ↓p = θ̂↓p. As a result, the following weighted form of the cate-
gorical CE is minimized:

L

´

θ↑1:P, θ0

¯

fi

V∑
v=1

λv

M∑
m=1

CE(tv(m), cv(m)[θ↑1:P, θ0]) (2)

In the above equation, the weights λ1, . . . , λV retain the same
interpretation as in the pre-training objective function reported
in Eq. (1). The loss functions concerning pre-training (single-
modal multitask, Lp(·)) and fine-tuning (multimodal multitask,
L(·)) phases are minimized via standard first-order local opti-
mizers (e.g., Adam, AdaGrad, etc.), resorting to the usual back-
propagation for gradient evaluation [13]. Hereinafter, we detail
the specific instance obtained from the general architecture of
Distiller and used for the experimental evaluation in Sec. 5.

3.3. Description of Proposed Instance

Aiming at a consistent comparison with earlier works [15, 17,
18, 19], this particular implementation of the devised Distiller
architecture operates with biflow TC objects (see Sec. 4.1) and
is made of P = 2 modalities. Furthermore, the considered
multitask TC scenario is composed of V = 3 TC tasks. These
correspond to (T1) encapsulation identification (L1 = 2 classes),
(T2) traffic type recognition (L2 = 6 classes), and (T3) applica-
tion classification (L3 = 15 classes).

Fig. 2 depicts the detailed composition of the proposed Dis-
tiller instance. We observe that the present network is only one
of the possible instances which may be (a) designed according
to the general architecture described in Sec. 3.1 (represented
graphically via Fig. 1) and (b) trained via the corresponding
procedure reported in Sec. 3.2.
The input data fed to the Distiller classifier belong to two
types: (a) the first Nb bytes of transport-layer payload (PAY) of

Concatenation

					bytes	of	
L4	payload

Fields	of	first
						packets

SR	Layers

Dropout(0.2)
ReLU()
Dense(128)
Dropout(0.2)

TS	Traffic	Type
Layers	(v=2)

SoftMax()
Dense(6)
Dropout(0.2)
ReLU()
Dense(128)

TS	Encapulation
Layers	(v=1)

SoftMax()
Dense(2)
Dropout(0.2)
ReLU()
Dense(128)

TS	Application
Layers	(v=3)

SoftMax()
Dense(15)
Dropout(0.2)
ReLU()
Dense(128)

SM	Layers
Payload

Modality	(p=1)

ReLU()
Dense(128)
Dropout(0.2)
MaxPooling1D(3)
ReLU()
Conv1D(32,25)
MaxPooling1D(3)
ReLU()
Conv1D(16,25)

SM	Layers
Protocol	Fields
Modality	(p=2)

ReLU()
Dense(128)
Dropout(0.2)
ReLU()
BiGRU(64)

Figure 2: Proposed instance of the Distiller classifier. The
layer parameters represent: Conv1D(#filters, kernel_size),
BiGRU(#units), Dense(#nodes), MaxPooling1D(pool_size),
Dropout(rate). Background colors highlight the sets of layers
that are pre-trained or fine-tuned: IM1 in cyan, IM2 in purple, and
MM-MT in yellow.

the TC object [14, 15]; (b) informative protocol header fields
(HDR) of the first Np packets [17]. In the first case, the input
is represented in binary format, arranged in a byte-wise fash-
ion and normalized within [0, 1]. The second type of input data
is constituted by: (i) number of bytes in transport-layer pay-
load, (ii) TCP window size (set to zero for UDP packets), (iii)
inter-arrival time, and (iv) packet direction ∈ {0, 1}—of the first
Np packets [17]. We underline that, in both cases, longer (resp.
shorter) instances are truncated (resp. padded with zeros) to the
designed length of bytes (Nb) or packets (Np). These specific in-
put data derive from the necessity of avoiding biased inputs—a
common pitfall in related works [15, 17]—included for instance
in PCAP metadata, data-link layer, and some transport-layer
header fields (e.g., source and destination ports), as they may
lead to inflated performance and lack of generalization [18].

7

We notice that the two considered input types (viz. “traffic-
originated” modalities) refer to different levels of abstraction
(biflow vs. packet) and standpoints (encryption-dependent vs.
encryption-independent) and thus are naturally conducive to the
multimodal approach. Also, they suit well “early” TC [38],
namely taking a classification decision based only on the first
segments of the considered TC object.
The architecture implements2 the SM layers of the “payload”
modality (p = 1, grouped in green in Fig. 2) with two 1D con-
volutional layers (16 and 32 filters, respectively, with kernel
size of 25 and unit stride), each followed by a 1D max-pooling
layer (with unit stride and spatial extent equal to 3) and, finally,
by one dense layer (128 nodes). On the other hand, the SM lay-
ers of the “protocol fields” modality (p = 2, grouped in red
in Fig. 2) are, in order, a bidirectional GRU (BiGRU with 64
units and return-sequences behavior) and one dense layer (128
nodes).3 The intermediate features of the two branches are then
merged via a concatenation layer and fed to a single (S = 1)
SR dense layer (128 nodes). The latter is connected to V = 3
layers, each constituting one TS dense layer (128 nodes) for
the vth task (Uv = 1), before the corresponding softmax layer
(i.e. a dense layer with Lv nodes and softmax activation). In
all the layers, the outputs are obtained via Rectifier Linear Unit
(ReLU) activations. Finally, 20% dropout is applied after (a)
each dense layer (including the concatenation layer) and (b) af-
ter flattening the 2D representation of both the stack of convo-
lutional/pooling layers and BiGRU.

The considered Distiller instance is trained via the two-
stage phase previously described: during pre-training phase,
each single-modality stack is first (pre-)trained independently
for 30 epochs each by topping V softmax layer stubs and by
minimizing the loss Lp(·) in Eq. (1). Then, fine-tuning of the
whole architecture is performed for 40 epochs by minimizing
the lossL(·) in Eq. (2), after freezing IM1 (corresponding to the
two 1D convolutional and BiGRU layers, depicted with cyan
background in Fig. 2).

For both phases, we employ the Adam optimizer [39] (with a
batch size of 50) and early-stopping technique (to prevent over-
fitting) with a patience of 10 epochs and a minimum delta of
0.01 measured on the training accuracy of the hardest TC task
(i.e. with the highest number of classes Lv). The Adam op-
timizer is set with a learning rate of 2 · 10−3 and 10−3 during
pre-training and fine-tuning, respectively. Also, the exponen-
tial decay rates for the estimates of the first-order and second-
order moments are set to 0.9 and 0.999 (Keras default values),
respectively. Finally, when not otherwise specified, we reason-
ably set the preference weights λv = 1/V = 1/3, i.e. a uniform
allocation.

An example of the corresponding evolution of the loss func-
tion vs. the number of epochs associated to Distiller is re-
ported in Fig. 3. Specifically, the two-phases (i.e. pre-training

2The choice of hyperparameters builds on our previous experience with
multimodal DL architectures for TC [19], extended with a set of experiments
varying the parameters of the dense layers.

31D convolutional layers aim at extracting spatially-invariant patterns from
the payload, while (Bi)GRUs aim at capturing long-term dependencies pertain-
ing to the initial segments of the TC object.

0 10 20 30 40 50 60
Epoch

0

0.25

0.5

0.75

1

1.25

1.5

1.75

Lo
ss

1() [T1]
2() [T1]
() [T1]

1() [T2]
2() [T2]
() [T2]

1() [T3]
2() [T3]
() [T3]

1()
2()
()

Figure 3: Loss function Lp(·) of pth single-modality stack during pre-
training (in light blue) and loss function L(·) during fine-tuning (in
salmon) of the Distiller classifier. Results pertain to a single fold.
Per-task components of both Lp(·) and L(·) are also shown. The pre-
training of single-modality stacks is performed in parallel. The number
of epochs of fine-tuning is less than that prescribed (i.e. 40 epochs)
because of early-stopping.

and fine-tuning) are highlighted therein with different back-
ground colors. First, during the pre-training phase the loss
Lp(·) is measured for the pth modality stack at the output of the
corresponding softmax stub. The two modalities are trained in
parallel for 30 epochs each. Then, during the fine-tuning phase,
the overall L(·) is measured up to the remaining 40 epochs (the
training may terminate earlier because of early stopping). In the
above plot, for completeness, the corresponding (three) per-task
contributions of Lp(·) (p = 1, 2) and L(·) are also reported (cf.
Eqs. (1) and (2), respectively). It is evident that the exploitation
of multi-modality by the proposed two-stage training process is
able to achieve lower (multitask) loss functions as opposed to
the single-task cases.

