
Multi-Classification Approaches for Classifying Mobile App Traffic

Giuseppe Acetoa,b, Domenico Ciuonzob, Antonio Montieria, Antonio Pescapéa,b

aUniversity of Napoli “Federico II”, Italy
bNetwork Measurement and Monitoring (NM2) s.r.l., Italy

Abstract

The growing usage of smartphones in everyday life is deeply (and rapidly) changing the nature of traffic traversing home and en-
terprise networks, and the Internet. Different tools and middleboxes, such as performance enhancement proxies, network monitors
and policy enforcement devices, base their functions on the knowledge of the applications generating the traffic. This requirement
is tightly coupled to an accurate traffic classification, being exacerbated by the (daily) expanding set of apps and the moving-target
nature of mobile traffic. On the top of that, the increasing adoption of encrypted protocols (such as TLS) makes classification even
more challenging, defeating established approaches (e.g., Deep Packet Inspection).

To this end, in this paper we aim to improve the performance of classification of mobile apps traffic by proposing a multi-
classification (viz. fusion) approach, intelligently-combining outputs from state-of-the-art classifiers proposed for mobile and
encrypted traffic classification. Under this framework, four classes of different combiners (differing in whether they accept soft or
hard classifiers’ outputs, the training requirements, and the learning philosophy) are taken into account and compared. The present
approach enjoys modularity, as any classifier may be readily plugged-in/out to improve performance further. Finally, based on a
dataset of (true) users’ activity collected by a mobile solutions provider, our results demonstrate that classification performance
can be improved according to all considered metrics, up to +9.5% (recall score) with respect to the best state-of-the-art classifier.
The proposed system is also capitalized to validate a novel pre-processing of traffic traces, here developed, and assess performance
sensitivity to traffic object (temporal) segmentation, before actual classification.

Keywords: traffic classification, mobile apps, Android apps, iOS apps, encrypted traffic, information fusion, classification
combining, multi-classification.

1. Introduction

Several tools, such as security/quality-of-service enforce-
ment devices and network monitors base their operations on the
knowledge of the application generating the traffic. As a conse-
quence, their use is limited (or impaired) when this requirement
is not (or loosely) satisfied.

The process of associating (labeling) network traffic with
specific applications or application types is known as Traffic
Classification (TC) and has a long-established application in
several fields, backed by a wide scientific literature [1, 2, 3, 4].
This process is increasingly challenged by recent evaluations in
Internet usage, as the global spread and growing usage of smart-
phones is profoundly changing the kind of traffic that travels
over home and enterprise networks and the Internet. There-
upon, both the necessity and the difficulty of TC of mobile traf-
fic have become very high nowadays. Indeed, other than the
traditional drivers for TC, classification of mobile apps’ traf-
fic has the potential of providing extremely valuable profiling
information (e.g., to advertisers, insurance companies and se-
curity agencies). On the other hand, it surely raises privacy
issues, especially in regards to recognition of context-sensitive

Email addresses: giuseppe.aceto@unina.it (Giuseppe Aceto),
ciuonzo@nm-2.com (Domenico Ciuonzo), antonio.montieri@unina.it
(Antonio Montieri), pescape@unina.it (Antonio Pescapé)

apps (such as health and dating ones) by malicious parties. Un-
luckily, TC comes with its own challenges and requirements
that are even exacerbated in a mobile-traffic context, usually
characterized by a large number of apps to discriminate from
and an inadequate number of training samples per app, which
hinder the achievement of satisfactory performance. Moreover,
the increasing adoption of encrypted protocols (TLS) makes the
classification even more challenging, defeating established ap-
proaches.

Moving from earlier port-based methods, to those based
on payload inspection (termed Deep Packet Inspection meth-
ods, DPI [5, 6]), approaches based on Machine Learning (ML)
classifiers are deemed the most appropriate, especially in this
context, since they suit also Encrypted Traffic (ET) analysis
[7, 8, 9, 10].

Indeed, in the latter context, it is crucial resorting to the se-
quence of packets [7, 8, 9, 10] or message sizes [11, 12], rather
than their content. Then ML techniques may be applied ei-
ther directly on the whole sequence (such as in [10, 11, 12])
or based on statistics/histograms extracted from it (such as in
[7, 8, 10, 12]). It is worth noting that the above statistical tech-
niques can be also combined with port-association algorithms
(in scenarios where port-info can be considered reliable) to de-
velop hybrid approaches, such as [13]. Although earlier results
have been published on this topic, the traffic of mobile apps is

Preprint submitted to Journal of Network and Computer Applications February 8, 2018

a moving target for classifiers due to its dynamic evolution and
mix. Thus mobile TC constitutes an open and evolving research
field.

In this paper, we aim to improve the classification perfor-
mance of mobile apps by proposing a Multi-Classification Sys-
tem (MCS) which intelligently-combines decisions from state-
of-the-art (base) classifiers specifically devised for mobile- and
encrypted-traffic classification and currently considered the best
approaches in such context [7, 8, 10]. The proposed MCS is
graphically depicted as a whole in Fig. 1. To the best of au-
thors’ knowledge, this investigation is performed in the mobile
context for the first time1. Additionally, despite (wise) com-
bination of state-of-the-art classifiers is here analyzed to show
how current classification performance of mobile traffic can be
improved, the proposed MCS is nor restricted to the considered
set of classification algorithms and statistical features, neither to
the operational scenario (i.e. classifiers for “early” TC [15, 16]
may be considered in the proposed framework without any fur-
ther complication [17, 18]). Indeed, the MCS framework can
potentially overcome the deficiencies of each single classifier
(not improvable over a certain bound, despite efforts in care-
ful "tuning") and provide improved performance w.r.t. any of
the base classifiers, also allowing for modularity of classifiers’
selection in the pool. For this reason, research has focused on
MCSs in the last years [19, 20, 21, 22].

Additionally, with respect to the aforementioned works, our
MCS allows for choosing from several types of combiners
(based on both hard and soft approaches, the latter successfully
applied to many practical problems [23] and whose application
to mobile TC is deemed extremely appealing) developed in the
literature [23, 24] constituting a wide spectrum of achievable
performance, operational complexity, and training set require-
ments. The generality and the weak-coupling to any base clas-
sifier of the proposed MCS is also capitalized to draw out “best
practices” in mobile traces’ pre-processing and (proper) traffic
object segmentation.

Based on a dataset collected by a global mobile solutions
provider2 of true users’ activity, our results show that MCS
framework can improve classification performance with respect
to the best base classifiers considered for the task. Specifically,
it is shown that macro recall can be appealingly improved by
more than +9% on the best base classifier, and that there is room
for further possible improvement with evidence of over +10%
achievable by the ideal combiner. Finally, an investigation of
subset selection of classifiers’ pool (referring to all the combin-
ers within the proposed MCS), is also reported, highlighting an
additional path of improvement (and complexity reduction).

The paper is organized as follows. Sec. 2 discusses related
works, whereas Secs. 3–5 collectively describe the considered
MCS for mobile TC. More specifically, Sec. 3 introduces the
classification objects and the employed set of features, whereas
Sec. 4 describes the classification algorithms (considered as

1Preliminary results in the same framework of this study have been accepted
as a conference publication and will be published as [14].

2Due to NDA with the provider we can not report its name, details of its
network, detailed information on the data set, nor release the data set.

base classifiers). Then, Sec. 5 introduces the (hard and soft)
fusion techniques adopted for their combination. Such detailed
description is aimed at the full specification of the present ap-
proach, so as to enable easy implementation or porting to any
architecture, and comparison with other approaches and tools.
Experimental results are reported in Sec. 6. Finally, Sec. 7 pro-
vides conclusions and future directions.

2. State-of-the-art Techniques for Traffic Classification of
Mobile Apps

TC of mobile apps has been object of huge interest by sev-
eral recent works, mainly based on ET assumption. Dai et al.
[25] first introduced the concept of “network profile”, playing
the same role as DNA profiles for an Android app (i.e. a net-
work fingerprint). They proposed NetworkProfiler, a system
composed of a module automatically executing an app in an
emulator (DroidDriver), and another module that from the gen-
erated network traffic builds a profile in terms of (i) contacted
hosts and (ii) a state machine of string sequences in URLs (Fin-
gerprint Extractor). Being based on DPI (e.g., HTTP payload)
features, the extractor is not suited for ET. The approach has
been shown to be effective in identifying ad-traffic, whereas for
non-ad apps the evaluation has been carried out only for 6 apps.
Additionally, in [25] the full ground truth of the traffic traces
being analyzed is not available, so making it hard to quantify
the classification performance of NetworkProfiler. A similar
spirit permeates the review of Tongaonkar [26], where chal-
lenges and techniques for mobile TC and app identification are
discussed, mainly based on signature generation and fingerprint
extraction from mobile traffic payloads and apps’ metadata, as
well as from 3rd-party services (e.g., advertisement and profil-
ing traffic). Nevertheless, the problem of dissecting ET is there
bypassed by considering man-in-the-middle solutions, suitable
only in controlled environments such as enterprises.

