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Abstract—Modeling network traffic is an endeavor actively
carried on since early digital communications, supporting a num-
ber of practical applications, that range from network planning
and provisioning to security. Accordingly, many theoretical and
empirical approaches have been proposed in this long-standing
research, most notably, Machine Learning (ML) ones. Indeed,
recent interest from network equipment vendors is sparking
around the evaluation of solid information-theoretical modeling
approaches complementary to ML ones, especially applied to new
network traffic profiles stemming from the massive diffusion of
mobile apps. To cater to these needs, we analyze mobile-app
traffic available in the public dataset MIRAGE-2019 adopting
two related modeling approaches based on the well-known
methodological toolset of Markov models (namely, Markov Chains
and Hidden Markov Models). We propose a novel heuristic to
reconstruct application-layer messages in the common case of
encrypted traffic. We discuss and experimentally evaluate the
suitability of the provided modeling approaches for different
tasks: characterization of network traffic (at different granular-
ities, such as application, application category, and application
version), and prediction of network traffic at both packet and
message level. We also compare the results with several ML
approaches, showing performance comparable to a state-of-the-
art ML predictor (Random Forest Regressor). Also, with this
work we provide a viable and theoretically sound traffic-analysis
toolset to help improving ML evaluation (and possibly its design),
and a sensible and interpretable baseline.

Index Terms—Android apps; encrypted traffic; Markov mod-
els; mobile apps; traffic characterization; traffic modeling; traffic
prediction.

I. INTRODUCTION

THE CLEAR UNDERSTANDING of the processes occur-
ring in networks is paramount for multiple stakeholders,

including network operators, who aim at the full visibility
required by both network management and security [1–3].
Accordingly, modeling network traffic is of the utmost impor-
tance to understand traffic peculiarities, predict its characteris-
tics, enforce traffic engineering, perform network planning and
provisioning, manage the QoS, profile user activities, identify
anomalies, emulate real traffic for testing purposes, etc.

However, this process is challenged by the nature of the
traffic traversing today’s networks that is impacted by the way
users behave, interact, and access the network. In fact, opera-
tors have experienced in the last years tremendous growth of
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the traffic to be managed in their networks, mostly generated
by mobile devices [4]. According to the latest Ericsson mo-
bility report [5], between Q3 2018 and Q3 2019, mobile data
traffic has grown 68%, being fueled by both the rising number
of smartphone subscriptions and the increasing average data
volume per subscription. Overall, it is forecasted that mobile
subscriptions will reach 8.9 billions by 2025, corresponding
to a mobile data traffic of 160 exabytes per month against the
38 exabytes of 2019. This phenomenon exacerbates the need
for accurate characterization, modeling, and predictability of
network traffic generated by mobile devices at fine grain.

Recent contributions to mobile-traffic characterization
mainly focused on traffic at an aggregate scale [6, 7]. Opposed
to this, a number of tasks cannot overlook fine granularity.
Indeed, fine-grained source traffic models are the key to
reproduce realistic mobile application behavior in simulative
environments or in network testbeds, or to better predict traffic
evolution and enforce smarter network traffic management.
Hence, such modeling granularity requires more advanced
approaches than those applied for aggregated network traffic.

In fact, the implementation of effective approaches for fine-
grained traffic characterization and modeling must overcome
several challenges. The broad adoption of encrypted proto-
cols, e.g. Transport Layer Security (TLS), blocks the road to
modeling approaches based on packet inspection, as encrypted
network traffic represents the majority of mobile traffic (80%
of all Android apps, and 90% of apps targeting Android 9
or higher). Thus, modeling approaches cannot rely on clear-
text patterns to identify application fingerprints or a specific
execution state [8], or even reconstruct application message
boundaries. Also, mobile traffic is an extremely complex and
dynamic phenomenon [9]. Indeed, generated traffic can show
wildly different and complex fingerprints, due to the multifold
nature of both tasks carried on by means of mobile terminals
and user activities within the same app, besides potential
device/OS/app-version diversity [9, 10]. Finally, the availabil-
ity of high-quality and up-to-date datasets and ground truths
for needed analyses is quite limited, given both the variety
and the dynamicity of mobile apps, and the privacy concerns
implied in the collection and sharing of such data [11].

These characteristics exacerbate the difficulties in designing
and evaluating Machine Learning (ML) techniques applied to
traffic modeling, characterization, and prediction. These issues
are the more worrying the less interpretable the ML technique
is, with the currently-popular neural networks (in their deep
learning “flavour”) representing the most exposed ones. Hence,
characterization and prediction of mobile-app traffic remains
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Figure 1: Overall proposed workflow to support traffic modeling, characterization, and prediction via Markov models. It consists of three
main phases: (A) Dataset Construction; (B) Pre-processing; and (C) Traffic Modeling, Characterization, and Prediction.

an open and hot challenge, and well-established modeling
approaches can provide a complementary, theoretically-sound
and easily-interpretable view of this traffic.

Prompted by the interest of a global network solutions
provider1, we investigate the applicability of Markov models to
fine-grained characterization and modeling of network traffic
generated by mobile applications, as collected in a public (and
reliably-annotated) dataset. We also compare the performance
of such methods to a number of relevant ML techniques (i.e.
Random Forest, k-Nearest Neighbors, and Linear Regressor),
showing comparable results and finding high overlap of the
outcomes but also room to interpret ML failures. Figure 1 de-
picts a scheme for the overall proposed workflow and provides
the context to highlight the contributions of this work. In detail,
three main stages can be identified: (A) building on a previous
proposal [11], we leverage the MIRAGE traffic capture pro-
cedure to obtain a labeled mobile-app traffic dataset; (B) we
design and evaluate a pre-processing procedure to deal with
the nature of the observed data; (C) we design and evaluate
different modeling and prediction strategies as well as a novel
strategy to quantitatively assess traffic heterogeneity. Beyond
the design and evaluation of the single blocks implementing
novel approaches pursuing paths not investigated beforehand,
we highlight that our proposal does not merely consist in the
straightforward adaptation of well-known approaches, as each
block has to be tailored in line with the specific problem
to address. Further, some non-trivial dependencies among
blocks occur. In detail, the contributions of this paper can be
summarized as follows:

• We characterize and predict mobile-app network traffic
at packet level, i.e. focusing on payload lengths, inter-
arrival time, and packet direction. Such novel application
scenario is considered herein for the first time, up to our
knowledge. To accomplish this task, we leverage Markov
models due to their simplicity and interpretability.

• We propose a solid composite hypothesis testing method-
ology to evaluate traffic similarities at different granular-
ities, namely (a) intra-app (same app, different versions),
(b) inter-app (different apps), (c) inter-category (different
categories) similarities. Such a methodology supports the
intent of investigating and assessing the need for different
models, as opposed to a single model for different apps.

• We introduce a novel heuristic to reconstruct application-
level messages from the series of packets in order to
capitalize the knowledge derived from different levels of

1NDA prevents the disclosure of further details.

abstraction; this proposed heuristic is also experimentally
validated against timing and PUSH-flag based criteria.

• We design and evaluate per-app modeling and prediction
by means of Hidden Markov Models and high-order
Markov Chains, both at packet- and message-levels; per-
app modeling and prediction tasks are supported by a
sequence of pre-processing operations which are required
to deal with the nature of the data.

• We compare the designed prediction approaches against
state-of-the-art ML baselines in order to assess the trade-
off between the achieved performance and the inter-
pretability degree achieved by different approaches.

• We perform all analyses on the public dataset MIRAGE-
2019 adopting the same guidelines as specified in [11]
to foster reproducibility. The above study benefits from
the flexibility of MIRAGE-2019 when experimenting on
relevant mobile traffic analytics scenarios.

The paper is organized as follows. Section II surveys
related works from both application scenario and methodolog-
ical viewpoints, positioning our work against past contribu-
tions. Section III describes the considered methodology; the
dataset employed and the experimental results are discussed
in Secs. IV and V, respectively; finally, Sec. VI provides
conclusions and future perspectives.

II. RELATED WORKS

In this section, we first survey works that provided remark-
able contributions in the field of mobile-app network traffic
characterization and modeling (cf. Sec. II-A). Then, we discuss
past works that used Markov-based approaches for modeling
and predicting network traffic behavior at different timescales
(cf. Sec. II-B). Finally, we position our contribution against
both aspects and highlight its novelty (cf. Sec. II-C).

A. Characterization and modeling of mobile-app traffic

Due to the increasing interest towards the network traffic
generated by mobile devices, a number of works have focused
on its characterization to catch the peculiarities of this traffic
from different points of view. The first remarkable attempts
focused on the usage of mobile devices from a network
perspective and based the analysis on anonymized packet-
level data representing residential DSL customers [6] or data
from users participating in collecting network traffic traces
or traffic statistics (i.e. bytes sent and received) [7]. These
works resulted in characterizing the usage of mobile devices
in terms of most popular applications and device brands, and
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also provided performance assessments in terms of protocol
overhead, packet loss, and throughput. Network measurements
from a US national level tier-1 cellular network provider
also allowed for investigating smartphone-app usage patterns
(highlighting similarities in terms of geographic coverage,
correlation among app occurrence, and local patterns) [12] or
comparing traditional smartphone traffic with cellular network
based machine-to-machine communication [13]. Recently, Wei
et al. [14] designed a framework to group bring-your-own-
handheld devices according to their behavior, via profiling
dimensions such as control plane, data plane, and temporal
behavior. Dai et al. [8] devised an approach for generating
network profiles to distinguish mobile apps based on patterns
occurring in HTTP headers and the host the app connects
to. Van Ede et al. [9] proposed a semi-supervised approach
for fingerprinting (iOS and Android) mobile apps based on
network-traffic features, such as packet size, inter-flow time,
and contacted destinations. Also, they provided a preliminary
analysis of app evolution with focus on their fingerprints.

B. Markov-based modeling and prediction approaches for
network traffic

The scientific literature witnesses that Markov models pro-
vide a set of valuable, well-known, and interpretable tools for
analyzing network traffic in several different contexts and with
diversified goals. Accordingly, we survey the most relevant
works in the following.

A number of works recently leveraged models based on
Markov Chains in the context of anomaly detection (e.g., in
cybersecurity applications) [3, 15, 16] and traffic modeling and
prediction [17], also showing the effectiveness of multi-order
approaches (which model a longer dependence) [16].