4. Experimental Setup

The classifier instance taken from the general architecture
of Distiller is carefully evaluated and compared against sev-
eral multitask TC baselines on a real dataset. Accordingly,
the present section provides a complete description of the ex-
perimental setup considered. Specifically, we first provide the
description of the human-generated (public) dataset we have
leveraged for this purpose and of the traffic segmentation we
have performed to extract our classification samples from raw
PCAP data (Sec. 4.1). Thereafter, we give details on the state-
of-the-art multitask baselines taken into account (Sec. 4.2). Fi-
nally, we end the section (Sec. 4.3) with a description of the
implementation details required for reproducibility of the con-
sidered setup.

4.1. Dataset and TC Object Description

Our experimental setup employs the ISCX VPN-nonVPN
dataset [23] collected at the Canadian Institute for Cybersecu-
rity and provided in raw PCAP format with trace-level labels,

8

Table 3: ISCX VPN-nonVPN dataset tasks and classes. Classes are or-
dered by decreasing number of biflows. Categorical labels are reported
in round brackets.

Task Classes

T1 - Encapsulation nonVPN (1), VPN (2)

T2 - Traffic Type
VoIP (1), FileTransfer (2), P2P (3),
Streaming (4), Chat (5), Email (6)

T3 - Application

Skype (1), Torrent (2), Hangouts (3),
VoipBuster (4), Facebook (5), FTPS (6), SCP (7),
Email (8), YouTube (9), Vimeo (10), Spotify (11),
Netflix (12), SFTP (13), Aim (14), ICQ (15)

0 2000 4000 6000 8000
Biflows

nonVPN
VPN

Encapsulation Traffic Type Application

0 1000 2000 3000 4000
Biflows

Chat
Email

FileTransfer
P2P

Streaming
VoIP

0 500 1000 1500 2000 2500 3000
Biflows

Aim
Email

Facebook
FTPS

Hangouts
ICQ

Netflix
SCP
SFTP

Skype
Spotify
Torrent
Vimeo

VoipBuster
YouTube

Figure 4: Number of per-class samples (i.e. biflows) for each ISCX
VPN-nonVPN dataset task.

that is the ground-truth is associated to the whole PCAP trace
and not to each TC object.

It includes human-generated traffic encompassing dif-
ferent traffic types—with information also on the related
applications—collected through both regular sessions and ses-
sions encapsulated over VPN. In view of this structure, we can
associate a three-view label (i.e. encapsulation, traffic type, and
application) to whatever segmentation of raw network traffic
(i.e. to a generic TC object). Such three-view label corresponds
to just as many TC tasks to be tackled. Table 3 lists the ISCX
VPN-nonVPN classes associated to each task.

TC Object. While the finest atomic TC object is the single
packet/datagram [16], the vast majority of papers tackling (mul-
titask) ET classification reasonably work with either unidirec-
tional or bidirectional flows (viz. biflows), attaining better per-
formance with the latter TC object (see Sec. 2). A flow is

defined as a stream of packets having the following 5-tuple
in common: transport-layer protocol, source and destination
IP addresses, source and destination ports [1]. The differ-
ence between bidirectional and unidirectional flows is whether
they take the direction of packets or not into consideration in
their definition, respectively. For the sake of completeness,
we touch upon other meaningful TC objects, however, adopted
in the context of non-multitask encrypted TC such as the IP
packet [16], HTTP session [27], and service burst [8]. Hence,
based on these considerations, we segment the raw traffic col-
lected in the ISCX VPN-nonVPN dataset in biflows.

Pre-processing operations. We have found that ≈ 65% of bi-
flows extracted from the raw traffic of the ISCX VPN-nonVPN
dataset have only one UDP packet and destination (IP address,
port) equal to (255.255.255.255, 10505). After further inspec-
tion, we have found that these packets are network broadcasts
periodically sent—every two seconds by default—by BlueS-
tacks, an Android emulator for PCs. Therefore, as opposed
to the other works leveraging the ISCX VPN-nonVPN dataset
[24, 20, 26], we have performed a pre-processing cleaning op-
eration to remove this noisy traffic and thus make our results
more meaningful. As a result, the final dataset contains 11.6k
biflows whose distribution among the different classes for each
task is shown in Fig. 4. We emphasize that, given the imbal-
anced per-class share of biflows, the dataset thus obtained con-
stitutes a realistic and challenging evaluation benchmark for our
Distiller classifier.

4.2. Description of Baselines Considered

We compare Distiller with several baselines proposed in
most-related (recent) literature [15, 17, 20, 24, 25, 26] fed with
the same input types (reported in brackets) whenever possible,
and considering N = 784 bytes and Np = 32 packets for PAY
and HDR, respectively.4 Also, each baseline is trained for 100
epochs corresponding to the total number of epochs summing
up pre-training and fine-tuning of Distiller.

First of all, we highlight that we do not employ (i) bi-
ased input types (e.g., raw PCAP data and inputs comprising
source/destination ports [18]) and (ii) manually-extracted fea-
tures (e.g., PL/IAT stats). On the one hand, the former choice
would prevent learning general (non-overfitted) patterns for dis-
crimination. On the other hand, the latter choice would nullify
a key benefit of DL: no need of human-expert intervention for
extracting informative features. Accordingly, we have consid-
ered the following baselines, which have been carefully imple-
mented and whose details are reported hereinafter:

• Two multitask extensions of state-of-the-art DL-based
single-task traffic classifiers, namely the 1D-CNN (PAY)
and the HYBRID 2D-CNN + LSTM (HDR) proposed
in [15] and [17], respectively. Specifically, the original

4These choices are based on common values suggested in state-of-the-art
works [15] and our past experience with (single-task) DL traffic classifiers [18],
and constitute a satisfactory trade-off between complexity and performance.

9

architecture in [15] is made of two 1D convolutional lay-
ers (with 32 and 64 filters, respectively)—each followed
by a 1D max-pooling—one dense layer (with 1024 nodes
and ReLU activation), and terminated with one softmax
layer. Conversely, the original architecture in [17] is a
combination of two 2D convolutional layers (with 32 and
64 filters, respectively, and batch normalization), where
the output tensor of the second convolutional layer is
reshaped into a matrix fed as input to an LSTM (with
100 units). It is likewise terminated with a single softmax
layer. We extend both these single-task architectures by
replacing the last softmax with three separate softmax
layers, one for each task.

• Five native multitask DL architectures proposed for TC,
that is the 1D-CNN (HDR)5 proposed in [20] and two
different (deep) MLP (PAY/HDR) architectures adopted
in [25, 26]. For the last two baselines, we have consid-
ered two variants each, fed with either input types, since
the original proposals had handcrafted PL/IAT stats as in-
put.

• A modified version—we named 2D-CNN (PAY)—of the
multitask architecture originally presented in [24]. Its
structure is made of two branches—the first shared by two
binary learning tasks and the second related to a multi-
class task—of 2D convolutional layers (with a number of
filters ranging from 32 to 128), with the first two layers
followed by a 2D max-pooling. Each branch is terminated
with a dense layer (1024 nodes). Since the architecture is
fed with biased inputs (i.e. raw PCAP data formatted as
images) and characterized by an excessively ad-hoc struc-
ture, we adapted it to our problem by (i) feeding it with
the unbiased PAY input and (ii) considering a different task
mapping to the two CNN-based branches, namely one bi-
nary (T1) and two multi-class learning tasks (T2 and T3) as
opposed to two binary and one multi-class, respectively.

4.3. Implementation details

We leveraged the DL models provided by Keras (https:
//keras.io) Python API running on top of TensorFlow
2 (https://www.tensorflow.org/) to implement and test
the approaches described in this work. Also, data pre-
and post-processing have been performed mainly by means
of numpy (https://numpy.org/) and pandas (https://
pandas.pydata.org/) libraries. Finally, the graphical data
representation has been obtained using matplotlib (https:
//matplotlib.org/) and seaborn (https://seaborn.
pydata.org/) libraries, along with a customized version of
the pySankey (https://pypi.org/project/pySankey/)
module.

All the experiments refer to the same hardware architecture,
namely an OpenStack virtual machine with 16 vCPUs and 32

5For this baseline, to be as pertinent as possible to the original proposal, we
have used a subset of HDR encompassing signed PL (positive for upstream and
negative for downstream) and IAT as input.

GB of RAM, and Ubuntu 16.04 (64 bit) operating system, run-
ning on a physical server with 2 × Intel(R) Xeon(R) E5-4610v2
CPUs @ 8 × 2.30 GHz and 64 GB of RAM. We highlight that
all the execution times have been logged in the same load condi-
tions (i.e. the DL classifier was the sole CPU-intensive running
process).