Stöber et al. [27] developed a fingerprinting scheme for de-
vices by learning their traffic patterns through background ac-
tivities. They contend that 70% of smartphone traffic belongs
to background activities, and this can be leveraged to create
a fingerprint. Based on 3G transmissions, bursts of data are
considered to evaluate statistical features. Then, by means of
Support Vector Classifier (SVC) and K-Nearest Neighbors, a
model of the traffic to be fingerprinted is built, being capable of
identifying similar bursts. Results show that using ≈ 15 min-
utes of traffic testing (based on 6 hours of training) leads to an
accuracy ≥ 90% (among 20 users with different combinations
of apps installed). Wang et al. [28] propose a system for classi-
fying app usage over encrypted 802.11 traffic (reporting results
for 13 iOS apps from 8 distinct categories). Data frames are
collected from target apps by running them dynamically for 5
minutes and training a Random Forest (RF) classifier with the
proposed set of features. The need for an accurate ground-truth
labeling is raised, highlighted by a counterintuitive behavior of
some app performance with the training time. AppScanner is
proposed in [10] as a framework for fingerprinting and identi-
fication of mobile apps. The fingerprints are collected by run-
ning apps automatically on an Android device and the network

2

traces are pre-processed (to remove background traffic and ex-
tract features) to train an SVC and an RF. Statistical features
are collected on sets of packets defined through timing crite-
ria and destination IP address/port (see Sec. 3.1). The results,
evaluated on 110 most popular apps from Google Play Store,
report 99% average accuracy in identifying single apps, and up
to 86.9% in classifying them, outperforming state-of-the-art al-
ternatives devised for the (conceptually-)similar website finger-
printing issue [7, 8]. More recently, AppScanner has been em-
ployed on a larger dataset to test the aging of apps’ fingerprints
(due to updates) and possible invariance with respect to used
device and app versions (due to different users’ usage) [29].
It is demonstrated that, though updates, time, and different de-
vices lead to a performance degradation (with updates being the
more demanding issue), a good classification accuracy can be
still achieved. To this end, a method for the removal of back-
ground / 3rd-party services traffic is there conceived, however
not verified by an accurate labeling of the actual non-specific
app traffic. The terms of comparison in [10, 29] are also used
by Alan and Kaur [30] to investigate whether Android apps can
be identified from their launch-time traffic using only TCP/IP
headers (i.e. the sizes of the first 64 packets). They find that
apps can be identified with 88% accuracy when training and
test sets are collected on the same device, based on the simple
classification methods developed in [7, 8]. On the other hand,
accuracy drops significantly (up to 26% for the best classifier)
when the OS/vendor is different. The same work analyzes the
impact of the amount of training data required for classifica-
tion and its “aging” (due to updates). It is worth noticing that
state-of-the-art approaches [10, 31, 32] considered in this work
outperform those analyzed in [30] also in terms of other perfor-
mance metrics (see Sec. 6).

Other works aimed at identifying fine-grained user actions
within mobile-app traffic. Conti et al. [33] recognizes specific
actions that users perform while running a certain app, based
on packet direction/size info. This is achieved through ser-
vice burst (see Sec. 3.1) classification via RF approach, lead-
ing to ≥ 95% accuracy for most of the considered actions
within a set of 7 Android apps. Netscope [9] performs a sim-
ilar task taking into account a set of 35 different activities (for
both iOS and Android devices), based on statistics originated
from IP headers. Assuming an eavesdropper on a Wi-Fi net-
work, it is shown that even a small portion of ET is enough
for a given app to be recognized. K-means clustering is em-
ployed for elementary-behavior discovery and then an SVC is
trained/tested on activity-behaviors binary mapping, showing
performance that varies with the device being tested, but reach
78.04% precision and 76.04% recall, on average.

Although not focused on mobile apps (but readily adapt-
able to this context), the work in [31] proposes a technique
to precisely identify services running within HTTPS connec-
tions, without relying on specific header fields (being prone to
alteration). Suitable features for HTTPS traffic are defined and
used as input for a ML-based multi-level identification frame-
work. The evaluation, based on real traffic, shows high iden-
tifiability of encrypted web services. Finally, a related work
focusing on ET classification, is presented in [34], where the

SSL/TLS-state fingerprint sequence is modelled as a second-
order Markov chain, jointly with a bigram-attribute clustering
of two relevant features, to obtain satisfactory accuracy results
in a pool with 14 applications, all containing a high rate of ET.

3. Traffic Classification Definitions and Features

In this section we introduce terms and concepts regarding
traffic objects, along with the definition of the features extracted
from observed traffic and adopted for classification.

3.1. Traffic View

A common TC object is the biflow, defined as a sequence
of packets sharing the values of the 5-ple (transport proto-
col, source IP address & transport port, destination IP ad-
dress & transport port), where source and destination can be
swapped [2]. On the other hand, in this paper, network traffic
is decomposed into service bursts (SBs), leveraging the notions
introduced in [27] and [10, 33] for mobile-phone identification
and mobile-app classification, respectively.

To this end, we provide the preliminary definition of
burst [27], being a sequence of packets having an inter-packet
time smaller than a given threshold (named Burst Threshold,
BT), irrespective of their source or destination addresses, as
well as of the biflow they belong to. Accordingly, a SB is then
a set of packets, within a single burst, that belongs to biflows
sharing the same transport protocol, destination IP address &
port number.3

It is worth noting that the BT is a key parameter in the defi-
nition of SBs and a few different values have been chosen in re-
cent studies [35, 10, 29]. This study also accounts for sensitivity
of classification performance to this parameter (see Sec. 6.3).
The process of extracting the SBs from the considered traffic
traces is summarized in Fig. 1 through the block SB Extrac-
tion. In the following of the paper (precisely in Sec. 6.3) we
will also investigate the need for a preprocessing step (repre-
sented in Fig. 1 as the Preprocess block) and, in affirmative
case, whether this should be performed before or after burstifi-
cation process.

Remark: We point that SB notion has been used previously
in [10, 33] under the (different) name of flow. However, in this
paper, to avoid any ambiguity with the common and established
definition of flow [2], we will refer to the decomposition used
in [10, 33] as a SB.

3.2. Statistical Features

For the purpose of TC, we will consider features which
are extracted (by statistical means) from the (whole) vector of
packet lengths of the generic SB. This approach is analogous
to flow-based TC when a flow (resp. a biflow) is instead con-
sidered as the relevant object of classification and features are

3The biflow direction is defined according to its first packet: the packet
source (destination) is chosen as source (destination) for the whole biflow. Cri-
teria and heuristics for biflow start and end can be defined for both TCP and
UDP, and in general a TCP biflow does not necessarily match with a TCP ses-
sion (see [2]).

3

Figure 1: Architecture of the Multi-Classification System (MCS) proposed.

extracted from the sequence of packets forming it. It is worth
mentioning that other feature sets may be considered, especially
when early-TC of the generic SB is deemed of interest. The
aforementioned class includes the packet sizes of the first K
packets or some statistical features extracted from this "early"
segment, as studied in [17, 18] for the case of Internet TC.

For each SB, three packet series are here considered: (i) in-
coming packets only (In), (ii) outgoing packets only (Out), and
(iii) bidirectional traffic (i.e. both incoming and outgoing pack-
ets, In&Out). The following features can be identified for each
of these series [10]:

• vector of packet lengths with sign indicating direction;

• minimum, maximum, mean, median, absolute deviation,
standard deviation, variance, skew, and kurtosis;

• percentiles (from 10% to 90%, with 10% increments).

Also, for the incoming and outgoing packet series taken as a
whole, the joint histogram of packet lengths in both directions
can be considered [7, 8].

Finally, in the following, the set of M features adopted by
each classifier will be generically indicated with f1, . . . , fM (or
collectively as f fi

“

f1 · · · fM
‰T) and the set of classes

(apps) as Ω fi {c1, . . . , cL}.
The process of extracting the feature set for kth classifier from

each SB is summarized in Fig. 1 through the block FSk Extrac-
tion.

4. Classification Algorithms

In this section we list the state-of-art approaches that we se-
lected as the pool of K = 9 base classifiers employed in our
MCS. The generic kth (base) classifier within the considered
pool is represented in Fig. 1 by means of the block Classifierk.
More specifically, this block receives as input the corresponding
kth feature set (from the preceding feature extraction block) and
outputs either a hard or soft decision (mathematical details are

later provided in Sec. 5) to the hard/soft combiner. We briefly
describe their main properties and the motivations that guided
us to their choice. For all of them we have reproduced their
exact implementation and executed them with the same param-
eters as described in the respective works, to which we refer for
further details.

A recap of the base classifiers considered in this paper, along
with the abbreviations used, the supervised philosophy, the set
of features taken as input, and the corresponding reference is
given in Tab. 1.

Lib_NB

In Liberatore and Levine [8], two classifiers were proposed,
one based on the Jaccard similarity index and another based on
the Naïve Bayes (NB) learning technique. It was observed that
the NB enjoys attractive performance and increased robustness
than the Jaccard-based classifier, if IP packets are padded; thus
we select NB-based approach as a base classifier (Lib_NB). The
NB assumes class-conditional independence of the features f
(being not the case for real-world problems but working well
in practice) and evaluates the probability that a test instance fT

belongs to each class ci, i.e. the posterior probability P(ci| fT)
through the Bayes’ theorem P(ci| fT) ∝ P(ci)

∏M
m=1 P(fT,m|ci),

where "∝" denotes proportionality. Term P(ci) denotes the
(prior) probability that a generic sample from the dataset will
belong to ci and is estimated from the training set population,
while each PDF P(fT,m|ci) is estimated by employing (Gaus-
sian) kernel density estimation. The fine-grained feature there
employed is the joint histogram of packet lengths in both in-
coming and outgoing directions.