Models based on Markov-Modulated Poisson Processes
(MMPPs) were also investigated [18–20]. Muscariello et al.
[18] presented an MMPP traffic model that accurately approx-
imates the long-range dependence characteristics of Internet
traffic traces over the relevant time scales, with a few trainable
parameters. The core of the model is based on the notion of
sessions and flows, trying to mimic the real hierarchical gener-
ation of packets in the Internet. Okamura et al. [19] consider a
parameter estimation problem for Markovian arrival processes
with focus on MMPPs, which are examined via numerical
experiments and some analyses with real traffic data. Casale
et al. [20] developed the first counting process fitting algorithm
for the marked MMPP (M3PP), a generalization of the MMPP
for modeling traces with events of multiple types.

Recent literature also witnesses the suitability of Hidden
Markov Models (HMMs) to model network traffic at a
number of levels of abstraction [21–27]. Colonnese et al. [21]
addressed the modeling of traffic generated by video sources
(e.g. H.264) operating in the context of adaptive streaming
services via HMMs and derived a model of the sequence of
the encoded video-frame sizes. The proposed HMM model—
which models the sequence of Groups of Pictures (GOPs)
as a first-order homogeneous Markov Chain—significantly
outperforms a previously-proposed model [28]. Dainotti et al.
[22] proposed an application-specific packet-level model for

various Internet applications, based on HMMs. In detail,
the model jointly considers the inter-packet time and packet
size distributions. The applicability of the proposed model is
assessed using real traffic (SMTP, HTTP, online gaming and
online messaging). After presenting the results of the model,
the prediction capability of HMM is also evaluated, showing
good accuracy in predicting short-term patterns. Maheshwari
et al. [23] focused on modeling wireless Internet traffic and
forecasting the QoS parameters for the networks such as end-
to-end delay, inter-packet delay variation, and packet size. The
proposal is validated evaluating the forecasting accuracy over
both self-collected and publicly-available datasets (covering
several source-destination network access conditions). The
same authors also proposed a similar HMM-based solution
to represent packet-level network traffic, applied to 4G/5G
network traffic [24]. The results showed that the end-to-end
delay and the inter-packet delay variation can be modeled us-
ing an HMM with good accuracy and prediction performance.
Extensions of classic HMM models (such as Hidden Semi-
Markov Model (HSMM) [25], Markov Modulated Gamma
(3D-MMG) model [26], and Hierarchical Dirichlet Process
Hidden Markov Model (HDP-HMM) [29]) have been also
proposed and provided good performance (e.g. to model
multiview video traffic or round-trip time measurements).

C. Positioning of our Contribution

Concerning the application scenario we address in this
paper, none of the works discussed in Sec. II-A (up to our
knowledge) has provided a characterization of the traffic
generated by mobile apps at both packet and message level
in order to highlight the peculiarities of the (encrypted)
traffic for a specific app, its version, and the corresponding
category. Indeed, a preliminary attempt in this direction is
only provided by the use-cases investigated by our previous
work [11]. To this end, in this paper, we deeply investigate the
suitability of different Markov-based approaches for modeling
and predicting (at the finest granularity achievable) network
traffic generated by mobile devices—rather than their usage.
Notably, strategies benefiting from packet inspection as those
investigated by previous works [8] are not suitable for en-
crypted traffic (representing > 80% of mobile-app traffic [30]).
Similarly to very recent contributions [9], we also investigate
how the network traffic changes when apps evolve over time,
by resorting to a recent, public, and human-generated dataset.
However, our study focuses on modeling, characterization,
and prediction (as opposed to fingerprinting). Additionally,
our approach does not rely on destination-related features.
Also, in this work we do not consider any specific use case
for the obtained modeling and prediction results, because our
approach is meant to be orthogonal to the intended usage.
Indeed, the fine grain at which the analysis is performed makes
our proposal able to support also those use cases that require
modeling and prediction capabilities at very small scales.

Concerning our proposed methodology, this work investi-
gates the adoption of (high-order) Markov Chains and HMMs
for evaluating the peculiarities of network traffic generated
by mobile apps by (i) modeling, (ii) characterizing, and
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(iii) predicting their fine-grained characteristics at packet- and
message- level. For predictability analysis, Markov-originated
predictors are also herein exploited, for the first time, as a
sound attempt to provide interpretability for ML-based predic-
tion results [31]. Notably, the considered fine-grained analysis
(i.e. at packet level) results in a conceptually-different method-
ology from the works reviewed in Sec. II-B, with the sole
exception of the work by Dainotti et al. [22] (focusing however
only on the modeling part and unidirectional flows). While
research efforts addressed the problem of traffic classification
also at packet level [32], to the best of our knowledge, previous
solutions for network traffic modeling and prediction have
addressed these problems at other granularities than packet
and message level. Indeed, the states of our models reflect
the (bidirectional) characteristics of the network traffic (e.g.,
packet and message size, inter-arrival times between packets,
and their direction) rather than other aspects (e.g., application-
level frame characteristics usually considered for video traf-
fic [21, 28] or destination-related features [9]). Searching the
state-of-art applications of ML to prediction problems strictly
similar to the one we tackle, we found two works as the
most related. Both adopt Random Forest Regressor (RFR) for
the prediction (i) of TCP state machine transitions [33] and
(ii) of the Quality of Experience degradation from encrypted
traffic [34]. Moreover k-Nearest Neighbors (kNN) has been
used for traffic classification based on the joint distribution of
packet size and inter-packet times [32], representing two of the
relevant features modeled/predicted in our setup. Accordingly,
we selected RFR and kNN as the most relevant ML techniques
to analyze together with Markov approaches, and considered
the Linear Regressor as a further relevant baseline. Although
this set of baselines is not intended to be exhaustive (we
believe that ML approaches have the potential to provide
further benefits) these methods were never applied to the
problem of mobile traffic prediction at packet and message
level, to date. Hence, we believe that they are the first ones
that are worth to be considered.

Moreover, with respect to the related literature, the char-
acterization part in our work relies on composite hypothesis
testing for evaluating homogeneity (and, in negative case,
assessing the degree of dissimilarity) among traffic of different
versions/apps/categories, as opposed to goodness-of-fit tests
explored for anomaly detection [3, 15]. Finally, none of the
related works adopts a message-level view and analysis. To
this purpose, we propose a novel heuristics based only on
maximum segment size and network-aware, measuring the
per-packet actual maximum segment size value. We discuss
the heuristics applicability, and evaluate it by comparison
with timing-based and PUSH-flag based approaches. To the
best of our knowledge, the only related work performing
message-level reconstruction [35] on encrypted traffic adopts
an (arbitrary) fixed maximum segment size corresponding to
the maximum transfer unit, and also requires (arbitrary) fixed
time-based segmentation, without any empirical or theoretical
discussion of the adopted choices. Other works [36, 37]
focused on TLS protocol messages: however, they do not
aim at inferring the message size, but rather at defining
classification features (“fingerprints”), namely in terms of TLS

Message Type code and their variations over the packet
sequence. Hence the above aims, input data, and methods
differ significantly from those tackled in our work.

Summing up these considerations, our contributions provide
a methodological tool for in-depth analysis and modeling
specifically targeted at the challenging mobile app-generated
traffic, which evolves at fast pace [9, 10].

III. METHODOLOGY

When analyzing network traffic, different degrees of gran-
ularity can be considered in aggregating packets. These can
result in different Traffic Objects (TOs), used as a unit for
traffic modeling, prediction, or generation [4]. The properties
of traffic traversing networks can vary because of a number of
parameters of different nature, resulting in different random
variables that can be defined. In practical scenarios, these
parameters are controlled or tracked, or can be inspected
to characterize a type of traffic. Our analysis considers
the bidirectional flow (biflow) as TO. The latter is defined
through the quintuple (IP src, IP dst, port src,
port dst, protocol), with the source and the destina-
tion pairs interchangeable [4]. The objective of this work is to
model mobile applications’ network traffic at three different
granularities: (i) version, (ii) application, and (iii) category.

In detail, we point to model the payload length (PL), the
direction (DIR), and the inter-arrival time (IAT) of packets
belonging to the same TO, being (PL,DIR,IAT) a common
choice for network traffic modeling [22]. Specifically, PL
is defined as the size (in bytes) of the payload of TCP/IP
transport layer, whereas IAT is defined as the time between
two packet arrivals. In addition, we also investigate traffic
modeling based on application-layer message size (MS)—and
related inter-message time (IMT). Using payload length to
characterize application intrinsic network behavior is subjected
to interfering phenomena, some related to network conditions,
other due to the modern protocol sub-layers constituting the
application layer, possibly including HTTP/2 multiplexing2,
WebSocket multiplexing3, TLS segmentation and padding4.
When TLS or other encryption sub-layer is used, these ef-
fects are opaque to traffic analysis and modeling. The last
segmentation processing is performed by TCP, that constrains
payload length to the—network-dependent and dynamically
estimated—Maximum Segment Size: with MS and IMT re-
construction this path-dependent effect can be mitigated. Ac-
cordingly, MS and IMT are expected to carry pieces of infor-
mation whose impact is worth to be investigated, providing a
complementary view to the common PL and IAT one.

The reconstruction of MSs (and consequently the inference
of IMTs) from the observed payload lengths is achieved via a
heuristic we propose (cf. later Sec. III-B) to solve the lack of
visibility due to traffic encryption (usually present in mobile
traffic). Notably, based on the range of values the considered
random variables may assume and the modeling approaches
we adopt, some pre-processing operations may be required.

2RFC 7540: https://rfc-editor.org/rfc/rfc7540.txt
3RFC 6455: https://rfc-editor.org/rfc/rfc6455.txt
4RFC 8446: https://rfc-editor.org/rfc/rfc8446.txt
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Figure 2: RMSE of the proposed adaptive (based on K-Means) and
uniform binning strategies for (a) PL, (b) MS, (c) IAT, and (d) IMT.

The overall workflow based on the proposed methodology
is reported in Fig. 1. In more detail, in order to obtain the
(labeled and human-generated) TOs, we refer to a reproducible
procedure we recently proposed in [11], whose main relevant
aspects (depicted by green blocks, steps from A1 to A4 in
Fig. 1) are detailed in later Sec. IV. Then, a number of
pre-processing operations (blue blocks, steps from B1 to B5)
are required to address issues deriving from the nature of
the random variables under investigation and provide the data
with the format required by the adopted modeling strategies as
described in Sec. III-A. These operations also encompass the
heuristic procedure we propose to reconstruct MS and IMT,
whose details are provided in Sec. III-B (step B3). Finally
(red blocks), the proposed modeling and prediction approaches
for mobile-app traffic based on multi-modal Markov Chains
(step C1) and HMMs (step C3) can be applied, as presented
in Sec. III-C and Sec. III-E, respectively. The same pre-
processing steps are also adopted to feed the procedure we
enforce for a quantitative comparison of the snapshot charac-
terizing network traffic presented in Sec. III-D (step C2).