5. Experimental Evaluation

In the following analyses, the performance evaluation is
based on a stratified five-fold cross-validation, representing a
solid assessment setup as it keeps the sample ratio among
classes for each fold. Since we are facing multiple TC tasks,
the stratification is performed herein on the hardest task, i.e.
T3. Therefore, we report both the mean and the standard devi-
ation of each performance measure as a result of the evaluation
on the five different folds.

Our experimental evaluation is organized as follows. First, in
Sec. 5.1, we perform an overall comparison of Distiller with
the considered baselines. Then, in Sec. 5.2, we explore the per-
formance dependence of our approach with respect to a varying
weight-configuration {λ1, . . . , λV } choice, namely a Pareto opti-
mization. Further, Sec. 5.3 contains a fine-grained analysis of
the soft-outputs of Distiller and the best baselines identified.
Finally, in Sec. 5.4, knowledge transfer among the considered
tasks is investigated with reference to (a) reject option adoption
and (b) incoherence analysis.

5.1. Overall Comparison

Hereinafter, we first provide an overall performance com-
parison of Distiller with the baselines introduced in Sec. 2
and detailed in Sec. 4.2. To this end, Tab. 4 compares their
accuracy (the percentage of samples properly classified) and
macro (i.e. arithmetically-averaged over classes) F-measure on
the three tasks. In detail, the latter is the harmonic mean of
precision (the per-class fraction of decisions being correct) and
recall (the class-conditional accuracy) accounting for both met-
rics at once.

Additionally, for the sake of a fair comparison, we have em-
ployed for all the classifiers a uniform weight configuration (i.e.
λ1 = λ2 = λ3 = 0.33 in Eqs. (1) and (2)). On the basis of the
results attained with this configuration, we sort them (including
Distiller) according to an average performance ranking, that
is by decreasing average between accuracy and F-measure, over
all the three tasks. Accordingly, we notice that Distiller ranks
first (i.e. it is the overall-best-performing classifier) and shows
significant performance gains for all the metrics, for all the
tasks—ranging from +4.90% to +8.45%—with respect to the
overall-best-performing baseline (ranking II). The latter corre-
sponds to the 1D-CNN (PAY) [15] classifier and is highlighted
in blue in Tab. 4. The last row of Tab. 4 (highlighted in green)
summarizes the performance gain of Distiller with respect to
this overall-best-performing baseline. Finally, even considering
the classification performance for each single task, Distiller
always outperforms also the best-per-metric baseline (marked
with û in Tab. 4).

10

https://keras.io
https://keras.io
https://www.tensorflow.org/
https://numpy.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://matplotlib.org/
https://matplotlib.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://pypi.org/project/pySankey/

Table 4: Comparison of Distiller Accuracy, F-measure, and Run-Time Per-Epoch (RTPE) with state-of-the-art baselines. Results are in the
format avg. (± std.) obtained over 5-folds. Rank is based on the average of all performance metrics on all the tasks. Last row shows Distiller
Gain [%] on the overall-best-baseline (ranking II, highlighted in blue). Marked values are: (3) overall best classifier and (û) best baseline, for
each metric.

Rank Multitask Classifier
T1 - Encapsulation T2 - Traffic Type T3 - Application

RTPE [s]
Accuracy [%] F-measure [%] Accuracy [%] F-measure [%] Accuracy [%] F-measure [%]

I Distiller 93.75 (± 0.73) 3 91.95 (± 0.67) 3 80.78 (± 0.95) 3 78.72 (± 1.05) 3 77.63 (± 0.66) 3 66.44 (± 1.76) 3 5.99 (± 0.13)

II 1D-CNN (PAY) [15] 87.47 (± 0.29) 83.50 (± 0.75) 73.14 (± 0.79) û 71.14 (± 0.87) û 72.73 (± 0.77) û 61.35 (± 1.60) û 13.83 (± 1.67)
III 2D-CNN (PAY) [24] 87.43 (± 0.66) 83.51 (± 0.46) 71.86 (± 0.95) 69.77 (± 0.96) 71.45 (± 1.13) 59.29 (± 2.06) 40.94 (± 3.57)
IV MLP (PAY) [26] 86.95 (± 0.65) 82.38 (± 1.12) 70.67 (± 0.64) 68.14 (± 0.72) 69.50 (± 0.97) 56.44 (± 2.45) 2.58 (± 0.36)
V MLP (HDR) [26] 88.71 (± 0.37) û 84.94 (± 0.48) û 68.57 (± 0.51) 65.87 (± 0.55) 63.97 (± 1.02) 51.14 (± 1.28) 2.24 (± 0.17)
VI MLP (PAY) [25] 85.28 (± 0.66) 81.16 (± 0.55) 67.60 (± 1.10) 64.68 (± 1.36) 65.39 (± 1.06) 51.78 (± 1.31) 0.75 (± 0.10) û3

VII HYBRID (HDR) [17] 87.11 (± 1.88) 82.82 (± 1.28) 66.00 (± 2.61) 62.40 (± 4.34) 60.17 (± 3.70) 50.49 (± 2.40) 3.34 (± 0.38)
VIII MLP (HDR) [25] 86.53 (± 0.65) 81.55 (± 1.03) 62.86 (± 0.92) 59.43 (± 1.40) 59.34 (± 0.88) 44.20 (± 1.22) 0.79 (± 0.02)
IX 1D-CNN (HDR) [20] 82.95 (± 1.33) 76.24 (± 2.55) 59.09 (± 3.34) 54.75 (± 2.24) 56.54 (± 2.65) 40.87 (± 2.13) 1.70 (± 0.02)

Distiller Gain + 6.28 (± 0.80) + 8.45 (± 1.13) + 7.65 (± 0.20) + 7.58 (± 0.95) + 4.90 (± 0.60) + 5.09 (± 1.17) - 7.84 (± 1.67)

Table 5: Run-Time Per-Epoch (RTPE in seconds) and Number of
Trainable Parameters (TP in millions) of Distiller and state-of-the-
art baselines. The RTPE is in the format avg. (± std.) obtained over
5-folds. The classifiers are sorted based on increasing RTPE. The
columns “C” and “R” denote the usage of convolutional and recur-
rent layers, respectively. The last column “Rank” refers to the ranking
based on the average of all TC performance metrics defined in Tab. 4.

Multitask Classifier RTPE [s] TP [M] C R Rank

MLP (PAY) [25] 0.75 (± 0.10) 0.03 # # VI
MLP (HDR) [25] 0.79 (± 0.02) 0.01 # # VIII
1D-CNN (HDR) [20] 1.70 (± 0.02) 0.20 # IX
MLP (HDR) [26] 2.24 (± 0.17) 1.55 # # V
MLP (PAY) [26] 2.58 (± 0.36) 1.71 # # IV
HYBRID (HDR) [17] 3.34 (± 0.38) 0.74 VII
Distiller 5.99 (± 0.13) 0.97 I
1D-CNN (PAY) [15] 13.83 (± 1.67) 5.84 # II
2D-CNN (PAY) [24] 40.94 (± 3.57) 22.65 # III

Moreover, we also investigate the computational complexity
of the considered multitask DL-architectures evaluating their
training phase runtime. This is a fundamental aspect in modern
network TC, where frequent re-training is required, due to the
aging of training data as a result of the fast-paced evolution in
network usage. Since training is performed on multiple epochs,
we report this outcome in a terse way, showing the Run-Time
Per-Epoch (RTPE) in the last column of Tab. 4.

From the above viewpoint, Distiller attains a reduction in
the training time of −7.84 seconds per-epoch, thus exhibit-
ing lower empirical computational complexity when compared
with the overall-best-performing baseline. Accordingly, the
whole training time is more than halved, as a result of the RTPE
cut on all the considered training epochs. Indeed, the training
time equals the RTPE multiplied by the total number of epochs,
which is set to the same value for all the considered architec-
tures (Nepochs = 100, cf. Sec. 3.3 and 4.2). It is worth noting
that the baseline with the shortest RTPE ranks VI in terms of the
overall TC performance metrics, with losses of up to 14.66% of

F-measure compared to Distiller on task T3.
The complexity comparison among the considered multi-

task DL traffic classifiers is deepened in Tab. 5, where the
RTPE of each architecture is paired with the corresponding
number of trainable parameters TP, related to the theoretical
complexity of the training phase. Indeed, we highlight that
an exact O(·) expression cannot be easily drawn for general
DL architectures [40]. However, the complexity associated
to the whole training process can be generically expressed as
O(Nepochs ×M ×Cbackprop(TP)), where Nepochs denotes the num-
ber of epochs, M the number of training samples, and the term
Cbackprop(TP) refers to evaluating the contribution of a single
sample to the gradient via the well-known backpropagation al-
gorithm. The latter term is clearly a function of the specific
DL architecture (e.g., presence of convolutional/recurrent lay-
ers) and leads to cumbersome computations, even in case of
(simpler) MLPs [41]. Still, in general, such function retains a
monotonic behavior with the number of trainable parameters
TP. Accordingly, TP represents the main relevant factor for
comparing the considered DL traffic classifiers, since they are
trained on the same dataset (same M) and for the same number
of iterations (same Nepochs). For completeness, in the aforemen-
tioned table we also highlight whether the training parameters
are associated with more involved layers than dense ones, such
as convolutional (column “C”) and recurrent (column “R”) lay-
ers.