Her_Pure, Her_TF, and Her_Cos

Herrmann et al. [7] proposed the use of a Multinomial
NB (MNB) classifier, adopting the same set of features as
Lib_NB [8], but differing in the building assumption. Indeed,
while the NB classifier estimates each feature PDF using Gaus-
sian kernels whose occurrence frequencies of the various packet

4

Table 1: Summary of state-of-art techniques selected as base classifiers.

Abbreviation Method Features set Reference
Lib_NB Naïve Bayes (NB) Joint In&Out Histogram Liberatore and Levine [8]
Her_Pure/TF/Cos Multinomial NB Joint In&Out Histogram Herrmann et al. [7]
Tay_RF Random Forest Stat. + Percent. (In/Out/In&Out) Taylor et al. [10]
Tay_SVC Support Vector Classifier Stat. + Percent. (In/Out/In&Out) Taylor et al. [10]
CART Decision Tree Stat. + Percent. (In/Out/In&Out) Bakhshi and Ghita [32]

sizes match best with the observed values in the test instance,
the MNB classifier treats the fms as frequencies of a certain
value of a categorical random variable and compares the sample
histogram of each test instance with the aggregated histogram
of all training instances per class. Then, the evaluation of the
conditional PMF P(fT |ci) is different from Lib_NB and equals
P(fT |ci) ∝

∏M
m=1(ρm) fT,m , where ρm denotes the probability of

sampling the mth feature. This implementation is referred to as
Her_Pure in our analysis. A few variants of MNB classifier,
adopting term frequency transformation without and with co-
sine normalization, were also successfully employed in [7] and
compared in [10], and are referred in our analysis to as Her_TF
and Her_Cos, respectively.

Tay_RF and Tay_SVC

In Taylor et al. [10], four (resp. two) approaches for mobile-
app traffic classification (resp. identification) were proposed,
leveraging both an SVC and an RF. An SVC is a supervised
model that represents the training samples as points in a fea-
ture (vector) space, with the aim of finding a set of hyperplanes
which provide the best class separation. Then, during testing
phase, the SVC classifies new points according to the portion
of space they fall into. On the other hand, an RF is an ensemble
classification method taking advantage of several decision trees
(obtained by combining the ideas of bootstrap aggregating and
random-feature selection to avoid over-fitting) built at training
time in order to form a stronger classifier [36].

In [10], these classifiers were fed with either (i) raw vec-
tors of packet lengths or (ii) statistical features (i.e. statistics
and percentiles pertaining to incoming/outcoming/bidirectional
packet sequences) traffic, with the latter approach leading to the
best and least complex classifier (RF with statistical features)
between the two. The latter set has been drawn out in [10] as
the most “informative” from a larger set of 54 statistical fea-
tures by means of feature selection technique on mobile traffic
data. For this reason, we consider both RF (Tay_RF) and SVC
(Tay_SVC) based on the 40 statistical features selected in [10].

CART

Several works performed TC by means of decision trees (e.g.,
C4.5, C5.0, and their variants), both as flat classifiers [37, 32]
and also in a hierarchical [31] or multi-classification [19] archi-
tecture. In this paper, we leverage Classification And Regres-
sion Tree (CART), a very similar variant of the C4.5 algorithm,
constructing binary trees exploiting the features and thresholds
that ensure the maximum information gain at each node and al-
lowing to perform both classification and regression tasks (i.e.

with categorical and numerical target variables, respectively).
The above classifier is fed with the same statistical features as
Tay_RF and Tay_SVC.

5. Classifier Fusion Techniques

Different classifier fusion rules (viz. combiners) have been
proposed in the literature [19, 23]. In this section, we will focus
on hard combiners first (Sec. 5.1), relying on Type 1 classifiers
(i.e. those that output only the predicted class). Then, we will
discuss fusion rules resorting to classifiers’ soft-outputs (viz.
Type 3 classifiers), namely the soft combiners (Sec. 5.2). The
generic (hard/soft) combiner adopted within the proposed MCS
is shown in Fig. 1 through the block Hard/Soft Combiner.

In the proposed MCS we will consider both non-trainable
and trainable combiners [23]. In the former case, the combiner
has no extra parameters that need to be trained (the combiner is
ready-to-use once the sole base classifiers are trained). In the
latter case, the combiner requires some parameters to be esti-
mated, usually by means of a validation set, different from both
the training and the test sets. Overall, the proposed MCS will
provide twenty different choices (6 hard- and 14 soft-combiners,
respectively) as the classifier-fusion block being employed.

Finally, for completeness of performance evaluation, in
Sec. 6.4, we will also consider an ORAcle combiner (ORA), i.e.
an ideal upper bound on the performance corresponding to a
combiner correctly classifying a test sample if at least one of
the base classifiers provides the correct decision [23].

5.1. Hard Combiners

Hard combiners are based on Type 1 classifiers, that is
they exploit only the classifiers’ predicted classes (gener-
ically denoted with d̂k(f) and collectively as d̂(f) fi
“

d̂1(f) · · · d̂K(f)
‰T

), implying the least requirements for de-
signers [23].

In what follows, we will denote with µi(d̂T) the confidence
attributed to the ith class by a generic hard combiner, based on
decisions d̂T fi d̂(fT) pertaining to the test instance fT .

Then, the combiner decision is obtained as

d̂0 fi arg max
i∈Ω

µi(d̂T).

Before proceeding, we recall the definition of kth classifier con-
fusion matrix Ek [23], whose (i, j)th entry is denoted with eK

i, j

and represents the probability of kth classifier deciding for jth

5

class when the ith class is being observed. Clearly, the matri-
ces Ek (as well as the priors P(ci)) employed by combiners are
typically estimated using a validation set.

In this work, the following hard combiners4 will be consid-
ered:

1. Majority Voting (MV): the estimated class corresponds to
the one voted by the relative majority of the classifiers.5

2. Weighted Majority Voting (WMV): this approach is obtained
by weighting the vote of each classifier by its relative con-
fidence. The ith class confidence of the combiner is evalu-
ated as

µi(d̂T) fi

 δi + |Ii
+|· ln(L − 1) +

∑
k∈Ii

+

wk

 ,
where Ii

+ denotes the subset of classifiers having decided
for ith class, δi fi rln P(ci)s denotes a class-constant off-
set, and wk fi ln(pk/(1 − pk)) denotes the weight of kth

classifier, pk being the (estimated) accuracy [24].

3. Recall Combiner (REC): this combiner relaxes the assump-
tion of equal class-conditional accuracy (viz. recall) in
WMV and thus it amounts to different individual class-
specific recalls. The REC confidence measure is then

µi(d̂T) fi

 δ̄i + |Ii
+|· ln(L − 1) +

∑
k∈Ii

+

wk,i

 ,
where Ii

+ denotes the subset of classifiers having decided
for ith class, δ̄i fi [ln P(ci) +

∑K
k=1 ln(1 − pk,i)] denotes a

class-constant offset, and wk,i fi ln(pk,i/(1 − pk,i)) denotes
the weight of kth classifier when deciding for ith class, pk,i

being its (estimated) class-conditional accuracy [24].

4. Naïve Bayes (NB): the ith class confidence measure is rep-
resented by the a posteriori probability P(ci|d̂1, . . . , d̂K)
based on the conditional independence of classifiers, that
is

µi(d̂T) fi P(ci)

 K∏
k=1

P(d̂k,T |ci)

 .
5. Behavior-Knowledge Space method (BKS): this approach

removes the conditional independence assumption of NB
combiner via multinomial counting on the joint classifiers’
space d̂1, . . . , d̂K [38]. More specifically, the validation set
is used to estimate the a posteriori probability P(ci|d̂) for
each ci and for each value of d̂.6 This allows labeling each

4Note that all the (hard) combiners are trainable, except for the Majority
Voting with random tie-breaking.

5In case multiple classes obtain the same highest value, ties are broken either
(a) randomly or (b) by using ek

ii, i.e. the vote of each classifier is weighted by
the confidence degree of that classifier when it assigns a sample to the class it
is voting for [19]. In the latter case, MV becomes a trainable combiner.

6The space complexity is thus O(LK), which requires a large validation set
for training.

possible value of d̂T with the most likely class, according
to µi(d̂T) fi P(ci|d̂T) and constructing a look-up (BKS) ta-
ble. Then, during the testing phase, each new d̂T provides
an index to retrieve from BKS table the estimated class7

d̂0.

6. WERnecke’s method (WER): WER constructs the same table
as BKS but, to reduce over-fitting, considers the 95% confi-
dence intervals of the frequencies (calculated by adopting
the normal approximation of the Binomial distribution) in
each unit [23]. If there is overlap among the intervals,
there is no dominating class for labeling the test instance
d̂T . In this case, the “least wrong” among the K classifiers
is identified (based on confusion matrices) and authorized
to assign the class to that unit.