A. Pre-processing operations

First, the collected traffic biflows are processed in order
to obtain raw packet sequences (B1). Then, a number of pre-
processing operations are applied to deal with the nature of the
variables under investigation and obtain the input to effectively
feed Markov models. Zero-payload packets are removed from
the considered biflows5, and IATs are calculated on the re-
sulting sequences (B2). Optionally, the message reconstruction
procedure described in Sec. III-B is applied when the analysis
aims at considering MSs and IMTs (B3).

5Zero-payload packets are assumed to be non-informative, as they are
representative of transport-layer mechanisms (e.g., TCP handshake, pure
acknowledgments, etc.) rather than application behaviors.

It is worth noting that the variables we deal with (i.e. PL,
MS, IAT, and IMT) originally have different nature and
characteristics: MS, IAT, and IMT are virtually unbounded
(while PL values are practically limited at 1500B); IAT and
IMT have a continuous nature (captured with 1µs-granularity)
whereas PL and MS have a discrete nature (at a very fine—
1B—granularity). Beyond our need to obtain bounded and
discrete random variables when employing Markov Chains
(cf. Secs. III-C and III-D), note that the number of selected
bins defines the number of states Sm of each modality and
therefore directly impacts the complexity of the resulting
model. Moreover, binning selection may improve the accuracy
of the predictive models by reducing the noise or non-linearity.
Accordingly, to realize the binning procedure we further apply
two kinds of operations: saturation (B4) and (optionally)
quantization (B5), which are aimed at obtaining bounded
and discrete random variables, respectively, to apply Markov
Models on. We remark that the quantization step B5 is only
applied to Markov Chains, whereas HMMs do not require this
step as they rely on a continuous emission distribution.

Hence, we first saturate all the IATs and IMTs to the
99th-percentile values to remove the effects due to outliers
in measuring times. We also apply the same procedure to the
MSs due to the wide (and possibly unbounded) range of values.
For MIRAGE-2019 dataset (described in Sec. IV), this results
in 86.85 kB, 1.75 s, and 42.09 s for 99th-percentile values of
MS, IAT, and IMT, respectively (cf. x-axis ranges in Figs. 3b,
3c, and 3d). On the other hand, to address quantization issues
we resort to an unsupervised approach, i.e. taking into account
neither app nor category labels. This allows obtaining a unique
(independent) binning choice which can be used to perform
comparisons (resp. predictions) among (resp. for) different
versions, apps, or categories.

To this end, in Fig. 2 we report the Root-Mean-Square
Error (RMSE) due to quantization versus a varying number
of bins for PL (a), MS (b), IAT (c) and IMT (d), on the whole
MIRAGE-2019 dataset. In the above figure, two quantization
strategies are compared: (i) a uniform quantization and (ii)
a non-uniform (adaptive) quantization, obtained via K-means
clustering. In particular, results on MIRAGE-2019 highlight an
RMSE settlement at ≈ 80 (resp. ≈ 20) bins for both strategies
and PL and MS (resp. IAT and IMT) features, with the adap-
tive approach performing the best. Specifically, by selecting
80 bins for both PL and MS, the adaptive strategy achieves
an RMSE of ≈ 3B and ≈ 280B, respectively. Differently,
by considering 20 bins for both IAT and IMT, the RMSE
corresponds to ≈ 6.9ms and ≈ 244.3ms, respectively.6 The
above result indicates that a higher number of bins would
imply only marginal RMSE reduction, while leading to (i) an
inaccurate Markov Chain estimate (due to insufficient number
of samples) and (ii) a higher complexity of the model.

To support the above claim, we select an 80-bin (resp.
20-bin) non-uniform quantization for PL and MS (resp. IAT
and IMT) and show the corresponding outcomes in Fig. 3.
In detail, the bars in Fig. 3 report the results of the detailed

6The relative gain (viz. reduction) of quantization RMSE against uniform
binning is ≈ 40% and ≈ 25% for PL and MS, respectively. Instead, for IAT
and IMT this corresponds to ≈ 84% and ≈ 75%, respectively.
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Figure 3: Histograms of (a) PL, (b) MS, (c) IAT, and (d) IMT obtained via the proposed adaptive binning (80 bins for MS/PL and 20 bins
for IAT/IMT) and a 5×-finer uniform binning (400 bins for MS/PL and 100 bins for IAT/IMT) strategy. It is worth to underline that peaks
at the highest values (last bins) of MS, IAT, and IMT are due to the presence of saturation at the 99th percentile.

preprocessing operations on the whole dataset, while y-axes
show the corresponding frequency density.7 Further, to quali-
tatively assess the (lossy) impact of our binning procedure, we
compare its results with a 5×-finer binning strategy (i.e. based
on 400 and 100 bins for PL/MS and IAT/IMT, respectively).
The latter histogram is highlighted via solid (red/blue) lines in
Fig. 3. Compared with a 5× more complex binning approach,
the proposed binning—allowing to deal with Markov Models
with a manageable number of states—incurs a limited and
acceptable quantization error.

B. Reconstructing message size and inter-message time

Packet-based analyses (see Fig. 3a) highlight the ubiqui-
tous frequent occurrence of PLs close to a maximum size
≈ 1460B. This is the expected effect of encapsulation in
network-layer packets, that from one hand clamps all packet
sizes to a maximum, and on the other hand introduces spurious
small-size packets (the remainder of the clamping). To mitigate
this “masking effect”, we propose and discuss a heuristic for
reconstructing the more application-related MS parameter.

For applications using TCP as the transport-layer protocol,
messages (defined as a unit of application-layer communica-
tion protocol) exchanged between the endpoints are inserted
into a stream of bytes, not preserving the application-layer
message boundaries. Before encapsulation in network-layer
packets, the stream is segmented in chunks of up to MSS
bytes8. Before encapsulation in network-layer packets, the
stream is segmented in chunks of up to Maximum Segment
Size (MSS) bytes9. More precisely, for each chunk (segment)
the size is calculated as:

MSSsgm , min(MSSadv,MSSlcl)−OPTIP−OPTTCP (1)

7This is defined as the relative frequency of occurrences divided by the
width of each bar.

8RFC 879: https://rfc-editor.org/rfc/rfc879.txt
9RFC 879: https://rfc-editor.org/rfc/rfc879.txt

where MSSadv is the MSS advertised from the other endpoint
during the three-way handshake setting up the TCP connec-
tion. Differently, MSSlcl is based on the local network inter-
face Maximum Transfer Unit (MTU)—that is advertised to the
other endpoint. Finally, OPTIP and OPTTCP are the sizes
of optional fields of IP and TCP headers, respectively. The
calculation in Eq. (1) is performed at both endpoints, getting
a common upper bound for the connection MSS achievable
between them. We highlight that traversed network paths could
dynamically reduce this value, possibly asymmetrically: this is
managed via the Path MTU Discovery (PMTUD) algorithm10.

Reverting TCP segmentation to reconstruct the application-
layer messages would require to infer the TCP status machine:
this is far from trivial or exact [38]. Moreover, as TCP does not
commit to preserving application-layer message boundaries,
not even a perfect inference of the TCP state machine would
separate upper-layer Protocol Data Units without payload
analysis (prevented by encryption). To solve this problem, we
define an MSS-based message-reconstruction heuristic, that
has to take into account only the MSS of the flow, and the
length of the previous segment. The heuristic works under the
hypothesis that a packet with transport-layer payload equal
to current MSS is always part of a bigger application-layer
message: in this case, the segment is joined with the following
one; this is repeated until the first smaller-than-MSS segment
is received, that is joined with the previous one(s) and marks
the end of the application-layer message. Hence, the size of
the reconstructed message (i.e. the MS) is the sum of the PL of
its joined segments, while the corresponding IMT is defined
as the time lag between the first segments of two consecutive
messages. The heuristic is reported as pseudocode in Alg. 1.

In addition to the simple heuristic described above, the
following conditions have been checked (and measured as
negligible in the analyzed dataset). In principle reductions of
MSS during the capture are possible, and are continuously

10RFC 1191: http://www.rfc-editor.org/rfc/rfc1191.txt
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Algorithm 1: MS reconstruction heuristic:
remove_opts_size() implements Eq. (1).

Input: flow MSS, packet sequence
Output: MS sequence

1 previous_is_MSS ← False ;
2 for each packet do
3 MSSsgm ← remove_opts_size(MSS, current_pkt) ;
4 PL ← payload_length(current_pkt) ;
5 if previous_is_MSS then
6 MS ← MS + PL ;
7 else
8 MS ← PL ;
9 end

10 if PL = MSSsgm then
11 previous_is_MSS ← True ;
12 else
13 previous_is_MSS ← False ;
14 output MS ;
15 end
16 end

detected by PMTUD algorithm10 by means of ICMP mes-
sages: as no ICMP fragmentation needed and DF
set packets have been found in the traces, no variation of the
MSS has been experienced during the capture. Regarding the
presence of re-transmitted or out-of-order segments: almost
no re-transmissions (≈0.5% of all the packets, ≈0.7% of
those with payload) or reorderings (≈0.4% of all the packets,
≈0.6% of those with payload) were detected in the analyzed
dataset. Interestingly, re-transmissions and out-of-order seg-
ments affect also packet-level analysis, but in the case of MS
reconstruction their relative impact is smaller (as the length of
a segment constitutes a fraction of whole message size, instead
of a full payload length). Therefore if performance constraints
discourage online stateful detection of retransmissions and
reordering, message-level analysis is more robust to these
sources of error at the cost of little computation (3 sums and 3
comparisons) per packet and little memory (a previous-is-MSS
flag and MSS value) per flow (see Alg. 1).

Another phenomenon potentially affecting message size
reconstruction is related to the rare and strongly discouraged11

URGENT flag, signaling out-of-band message inserted in the
TCP stream. We checked that it never occurred in the whole
dataset, and it can be safely assumed11 to be generally unused
in modern and future applications.