Specifically, a direct comparison between the number of
trainable parameters of Distiller (i.e. 0.97M) and those of
1D-CNN (PAY) [15] (i.e. 5.84M) reveals that the RTPE strongly
depends on the TP value, with Distiller having six times fewer
parameters than the overall-best-performing baseline. Such a
general trend can be observed for almost all the considered
multitask DL traffic classifiers. Still, the corresponding rank-
ing between the RTPE and the TP value is influenced by the
presence of convolutional layers, recurrent layers, or both. Ac-
cordingly, multitask DL architectures with a lower TP value
(e.g., our Distiller) may incur in higher RTPE with respect to
baselines based on a higher TP, because of the presence of con-
volutional and recurrent operations.

11

5.2. Pareto Optimization

Multitask learning is a peculiar application of multi-objective
optimization (a.k.a. Pareto optimization) which consists in the
mathematical optimization (i.e. maximization or minimization)
of a given variable vector with respect to more than one objec-
tive function to be optimized simultaneously. Accordingly, the
loss functions employed in Eqs. (1) and (2)—for pre-training
and fine-tuning, respectively—are the result of the so-called
scalarization of the original multi-objective problem, with the
weights λi assigning a given (a-priori) preference to the ith ob-
jective (viz. task) in the tackled optimization problem.

In this regard, we perform a sensitivity performance anal-
ysis, focusing on the Distiller classifier and the overall-best-
performing baseline (i.e. 1D-CNN (PAY) [15], cf. Tab. 4)
whose outcomes are shown at the top and bottom rows of
Fig. 5, respectively. Such sensitivity analysis is obtained by
varying the weights {λ1, λ2, λ3} within both losses reported in
Eqs. (1) and (2) during the (two-step) training phase. The
same analysis is performed for the (one-step) training phase
of the baseline. Specifically, Fig. 5 illustrates the TC perfor-
mance in terms of F-measure with respect to {λ1, λ2} only, as
λ3 = 1 − (λ1 + λ2) is a dependent variable.

Results highlight quite smooth performance trends on the
three tasks with respect to the weights, with the only exception
of cases associated to a zero-preference level for a given task
(i.e. λ1 = 0, λ2 = 0 and λ1 + λ2 = 1 for T1, T2, and T3, respec-
tively). Indeed, a zero preference implies that the architecture
is not explicitly trained to solve the corresponding task.

Comparing Distiller with 1D-CNN (PAY) [15], Fig. 5 high-
lights similar trends for both traffic classifiers. More specifi-
cally, 1D-CNN (PAY) [15] has slightly higher performance only
in correspondence of some zero-preference configurations for
the specific task (also presenting the worst performance, i.e.
orange and red cells with dashed contour in Fig. 5). As an
example, considering the T2-zero-preference weight configu-
ration {λ1, λ2, λ3} = {0.6, 0, 0.4}, 1D-CNN (PAY) [15] attains
16.29% F-measure (see Fig. 5e) compared to Distiller reach-
ing 11.81% with the same weights (see Fig. 5b). Similar out-
comes can be highlighted also for the other two tasks. Sum-
marizing, Distiller can seldom attain lower performance for a
task, but only if the corresponding task contribution is ignored
during training (zero-preference level). Differently, Distiller
always outperforms 1D-CNN (PAY) [15] for all other (more sen-
sible) configurations of weights.

Focusing on Distiller performance, the uniform weight al-
location (i.e. λ1 = λ2 = λ3 = 0.33) considered in Sec. 5.1
does not result in the best solution for each of the three tasks:
ad-hoc weight configurations should be employed to maximize
per-task F-measure. However, a weight configuration optimal
for a given task, in general implies a loss in performance for
the remaining two, and for the overall performance as well.
For instance, the optimal weight configuration for the hardest
task T3 is {λ1, λ2, λ3} = {0.4, 0, 0.6}, obtaining an F-measure
for T3 of 66.17%, but resulting in a zero-preference level for
the task T2 (dropping to 10.58% F-measure). Even when this
is not the case—for instance, the optimal configuration for T2

implies {λ1, λ2, λ3} = {0.2, 0.6, 0.2}—a uniform weight alloca-
tion is still able to globally outperform such per-task optimum.
Specifically, with the aforementioned T2-optimized weight con-
figuration, Distiller can obtain 91.97% and 63.30% F-measure
on T1 and T3, respectively, against 91.95% and 66.44% attained
with the uniform weight allocation.

Summarizing, our Distiller outperforms the overall-best
baseline according to all the three tasks. Additionally, the eval-
uation over the weight surface {λ1, λ2, λ3} generally highlights
that learning multiple tasks simultaneously provides improved
TC performance with respect to single-task learning. Equally
important, uniform task-weight allocation represents a reason-
able trade-off in terms of TC performance and simplicity in the
choice. In view of these considerations, hereinafter we will em-
ploy a uniform weight allocation, unless explicitly stated other-
wise.

5.3. Fine Grained Analysis of (Soft-)Outputs

Delving into the performance of DL-based multitask TC, in
Fig. 6, we report the Top-K accuracy of Distiller and all the
considered baseline traffic classifiers. In detail, the Top-K ac-
curacy defines a correct classification event if the true class is
within the top K predicted labels (K < Lv is a free parame-
ter). Of course, K = 1 coincides with the standard accuracy;
hence, such metric has an informative interpretation only for
tasks corresponding to multi-class problems (Lv > 2). Accord-
ingly, in what follows we focus only on T2 (L2 = 6 classes) and
T3 (L3 = 15 classes), since L1 = 2 classes for T1 (i.e. it is a
binary TC task).

Given the above definition of Top-K accuracy, the higher the
value of K, the better the accuracy achieved (by construction).
Specifically, this metric allows to investigate the soft-output of
a (multi-class) DL classifier and its fine-grained behavior. From
the inspection of the histograms depicted in Fig. 6, we can no-
tice that Distiller outperforms all the baselines taken into ac-
count for the considered (reasonable) range of K (in our analy-
sis, K ∈ {1, . . . , 5}). In detail, considering the first two (K = 2)
most confident soft-outputs, our Distiller classifier is able to
hit > 90% accuracy for task T2 and almost 90% for task T3,
with an improvement of +3.63% (resp. +2.85%) over the best
baseline MLP (HDR) [26] (resp. 1D-CNN (PAY) [15]) for the
specific task T2 (resp. T3). Moreover, Figs. 6a and 6b reveal
that, even for higher values of K, there is a performance differ-
ence between Distiller and all the baselines for both the task T2
and T3. Especially for the latter (more complex) task, Distiller
is able to attain the most significant performance enhancement,
reaching up to ≈ 97% accuracy with K = 5.

To deepen the analysis of fine-grained behavior of multi-
task traffic classifiers, Fig. 7 depicts the Sankey diagrams cor-
responding to tasks T1 and T2.6 Specifically, these diagrams
show the per-class ratio of samples correctly and incorrectly

6Given the higher number of classes (L3 = 15) for the task T3, the readabil-
ity of the related Sankey diagram is severely impaired and consequently it is
replaced by an equivalent confusion matrix (Fig. 8).

12

0.0 0.2 0.4 0.6 0.8 1.0
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1

43.97 45.74 45.33 50.97 40.49 47.02

91.76 91.78 91.76 91.97 91.71

92.55 92.29 92.73 92.21

92.58 92.72 92.35

92.28

91.84

92.74

30

40

50

60

70

80

90

100

(a) Distiller T1-Encapsulation.

0.0 0.2 0.4 0.6 0.8 1.0
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1

9.84 78.24 78.27 78.21 78.29 77.72

7.69 78.58 78.23 78.60 77.34

10.58 78.12 77.30

11.81 78.47 77.61

12.60 76.99

8.41

78.82

0

10

20

30

40

50

60

70

80

(b) Distiller T2-Traffic Type.

0.0 0.2 0.4 0.6 0.8 1.0
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1

65.05 66.04 64.95 65.13 64.61 3.02

65.72 65.64 65.24 63.30 4.33

64.96 64.37 3.25

65.13 64.62 2.59

65.59 3.31

2.89

66.17

0

10

20

30

40

50

60

70

(c) Distiller T3-Application.