5.2. Soft Combiners
This section discusses combiners based on Type 3 classifiers.

More specifically, we assume that kth classifier is able to pro-
vide a soft-output vector rk(f) collecting L degrees of support
(each belonging8 to the interval [0, 1]), whose ith entry dk,i(f)
denotes the confidence that kth classifier gives to the hypothesis
that f was generated from class ci. Consequently, for a fea-
ture vector input f the outputs of a pool of K classifiers can be
summarized in a K × L Decision Profile (DP) matrix, denoted
with D(f). It is worth noting that kth row of D(f) equals rk(f),
whereas ith column of D(f), denoted with di(f), represents the
soft-confidence attributed to ith class by the classifiers’ pool.

In what follows, we will denote with µi(D(fT)) the confi-
dence attributed to ith class by the generic soft combiner based
on DP matrix D(fT) obtained from the test instance fT . The
corresponding decision is then found as:

d̂0 fi arg max
i∈Ω

µi(D(fT)).

Soft-combiners can be mainly categorized into Class-
Conscious (CC) and Class-Indifferent (CI) methods. CC meth-
ods use DP matrix but disregard part of the information, using
only one column per class (i.e. µi(D(fT)) = µi(di(fT))). For
this class of soft combiners, there exist either trainable or non-
trainable combiners. On the other hand, CI methods use the
whole DP matrix D(fT) to evaluate ith class confidence, i.e.
they interpret the DP as a vector in the intermediate feature
space. Only trainable combiners belong to CI category.

The following soft combiners have been considered in this
work:

1. (CC) Non-trainable combiners: the combination func-
tion can be chosen among different simple alternatives,
such as the (i) Mean (µi(di(fT)) fi 1

K
∑K

k=1 dk,i(fT)),
the (ii) Maximum (µi(di(fT)) fi maxk dk,i(fT)), (iii) the
Minimum (µi(di(fT)) fi mink dk,i(fT)), and (iv) the Median

7Ties are resolved by using a MV (with random tie-breaking) between the
elements of d̂T [23].

8Such constraint corresponds to the natural range output of a confidence
measure and can be ensured even though the specific classifier does not admit
normalized soft-outputs, see [23].

6

(µi(di(fT)) fi medkdk,i(fT)). Another option is (v) the
Trimmed (Trim) Mean: the K degrees of support are sorted
and P% of the values are dropped on both tails (this con-
fers potential robustness to “outliers”); the µi(di(fT)) is
found as the mean of the remaining degrees of support.
Besides, we consider the Generalized (Gen) Mean, de-
fined as

µi(di(fT)) fi

˜

1
K

K∑
k=1

dk,i(fT)α
¸1/α

which comprises different means and functions as special
cases [23].9

Finally, we consider the Probabilistic Product (PP)
aggregation [39], providing maximum a-posteriori Bayes
decision, based on the (unrealistic) assumptions that the
classifiers use mutually independent subsets of features,
and whose confidence measures yield the true posterior
probability, that is dk,i = P(ci|d̂k), on their respective fea-
ture subspaces. The combination formula is µi(di(fT)) fi∏K

k=1 dk,i(fT)/P(ci)K−1, where the prior probabilities P(ci)
are estimated from training data.

2. (CC) Trainable combiners: here we will consider the (i)
Fuzzy Integral approach (FI) and (ii) trainable linear
combinations [23].

FI searches for the maximal grade of agreement between
the objective evidence (provided by the sorted classifier
outputs for ith class) and the expectation (i.e. the fuzzy
measure values). More specifically, the FI is based on
evaluating the support as

µi(di(fT)) fi
K

max
t=1

{
min

{
dkt ,i(fT), g(t)

}}
In other terms, the vector di(fT) (i.e. the values of sup-
port for ci) is sorted in descending order and fused with
the fuzzy measure for that class (whose tth element is de-
noted with g(t), and whose explicit formula is based on
pool accuracies estimated through validation data [23]) to
get µi(di(fT)). Therefore, for every test instance fT , L vec-
tors of length K are evaluated, each corresponding to a
class and containing values of the considered fuzzy mea-
sure.

Furthermore, we will consider the following trainable lin-
ear combinations. The first is based on the K weights
approach, defined as µi(di(fT)) fi rwT di(fT), where rw ∈
[0, 1]K×1 and rwk fi

(1/εk)∑K
t=1(1/εt)

, being εk the (estimated) error-

rate of kth classifier [40]. Secondly, the KL weights ap-
proach is based on [41] µi(di(fT)) fi wT

i di(fT), where
wi fi (Di DT

i)−1 Dibi and Di ∈ [0, 1]K×N denotes the matrix
obtained arranging all the ith columns of the DP matrices
belonging to the validation set, whereas bi ∈ {0, 1}N whose

9In this paper we have set α = 1
2 and P% = 20% for Generalized and

Trimmed Mean combiners, respectively.

nth entry equals 1 when the corresponding sample of the
validation set belongs to ci.

3. (CI) Decision Templates (DT): the DT approach [23]
stores the most typical DP for each class ci (i.e. the DT
of ith class, denoted with D̄i) and then compares it with
the current DP matrix D(fT) using a suitably chosen simi-
larity measure S(D(fT), D̄i)). The confidence for ith class
will be then

µi(D(fT)) fi S(D(fT), D̄i)

when a new test instance fT is submitted. Differently, dur-
ing the training phase, the DT associated to ith class D̄i is
built as the average of the all the DP matrices within the
validation set labelled with ci.

In this study, we will employ three common similarity
measures for the DT testing phase, based on the follow-
ing distances [23]: (a) squared Euclidean (DT-SE); (b) `1
norm after vectorization (DT-L1); (c) symmetric fuzzy-set
originated (DT-FSD).

4. (CI) Dempster-Shafer approach (DS): the present com-
biner takes its inspiration from the theory of evidence (DS
theory). Similarly to DT method, in DS approach the DT
matrices D̄1, . . . , D̄L are evaluated from the validation set.
On the other hand, the similarity evaluation between each
D̄i and the DP matrix D(fT) is replaced by the following
steps [23].

First, a L × K proximity matrix Φ is built, whose (i, k)th

entry is a normalized measure of distance10 between the
kth rows of the ith class DT D̄i and of the DP (a similarity
measure between the confidence vector of kth classifier and
its typical profile when ci is the actual class). Secondly,
by using Φ, for every class ci ∈ Ω and for every classi-
fier k = 1, . . . ,K, a belief degree βi prk(fT)q is computed.
Finally, the ith degree of support µi(D(fT)) is obtained
as a normalized product of the belief degrees βi(rk(fT)),
k = 1, . . . ,K.

6. Experimental Results

In this section we first provide a detailed description of the
dataset used (Sec. 6.1). Then, in Sec. 6.2, we recall the per-
formance metrics evaluated in our analysis. We then report a
systematic investigation of the effectiveness of different pre-
processing operations performed on data before actual classi-
fication (Sec. 6.3, so as to underline “best practices”) by mea-
suring their influence on the performance of all the considered
classifiers/combiners. Finally, in Sec. 6.4 we report perfor-
mance of the proposed MCS (and investigate its modularity)
in comparison to state-of-the-art classifiers devised for mobile
TC.

10Although any distance could be employed, in this study we concentrate on
`2 norm (DS-L2) for simplicity.

7

6.1. Dataset Description
The considered dataset is composed of real-traffic traces, pro-

vided by an international mobile solutions provider (already
anonymized) and generated from a total of 49 apps (resp. 45)
on Android (resp. iOS) devices, run separately. Mobile traffic
has been generated by different human-users running various
devices, without specific constraints on the operating system /

app version, being the latter a worst case for mobile TC [30]. As
specified in Sec. 1, we are not allowed (due to NDA) to provide
details on the network where the traffic traces were collected.
Accordingly, ground truth is obtained by labeling (manually)
each trace with the generating application. As a whole, the
dataset is made up of 607 (resp. 419) traffic traces, with an aver-
age duration of 282 (resp. 296) seconds and 1÷60 (resp. 1÷48)
traces per app.

The traces belonging (viz. the dataset corresponding) to the
two aforementioned operating systems are investigated sepa-
rately, in order to evaluate the detectability of mobile apps in a
well established scenario (i.e. belonging to the same operating
system / store).11

After the burstification process described in Sec. 3.1, net-
work traffic is then processed using the (statistical features ex-
traction) approach introduced in Sec. 3.2. We remark that the
minimum SB length considered in this study is 7 (as suggested
in [10]), since it is the shortest sequence of packets represent-
ing a meaningful data transfer which includes a TCP handshake
and an HTTP request/response with corresponding ACKs. On
the other hand, in this work, we do not restrict superiorly the
length of the SB to be analyzed, since we did not consider (for
reasons of computational complexity) classification algorithms
taking as input the (varying) raw vector of packets (referred to
as “per-flow length classifiers” in [10]). We observe that, given
the collection methodology of the considered traces, the SB def-
inition is not prone to possible wrong-segmentation of the SBs
within the same burst, according to the aggregation principle of
the same destination IP address / port couple.