Two conditions are excluded from the above analysis:
they are described hereafter and their potential effect on
MS reconstruction is discussed. We first consider an erro-
neous joining of different messages. Indeed, an application-
layer message could end exactly on the border of an MSS-
sized segment: for encrypted protocols this information is
effectively or purposely hidden4. For uniformly-distributed
actual message lengths this would happen on average with
probability 1/MSS (smaller than 10−3 for common values of
MSS). Similarly, in case Nagle’s algorithm [39] is enabled
and triggered, the reconstruction heuristics would erroneously
join small-sized (<MSS) messages. As interactive applications
(such as web servers [40]) disable Nagle’s algorithm to avoid
impact on responsiveness, we assume that for the analyzed

11RFC6093: https://tools.ietf.org/html/rfc6093

dataset (focusing on mobile apps) either Nagle’s algorithm
has been disabled, or it causes negligible performance impact,
and consequently has a minor effect on our analysis.

The opposite error (the heuristic failing to join packets
belonging to the same message) matches the event that the
MSS-sized buffer is not filled up at the moment of packet
sending, despite more data from the application (same mes-
sage) will be available afterwards. We investigate and discuss
these additional cases based on experimental data in Sec. V-A.

We explicitly highlight that, although in principle the
timing information could be used to inform the message-
reconstruction inference, we decided to not employ it in our
heuristic and instead consider it as a coherence check, to ex-
perimentally validate the heuristic. The same consideration has
been applied to the TCP PUSH flag, whose semantic12 implies
that the sending application signaled TCP that the message is
complete (no other data will be immediately provided), and
data should be sent without waiting for segment filling. The
optional nature of this behavior, the lack of relation between
the presence of the flag and termination of the message inside
the transmitted segment12, and the possible presence of a
transport sub-layer of application level (e.g. TLS) can affect
the reliability and general validity of this message-termination
signal. The choice of not including neither of this additional in-
formation in the heuristic has the effect of keeping it as simple
as possible, focused on removing the segmentation masking
effect, with the least assumptions (hence robust to specific
case variations) and the most straightforward implementation.
Both timing and PUSH flag are analyzed experimentally for
impact on the heuristic in Sec. V-A.

Trading-off with these characteristics, the proposed heuris-
tic generally applies to encrypted traffic, and constitutes an
advancement with respect to simpler approaches13 that have
been effectively adopted for traffic classification purposes [35].

C. Modeling & Predicting with (multimodal) Markov Chains

A multimodal Markov Chain is a stochastic model which
specifies how an M -dimensional random variable changes
over time. Specifically, let xn be the discrete-valued random
variable (i.e. whose mth modality xnm can assume only Sm
possible values) which describes the state of a system at
discrete time n ∈ N0. In this paper, we initially refer to
stationary first-order Markov Chains which are a type of
discrete-time stochastic process satisfying two assumptions:
(i) (first-order) Markov property Pr(xn+1|xn,xn−1, . . .) =
Pr(xn+1|xn), namely the probability distribution of the state
at time n + 1 depends only on the state at time n, (ii)
homogeneity Pr(xn+1|xn) = Pr(xn|xn−1),∀n, namely the
state transition distribution is independent on time n.

Accordingly, a stationary Markov Chain can be equivalently
represented through two data structures, i.e. the transition
probability matrix P ∈ [0, 1]S×S—with pi,j = Pr(xn =

12 RFC 1122: https://tools.ietf.org/html/rfc1122
13Specifically, the authors in [35] adopt a fixed MSS of 1460B, and any

sequence of MSS packets is considered as a single message, of length MSS,
discarding the actual message length. By contrast, we extract actual MSS
from the handshake and calculate it for each packet accounting for options in
the headers, and sum up all the segment lengths to get the message size.
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Figure 4: Initial distributions (q0) and transition matrices (P ) based on: (a)-(b) PL, and (c)-(d) (PL,DIR). Increasing (per-direction in
(c)-(d)) PLs are shown by arrows.

sj |xn−1 = si) and
∑S
j=1 pi,j = 1—and the initial (n =

0) probability vector q0—with q0i = Pr(x0 = si) and∑S
i=1 q

0
i = 1—both defined on the Cartesian product of

the individual modality spaces, having size S ,
∏M
m=1 Sm.

For the sake of a compact notation, in what follows, we
define as X ,

{
x0, . . . ,xN−1

}
the time series of the vector

observation over the whole sequence n = 0, 1, . . . , N − 1.

In practical traffic analysis cases, the pair (P , q0) describing
the Markov Chain is unknown and it is learned from repeated
observations, usually as a training set D comprising multiple
time series of the vector variable, namely D ,

⋃T
t=1Xt.

Accordingly, the transition matrix and initial probability vector
are usually estimated via a Maximum-Likelihood (ML) proce-
dure. This results in the ML estimates p̂i,j ,

ηi,j
ηi,?

and q̂0i ,
ηi
η ,

respectively. In the former case, ηi,j is the number of transition
pairs (xn,xn−1) = (sj , si), whereas ηi,? is the number of
transition pairs such that (xn,xn−1) = (·, si). In the latter
case, ηi is the number of instances xn = si, whereas η denotes
the total number of observations.

In this work we are concerned with the separate analysis of
both P and q0, which are investigated to highlight different
characteristics of mobile traffic. Indeed, regarding P , we
investigate relevant patterns which can be inferred from the
analysis and give an intuitive interpretation. Complementarily,
regarding q0, we investigate whether the initial distribution is
application-independent (due to a common transport sublayer,
e.g. TLS tunneling) or not. In the latter case, this provides
room for early discriminability.

For simplicity, we refer to the illustrative cases M = 1 and
M = 2 in Fig. 4 (for two different apps), where xn and xn

represent the PL and the (PL,DIR) at time n, respectively.
The example shows how the resulting matrices change when
both PL and DIR (i.e. telling if a packet is either transmitted or
received, Figs. 4c and 4d) are taken into account, rather than
the simple PL (Figs. 4a and 4b). When multiple modalities
are taken into account, the resulting matrix can provide a
more detailed view, able to catch the interplay of multiple
parameters. In this example, the resulting P and q0 provide
a snapshot of the behavior of the application at network level
in terms of the payload length of two consecutive packets and

of the initial behavior, respectively. In detail, each element in
the matrix reports the probability of observing a packet with
an L4 payload of a given size (associated to the column) right
after a packet having a payload of the size associated to the
row.

As a result, several patterns may be spotted in the matrices
whose interpretation is discussed below (higher values in the
matrices are associated to darker color) with reference to PL
(same considerations apply to the other modalities):
Horizontal patterns (→) with approximately same values on
a whole row (e.g., ≈ 1.25% in the case of 80 bins) highlight
that the current PL does not provide any hint about the next
one (i.e. a uniform distribution of next-PL).
Dark patterns on the main diagonal (↗) witness applica-
tions prone to generate couples of same-PL packets.
Dark vertical patterns (↑) surface highly-likely PLs in the
observed traffic, i.e. regardless the current PL.
Darker areas (blocks �) that span across multiple consec-
utive rows and columns report applications prone to likely
generate couples of packets with PLs falling in a small set of
similar values.

The presence (and even the absence) of these patterns
provides an intuitive easily-observable qualitative snapshot of
the characteristics of the traffic generated by a mobile app.
Still, Sec. III-D is devoted to exemplify how the considered
representation can be used to support a quantitative analysis
of traffic similarity, based on hypothesis testing tools.

Stationary multimodal Markov Chains can be gener-
alized to an arbitrary order W , at the expenses of a
loss of visualization/interpretability. In detail, these mod-
els satisfy two assumptions: (i) W th-order Markov prop-
erty Pr(xn+1|xn, . . .) = Pr(xn+1|xn, . . . ,xn−(W−1)),
namely the probability distribution of the state at time
n + 1 depends only on the more recent W observa-
tions; and (ii) homogeneity Pr(xn+1|xn, . . . ,xn−(W−1)) =
Pr(xn|xn−1, . . . ,xn−W ), ∀n, namely the state transition dis-
tribution is independent on n. Accordingly, a stationary
Markov Chain can be equivalently represented via the joint
initial probability distribution Pr(xW−1, . . . ,x0) and the tran-
sition probability distribution Pr(xn|xn−1, . . . ,xn−W ). Such
distributions are learnt via ML estimation from the usual
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training set D, comprising multiple time series of the vector
variable, namely D ,

⋃T
t=1Xt .

Once trained, a W th order stationary Markov Chain can be
used for making predictions (this also applies for W = 1).
Namely, for n = −1, . . . ,W − 2 (first W packets), the algo-
rithm uses the predictive distribution Pr(xn+1|xn, . . . ,x0),
obtained from the joint initial distribution Pr(xW−1, . . . ,x0).
Differently, for n ≥ (W − 1), the transition distribution
Pr(xn+1|xn, . . . ,xn−(W−1)) is employed, that is Markov
property allows the use of a sliding window consisting of the
last W observations, which are used as inputs of the algorithm.
The corresponding prediction x̂n+1 can be obtained either via
(i) a Maximum a Posteriori (MAP) approach or (ii) a Min-
imum Mean Square Error (MMSE) approach. In the former
case, x̂n+1

map , argmaxsj
Pr(xn+1 = sj |xn, . . . ,xn−(W−1))

(the posterior mode), whereas in the latter case x̂n+1
mmse ,∑S

j=1 sj Pr(x
n+1 = sj |xn, . . . ,xn−(W−1)) (the posterior

mean).

D. Traffic Characterization with Markov Chains:
homogeneity analysis for versions/apps/categories

Herein, we are concerned with investigating whether the set
of TOs (biflows) generated by (a) two versions of the same
app, (b) two apps or (c) two app categories generate homoge-
neous network traffic. This is tantamount to test the hypothesis
that two sets of time series, defined as Dx ,

⋃Tx

t=1Xt and
Dy ,

⋃Ty

t=1 Yt, respectively, can be described by either the
same Markov model (H0) or by two different ones (H1). In
mathematical terms, this test can be stated as:

H0 :

{
Xt ∼ Markov(P ?) t = 1, . . . , Tx

Yt ∼ Markov(P ?) t = 1, . . . , Ty

H1 :

{
Xt ∼ Markov(PX) t = 1, . . . , Tx

Yt ∼ Markov(P Y ) t = 1, . . . , Ty

(2)

In the above formulation, we have indicated with P ? the
common transition matrix under the null hypothesis, whereas
with PX (resp. P Y ) the transition matrix associated to the
set Dx (resp. Dy) for the hypothesis H1. Before proceeding,
we highlight that for the considered test we do not take
into account the initial distribution q0: in practical cases,
(a) the observation of the biflow since the first packet is
not guaranteed and (b) we aim at assessing heterogeneity in
network traffic models at a general view.