0.0 0.2 0.4 0.6 0.8 1.0
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1

45.08 38.95 42.01 40.98 44.53 46.91

83.42 83.94 83.16 83.72 83.43

83.63 84.17 83.76

84.36 84.02 83.81

83.18 83.75

83.31

84.43

30

40

50

60

70

80

90

100

(d) 1D-CNN (PAY) [15] T1-Encapsulation.

0.0 0.2 0.4 0.6 0.8 1.0
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1

8.72 70.62 70.43 70.90 71.28 70.53

9.84 70.97 70.06 71.08 70.80

13.05 70.56 71.06

16.29 70.70 70.48

14.23 70.55

10.29

71.43

0

10

20

30

40

50

60

70

80

(e) 1D-CNN (PAY) [15] T2-Traffic Type.

0.0 0.2 0.4 0.6 0.8 1.0
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1

59.66 60.67 61.49 60.55 60.96 3.29

59.43 60.95 61.63 5.05

60.15 60.05 60.85 4.14

60.78 61.36 5.14

60.10 3.02

2.33

61.67

0

10

20

30

40

50

60

70

(f) 1D-CNN (PAY) [15] T3-Application.

Figure 5: F-measure of Distiller classifier (a-c) and best performing baseline (d-f) for different combinations of the weights associated to the
three tasks. The best per-task weight-configuration is highlighted in boldface. The zero-preference levels are highlighted in dashed boxes; the
performance is minimum for the task Tv when the respective λv is set to 0 (note that λ3 = 0 on the anti-diagonal: λ1 + λ2 = 1).

classified, with a clear highlight on error patterns (quantita-
tively summarized by the recall values reported in square brack-
ets for each class). By comparing the Distiller diagrams
(Figs. 7a and 7b) with those of the overall-best-performing
baseline 1D-CNN (PAY) [15] (Figs. 7c and 7d), we can observe a
substantial reduction of misclassified biflows for all the classes
and for both tasks. Particularly, even when the error patterns
are less severe (e.g., VoIP class), the recall improvement for T2
is always higher than 5%. This results in a beneficial reduc-
tion of systematic error patterns (e.g., VoIP traffic misclassi-
fied as FileTransfer). Besides general improvements of recall,
high impact gains are obtained for specific classes, the highest
ones for VPN (task T1) and Email (task T2), with +15.02% and
+12.95% recall, respectively.

To complement the investigation of fine-grained behav-
ior, Fig. 8 shows the confusion matrices of Distiller and
1D-CNN (PAY) [15] for the task T3. Indeed, confusion matrices
represent a complementary means to highlight misclassifica-
tion patterns, with a higher concentration toward the diagonal—
where predicted classes equal the actual ones—implying better
performance of the generic classifier. Results highlight a gen-
eral improvement of the confusion matrix of Distiller against
the (best) baseline classifier also for the hardest learning task.

Indeed, despite both classifiers show qualitatively-similar error
patterns, Distiller presents less imbalance toward the Skype
class (+3.41% in terms of recall). Overall, there is a recall
improvement for all the T3 classes and the highest gain is at-
tained for FTPS (class “6”) and YouTube (class “9”), reaching
+14.40% and +10.02%, respectively.

Finally, we complete the fine-grained investigation with a
calibration analysis, as reported in Fig. 9. In fact, the lat-
ter aims to assess whether the class-probability estimates (the
soft-output values) match the actual-class posterior probabili-
ties (and thus their value can be exploited for more than just a
ranking, as in Top-K accuracy).

In detail, we depict the reliability diagrams, that show the
accuracy as a function of the confidence and are obtained by
partitioning the predictions into equally-spaced bins and com-
puting the accuracy of each bin. Confidence values range in
[1/Lv , 1], where Lv is the number of classes of TC task v. Ac-
cordingly, the starting-point 1/Lv of the confidence interval is
pointed out with a dashed blue line in Fig. 9.

Indeed, a miscalibrated classifier (on a given task) returns
excessively optimistic (“Over” in Fig. 9) or pessimistic (“Un-
der” in Fig. 9) confidence outputs associated to its decisions.
Conversely, a perfectly-calibrated classifier entails a reliability

13

K=1 K=2 K=3 K=4 K=5
40
50
60
70
80
90
100

To
p-
K
Ac
cu
ra
cy

DISTILLER
1D-CNN (PAY) [15]
2D-CNN (PAY) [24]

MLP (PAY) [26]
MLP (HDR) [26]
MLP (PAY) [25]

HYBRID (HDR) [17]
MLP (HDR) [25]
1D-CNN (HDR) [20]

(a) T2-Traffic Type.

K=1 K=2 K=3 K=4 K=5
40
50
60
70
80
90
100

To
p-
K
Ac
cu
ra
cy

DISTILLER
1D-CNN (PAY) [15]
2D-CNN (PAY) [24]

MLP (PAY) [26]
MLP (HDR) [26]
MLP (PAY) [25]

HYBRID (HDR) [17]
MLP (HDR) [25]
1D-CNN (HDR) [20]

(b) T3-Application.

Figure 6: Top-K accuracy of Distiller and baseline traffic classifiers. Results refer to T2 (a) and T3 (b). Error bars report average ± standard
deviation.

diagram corresponding to the identity function, that is, a clas-
sifier having 80% confidence leads to 80% accuracy. To obtain
a concise metric of the deviation from perfect calibration, we
also integrate the above diagrams with the Expected Calibra-
tion Error (ECE). The latter metric is defined as the weighted
mean—based on the number of samples and evaluated over all
the bins—of the difference between accuracy and confidence,
and provides a synthetic comparison metric for classifiers.

Once more, we contrast our Distiller classifier (Figs. 9a, 9b,
and 9c) with the overall-best baseline (Figs. 9d, 9e, and 9f) over
all the three TC tasks. We recall that, since T1 is a binary TC
problem, the range of the corresponding reliability diagrams is
shorter since the class prediction probability is always > 0.5.
Conversely, the lower limit of the same range equals ≈ 0.167
and ≈ 0.067 for T2 and T3, respectively.

Interestingly, both classifiers exhibit a miscalibration that
tends to be over-confident (viz. optimistic) in predictions for
all but one bin. Indeed, for the predictions on T2 whose confi-
dence falls within [0.2, 0.3[, Distiller exhibits a more under-
confident (pessimistic) behavior than 1D-CNN (PAY) [15]—
also having an under-confident outcome in the same range. This
effect, however, is associated with a very limited number of
classified samples characterized by poor confidence values (i.e.
corresponding to the lowest-admissible confidence-bin for T2)
and, consequently, with the least discriminative power.

In general, in each bin—except for predictions in [0.2, 0.3[
for T2—the confidence is higher than the accuracy for both
classifiers. This effect can be attributed to a slight overfit-
ting phenomenon and it is a distinctive characteristic of DL
architectures, although the calibration analysis shows that our
multimodal-multitask Distiller significantly mitigates it. In-
deed, overall Distiller is considerably better calibrated than

1D-CNN (PAY) [15], showing an ECE reduction of 1.75 times
on T3, 2.03 times on T2, and 3.64 times on T1.

Summarizing, the multimodal nature of Distiller is able to
provide a more consistent soft-output TC behavior on the two
hardest tasks (i.e. T2 and T3) with respect to all the consid-
ered (single-modal) baselines, namely the true class belongs
to the set of most probable ones even when it is not the high-
est. Moreover, our proposal is able to achieve a systematic er-
ror pattern reduction with respect to the overall-best baseline,
as shown by Sankey diagrams (on T1 and T2) and confusion
matrices (on T3). Finally, the calibration analysis highlights
that our Distiller (due to the successful capitalization of multi-
modality) significantly mitigates the overfitting phenomenon—
leading to the usual over-confident (viz. optimistic) behavior of
DL architectures—as shown by the ECE halving on each task
compared to the overall-best baseline.

5.4. Transfer of Knowledge among Tasks
Hereinafter, we investigate the knowledge transfer among the

tasks firstly testing the multitask classifiers when a reject op-
tion (viz. a censoring policy of “unsure” outcomes) is adopted
for all the tasks, that is the classification is performed only if
the highest class prediction probability associated to the vth TC
task exceeds its related threshold γv, thus emitting a confident
verdict on the corresponding task.

Its adoption has been justified in the context of encrypted
traffic, e.g. for the TC of mobile apps [8] and anonymity
tools [42]. Specifically, given the high number of (bi)flows
commonly generated by network applications and services,
there is an excellent chance of identifying these latter only
considering the more characteristic biflows, namely those cor-
responding to a classification confidence above γv. Hence, a

14

nonVPN VPN

nonVPN [95.36]

VPN [89.23]

Actual Class

Predicted Class
(a) Distiller T1-Encapsulation.