Additionally, the number of instances for each app presents
a severe imbalance (this is especially true for the least observed
ones). For an excellent introduction to different techniques
which can be applied to imbalanced datasets, with specific fo-
cus on Internet TC, please refer to [42]. As a summary, two dif-
ferent “philosophies” may be pursued for dealing with class im-
balance. These mainly pertain to re-sampling (comprising over-
sampling and undersampling) methods [42] and cost-sensitive
learning [12, 43] approaches.

In this paper, an oversampling procedure has been ap-
plied to the dataset. More specifically, we applied the Syn-
thetic Minority Oversampling TEchnique (SMOTE) [44] to
the apps with a number of SBs less than 30th percentile
of the distribution of the number of SBs per app12, in or-
der to obtain a reasonable number of samples per app.

11Nevertheless, since common apps between the two datasets are 42 (i.e.
85.7% and 91.3% of the whole Android and iOS dataset, respectively), an OS-
agnostic classification concerning the possibility to distinguish not only the spe-
cific app, but also the OS it belongs, represents an interesting further avenue.

12Note that this distribution depends on the initial number of SBs (without
SMOTE) and therefore on the value of the BT.

SMOTE is one of the most popular approaches for data-
based class-minority oversampling. Specifically, we adopted
the filter implemented in the Weka environment by means of
weka.filters.supervised.instance.SMOTE Java class.
We remark also that the results obtained with different percent-
ages of SMOTE (e.g., corresponding to the 40th and 50th per-
centiles) have shown no discrepant relative performance among
the classifiers and combiners (both hard and soft) considered in
what follows, thus underlining the stability of the considered
dataset.13

6.2. Performance Metrics

The successive analysis will be based on the following per-
formance metrics [23]: (i) overall accuracy, (ii) precision,
and (iii) recall [45]. Since the latter two metrics are defined
on a per-app (per-class) basis, we will employ their arith-
metically averaged (viz. macro) versions. Additionally, we
will consider (iv) the F-measure, defined as (F fi (2 · prec ·
rec)/(prec + rec)), being a scaled harmonic mean of (macro-)
precision and (macro-) recall, so as to account for both the ef-
fects of precision (prec) and recall (rec) in a concise fashion.
Besides, we will consider (v) confusion matrices of classifiers
(resp. combiners) to provide their whole performance “pic-
ture” and identify the most frequent misclassification patterns.
Clearly, a higher concentration toward the diagonal (where pre-
dicted app equals the actual one) implies better performance of
the generic classifier (resp. combiner).

Finally, we remark that each considered setup will employ a
random training-validation-test set splitting (with correspond-
ing percentages 50% − 25% − 25%, respectively).

6.3. Burst Threshold Impact on Performance and Hints on
Dataset Pre-processing

Our first investigation on pre-processing steps applied to con-
sidered traces was aimed at assessing whether there is a sub-
stantial gain (or, generically, a significant change) in perfor-
mance when cleaning traffic traces from TCP retransmissions.
Results (not shown here for the sake of brevity) have underlined
(almost) insensitivity of performance to the aforementioned op-
eration, quantified in less than 0.2% change in accuracy for the
best base classifier observed when considering a SB definition
corresponding to 1s of BT. For this reason, in what follows, we
have processed uncleaned (i.e. including TCP retransmissions)
traffic traces, as the above step does not affect classification per-
formance in a substantial way while adding unnecessary com-
plexity to the proposed classification approach.

Then, two (coupled) useful investigations are pursued in
what follows. First, we analyze the sensitivity of the classi-
fication performance to SB definition, focusing on the BT, to
analyze whether (and, in the affirmative case, to which degree)
classifiers’ performance are affected by this parameter. Indeed,

13We remark that the present framework does not necessarily rely on SMOTE
and such procedure can be safely removed from the pipeline in the case of a
larger dataset.

8

previous studies have only provided results pertaining to empir-
ically chosen values of the BT, corresponding to 1s [10, 29] and
4.5s [27], respectively. Hence, to provide a comprehensive BT
analysis, we have employed the interval [0.5, 5] seconds (with
increments of ∆ = 0.5s) which includes both the aforemen-
tioned empirical choices.

Secondly, the aim is to investigate the potential gain achiev-
able when removing zero-payload traffic. Indeed, a similar pre-
processing step has been suggested in [46] for a website fin-
gerprinting task. Specifically, it has been advocated to remove
packets sized 52 from features’ evaluation, based on the intu-
ition (confirmed by the appealing results in Panchenko et al.
[46]) that packets of this length occur for all possible web
pages, as these correspond to acknowledgments between sender
and receiver (TCP ACK packets with no payload). Thus, an
evaluation of features without packets sized 52 would allow to
discard non-website-specific behavior (which may be regarded
as noise for the evaluation of the considered features). We ar-
gue that this may be also the case of mobile TC, as these pack-
ets correspond to a non-app-specific behavior. Accordingly, we
pursue a similar (though more general, as some packets sized
52 could correspond to mobile data traffic exchange) approach,
by removing packets with zero-payload.

Since the two aforementioned processing steps are interde-
pendent (i.e. the BT is influenced by the presence/absence of
zero-payload packets), the following three configurations of the
dataset have been considered, by varying BT value:

• (a) Original dataset (no pre-processing);

• (b) Dataset with zero-payload packets removed after the
SB extraction;

• (c) Dataset with zero-payload packets removed before the
SB extraction.

Finally, SBs with a length less than “Min Length” packets
(see Fig. 1) have been discarded in order to improve classifi-
cation performance, as suggested in [10]. Note that in [10] a
(minimum) flow length of 7 packets is considered as the optimal
choice, since it represents the length of the shortest “complete”
SB, that consists of a TCP handshake (three packets), an HTTP
request/response pair (two packets) and the corresponding ac-
knowledgments (two packets). In this work, we have made the
same choice for both the cases (a) and (b). On the other hand,
in case (c), we have selected a Min Length equal to 2, since
in the latter case SB extraction is performed on traffic traces
whose zero-payload packets have been already removed (i.e.
TCP handshake and acknowledgments belonging to the short-
est “complete” SB).

Fig. 2 shows the number of SBs in these three datasets
as a function of the BT. Intuitively, the greater the BT, the
lower the number of (resp. the longer the) SBs obtained (for
all the datasets). In detail, this number ranges from 16939
(resp. 15166) to 43089 (resp. 35064) for the dataset with zero-
payload packets removal after (with a 5s BT) and before (with
a 0.5s BT) the SB extraction, respectively. From inspection of
the figure, it can be noticed a “slope” change at BT equal to 1s.

It can be inferred that, when BT is less than 1s, the burstifica-
tion process leads to an excessive fragmentation, and does not
adequately capture the bursty nature of the considered mobile
traffic. On the other hand, values higher than 1s may represent
solutions which may lead to merging actually-distinct SBs (al-
though in the range (1, 5] seconds such “merging effect” seems
not dramatic).

In Fig. 3 both the accuracy (top) and the F-measure (bottom)
for all the classifiers described in Sec. 4 are shown vs. the BT
value, for Android traces. More specifically, for each figure,
cases (a) full dataset, (b) zero-payload packets removed after
SB extraction, and (c) zero-payload packets removed before SB
extraction are reported in left, middle and right boxes, respec-
tively.

From the inspection of results, the highest performance is
obtained with a threshold of 1s/1.5s in the case (c), i.e. with
zero-payload packets removed before SB extraction. The op-
timal BT value found numerically also confirms the consider-
ations on fragmentation/merging traffic effects arising from an
inaccurate (viz. lower/higher) choice of the BT value, some-
what anticipated by the slope change phenomenon in Fig. 2.
This trend can be observed for both Android and iOS traces
(not shown for brevity). The results agree qualitatively with the
considerations in [10, 29], thus underlining that 1s represents a
good and stable choice for the BT.14

Similarly, it is evident that removal of zero-payload packets
always provides some gain in performance, which is indepen-
dent on the specific BT considered, and whether such removal
is performed after (b) or before (c) SB extraction. Nevertheless,
an additional performance improvement is obtained when per-
forming the removal before SB extraction (c). This may be ex-
plained as this filtering of “noisy packets” is also beneficial for
a more effective SB segmentation. Indeed, taking into account a
threshold value of 1s, for the best base classifier (i.e. Tay_RF),
removal of zero-payload packets before and after SB partition-
ing produces an accuracy increment of +6.7% (resp. +9.7%)
and +3.3% (resp. +4.3%), respectively. Thus, as stated above,
when this zero-payload cleansing is performed before, a further
enhancement of +3.4% (resp. +5.4%) can be obtained.

Interestingly, F-measure increments (being in this case
Her_Cos the best base classifier in terms of F-measure) are
markedly smaller and substantial only for the removal of zero-
payload packets before SB extraction: +1.5% (resp. +3.6%).

Additionally, it is apparent a weakly-decreasing trend for
best performing classifiers (namely Tay_RF, Her_Cos, and
Her_TF) for increasing values of the BT. Similar trends can
be observed for considered hard and soft combiners although
less evident, since the influence of other base classifiers. The
aforementioned behavior can be explained as larger values of
the BT imply longer SBs, thus precluding a correct segmenta-
tion of the different actions associated to a certain app during
time.