A widespread approach to solve the aforementioned prob-
lem resorts on the evaluation of the corresponding empirical
probability laws associated to the Markov Chain pairwise
transitions [3]. In other terms, the problem reduces to testing
whether the two sets can be generated by a common proba-
bility law or are explained by two different probability laws
px(x

n,xn−1) and py(y
n,yn−1). These probability laws can

be equivalently described through S×S matrices Πx and Πy ,
i.e. similarly as the transition matrices (indeed each Π is in
one-to-one mapping with the corresponding P ). Additionally,
since these probability laws are unknown, the actual values are
replaced by the corresponding ML estimates Π̂x and Π̂y , with
(i, j)th entry equal to π̂xi,j ,

ηxi,j
ηx and π̂yi,j ,

ηyi,j
ηy , respectively.

Accordingly, the following decision statistic is employed
herein [41]:

H
(
Π̂x, Π̂y

) Ĥ=H1

≷
Ĥ=H0

γ (3)

where H(·, ·) denotes the Hellinger distance measure between
discrete probability distributions, which in our case equals:

H
(
Π̂x, Π̂y

)
=

1√
2

√√√√ S∑
i=1

S∑
j=1

(
√
π̂xi,j −

√
π̂yi,j)

2 (4)

The Hellinger distance is a particular type of f -divergence,
and the test based on this statistic shares the same asymptotic
optimality as those Hoeffding-originated [3] or based on
alternative divergence measures [41]. Nonetheless, its practical
advantages are that (a) it is well-defined even in case of zero-
probability bins and (b) it is bounded as 0 ≤ H(·, ·) ≤ 1. We
remark that Eq. (3) implicitly assumes the same number of
transition pairs for evaluating Π̂x and Π̂y . In Sec. V-C, we
will show how this restriction will be accounted.

The performance of the above test is assessed via the well-
known True Positive Rate (TPR, i.e. Pr(Ĥ1|H1)) and False
Positive Rate (FPR, i.e. Pr(Ĥ1|H0)), both monotonically-
decreasing with γ. Accordingly, we focus on a Neyman-
Pearson setup: we assess the TPR achieved by the test sub-
jected to a (small) prescribed FPR (i.e. γ : Pr(Ĥ1|H0) = α).

To obtain a reasonable estimate of the TPR subjected to
the prescribed FPR α, the following data-driven procedure is
pursued herein. In detail, we first obtain the empirical CDF of
the Hellinger statistic under H0 by randomly under-sampling
two equal-sized subsets (a) F0 times from Dx, and (b) F0

times from Dy and evaluating H(·, ·) each time. Then, the
aforementioned CDF (based on 2F0 samples) is exploited to
set γ so as to satisfy Pr(Ĥ1|H0) = α. Once γ has been
obtained, two equal-sized subsets are randomly under-sampled
from Dx and Dy , respectively, for F1 times, to obtain the
empirical CDF of H(·, ·) under H1. Accordingly, the TPR is
obtained as the fraction of times the statistic exceeds γ.

Remarks: The computation of the Hellinger distance in
Eq. (4) relies on the preliminary phase of histogram quan-
tization (described in Sec. III-A) of PLs and IATs (resp.
MSs and IMTs), to construct the aforementioned Markov
Chains. Hence, the distance-computation falls within the well-
known class of “plugin estimators” of f -divergences [42]. This
class of approaches ensures estimation consistency under mild
conditions while retaining simplicity and interpretability in
their use. The only prerequisite is that accurate Markov Chain
estimates can be obtained. Hence, though the quantization
operation should aim at negligible loss, there should be enough
number of samples to estimate the considered model at the
chosen granularity (viz. number of bins). For this reason, in
Sec. III-A, we have selected the number of bins so as to limit
the above issue.

A graphical depiction of the above procedure (and of the
corresponding result) is shown in Fig. 5, referring to homo-
geneity testing of network traffic generated by consecutive
versions of the same app (scenario (a) among those introduced
at the beginning of this section). The x-axis reports the
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Figure 5: Homogeneity testing between consecutive versions of
Subito. The percentage above inter-version Hellinger distance is
the TPR.

identifier of versions of the app under analysis; black points
and yellow points mark the intra-version distance (i.e. under
H0) calculated among random subsamples of previous and
next versions, respectively. Based on the above procedure,
both these sample groups are exploited to obtain the threshold
level γ corresponding to the desired FPR (α = 0.01), marked
with a green diamond. Differently, red dots highlight the
statistic realizations with subsamples from the set comparing
previous and next versions, namely the inter-version distance.
The numerical value on red points reports the TPR: a value
close to 100% shows that for (almost) all the subsamples the
distance is higher than the reference γ, i.e. there is very high
confidence the models associated to the two versions differ,
whereas a value close to 0% means that the two versions share
the same Markov model, i.e. there is very high confidence in
rejecting H1. Finally, it is worth noticing that, even in the
case the TPR equals 100%, we may discern different degrees
of dissimilarity based on how distant the red points are from
γ, i.e. low-dissimilarity and high-dissimilarity pairs.

E. Modeling and Predicting with Hidden Markov Models

HMMs are structured probabilistic models that form a prob-
ability distribution of the time series x0,x1, . . . ,xn described
by (i) the hidden-state variable (hn), that is modeled through a
hidden (not observable) Markov Chain, (ii) and the observable
variable (xn), that depends uniquely on the hidden state. In
other words, HMMs are generative models in which the joint
distribution of observations and hidden states is modeled.

An HMM is described by the complete set of parameters
λ , {q0,P ,θ}, whose meaning is explained as follows:
• the initial state distribution q0, whose ith entry is defined

as q0i , Pr(h0 = si);
• the state transition matrix P , whose (i, j)th entry equals
pi,j , Pr(hn = sj |hn−1 = si);

• the vector θ collecting all the parameters completely
specifying the emission PDF/PMF conditioned on each
state, namely p(xn|hn = si), for i = 1, . . . , Sh.

First of all, a training phase is usually required (based
on a dataset of sequences Dx ,

⋃Tx

t=1Xt) to learn the
best parameters λ of the HMM describing Dx. Such param-
eters are those maximizing the “likelihood” of the model
λ̂ , argmaxλ

∑T
t=1 p(Xt;λ). This problem is solved with

the Baum-Welch algorithm, a special case of the expectation-
maximization algorithm.14 Once trained, HMMs can be used
for prediction (e.g., to predict the next sample xn+1) according
to the trained model.

In this case, the prediction task can be
accomplished by evaluating the predictive distribution
Pr(xn+1|xn, . . . ,xn−(Wh−1)) based on a sliding window
Wh and calculating the MMSE estimator (namely,
its mean) as x̂n+1 , E{xn+1|xn, . . . ,xn−(Wh−1)}.
The explicit expression of MMSE estimator is
x̂n+1 =

∑SHM

i=1 µi Pr(h
n+1 = si|xn, . . . ,xn−(Wh−1)).

The left term in the sum is simply the mean of the
emission PDF/PMF conditioned on the ith state si (i.e.
p(xn|hn = si)). Differently, the right term is obtained by
using (i) the forward-backward algorithm (which allows for
obtaining Pr(hn|xn, . . . ,xn−(Wh−1))) and (ii) the transition
matrix P .

Remarkably, the HMMs admit also an interesting
segmentation interpretation, which is obtained
leveraging the Viterbi algorithm for the reconstruction
of the most probable sequence of hidden states
for a given sequence of N observations, namely
(ĥ1, . . . , ĥN ) = argmax(h1,...,hN ) P (h

1, . . . , hN |x1, . . .xN )
(i.e. the so-called Viterbi path).

IV. DATASET DESCRIPTION

In our experimental evaluation, we employ the human-
generated MIRAGE-2019 dataset [11] collected in the AR-
CLAB laboratory at the University of Napoli “Federico II”
during ’17-’19 using three Android (6.0.1) devices, namely:
(i) Xiaomi Mi5, (ii) Google Nexus 7, and (iii) Samsung Galaxy
A5. Overall, MIRAGE-2019 gathers the traffic generated by
40 Android apps belonging to 16 different categories. 280+
experimenters have contributed to dataset construction by
mimicking the common usage of apps with the aim of ex-
ploring their different functionalities (e.g., login, registration,
common activities, etc.). In detail, they carried out several
capture sessions of 5 ÷ 10 mins, each resulting in a PCAP
traffic trace and additional system log-files with ground-truth
information. As a whole, 4600+ PCAP traces were collected
within MIRAGE-2019.

Based on ground-truth metadata, each biflow is reli-
ably labeled with the corresponding Android package-name
that matches the 5-tuple in the system log-file, considering
network-related system calls. In detail, we associate to each
socket descriptor—encompassing <IP:port> pairs—the name
of the Android package which originates the call. Furthermore,
for each mobile app, MIRAGE-2019 provides a finer-grain
label (VersionCode), that is monotonically increasing over
releases15: each traffic capture session in the dataset has
been performed with the up-to-date version of the app [11].
This labeling allows us to investigate the characterization
power of the proposed Markov-based homogeneity testing

14Since the expectation-maximization is an iterative optimization ap-
proach, a number of different “restarts” Rh are usually employed to favour
convergence toward the global optimum of the likelihood.

15https://developer.android.com/studio/publish/versioning
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(and, in negative case, the degree of dissimilarity) at the finest
granularity available in a public dataset (see later Sec. V-C).

In the next analyses, for each biflow, we leverage a subset of
per-packet data provided in MIRAGE-2019, corresponding to
PL, DIR, and IAT, along with per-flow metadata related to the
complete biflow and upstream/downstream flows. In detail, we
focus on mobile applications whose traffic is collected using
the Mi5 device. Given the variety and the high number of
mobile apps present in MIRAGE-2019, for each following
analysis we report results pertaining only to subsets of the
considered dataset for both reasons of brevity and to highlight
the relevant trends.