VoIP

FileTransfer P2P
Streaming Chat

Email

VoIP [85.45]

FileTransfer [80.93]

P2P [83.46]

Streaming [84.60]

Chat [54.98]

Email [73.04]

Actual Class

Predicted Class
(b) Distiller T2-Traffic Type.

nonVPN VPN

nonVPN [92.19]

VPN [74.21]

Actual Class

Predicted Class
(c) 1D-CNN (PAY) [15] T1-Encapsulation.

VoIP

FileTransfer P2P
Streaming Chat

Email

VoIP [80.11]

FileTransfer [68.34]

P2P [78.82]

Streaming [79.05]

Chat [48.60]

Email [60.09]

Actual Class

Predicted Class
(d) 1D-CNN (PAY) [15] T2-Traffic Type.

Figure 7: Sankey diagrams of the Distiller classifier (a, b) and the overall-best-baseline (c, d) for the T1-Encapsulation (a, c) and T2-Traffic Type
(b, d) TC tasks. The classes are ordered by decreasing number of biflows. In square brackets per-class recalls [%] are reported.

1

3

5

7

9

11

13

15

1 3 5 7 9 11 13 15

A
c
tu

a
l
C

la
s
s

Predicted Class

 0.1

 1

 10

 100

(a) Distiller.

1

3

5

7

9

11

13

15

1 3 5 7 9 11 13 15

A
c
tu

a
l
C

la
s
s

Predicted Class

 0.1

 1

 10

 100

(b) 1D-CNN (PAY) [15].

Figure 8: Confusion matrices of the Distiller classifier (a) and the
overall-best baseline (b) for the T3-Application TC task. Note that the
log scale is used to evidence small errors. The classes are ordered by
decreasing number of biflows. Categorical class-labels are reported in
Tab. 3.

generic multitask classifier can improve its TC performance on
the vth TC task with γv at the price of a reduced percentage of
classified biflows, namely the classified ratio (CR). Indeed, the
decisions on the other biflows that are under the γv are censored.
Thus, tuning γv enables a fine-grained control of the classifier
and further (useful) flexibility to encrypted TC [8] with also the
ability of a differentiated tuning for each vth task to tackle (i.e.

using different γv).

To this end, Fig. 10 shows the F-measure and the CR when
varying the censoring threshold γv for each of the three tasks.
The present analysis is carried out for both Distiller and the
1D-CNN (PAY) [15] baseline. Hence, by looking at the plots
row-wise (resp. column-wise) the performance depicts the ef-
fects of reject option on the two approaches (resp. the three
tasks). Within each plot, the F-measure on the vth task vs. the
censoring threshold γv is depicted via bigger markers. For com-
pleteness, to also truly exploit the related nature of the mul-
tiple TC tasks considered (viz. the knowledge transfer among
them), in each figure we also report the F-measure values corre-
sponding to the other two tasks and resulting from censoring the
samples based on the considered γv (e.g., in Figs. 10a and 10d
the F-measure values for the tasks T2 and T3 are obtained by
censoring the biflows based on the predicted probability of T1
against γ1).

Results highlight the gain of Distiller over the baseline
even when a reject option is applied. For instance, referring
to the task T2, ≈ 85% F-measure can be obtained by reject-
ing only 15% of the overall biflows with our Distiller classi-
fier, whereas 1D-CNN (PAY) [15] achieves the same F-measure
value by rejecting more than the double of samples (i.e. >
30%). Similarly, when considering T3 (the hardest task), ≈ 75%
F-measure can be obtained by rejecting 25% of the overall bi-

15

0 0.2 0.4 0.6 0.8 1
Confidence

0
0.2
0.4
0.6
0.8

1

Ac
cu

ra
cy

ECE=21.47

Ideal Actual Over Under

(a) Distiller T1-Encapsulation.

0 0.2 0.4 0.6 0.8 1
Confidence

0
0.2
0.4
0.6
0.8

1

Ac
cu

ra
cy

ECE=67.20

Ideal Actual Over Under

(b) Distiller T2-Traffic Type.

0 0.2 0.4 0.6 0.8 1
Confidence

0
0.2
0.4
0.6
0.8

1

Ac
cu

ra
cy

ECE=69.45

Ideal Actual Over Under

(c) Distiller T3-Application.

0 0.2 0.4 0.6 0.8 1
Confidence

0
0.2
0.4
0.6
0.8

1

Ac
cu

ra
cy

ECE=78.21

Ideal Actual Over Under

(d) 1D-CNN (PAY) [15] T1-Encapsulation.

0 0.2 0.4 0.6 0.8 1
Confidence

0
0.2
0.4
0.6
0.8

1
Ac

cu
ra

cy

ECE=136.08

Ideal Actual Over Under

(e) 1D-CNN (PAY) [15] T2-Traffic Type.

0 0.2 0.4 0.6 0.8 1
Confidence

0
0.2
0.4
0.6
0.8

1

Ac
cu

ra
cy

ECE=121.85

Ideal Actual Over Under

(f) 1D-CNN (PAY) [15] T3-Application.

Figure 9: Reliability diagrams of Distiller (a,c,e) and overall-best baseline (b,d,f) for the three TC tasks. Confidence is divided in 10 bins, and
is ≥ 1/Lv (vertical dashed line), with Lv being the number of classes for the vth task. Over and under gap represent an over-confident (optimistic)
and under-confident (pessimistic) miscalibration pattern, respectively. To ease the comparison, the non-percentage accuracy (i.e. within [0, 1]) is
shown. Concise ECE metric is reported for each case.

flows with Distiller, whereas the baseline can achieve a com-
parable F-measure score by rejecting 35% of biflows. Finally,
by looking at the F-measure obtained by censoring on different
tasks, it is evident that the tasks T2 and T3 seem more related.
Indeed, a variation of γ2 (resp. γ3) significantly reflects on the
F-measure performance of the task T3 (resp. T2). Such effect is
quite general as it applies to both our Distiller and the baseline:
hence, we can infer that these tasks share common features for
their inference process.

Finally, to complement our investigation on transfer of
knowledge among tasks, we perform an incoherence analysis of
our Distiller and the best-performing baseline. As described in
Sun et al. [25], the incoherence measure7 is defined as follows:

incoherence(v, vs) fi 100 ·

∑Lv
`v=1

∑
n∈N`v

d(cvs (n), c̄vs
`v

)∑L
`v=1

∑
n∈N`v

{∑
`
′

v 6=`v
d(cvs (n), c̄vs

`v′
)
}

(3)

where d(·, ·) denotes the Euclidean distance and N`v represents
the set of test samples whose true label for the vth task is `v.
Furthermore, cvs (n) is the soft-output vector associated to the
vth

s task for the nth test sample, while c̄vs
`v

is the average of all the
soft-output vectors associated with the vth

s task whose true label
on the vth task is `v. The above measure can be interpreted as
a metric of incoherence among the soft-output vectors associ-
ated to the same label: the closer the vector is to the centroid

7In Sun et al. [25] the metric is named perplexity, but we avoid this term as it
is widely adopted for a different concept in ML. Compared with that definition,
we normalize it to 100 instead of 1 for the sake of results readability.

Table 6: incoherence analysis of Distiller and overall-best-
performing baseline. incoherence for the multitask implementation
is reported in MT column, while Single-Task evaluation is reported
in columns S Tv. incoherence evaluated in the same space the task is
defined on (i.e. v = vs) is highlighted with green. Marked values are:
overall best incoherence (3) and per-task best incoherence (û).

incoherence(v, v) incoherence(v, vs)
MT ST1 [vs = 1] ST2 [vs = 2] ST3 [vs = 3]

Distiller3

v = 1 13.82 (± 1.22) û 13.99 (± 1.80) 97.85 (± 0.47) 96.58 (± 0.67)
v = 2 6.82 (± 0.27) û 18.93 (± 0.05) 7.16 (± 0.14) 13.84 (± 0.16)
v = 3 2.52 (± 0.06) û 6.44 (± 0.05) 3.18 (± 0.06) 2.56 (± 0.06)

1D-CNN (PAY) [15]

v = 1 28.41 (± 0.75) 27.91 (± 2.32) û 98.75 (± 0.47) 97.13 (± 0.69)
v = 2 9.14 (± 0.21) 18.95 (± 0.19) 9.05 (± 0.28) û 14.65 (± 0.24)
v = 3 3.08 (± 0.07) û 6.40 (± 0.16) 3.67 (± 0.09) 3.13 (± 0.05)

of its respective true label, the lower the incoherence. Hence,
the lower the incoherence, the better the representation learned
(with implications on explainability [25]).