14Nonetheless, in any case, automatic design (and adaptability) of this value
would be desirable, being able to cope with networks experiencing different
delay conditions.

9

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N
u

m
b

e
r

o
f

S
B

s

Threshold [s]

Full dataset
Before SB extraction

After SB extraction

(a) Android dataset.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N
u

m
b

e
r

o
f

S
B

s

Threshold [s]

Full dataset
Before SB extraction

After SB extraction

(b) iOS dataset.

Figure 2: Number of service bursts for different values of the BT considering Android (a) and iOS (b) datasets.

 0

 20

 40

 60

 80

 100

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
c
c
u
ra

c
y
 [
%

]

Threshold [s]

Her_Pure
Her_TF

Her_Cos
Lib_NB

Tay_RF
Tay_SVC

CART

(a) Full dataset.

 0

 20

 40

 60

 80

 100

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
c
c
u
ra

c
y
 [
%

]

Threshold [s]

Her_Pure
Her_TF

Her_Cos
Lib_NB

Tay_RF
Tay_SVC

CART

(b) Zero-payload packets removed
after SB extraction.

 0

 20

 40

 60

 80

 100

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
c
c
u
ra

c
y
 [
%

]

Threshold [s]

Her_Pure
Her_TF

Her_Cos
Lib_NB

Tay_RF
Tay_SVC

CART

(c) Zero-payload packets removed
before SB extraction.

 0

 20

 40

 60

 80

 100

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

F
-m

e
a
s
u

re
 [

%
]

Threshold [s]

Her_Pure
Her_TF

Her_Cos
Lib_NB

Tay_RF
Tay_SVC

CART

(d) Full dataset.

 0

 20

 40

 60

 80

 100

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

F
-m

e
a
s
u

re
 [

%
]

Threshold [s]

Her_Pure
Her_TF

Her_Cos
Lib_NB

Tay_RF
Tay_SVC

CART

(e) Zero-payload packets removed
after SB extraction.

 0

 20

 40

 60

 80

 100

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

F
-m

e
a
s
u

re
 [

%
]

Threshold [s]

Her_Pure
Her_TF

Her_Cos
Lib_NB

Tay_RF
Tay_SVC

CART

(f) Zero-payload packets removed
before SB extraction.

Figure 3: Accuracy (a-c) and F-measure (d-f) of the base (state-of-the-art) classifiers to varying the BT (Android dataset).

Therefore, since the removal of zero-payload packets before
SB extraction seems an appealing pre-processing step over a
wide range of BT values, in what follows we compare the
performance of (a) the best base classifier (corresponding to
Tay_RF, thus qualitatively agreeing with the results in [10]), (b)
the best hard combiner (corresponding to either NB or WMV com-
biner, depending on the specific performance metric deemed
relevant) and (c) the best soft combiner (corresponding to the
KL weights).

The present investigation is conducted by measuring their ac-
curacy and F-measure as a function of the BT (over the same
threshold range employed for Fig. 3), in Fig. 4 for Android
traces (similar results have been observed iOS traces).

This allows investigating the general improvement provided
by the present MCS system over the best base classifier, either
considering hard or soft techniques, which is seen to be almost
independent on the specific burst threshold considered. For
completeness, accuracy plots in Fig. 4a also report the perfor-

mance of ORA combiner.15, which highlights how the proposed
approach “pushes” the performance toward the combining theo-
retical performance (i.e. upper-bound) for the considered pool.

6.4. Classification Results
Based on the previous considerations, in what follows we

focus on case (c) (that is, removing zero-payload packets before
burstification) and set the BT to 1s, collectively representing
the scenario with the highest performance observed. Then, we
show results (at a finer detail) obtained by the application of the
proposed MCS (see Sec. 3) to the aforementioned case.

First, in Tab. 2, we report the performance of all the base clas-
sifiers described in Sec. 4, in terms of the considered synthetic
measures. Also, for completeness, we report the accuracy and
recall achieved by the ORA (rightmost column).

From inspection of results, it is apparent that Tay_RF,
Her_Cos, and Her_TF achieve the highest performance w.r.t.

15Indeed, precision (and consequently F-measure) of the ORA cannot be eval-
uated since its error patterns are not defined [19].

10

 0

 20

 40

 60

 80

 100

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
c
c
u

ra
c
y
 [

%
]

Threshold [s]

Tay_RF
NB

KL Weights
ORA

(a) Accuracy.

 0

 20

 40

 60

 80

 100

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

F
-m

e
a

s
u

re
 [

%
]

Threshold [s]

Tay_RF
WMV

KL Weights

(b) F-measure.

Figure 4: Accuracy (a) and F-measure (b) of the best base classifier, hard and soft combiner versus the BT (Android dataset). Performance refers
to the dataset with zero-payload packets removed before the SB extraction.

the considered measures in the present setup, being still prone
to classification errors. The quantitative scores are (only at first
glance) in contrast to those typically observed in Internet TC
[19] and, more recently, to those achieved in the mobile con-
text [10, 29]. However, in the former case, the classification
problem is simplified by a homogeneous and less dynamic na-
ture of the traffic being observed (while typically coping with a
lower number of classes to discriminate from), whereas in the
latter case it likely pertains to a non-exhaustive traffic collec-
tion procedure, being bot-generated and probably not capable
of adequately “representing” all the “paths” of a generic app.
Additionally, by looking at ORA performance, the best accuracy
(resp. recall) of the base classifiers can be improved by means
of the proposed MCS up to 14.8% (resp. 19.5%) for Android
and up to 16.8% (resp. 19.9%) for iOS, respectively. We notice
that the upper-bound performance may be further improved by
the adoption in the pool of other classifiers suitably-devised for
mobile TC, underlining the appeal of the MCS.

To this end, in Tab. 3 we show (and compare) the perfor-
mance of the considered hard combiners. Results underline that
BKS is able to provide the highest improvement with respect to
the best base classifier (Tay_RF) in terms of overall accuracy.
The same reasoning applies to NB for recall measure (the latter
also performs quite well in terms of accuracy). Differently, MV
and WMV result appealing because of the remarkable improve-
ment in terms of precision and F-measure over the best base
classifier (between +3.8% and +5.4%, respectively).

Interestingly, WMV and NB represent the most appealing
choices in terms of the set of performance metrics considered,
(almost) collectively providing the highest performance. This
is explained as they are less prone to over-fitting (and have less
training requirements), while also enjoying lower complexity
w.r.t. WER and BKS. Remarkably, all the considered hard com-
biners (except for MV, when referring to the sole overall accu-
racy experienced with Android traffic), outperform the best base
classifier in terms of all the considered performance metrics.
This holds in both iOS and Android traffic.

A similar numerical comparison is shown in Tab. 4, where
the performance of the three different groups of soft-combiners
considered in this study are reported in separate sub-tables (i.e.

CC non-trainable, CC trainable, and CI in sub-tables (a-b), (c),
and (d), respectively), so as to (possibly) underline an interest-
ing performance trend of a given group. For each group, ORA
performance (as the rightmost column) is reported so as to high-
light the corresponding improvement achievable.

By looking at their performance, it is apparent that a remark-
able performance improvement can be achieved already with
the sole use of CC non-trainable combiners (for which the avail-
ability of validation data is not needed). In fact, for the consid-
ered case, the Mean, the Median, the Trimmed Mean and the
Generalized Mean are able to improve Tay_RF performance
in terms of all the reported synthetic measures. This holds
in both iOS and Android traffic. On the other hand, the soft
combination approaches provided by PP, Maximum, Minimum,
Harmonic Mean, and Geometric Mean always lead to unsat-
isfactory performance when compared to the best base classifier
(Tay_RF). This can be explained as these are more sensitive to
soft-output misspecification of the classifiers in the pool.

Interestingly, a general (remarkable) improvement is
achieved by the whole group of CC trainable combiners over
Tay_RF. More specifically, though all the combiners within this
group perform quite well, KL weights represents the most ap-
pealing choice in terms of all the measures considered (and for
traffic belonging to different OSs).

Furthermore, CI combiners are also able to improve, in most
cases (except for a slight degradation of precision measure, see
later discussion), performance over the best base classifier, with
DT-L1 and DS-L2 performing slightly better than others in the
CC group. Still, the larger generalization capability of CI com-
biners does not pay back in terms of performance in comparison
to CC trainable combiners. This may be attributed to an inad-
equate number of validation samples or to an over-fitting phe-
nomenon. From a direct comparison of all the combiners be-
longing to all groups reported (both hard and soft), it is evident
that KL weights represents the best combiner considered in
this study for the present dataset. Finally, we underline that im-
proved absolute performance measures may be achieved by the
proposed MCS if additional (high performing and/or diverse)
classifiers are developed to enlarge the considered pool.

Additionally, to summarize the improvement achieved by

11

Table 2: Performance (%) of base (state-of-the-art) classifiers considering Android (iOS) traffic.