V. RESULTS AND DISCUSSION

First, we evaluate the proposed message-reconstruction
heuristic in Sec. V-A, while in Sec. V-B we investigate the
Markov-based modeling for PLs and MSs. Then, in Sec. V-C,
we assess the network traffic similarity based on the homo-
geneity testing procedure introduced in the previous section.
Differently, in Sec. V-D we analyze the prediction capabilities
of HMMs and (high-order) Markov Chains and compare them
with baseline and ML approaches. Finally, in Sec. V-E we
provide an interpretability analysis of ML techniques by means
of Markov-based modeling.

A. Message-reconstruction heuristic evaluation

As the message-reconstruction heuristic has been defined
according to the L4-payload length only, here we evaluate
how this heuristic is supported by information on timing and
by the presence of the PUSH flag. In detail, we focus on the
following five mobile applications: Facebook, Messenger,
Spotify, Subito, and Google Play Store. We have
chosen these apps based on their representativeness in terms
of number of samples (≈30k biflows, representing ≈30%
of overall Mi5 biflows constituting MIRAGE-2019 dataset)
and categories (i.e. social, communication, music and audio,
lifestyle, and app market, respectively).

Regarding timing, we define two metrics: Intra-Message
Gap (IntraMG), i.e. the inter-arrival time between consecutive
packets belonging to the same message; Inter-Message Gap
(InterMG), i.e. the inter-arrival time between the last packet
of a message, and the first packet of the following message
(approximating the silence time between two consecutive
messages). If the heuristic is correct, the average time between
packets inside a message should be smaller than the one
between messages. Looking at Fig. 6 it is evident that this
is actually the case, with an order of magnitude of difference
between the respective means (dashed lines), 95th percentiles,
and maxima.

Considering the PUSH flag, if the “end of message” signal
was deterministically set by the application and always hon-
ored by TCP (neither of the two are guaranteed), the heuristic
being correct implies that the packets carrying the flag should
be all and only the ones terminating the message. Indeed, only
1.46% of messages shows the flag set in packets different from
the ending one. Conversely, the 87.79% of all packets with the
PUSH flag occurs at the end of a message. This suggest that

the heuristic is both in good accord and conservative in joining
packets with respect to the PUSH flag presence.

As both these evaluations are assessed independently from
the heuristic definition, we conclude that our heuristic, albeit
based on a single metric, is strongly coherent with other related
metrics and constitutes a sensible and practical approximation
of the actual message size (which is not theoretically attainable
from transport-layer observation).

B. Markov-based mobile app analysis: packets vs. messages
Figures 7 and 8 show the initial distribution q0 and the

transition matrix P (cf. Sec. III-C) for PL and MS, respectively,
for the same five apps considered in Sec. V-A.

Inspecting the results of this analysis, we can notice a
substantial difference in the visual outcome for different apps.
First, the initial distributions of PLs are way scattered than
those of MSs. This points out that message reconstruction
has no significant impact on the first packets of biflows, as
the latter are usually involved in application-level negotia-
tion/signaling (e.g., SSL/TLS handshake) and thus are not
segments of bigger messages. Going into details of Fig. 7, we
can notice that PL matrices for Facebook, Messenger, and
Spotify report more evident patterns on the main diagonal
↗ than those of Subito and Google Play Store. Also,
while Facebook and Messenger show darker vertical
patterns for smaller next PL values (both between 20 B and
50 B) Spotify and Subito result in more scattered values
on the matrices, especially for smaller (next) PL values.

Moving to MS matrices, Fig. 8 witnesses how message
reconstruction is able to unveil further peculiarities not spotted
in the corresponding PL matrices. For instance, PL matrix for
Facebook (cf. Fig. 7a) presents two dark vertical patterns
for both small and big PLs, and a lighter pattern on the
main diagonal ↗. Differently, for the MS (cf. Fig. 8a) we can
observe a single dark vertical block at the (next) MS-size range
of 1–800 B spread on a large number of (current) MS values
(up to 86 KB), and a lighter main diagonal pattern ↗. The
appeal of modeling the MS is also confirmed when comparing
apps that show similar patterns for the PL transition matri-
ces: although Facebook and Messenger traffic exhibits a
similar behavior when modeled considering PLs, these apps
unveil different patterns when leveraging MSs, thus witnessing
the discriminating power obtained with MS reconstruction.

Comparing Figs. 7 and 8, it is also generally evident that
packets with small PLs, are often parts of larger messages. For
instance, Subito and Google Play Store both have a
scattered behavior for the PL (cf. Figs. 7d and 7e), but exhibit
an evident effect of the reconstruction when considering the
MS (cf. Figs. 8d and 8e). Finally, in some cases we can
notice slightly similar patterns for PLs (cf. Fig. 7c) and MSs
(cf. Fig. 8c) generated by Spotify (i.e. dark vertical patterns
for small and large sizes, and a lighter main diagonal ↗ )
but—similarly to the other apps—narrower vertical patterns
due to merging of smaller packets into messages.

A notable phenomenon can be spotted in both Figs. 8a
and 8b: the presence of diagonal patterns running parallel
to the anti-diagonal ↘. Each of such lines represents (cur-
rent, next) MS-pairs that sum up to a constant value (with a
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Figure 6: Comparison between Inter-Message Gap (InterMG) and Intra-Message Gap (IntraMG) distributions.
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Figure 7: Initial distributions q0 and transition matrices P of selected apps for the PL. Binning refers to the quantization depicted in Fig. 3a.
Increasing PLs are shown by arrows.
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Figure 8: Initial distributions q0 and transition matrices P of selected apps for the MS. Binning refers to the quantization depicted in Fig. 3b.
Increasing MSs are shown by arrows.

maximum variation of about 5 bins). To estimate the impact
of such a phenomenon, we have considered the relative
frequencies of sums of the size of each pair of consecutive
messages for Facebook, and found a small peak (regarding
the ≈ 2.29% of messages) for bins ranging from 79kB to
85kB. We investigated whether a fraction of these could be
due to the heuristic failing to join packets belonging to a same
(relatively-common sized) message. Indeed, we compared the
timing- and PUSH-based evaluation (cf. previous Sec. V-A)
with and without the joining, and found negligible differences
(less than 18ms for the average InterMG, and 0.46 for the
percentage of messages not ending with a PUSH-flagged
packet). We derive that either it is not an artifact, or neither
timing nor the PUSH flag would help in removing it (no
other method being available). Therefore, we consider these
anti-diagonal patterns in the characterization of the network
behavior of the application, at the message granularity level,
also noting that this behavior is not universal, thus it actually
helps differentiating applications.

Overall, this investigation (together with that related to

other apps, not shown for brevity) testifies that message-based
analysis performed leveraging our MSS-based reconstruction
heuristic, is able to provide a complementary view of mobile
app traffic with respect to PL-based characterization. There-
fore, we consider both packets and messages as the relevant
network traffic atoms in the following analyses.

C. Homogeneity Analysis via Markov-based testing

In this section, we apply the Markov-based homogeneity
test detailed in Sec. III-D to investigate the change of network
behavior within mobile apps, at different granularities (i.e.
version, app, category). To this end, Fig. 9 reports the results
of the testing procedure performed on first-order multi-modal
Markov Chains modeling (PL, DIR). Specifically, we focus on
testing traffic homogeneity between two consecutive versions
of the same app (cf. Figs. 9a-b), pairwise apps (cf. Fig. 9c),
and pairwise categories (cf. Fig. 9d).

Going into details, Figs. 9a and 9b report two instances
of the homogeneity test result described in Fig. 5 related
to the Facebook and Google Play Store, respectively.
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(a) Homogeneity testing between consecutive versions of Facebook.
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(b) Homogeneity testing between consecutive versions of Google Play Store.
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Figure 9: Homogeneity analysis of (PL,DIR) sequences via Markov-based testing: (a, b) versions, (c) applications, and (d) categories.
Dissimilarity index is the difference between median inter-category/-app distance and the 1%-FPR threshold γ.

The reason for our choice is that the above apps are those
with the higher number of versions within MIRAGE-2019, i.e.
17. For the sake of readability, for each pair of consecutive
versions, we report the threshold γ corresponding to the
desired 1% FPR (viz. α = 0.01, obtained with F0 = 100)
and compare it with the different realizations (red dots) of the
inter-version distance statistic (F1 = 100). We can notice that
for Facebook the TPR equals 100% in all the cases (i.e. the
considered statistic always exceeds the 1%-FPR threshold),
highlighting the (statistically-recognizable) heterogeneity of
the traffic behavior between consecutive versions. On the other
hand, in Fig. 9b, the result of the test highlights a more varied
outcome when comparing consecutive versions of Google
Play Store. Indeed, in two cases, the homogeneity test
results in TPR<100%, namely 71% and 34% for the version
pairs 8–9 and 16–17, respectively. The latter case denotes very-
likely traffic homogeneity in the corresponding version pair.
Moreover, the distance statistic exhibits a higher variance for
certain pairs (e.g., 5–6, 9–10, and 10–11). When extending
the analysis to non-consecutive versions, i.e. testing traffic
heterogeneity between all the version pairs, results (not shown
for brevity) report a clear general trend which highlights higher
heterogeneity for further-apart versions.

Lastly, we have conducted similar analyses for each pair
of considered apps and category. In the former case, we
have employed the same five apps as the analyses in
Secs.V-A and V-B. In the latter case, since the categories
music and audio, lifestyle, and app market encompass only one
app (i.e. Spotify, Subito, and Google Play Store,
respectively), for this analysis we have selected the five

categories with the highest number of apps in MIRAGE-2019:
Social, Communication, Productivity, Shopping,
and Travel & Local.

By looking at the numerical evidence, we find that for each
pair, the TPR always equals 100% when subjected to a 1%-
FPR threshold, pointing out the clear heterogeneity between
the traffic models of different apps/categories. Accordingly,
we have performed a more detailed investigation, reporting
in Fig. 9c (resp. Fig 9d) the difference between the median
inter-app (resp. inter-category) distance and the related 1%-
FPR threshold. Such difference constitutes a dissimilarity
index: lower values unveil a low degree of heterogeneity
between traffic models (being however statistically different
given TPR=100%) and vice-versa. As expected, the apps
sharing common services and development platform (e.g.,
Facebook and Messenger) show the lowest dissimilarity
(0.36). Instead, Google Play Store proves its unique
nature (it manages updates checks and downloads of the other
apps), as it shows high heterogeneity when compared to all
the other apps—showing a dissimilarity index ∈ (0.64, 0.78).
Interestingly, Spotify exhibits a traffic profile not very
different from Subito (a shopping app), while its traffic is
much more different from that of Facebook, despite being
both multimedia apps.