Based on the above definition, it is apparent that
incoherence(v, vs) can be evaluated on the same space the task
is defined (i.e. v = vs) or on a different vector space (i.e. v 6= vs).
In the latter case, the classification output distance is taken from
the centroids of a different set of labels (with respect to another
task vs): a small incoherence means that the two tasks share
a significant common representation. Indeed, for the multitask
architectures there is a soft-output vector corresponding to each
task and then v = vs for every task (all tasks are considered,

16

0 0.2 0.4 0.6 0.8 1
1

50
60
70
80
90

100

Pe
rc

en
ta

ge

F-meas [T1]
F-meas [T2]

F-meas [T3]
CR [T1]

(a) Distiller T1-Encapsulation.

0 0.2 0.4 0.6 0.8 1
2

50
60
70
80
90

100

Pe
rc

en
ta

ge

F-meas [T1]
F-meas [T2]

F-meas [T3]
CR [T2]

(b) Distiller T2-Traffic Type.

0 0.2 0.4 0.6 0.8 1
3

50
60
70
80
90

100

Pe
rc

en
ta

ge

F-meas [T1]
F-meas [T2]

F-meas [T3]
CR [T3]

(c) Distiller T3-Application.

0 0.2 0.4 0.6 0.8 1
1

50
60
70
80
90

100

Pe
rc

en
ta

ge

F-meas [T1]
F-meas [T2]

F-meas [T3]
CR [T1]

(d) 1D-CNN (PAY) [15] T1-Encapsulation.

0 0.2 0.4 0.6 0.8 1
2

50
60
70
80
90

100

Pe
rc

en
ta

ge
F-meas [T1]
F-meas [T2]

F-meas [T3]
CR [T2]

(e) 1D-CNN (PAY) [15] T2-Traffic Type.

0 0.2 0.4 0.6 0.8 1
3

50
60
70
80
90

100

Pe
rc

en
ta

ge

F-meas [T1]
F-meas [T2]

F-meas [T3]
CR [T3]

(f) 1D-CNN (PAY) [15] T3-Application.

Figure 10: F-measure and ratio of classified samples (CR) [%] vs. censoring threshold γ of the Distiller classifier (a-c) and the overall-best-
performing baseline (d-f). The F-measure on the vth task vs. the censoring threshold γv is depicted via filled and bigger markers. Differently, the
corresponding F-measure score on tasks different from vth, as a function of γv, is highlighted with void and smaller markers.

there is no other task). Differently, this does not apply to single-
task architectures. In this case, the generality of the above def-
inition (Eq. (3)) allows also to analyze the incoherence proper-
ties of single-task classifiers on the other tasks, so as to consider
them as baselines to assess the incoherence gain (the lower the
better) provided by the multitask version. To this aim, both a
multitask instance of Distiller and 1D-CNN (PAY) [15] is con-
sidered, as well as their respective single-task versions. These
are obtained by setting a zero-preference value8 for all but the
considered task (e.g., {λ1, λ2, λ3} = {1, 0, 0} to obtain the single-
task ST1 instance). Accordingly, Tab. 6 reports the results of the
incoherence analysis for both multitask and single-task variants
of Distiller and 1D-CNN (PAY) [15]. From the results, it is ap-
parent that the incoherence is lower when the metric is evalu-
ated on the soft-output space that matches to the task consid-
ered (i.e. v = vs highlighted in green). While this is always the
case for multitask architectures (MT in Tab. 6), for single-task
architectures (ST in Tab. 6) this is only achieved when the in-
coherence can be evaluated s.t. vs = v for a given task v, since
the other tasks are not considered in the training phase. Sec-
ondly, while Distiller always ensures lower incoherence with
respect to the corresponding value of its single task counter-
part, such claim is not always true for the 1D-CNN (PAY) [15]
baseline. For instance, on both T1 and T2 the baseline is not
able to improve (viz. reduce) the incoherence with respect to
the single-task counterpart solely trained for T1 and T2, respec-
tively. This confirms the effective capitalization by Distiller of
the regularization (overfitting-avoidance) properties granted by

8See Sec. 5.2 on Pareto analysis.

multitask learning, as opposed to (separate) single-task coun-
terparts. Finally, by comparing the incoherence values of the
Distiller and baseline classifier, it is apparent that our proposal
achieves lower incoherence on all the three tasks. Notably, for
T1 the incoherence reduction is more than two-fold (13.82 of
Distiller vs. 28.41 of 1D-CNN (PAY) [15]): this can be ex-
plained by the presence of only two groups (i.e. two classes,
since it is a binary task), emphasizing the improvement brought
by the Distiller architecture.

In summary, the above analysis highlights the further im-
provement of TC effectiveness (in terms of F-measure) of Dis-
tiller on all the three tasks, achievable by means of a per-task
reject option. Furthermore, by looking at the incoherence mea-
sure, we observe that our Distiller approach (as opposed to
the overall-best baseline) ensures a better separation among dif-
ferent classes with respect to its single-task counterparts. This
confirms the effective capitalization of multitask learning by our
proposal, obtained via the fruitful transfer of knowledge among
the different tasks.

6. Conclusions and Future Directions

In this paper, we tackled multipurpose ET classification via
a general multimodal multitask DL architecture (termed Dis-
tiller). Our aim was to provide an effective design basis for so-
phisticated network management requiring the solution of dif-
ferent network visibility tasks. The proposed architecture was
based on a suitably-defined (two-step) training procedure which
enforces information distillation from each modality and reaps
the regularization gains of multitask learning.

17

Our evaluation was performed on a dataset of human-
generated traffic (ISCX VPN-nonVPN) labeled according to
three different TC tasks (i.e. encapsulation, traffic type, and ap-
plication recognition). For the above TC scenario, we defined
a peculiar instance of Distiller, characterized by two com-
plementary input modalities (header vs. payload information)
and providing the simultaneous solution to the aforementioned
three TC tasks.

First, results from the overall comparison showed perfor-
mance gains by Distiller over state-of-the-art multitask archi-
tectures up to +8.45% (on T1), +7.58% (on T2), and +5.09%
(on T3) in terms of F-measure with respect to the overall-best
baseline. Equally important, Distiller exhibited very manage-
able training complexity and lower computational burden than
the overall-best-performing multitask baseline, namely −7.84 s
in terms of RTPE, whose total impact is magnified by two or-
ders of magnitude according to the number of training epochs.
Therefore, a properly-structured multimodal-multitask archi-
tecture was shown to be effective in both raising TC perfor-
mance and lowering computational complexity.

Second, the fine-grained analysis of the Distiller outputs
highlighted also the structural gain of our proposal in terms of
(a) more consistent soft-output behavior (e.g., > 90% Top-2 ac-
curacy, with a +3.63% gain over the best baseline), (b) system-
atic error pattern reduction, and (c) improved calibration (e.g.,
the ECE is at least halved on each task).

Third, Distiller advantages were confirmed by the measure
of relatedness among the considered tasks (showing effective
knowledge transfer), in terms of dependence among censored
outcomes, and by the better separation ensured, in terms of
lower incoherence, with positive impact on explainability as
well. Accordingly, the whole experimental evaluation shown
in Sec. 5 substantiates our claim that employing a principled
approach for designing a DL architecture for TC tasks allows
to better exploit DL potential, while simultaneously avoiding
domain-specific pitfalls.

Our newly-proposed Distiller approach suggests the follow-
ing future directions of research: (i) use of advanced DL layers
(e.g., inception, residual, attention); (ii) semi-supervised mul-
titask learning; (iii) gray-box analysis of DL traffic classifiers
with explainable AI tools [43]; (iv) open-set TC, i.e. ability to
handle classes not present in the training set; (v) sensible adop-
tion of the Big Data paradigm to (encrypted) traffic classifiers
drawn from Distiller.

References
[1] A. Dainotti, A. Pescapè, K. C. Claffy, Issues and future directions in

traffic classification, IEEE Network 26 (2012) 35–40.
[2] X. Wang, K. Xu, W. Chen, Q. Li, M. Shen, B. Wu, ID-Based SDN for the

Internet of Things, IEEE Network 34 (2020) 76–83.
[3] F. Jejdling, et al., Ericsson mobility report, Ericsson AB, Business Area

Networks, Stockholm (SE), Tech. Rep. EAB-19 7381 (2019).
[4] H. Yao, G. Ranjan, A. Tongaonkar, Y. Liao, Z. M. Mao, SAMPLES:

Self adaptive mining of persistent lexical snippets for classifying mobile
application traffic, in: ACM 21st International Conference on Mobile
Computing and Networking (MobiCom), 2015, pp. 439–451.

[5] R. Houser, Z. Li, C. Cotton, H. Wang, An investigation on information
leakage of DNS over TLS, in: 15th International Conference on Emerging

Networking Experiments And Technologies (CoNEXT), 2019, pp. 123–
137.