Classifier Her_Pure Her_TF Her_Cos Lib_NB Tay_RF Tay_SVC CART ORA

Accuracy 48.7 (50.9) 65.2 (64.8) 68.4 (68.9) 28.0 (32.4) 72.8 (70.9) 21.2 (27.4) 59.4 (56.7) 87.6 (87.7)
Macro Precision 45.1 (47.2) 74.6 (70.0) 71.2 (69.3) 60.3 (60.7) 74.7 (71.5) 21.4 (30.0) 52.8 (50.9) -

Macro Recall 54.8 (49.9) 58.4 (56.8) 63.5 (62.3) 36.0 (33.6) 64.1 (62.3) 9.89 (14.2) 51.4 (49.3) 83.6 (82.2)
Macro F-Measure 46.7 (47.7) 70.7 (66.9) 69.5 (67.8) 53.1 (52.3) 72.3 (69.4) 17.4 (24.6) 52.5 (50.6) -

Table 3: Performance (%) of hard combiners considering Android (iOS) traffic.

Combiner MV WMV REC NB BKS WER ORA

Accuracy 72.2 (71.9) 72.8 (72.4) 73.8 (72.6) 75.0 (74.0) 75.0 (74.3) 73.8 (71.9) 87.6 (87.7)
Macro Precision 79.3 (76.9) 80.1 (76.9) 78.7 (76.3) 75.8 (73.5) 77.4 (74.2) 75.6 (72.1) -

Macro Recall 65.4 (63.4) 65.8 (63.9) 67.0 (64.2) 70.7 (67.6) 69.7 (67.2) 65.7 (63.5) 83.6 (82.2)
Macro F-Measure 76.1 (73.8) 76.7 (73.9) 76.1 (73.6) 74.7 (72.3) 75.7 (72.7) 73.4 (70.2) -

each group of (hard/soft) combining techniques, we have re-
ported in Tab. 5 the Maximum Improvement Over the Best Clas-
sifier (MIOBC) provided by each group for every performance
measure. Referring to the group of hard combiners, it is ap-
parent that such group is always able to provide an improve-
ment, ranging from +2.2% (accuracy on Android traffic) to
+6.6% (recall on Android traffic), by means of diversity prin-
ciple, representing the milestone for adoption of classifier fu-
sion techniques. However, as remarked before, different ap-
proaches (namely MV, WMV, NB, and BKS) result best according
to different performance metrics. A similar reasoning applies
to the group of CC non-trainable combiners (second column),
where the improvement ranges from +3.0% (accuracy on An-
droid traffic) to +6.5% (recall on Android traffic). Here, the im-
provement is qualitatively similar to hard combiners. However,
CC non-trainable combiners, though requiring the availability
of soft outputs from each classifier in the pool, do not require
the availability of a validation set (which is instead required
in the design of almost all the hard combiners here considered).
This may be appealing in the case of scarcity of additional train-
ing (validation) data. On the other hand, the group of CC train-
able combiners is able to provide the best improvement for each
metric. This is not only the consequence of the presence of KL
weights within the group, having the highest performance. In-
deed, as observed earlier, all the combiners within the group are
able to provide significant gains. Finally, CI combiners are able
to collectively provide a performance improvement over almost
all the considered metrics. The sole exception is represented
by precision (which is slightly degraded for all the combiners
within this group), with a consequent gain reduction of the cor-
responding highest F-measure achieved by the CI group.

We now compare the performance of the best classifier with
the best hard and soft combiners at a finer detail, that is, by
analyzing their confusion matrices, which allow to focus on
misclassification patterns among apps (cf. Sec. 6.2). To this
end, in Figs. 5a, 5b and 5c, we show the confusion matrices of
Tay_RF, NB and KL weights, respectively. The reported ma-
trices refer to Android traffic. However it is worth noticing that
similar qualitative trends have been observed for iOS traffic.
From inspection of the results, it is revealed a homogeneously-
reduced occurrence of misclassification patterns when employ-
ing a (good) combiner with respect to the best base classifier.

This is more evident when a soft combiner is employed.
Finally, in Tabs. 6 and 7, we delve into how classifiers sub-

set selection affects performance, focusing on the F-measure.
The intent is investigating possible performance gain of the
considered combiners (grouped as done previously) and com-
putational complexity reduction, by discarding non-informative
classifiers from the pool. Since the number of different subsets
is combinatorial and having available different optimization cri-
teria (combiners), it is impractical evaluating performance for
all the possible combinations. Hence, we adopt an heuristic ap-
proach informed by the diversity of classification methods and
iteratively removing the worst performing classifier.

Referring to hard combiners (cf. Tab. 6), several observa-
tions can be made. The best overall F-measure performance
is achieved by MV and REC on iOS and Android traffic, respec-
tively. The appeal of this result is that these combiners have low
requirements both in terms of training samples and operational
(testing phase) complexity. Additionally, it is apparent that the
hard combiners requiring the least parameters to be trained (i.e.
MV, WMV, REC, and NB) all benefit from the selection of a sub-
set of classifiers within the pool. Interestingly, they all achieve
their maximum per combiner when only Her_Cos, Lib_NB, and
Tay_RF are employed. This may be attributed at the higher di-
versity provided by these three different base classifiers. On
the other hand, WER also presents improved performance with a
different selection of the subset of classifiers (namely, a larger
subset for Android traffic, whereas only Her_Cos and Tay_RF
are needed in the pool to achieve its highest performance over
iOS traffic). Finally, it is apparent that BKS does not benefit from
the same subset selection as MV, WMV, REC, and NB. Therefore,
we argue that this may be attributed to over-fitting issues (i.e.
unnecessarily modeled correlation between diverse base classi-
fiers).

Then, with reference to CC non-trainable combiners (cf.
Tabs. 7a and 7b), we first observe that PP, Maximum, Minimum,
Harmonic Mean, and Geometric Mean combiners have a dra-
matic improvement of F-measure performance when consider-
ing small subsets of the classifiers pool. Similarly, the Mean,
Median, Trimmed Mean, and Generalized Mean are able to
improve (almost always) their performance when considering
the smallest pool composed by Her_Cos and Tay_RF. However,
their performance improvement is less steep. This trend may be

12

Table 4: Performance (%) of different classes of soft combiners, considering Android (iOS) traffic.

(a) Class-conscious (CC) non-trainable combiners (1).

Combiner Mean Maximum Minimum Median PP ORA

Accuracy 75.3 (73.8) 61.5 (56.7) 51.8 (47.3) 73.7 (72.8) 52.1 (47.6) 87.7 (87.6)
Macro Precision 74.7 (71.8) 55.2 (50.2) 38.1 (35.3) 79.8 (77.4) 38.4 (35.6) -

Macro Recall 70.6 (67.5) 54.5 (50.5) 44.4 (40) 67.1 (64.2) 44.7 (40.3) 83.7 (82.3)
Macro F-Measure 73.8 (70.9) 55 (50.3) 39.3 (36.1) 76.9 (74.3) 39.5 (36.5) -

(b) Class-conscious (CC) non-trainable combiners (2).

Combiner Trim Mean Harm Mean Geom Mean Gen Mean ORA

Accuracy 75.6 (74.4) 51.8 (47.1) 52.3 (47.9) 75.8 (74.4) 87.7 (87.6)
Macro Precision 77.7 (75.1) 38.2 (35.1) 38.5 (35.6) 77.1 (74.9) -

Macro Recall 70.4 (67.7) 44.4 (39.9) 44.5 (40.3) 70.5 (67.3) 83.7 (82.3)
Macro F-Measure 76.2 (73.5) 39.3 (35.9) 39.6 (36.5) 75.7 (73.2) -

(c) Class-conscious (CC) trainable combiners.

Combiner Fuzzy Integral K weights KL weights ORA

Accuracy 75.4 (73.5) 76.1 (74.2) 79.2 (77.8) 87.7 (87.6)
Macro Precision 77.0 (73.6) 76.3 (72.7) 80.6 (78.2) -

Macro Recall 70.4 (67.2) 71.1 (67.8) 73.6 (71.6) 83.7 (82.3)
Macro F-Measure 75.6 (72.2) 75.2 (71.7) 79.1 (76.8) -

(d) Class-indifferent (CI) combiners:
Decision Templates (DT) and Dempster-Shafer (DS) approaches.

Combiner DT-SE DT-L1 DT-FSD DS-L2 ORA

Accuracy 75.6 (72.6) 74.9 (73.8) 74.7 (72.8) 75.7 (73.0) 87.7 (87.6)
Macro Precision 73.3 (69.1) 73.2 (71.4) 73.2 (69.9) 73.5 (69.9) -

Macro Recall 72.6 (69.1) 71.1 (68.4) 69.9 (66.8) 72.2 (69.0) 83.7 (82.3)
Macro F-Measure 73.1 (69.1) 72.8 (70.7) 72.5 (69.3) 73.2 (69.7) -

Table 5: Maximum Improvement Over Best Classifier (MIOBC) of the F-measure (%) for each class of hard and soft combiners, considering
Android (iOS) traffic.