With regards to categories, it can be noted that
Productivity, encompassing mostly cloud storage apps,
presents the highest dissimilarity index (up to 0.82) with
respect to all the other categories. Conversely, Social and
Communication show alike network behaviors. We can
speculate that the apps belonging to these categories have sev-
eral (third-party) services and functionalities (e.g., text/voice
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chat, content sharing, etc.) in common. Similar remarks apply
for Travel&Local and Shopping that contain apps (e.g.,
Booking and Groupon, respectively) sharing features (e.g.,
image viewer, maps, etc.).

D. Prediction via HMMs and high-order Markov Chains

In this section we provide selected examples of traffic
modeling aimed at prediction of mobile application traffic,
leveraging both kinds of Markov models (i.e. HMMs and
Markov Chains). In the following, all results are shown for
a single app (Spotify) in order to have a coherent focus for
comparisons. Similar analyses and results have been obtained
for other apps, which are shown in aggregated form at the end
of this section for the sake of brevity and completeness.

We evaluate the prediction performance of PL,
MS, IAT, and IMT in terms of RMSEm ,√

1
Npred

∑T
t=1

∑Nt−1
n=0 [x̂tm(n+ 1)− xtm(n+ 1)]

2, where

Npred ,
∑T
t=1Nt denotes the no. of predictions, xtm(n)

the sequence of values of the mth feature observed
from the tth biflow, and x̂tm(n) the corresponding
sequence of values provided by the prediction model.
Differently, we use the well-known G-mean as a compact
measure to assess predictive capabilities of the (binary-
valued) DIR, namely G-mean ,

√
pdwdir p

up
dir, where

pdwdir , Pr(x̂dir(n + 1) = DW | xdir(n + 1) = DW) and
pupdir , Pr(x̂dir(n + 1) = UP | xdir(n + 1) = UP). As a
relevant element of comparison, we report in all the results
the performance of the (naive) baseline, whose predictions
are x̂n+1

base , x
n (i.e. the next observation value is predicted

with the current one).
Finally, for each prediction analysis, our evaluation is based

on a ten-fold cross-validation, representing a stable perfor-
mance evaluation setup. This allows (for each fold) to use a
subset of the biflows belonging to a given app for training
and the rest for evaluation purposes. Accordingly, we report
both the mean and the variance (in the form µ ± σ) of each
performance measure as a result of the evaluation on the
ten different folds. We highlight that the common prediction
setup performed using part of the already-observed time series
to update the model (or to learn a time-series-specific one)
would likely result in better performance metrics. Despite this,
the real-world application of such procedure is infeasible in
practice due to real-time contexts and complexity constraints
associated to the fine-grained prediction task considered: this
motivated the biflow-based cross-validation granularity choice
we adopted in this analysis.

The application of (Gaussian) HMMs16 to prediction is
considered first. The family of HMMs provides a powerful
tool to interpret the modeled behavior in terms of hidden
states (here inferred via the Viterbi algorithm) that evolve
accordingly to the sequence of inputs.

To this end, in Fig. 10 we show an example of such
segmentation behavior, superimposing the observed values
(for DIR, PL, and IAT) to the inferred status of the app

16In other terms, the emission PDF is Gaussian and the vector θ collects
the mean vectors and the covariance matrices corresponding to all the states.

Table I: Prediction performance summary for the Markovian ap-
proaches (MC MMSE, MC MAP, and HMM), ML approaches (RFR,
k-NNR, and LR), and Baseline for Spotify. The best performance
for each metric—for both packets (first group) and messages (second
group)—is highlighted in boldface. Results are in the format avg. (±
std.) obtained over the 10 folds.

Pa
ck

et
s

Sh/W G-mean DIR RMSE PL [B] RMSE IAT [ms]

MC MMSE 3 0.90 (±0.01) 173 (±30) 113.72 (±22.33)
MC MAP 10 0.87 (±0.01) 202 (±35) 135.11 (±34.50)

HMM 57 0.78 (±0.06) 242 (±30) 124.24 (±15.96)

RFR 3 0.89 (±0.01) 175 (±29) 104.59 (±20.53)
k-NNR 5 0.84 (±0.09) 181 (±31) 114.19 (±23.34)

LR 10 0.54 (±0.04) 242 (±43) 138.64 (±28.14)

Baseline N/A 0.49 (±0.03) 286 (±52) 186.00 (±37.63)

M
es

sa
ge

s

Sh/W G-mean DIR RMSE MS [kB] RMSE IMT [s]

MC MMSE 10 0.85 (±0.01) 12 (±1) 4.19 (±0.31)
MC MAP 10 0.85 (±0.01) 13 (±1) 4.50 (±0.31)

HMM 60 0.20 (±0.18) 14 (±2) 4.43 (±0.53)

RFR 3 0.80 (±0.01) 10 (±2) 3.83 (±0.40)
k-NNR 3 0.79 (±0.08) 11 (±2) 4.07 (±0.34)

LR 10 0.24 (±0.02) 12 (±2) 4.42 (±0.60)

Baseline N/A 0.27 (±0.04) 20 (±3) 5.65 (±0.46)

(background color). The example corresponds to a biflow
not belonging to the set used for training the model for a
certain fold.17 When a small number of hidden states is used
(e.g., Sh = 3, as in Figs. 10a, 10b, and 10c) some macro-
behaviors associated to the observations are clearly visible
(e.g., the sudden change after packet 30, highlighted by the
transition from red to yellow). This visibility into the inner
working of the trained model allows for informed refinements
of the model (e.g., by varying the number of states—a tuning
parameter of HMMs) and for exploring hypotheses on the
nature of the modeled app (e.g., single purpose versus multi-
modal usage). A high number of states may be necessary
to characterize the modeled traffic for some specific aim: in
Figs. 10d, 10e, and 10f the same example biflow is segmented
with Sh = 57 states, for comparison. A possible application
of such model is for traffic prediction purposes: in this case
the optimal number of states minimizes the prediction error.
We show in Fig. 11 an example of the analysis varying the
number of (hidden) states Sh ∈ {3, . . . , 60}, with Wh = 5
(the results have highlighted no significant difference with
longer window values). Experimental results witness that,
compared to the baseline, IAT can be better predicted already
with the minimum number of considered states (Sh = 3);
for PL, Sh = 6 states are sufficient for obtaining a model
which performs better than the baseline (−8 bytes in terms
of RMSE), while at least Sh = 18 states are necessary for
improving the baseline in terms of prediction of next-packet
direction (DIR). The general trend shows that the higher the
number of states the better the performance, up to 57 states,
where a maximum is hit as the overfitting effect starts showing.

To end our analysis, we also report the performance of the
prediction when performed with (high-order) Markov Chains
(MCs). For this family of models, the main tuning parameter
is the order of the chain W (also coinciding with the length
of the sliding window). Accordingly, Figs. 12a, 12b, and 12c

17In our analysis, we have considered Rh = 10 restarts for training each
HMM model.
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Figure 10: DIR, PL, and IAT time-series of a biflow generated by Spotify and corresponding most-likely sequence of states (background
color, repeated for the three metrics) obtained using the Viterbi algorithm: Sh = 3 states in (a,b,c), Sh = 57 states in (d,e,f).
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Figure 11: HMM prediction performance vs. number of states Sh, on Spotify traffic. Values are shown as avg. ± std. over 10 folds.

show the related experimental results in terms of G-mean (for
DIR) and RMSE (for PL and IAT) when varying the order
W ∈ {1, 3, 5, 10} and considering both the MAP and MMSE
prediction approaches. For completeness we also report the
baseline, which is always over-performed by both approaches
even when W = 1 is chosen. It can be noticed that moving
from W = 1 to W = 3 provides an absolute performance
gain for predictions of DIR (up to +0.05 of G-mean), PL (up
to −60 bytes in terms of RMSE), and IAT (up to −13.59
milliseconds in terms of RMSE).

MMSE prediction strategy results in consistently better
performance with respect to MAP, due to finer-exploitation
of the predictive distribution. Overall, both outperform the
reference baseline, proving their practical applicability for the
prediction of (encrypted) mobile traffic at packet level. Anal-
ogous observations about performance trends when varying
the order W can be derived also for message-based analysis,
where the RMSE drops by up to −3 kilobytes when passing
from W = 1 to W = 3 (cf. Fig. 12e), while no significant
change for IMT is observed (cf. Fig. 12f). Notably, the G-mean
for message DIR increases up to W = 5, with an absolute
performance gain of up to +0.09 w.r.t. W = 1 (cf. Fig. 12d).

Finally, we have further evaluated the performance ob-
tained by Markov-based approaches (MCs with both MMSE
and MAP prediction strategies as well as HMMs) compared

against the set of state-of-the-art ML-based regressors intro-
duced in Sec. II-C, namely k-Nearest Neighbors Regressor (k-
NNR), Linear Regressor (LR), and Random Forest Regressor
(RFR). We considered the feature DIR as the most important
variable to be predicted: indeed, even a perfect timing and
size prediction, but with the wrong predicted direction, would
completely fail most (if not all) of the practical uses of the
prediction (resource management, security, accounting, etc.).
For instance, router queues are per-interface and therefore the
expected resource requirements have to be defined based on
the direction of the data streams and related traffic elements.
Consequently, among the results of the experimentation18 we
identified the best configuration for each model as the one
maximizing the G-mean of DIR.

Accordingly, Tab. I shows the results, reporting details for
the analysis at both packet and message level. In addition to the
metrics related to DIR, PL (resp. MS), and IAT (resp. IMT),
both tables report also the information about the order/memory
(Sh/W ) of the models as a measure of the related complexity.

From inspection of Tab. I, we can notice that overall
Markov-based approaches perform better than ML counter-
parts in terms of DIR prediction, considering both the analyses
at packet and message level, and achieving up to +0.05 G-
mean in the case of message DIR. The same does not hold for

18We considered values for W in {1, 3, 5, 10} for all the models.
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Figure 12: MC prediction performance vs. order W on Spotify traffic. Values are provided as avg. ± std. over 10 folds.

Table II: Large-scale prediction performance summary for MC
MMSE, RFR, and Baseline. The best performance for each metric—
for both packets (first group) and messages (second group)—is
highlighted in boldface. Results are in the format avg. (± std.)
obtained over the 10 applications.