[6] Z. Chai, A. Ghafari, A. Houmansadr, On the importance of encrypted-
SNI (ESNI) to censorship circumvention, in: 9th USENIX Workshop on
Free and Open Communications on the Internet (FOCI), 2019.

[7] A. Jonas, J. Burrell, Friction, snake oil, and weird countries: Cyberse-
curity systems could deepen global inequality through regional blocking,
Big Data & Society 6 (2019) 2053951719835238.

[8] V. F. Taylor, R. Spolaor, M. Conti, I. Martinovic, Robust smartphone app
identification via encrypted network traffic analysis, IEEE Transactions
on Information Forensics and Security 13 (2018) 63–78.

[9] G. Aceto, D. Ciuonzo, A. Montieri, A. Pescapè, Multi-classification ap-
proaches for classifying mobile app traffic, Journal of Network and Com-
puter Applications 103 (2018) 131–145.

[10] V. Carela-Español, P. Barlet-Ros, M. Solé-Simó, A. Dainotti, W. de Do-
nato, A. Pescapè, K-dimensional trees for continuous traffic classifica-
tion, in: 2nd International Workshop on Traffic Monitoring and Analysis
(TMA), volume 6003, 2010, pp. 141–154.

[11] A. Dainotti, F. Gargiulo, L. I. Kuncheva, A. Pescapè, C. Sansone, Identi-
fication of traffic flows hiding behind TCP port 80, in: IEEE International
Conference on Communications (ICC), 2010, pp. 1–6.

[12] M. Shen, Y. Liu, L. Zhu, K. Xu, X. Du, N. Guizani, Optimizing fea-
ture selection for efficient encrypted traffic classification: A systematic
approach, IEEE Network 34 (2020) 20–27.

[13] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT press, 2016.
[14] Z. Wang, The Applications of Deep Learning on Traffic Identification.,

Black Hat USA, Las Vegas, 2015.
[15] W. Wang, M. Zhu, J. Wang, X. Zeng, Z. Yang, End-to-end encrypted traf-

fic classification with one-dimensional convolution neural networks, in:
IEEE International Conference on Intelligence and Security Informatics
(ISI), 2017, pp. 43–48.

[16] M. Lotfollahi, M. J. Siavoshani, R. S. H. Zade, M. Saberian, Deep packet:
A novel approach for encrypted traffic classification using deep learning,
Soft Computing 24 (2020) 1999–2012.

[17] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, J. Lloret, Network
traffic classifier with convolutional and recurrent neural networks for In-
ternet of Things, IEEE Access 5 (2017) 18042–18050.

[18] G. Aceto, D. Ciuonzo, A. Montieri, A. Pescapé, Mobile encrypted traf-
fic classification using deep learning: experimental evaluation, lessons
learned, and challenges, IEEE Transactions on Network and Service
Management 16 (2019) 445–458.

[19] G. Aceto, D. Ciuonzo, A. Montieri, A. Pescapè, MIMETIC: mobile en-
crypted traffic classification using multimodal deep learning, Elsevier
Computer Networks 165 (2019) 106944.

[20] S. Rezaei, X. Liu, Multitask learning for network traffic classification, in:
29th IEEE International Conference on Computer Communications and
Networks (ICCCN), 2020, pp. 1–9.

[21] A. Rago, G. Piro, G. Boggia, P. Dini, Multi-task learning at the mobile
edge: an effective way to combine traffic classification and prediction,
IEEE Transactions on Vehicular Technologies 69 (2020) 10362–10374.

[22] S. Ruder, An overview of multi-task learning in deep neural networks,
http://arxiv.org/abs/1706.05098, 2017. arXiv:1706.05098.

[23] G. Draper-Gil, A. H. Lashkari, M. Mamun, A. A. Ghorbani, Characteri-
zation of encrypted and VPN traffic using time-related features, in: 2nd
International Conference on Information Systems Security and Privacy
(ICISSP), 2016, pp. 407–414.

[24] H. Huang, H. Deng, J. Chen, L. Han, W. Wang, Automatic multi-task
learning system for abnormal network traffic detection, International
Journal of Emerging Technologies in Learning 13 (2018) 4–20.

[25] H. Sun, Y. Xiao, J. Wang, J. Wang, Q. Qi, J. Liao, X. Liu, Common
knowledge based and one-shot learning enabled multi-task traffic classi-
fication, IEEE Access 7 (2019) 39485–39495.

[26] Y. Zhao, J. Chen, D. Wu, J. Teng, S. Yu, Multi-task network anomaly
detection using federated learning, in: ACM 10th International Sympo-
sium on Information and Communication Technology (SoICT), 2019, pp.
273–279.

[27] D. Li, Y. Zhu, W. Lin, Traffic identification of mobile apps based on
variational autoencoder network, in: 13th IEEE International Conference
on Computational Intelligence and Security (CIS), 2017, pp. 287–291.

[28] L. Vu, C. T. Bui, Q. U. Nguyen, A deep learning based method for han-
dling imbalanced problem in network traffic classification, in: ACM 8th

18

https://www.blackhat.com/docs/us-15/materials/us-15-Wang-The-Applications-Of-Deep-Learning-On-Traffic-Identification-wp.pdf
http://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1706.05098

International Symposium on Information and Communication Technol-
ogy (SoICT), 2017, pp. 333–339.

[29] C. Liu, L. He, G. Xiong, Z. Cao, Z. Li, FS-Net: A flow sequence network
for encrypted traffic classification, in: IEEE Conference on Computer
Communications (INFOCOM), 2019, pp. 1171–1179.

[30] Y. Zeng, H. Gu, W. Wei, Y. Guo, Deep − Full − Range: a deep learn-
ing based network encrypted traffic classification and intrusion detection
framework, IEEE Access 7 (2019) 45182–45190.

[31] H. Yao, C. Liu, P. Zhang, S. Wu, C. Jiang, S. Yu, Identification of en-
crypted traffic through attention mechanism based long short term mem-
ory, IEEE Transactions on Big Data, in press (2019).

[32] G. Aceto, D. Ciuonzo, A. Montieri, A. Pescapé, Toward effective mobile
encrypted traffic classification through deep learning, Neurocomputing
409 (2020) 306–315.

[33] Z. Yao, J. Ge, Y. Wu, X. Lin, R. He, Y. Ma, Encrypted traffic classification
based on Gaussian mixture models and hidden Markov models, Journal
of Network and Computer Applications 166 (2020) 102711.

[34] D. Li, W. Li, X. Wang, C.-T. Nguyen, S. Lu, App trajectory recognition
over encrypted internet traffic based on deep neural network, Elsevier
Computer Networks 179 (2020) 107372.

[35] C. Dong, C. Zhang, Z. Lu, B. Liu, B. Jiang, CETAnalytics: comprehen-
sive effective traffic information analytics for encrypted traffic classifica-

tion, Elsevier Computer Networks 176 (2020) 107258.
[36] D. Ramachandram, G. W. Taylor, Deep multimodal learning: A survey on

recent advances and trends, IEEE Signal Processing Magazine 34 (2017)
96–108.

[37] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, A. Y. Ng, Multimodal
deep learning, in: 28th International Conference on Machine Learning
(ICML), 2011, pp. 689–696.

[38] L. Bernaille, R. Teixeira, K. Salamatian, Early application identification,
in: ACM CoNEXT conference, 2006, p. 6.

[39] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, in:
3rd International Conference for Learning Representations (ICLR), 2015.

[40] H. Qi, E. R. Sparks, A. Talwalkar, PALEO: A performance model for
deep neural networks, in: International Conference on Learning Repre-
sentations (ICLR), 2017.

[41] E. Mizutani, S. E. Dreyfus, On complexity analysis of supervised MLP-
learning for algorithmic comparisons, in: IEEE International Joint Con-
ference on Neural Networks (IJCNN), volume 1, 2001, pp. 347–352.

[42] A. Montieri, D. Ciuonzo, G. Aceto, A. Pescape, Anonymity services Tor,
I2P, JonDonym: classifying in the dark (web), IEEE Transactions on
Dependable and Secure Computing 17 (2020) 662–675.

[43] H. Hagras, Toward human-understandable, explainable AI, IEEE Com-
puter 51 (2018) 28–36.

19

	Introduction
	Related Work and Contribution Positioning
	Multimodal Multitask Deep Learning–based Traffic Classification
	Overall Architecture
	Loss Function Definition and Training Procedure
	Description of Proposed Instance

	Experimental Setup
	Dataset and TC Object Description
	Description of Baselines Considered
	Implementation details

	Experimental Evaluation
	Overall Comparison
	Pareto Optimization
	Fine Grained Analysis of (Soft-)Outputs
	Transfer of Knowledge among Tasks

	Conclusions and Future Directions