Pa
ck

et
s

Sh/W G-mean DIR RMSE PL [B] RMSE IAT [ms]

MC MMSE 5 0.87 (±0.08) 234 (±116) 123.54 (±25.25)
RFR 5 0.81 (±0.16) 218 (±106) 107.73 (±20.35)

Baseline N/A 0.53 (±0.13) 359 (±155) 212.73 (±30.99)

M
es

sa
ge

s Sh/W G-mean DIR RMSE MS [kB] RMSE IMT [s]

MC MMSE 5 0.83 (±0.08) 11 (±7) 4.45 (±1.72)
RFR 5 0.76 (±0.12) 10 (±5) 3.97 (±1.29)

Baseline N/A 0.35 (±0.12) 18 (±14) 5.82 (±2.3)

the other metrics: Markov models performs better in terms of
PL prediction but not for what concerns MS, IAT, and IMT.
In more detail, at packet-level the best results are interestingly
obtained by models taking advantage of the same memory size
(W = 3 for both MC MMSE and RFR). On the other hand, for
message DIR prediction MC (both MMSE and MAP) requires
a longer window size (W = 10 vs. W = 3 for the RFR) to
obtain a significantly-improved G-mean performance (0.85 vs.
0.80 for the RFR). Focusing on the specific approaches in each
group, MMSE MC is the best performing among Markov ones,
proving to successfully capitalize the predictive distribution
(thus confirming the results in Fig. 12). On the other side,
RFR performs always better than the other approaches in the
ML group. This is expected due to its ensemble nature which
successfully exploits the concept of “bagging”.

For the sake of a wider performance evaluation, we show in
Tab. II results pertaining to a large-scale analysis of mobile-
app traffic prediction. In particular, this analysis is performed
on 10 different mobile applications by comparing the best
Markovian model, i.e. the MMSE-based MC, and the best ML-
based model, i.e. the RFR. Specifically, we consider the fol-
lowing applications taken from MIRAGE-2019: Instagram,
LinkedIn, Maps, OneDrive, Reddit, Slither.io,
SoundCloud, Spotify, Waze, and Wish. The above

choice reflects our intention of showing results pertaining to
mobile apps not considered in the previous analyses.

The selection of the best model configuration mimics the
previous analysis conducted on Spotify: for the same range
of W values, we selected that corresponding to the higher
(app-averaged) G-mean on DIR. Accordingly, results elect
W = 5 as the best order, for both the approaches and for
both packets and messages. In detail, MC MMSE confirms
a higher predictive power in terms of G-mean for both DIR
(i.e. +0.06 and +0.07 for packets and messages, respectively).
Differently, by looking at the other features, MC MMSE ob-
tains only slightly-worse (comparable) performance than RFR
in terms of PL, IAT, MS, and IMT (−16B, −15.81ms, −1 kB
and −0.48 s, respectively). As a result, even in a larger-scale
evaluation, MC MMSE achieves a satisfactory performance
trade-off while retaining the advantages of interpretability
due to its white-box modeling nature. Also, MC MMSE
allows for (a) updating the model when new samples become
available and (b) adapting the model to a shorter memory value
W ′ < W (with impact on complexity and time-to-prediction).
This leads to a reduced overhead (avoiding additional training
cost) w.r.t. (black-box) RFR, where re-training from scratch is
required in both cases. These further advantages constitute a
strong plus in the rapidly-evolving context of mobile traffic.

E. Interpretability of Prediction Results
through Markov Analysis

To capitalize the complementary knowledge that MC-
MMSE (shortly MC in what follows) is able to provide
toward interpretability of ML models, we now (a) deepen
the comparison on the error patterns of MC and RFR by
inspecting their concordant/discordant predictions, and then
(b) interpret the emerging predictive patterns in RFR behavior
by leveraging on the meaning of MC learned parameters (i.e.
transition probabilities). Without loss of method generality, we
focus on the prediction results of Spotify.
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(a) RFR misses on PL . (b) RFR misses on IAT.

Figure 13: Actual vs. predicted plot of Spotify predictions in
outcome disagreement, i.e. for cases when RFR “misses” and MC
“hits” (with error thresholds of 100B for PL and 100ms for IAT).

First, a comparative analysis on DIR predictions has high-
lighted that 97.56% (resp. 0.96%) of these are correctly (resp.
wrongly) predicted by both MC and RFR. On the other hand,
in 0.79% (resp. 0.69%) of the cases the MC (resp. RFR) is
able to correctly infer the direction while the RFR (resp. MC)
fails. These results highlight the extensive similarity of both
approaches in predicting direction, and therefore that when
predicting direction RFR mostly behaves simply according to
the empirical probabilities. Considering the absolute error of
MC and RFR in predicting PLs and IATs, we investigate error-
patterns using a 100B (resp. 100ms) threshold. Indeed, both
models successfully predict the 87.75% (resp. 96.15%) of PLs
(resp. IATs), and provide wrong predictions for the 5.61%
(resp. 2.24%) of PLs (resp. IATs). Differently, looking at the
outcome disagreement cases, we find that the MC model is
able to provide correct predictions for 4.66% (resp. 0.80%) of
PLs (resp. IATs) when the RFR fails.

Focusing only on the outcome disagreement cases of PL and
IAT, in Fig. 13 we investigate the error patterns of RFR (using
the aforementioned thresholds). This visualization highlights
the cases where RFR fails whereas MC provides acceptable
predictions (hereafter RFR misses for short), therefore these
cases emerge where the departure from the Markov model is
counterproductive. Besides the common diagonal pattern (i.e.
the locus of MC hits), other patterns emerge. Focusing on PL,
it is evident that RFR misses mostly occur for large PL values
and with specific actual lengths (vertical lines). Concerning
IAT instead, RFR misses mostly overestimate the small IATs
but with a distinguished pattern of underestimating only the
values very close to the maximum (vertical line on the right).

Moreover, to directly compare the two models highlighting
the differences in their behaviors, we perform a differential
Markovian analysis. To this aim we distill small-order Markov
Chain models of both the RFR and the MC, and analyze
the discrepancies in their predictive behaviors. Accordingly, in
Fig. 14 we report the difference of the distilled transition distri-
butions obtained for the two methods. In such a representation
the values close to zero witness similar distributions, whereas
positive (resp. negative) values report higher occurrences for
MC (resp. RFR). Considering DIR prediction, Fig. 14a shows
that the strongest departure of RFR from the Markovian model

is for the “UUU” case (three consecutive upstream packets),
where RFR predicts an upstream packet with a probability
11% higher than MC. Concerning PL, both methods result in
similar transition probabilities in predicting high PL values
when low PL values are the last observed (white bottom-right
corner in Fig 14b). Conversely, RFR is more prone to predict
low values for PL regardless of the previous value (blue cloud
on the left in Fig. 14b), while MC shows two narrow ranges
of (long) lengths predicted regardless of the previous length
(red vertical lines to the right). Finally, regarding IAT, the two
models are vastly equivalent when predicting long intervals,
and mostly differ for the prediction of shorter IATs, with
different preferences (vertical patterns).

With the tool of differential Markovian analysis introduced
above, we further the investigation of RFR errors. Keeping the
same distilled models, but limiting the analysis to RFR misses
(with MC hits), in Fig. 15 we report the difference between the
transition distributions conditioned on RFR misses. Consider-
ing PL values (Fig. 15a), we can notice how the frequently-
predicted (regardless of previous length) vertical lines are kept,
i.e. the MC in these cases is correct while the RFR misses.
Another pattern of MC hits (missed by RFR) appears when the
previous length has close-to-max value (red horizontal line on
top). Several cases of specific previous lengths leading to mis-
predictions are highlighted as well (horizontal blue segments).
Regarding IATs (Fig. 15b), a pattern of RFR errors for longer
time intervals is evident, with a strong vertical purple line
at the 6th bin (corresponding to the interval 142–200 ms)
regardless of the previous IAT.

Such in-depth analyses and insights can be leveraged as
a toolset for identifying notable and recurrent error cases,
based on the easily-interpretable evolution of input values over
time (i.e. transitions) and so provide the guidelines for further
improving the design of prediction approaches.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we addressed the challenging problem of an-
alyzing the highly complex, dynamic, and encrypted network
traffic generated by mobile devices. In detail, we focused on
a public human-generated recent dataset, using the method-
ological toolset of Markov models, that provide an useful
interpretability property.

Our contributions cater to the need—especially strong for
ML techniques—to have a well-understood and sufficiently
diverse dataset for training and evaluation: by employing a
family of theoretical approaches to model the (encrypted)
network traffic, we provided the ML technique designer and
evaluator with a complementary interpretable view and a base-
line. We proposed a novel message-reconstruction heuristic to
analyze and compare traffic both at the finest (packet-level)
and a more application-related (message-level) granularity.
We also proposed a rigorous yet synthetically explainable
framework for quantifying the heterogeneity of packet traces.
The heterogeneity analysis was exploited to highlight and
quantify the (dis-)similarity of traffic at different aggregation
levels (app version, app, category). By comparing the ana-
lyzed approaches with a reference baseline and state-of-the-
art ML counterparts, their practical applicability to predicting
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Figure 14: Differential Markov analysis of MC and RFR predictive behaviors. The discrepancy is expressed through the difference of the
distilled 3rd-order transition distributions for DIR (a), and 1st-order transition distributions for PL (b) and IAT (c). Positive values represent
probabilities higher for MC when compared to RFR ones, negative values vice-versa.
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Figure 15: Differential Markov analysis of MC and RFR predictive
behaviors, conditioned on RFR misses. A miss is defined w.r.t. the
error thresholds of 100B for PL and 100ms for IAT.

(encrypted) mobile traffic at packet- and message-level was
validated. Of the two families of models, namely Hidden
Markov Models and Markov Chains, the latter showed the
best prediction performance for all metrics for both packet-
and message-level evaluation. Also, they achieved comparable
performance to state-of-the-art ML techniques (e.g., Random
Forest Regressor), moreover offering interpretability tools to
further understanding and enhancement of ML techniques.

In future works, the effectiveness of the considered models
will be assessed on other datasets and/or in the context of
synthetic traffic generation. We plan to investigate additional
and more complex ML methods in our future studies. Also, the
use of the proposed models in the aided-design of interpretable
ML prediction algorithms is foreseen [31]. As the proposed
approaches are designed and applied at the finest granularity
(packet level), they are relevant to a wide spectrum of appli-
cations (e.g. traffic engineering, routing): thus, further work
along these specific lines is envisioned as well.
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