Combiner Hard CC non-trainable CC trainable CI

Accuracy +2.2 (+3.4) +3.0 (+3.5) +6.4 (+6.9) +2.8 (+2.9)
Macro Precision +5.4 (+5.4) +5.1 (+5.9) +5.9 (+6.7) -1.4 (-0,1)

Macro Recall +6.6 (+5.3) +6.5 (+5.4) +9.5 (+9.3) +8.5 (+6.8)
Macro F-Measure +4.4 (+4.5) +4.6 (+4.9) +6.8 (+7.4) +0.8 (+1.3)

explained as CC non-trainable combiners are more prone to be
biased from wrong classifiers in the pool, due to the lack of
high-level (validation-based) training. Nevertheless, the latter
sub-group possesses an intrinsic robustness (due to their pecu-
liar combination functions) to having outliers in the pool. On
the other hand, by observing performance of CC trainable com-
biners (cf. Tab. 7c), it is apparent that KL weights benefits
from a judicious use of the subset. This allows reducing the
number of parameters to be trained, especially those related to
weak classifiers, and thus avoid slight over-fitting. A different
trend is instead observed for K weights, being similar to that
observed for CC non-trainable combiners. The reason is that
the linear (separating) vector employed is based on the assump-
tion that each soft-output well-matches (i.e. except for some
estimation noise) the actual one [40]. Therefore, this approach
is potentially sensitive to erroneous (i.e. providing incoherent
soft-outputs) base classifiers. A somewhat similar behavior as
BKS is observed for Fuzzy Integral, which does not benefit

from subset selection. This may be attributed to the fact that the
proposed fuzzy-based fusion design is resistant to classifiers’
uncertainty. A less evident trend can be drawn for CI combin-
ers (cf. Tab. 7d). Nonetheless, it can be concluded how all the
proposed approaches achieve the highest F-measure with the
group considered by Her_Cos, Lib_NB, and Tay_RF, with the
sole exception of DT-FSD in Android traffic, where the smallest
group composed by Her_Cos and Tay_RF should be employed
to reach the highest performance.

A summarizing comparison, reporting the MIOBC (in terms
of F-measure) for each group of combiners, is shown in Tab. 8,
exploring the same subset choices previously considered. From
its inspection, it is apparent how improved performance (with
respect to considering the whole pool of classifiers) can be ob-
tained on Android traffic (+0.5%) or the same results with less
training requirements (i.e. a CC non-trainable combiner) in iOS
traffic.

13

1

4

7

10

13

16

19

22

25

28

31

34

37

40

43

46

49

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

A
c
tu

a
l
C

la
s
s
 R

a
n

k

Predicted Class Rank

(a) Best base classifier (Tay_RF).

1

4

7

10

13

16

19

22

25

28

31

34

37

40

43

46

49

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

A
c
tu

a
l
C

la
s
s
 R

a
n

k

Predicted Class Rank

(b) Best hard combiner (NB).

1

4

7

10

13

16

19

22

25

28

31

34

37

40

43

46

49

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

A
c
tu

a
l
C

la
s
s
 R

a
n

k

Predicted Class Rank

(c) Best soft combiner (KL weights).

1 = QQ 2 = SayHi 3 = GooglePlay 4 = eBay 5 = HotSpot
6 = 6Rooms 7 = PureVPN 8 = QQReader 9 = PaltalkScene 10 = HidemanVPN
11 = Anghami 12 = BaiDu 13 = Google+ 14 = Hooq 15 = Repubblica
16 = 80sMovie 17 = Narutom 18 = IFengNews 19 = GoogleMap 20 = PrivateTunnelVPN
21 = GoogleAllo 22 = MeinO2 23 = QianXunYingShi 24 = Palringo 25 = Hangouts
26 = GroupMe 27 = Crackle 28 = LRR 29 = InterVoip 30 = NetTalk
31 = EFood 32 = RaidCall 33 = Go90 34 = FSecureVPN 35 = NileFM
36 = Shadowsocks 37 = Ryanair 38 = Sogou 39 = Guvera 40 = SmartVoip
41 = 9YinZhenJing 42 = Minecraft 43 = 360Security 44 = GooglePhotos 45 = GoogleCast
46 = Hidemyass 47 = FrostWire 48 = Mobily 49 = RiyadBank

 0.1 1 10 100

(d) Log-scale (%) and labels.

Figure 5: Confusion matrices of the best (a) base classifier, (b) hard combiner, (c) soft combiner (Android dataset). Note that the labels (d) are
ranked according to decreasing abundance of samples

and the logarithmic scale (d) is used to evidence small errors.

7. Conclusions and Future Directions

We tackled TC of mobile apps by proposing a MCS encom-
passing the following classifier fusion techniques: hard com-
biners (based on Type I classifiers) and soft combiners (based
on Type III classifiers) [23]. For the second fusion approach,
several soft-combination approaches belonging to three differ-
ent philosophies have been explored: (a) CC non-trainable, (b)
CC trainable, and (c) CI combiners. The considered MCS has
been employed with a pool of 7 state-of-the-art classifiers spe-
cific or suitable for mobile traffic [7, 8, 10]. Its evaluation has
been performed on an actual dataset describing traffic from 49
(resp. 45) apps in Android (resp. iOS) devices provided by a
solution provider.

The results have shown a performance gain of the MCS over
the best base classifier up to 9.5% (referring to macro recall
in the case of Android traffic). Such improvement has been
also shown to be quite general over different apps considered,
given the homogeneously-reduced error-patterns observed by
comparing the confusion matrices of the best base classifier and
best (soft/hard) combiner. Nonetheless, the modularity of the
considered MCS allows its virtual application to other suitably-
devised classifiers for further performance enhancement.

The proposed framework has been also used to validate the
design of a novel pre-processing procedure for traces before

feature evaluation, highlighting that removing zero-payload
packets before temporal segmentation of traces into SBs re-
sulted in the highest performance. Conversely, traces cleans-
ing from TCP retransmissions has been found to be irrelevant
in terms of performance.

Finally, a further investigation of MCS performance ver-
sus subset selection of base classifiers (as well as ORA results)
has highlighted further improvement toward optimal (and low-
complexity, as the same performance of the whole classifiers set
has been obtained with a very small pool of selected classifiers)
combination of base classifiers.

Future directions will include: (i) a deeper analysis with
an enlarged pool, made of classifiers (possibly) fed with a
specifically-optimized set of features (selected by means of
information-theoretic measures and whose stability, with re-
spect to the dynamic nature of moving traffic, needs to be care-
fully evaluated [17, 18]), (ii) an intelligent pool subset selection,
(iii) the evaluation of the sampling impact [47], (iv) the analysis
of the proposed MCS in an early-TC context, (v) the develop-
ment of a MCS able to directly deal with imbalanced training
data through cost-sensitive learning of classifiers and combin-
ers [42, 43], and (vi) the implementation of the classifiers and
combination techniques in TIE [20].

14

References
[1] S. Valenti, D. Rossi, A. Dainotti, A. Pescapè, A. Finamore, M. Mellia,

Reviewing traffic classification, in: Data Traffic Monitoring and Analysis,
Springer, 123–147, 2013.

[2] A. Dainotti, A. Pescapé, K. C. Claffy, Issues and future directions in traffic
classification, IEEE Network 26 (1) (2012) 35–40.

[3] A. Callado, C. Kamienski, G. Szabó, B. P. Gero, J. Kelner, S. Fernandes,
D. Sadok, A survey on internet traffic identification, IEEE Communica-
tions Surveys & Tutorials 11 (3) (2009) 37–52.

[4] T. T. T. Nguyen, G. Armitage, A survey of techniques for internet traffic
classification using machine learning, IEEE Communications Surveys &
Tutorials 10 (4) (2008) 56–76.

[5] G. Aceto, A. Dainotti, W. De Donato, A. Pescapé, PortLoad: taking the
best of two worlds in traffic classification, in: IEEE Conference on Com-
puter Communications (INFOCOM) Workshops, 2010, 1–5, 2010.

[6] R. Antonello, S. Fernandes, C. Kamienski, D. Sadok, J. Kelner, I. GóDor,
G. Szabó, T. Westholm, Deep packet inspection tools and techniques in
commodity platforms: Challenges and trends, Journal of Network and
Computer Applications 35 (6) (2012) 1863–1878.

[7] D. Herrmann, R. Wendolsky, H. Federrath, Website fingerprinting: at-
tacking popular privacy enhancing technologies with the multinomial
Naïve-Bayes classifier, in: Proceedings of the ACM workshop on Cloud
computing security (CCSW), 31–42, 2009.

[8] M. Liberatore, B. N. Levine, Inferring the source of encrypted HTTP con-
nections, in: Proceedings of the 13th ACM conference on Computer and
communications security (CCS), 255–263, 2006.

[9] B. Saltaformaggio, H. Choi, K. Johnson, Y. Kwon, Q. Zhang, X. Zhang,
D. Xu, J. Qian, Eavesdropping on fine-grained user activities within
smartphone apps over encrypted network traffic, in: Proc. USENIX Work-
shop on Offensive Technologies (WOOT’16, in conjunction with Secu-
rity’16), 2016.

[10] V. F. Taylor, R. Spolaor, M. Conti, I. Martinovic, Appscanner: Auto-
matic fingerprinting of smartphone apps from encrypted network traffic,
in: IEEE European Symposium on Security and Privacy (EuroS&P), 439–
454, 2016.

[11] A. Hajjar, J. Khalife, J. Díaz-Verdejo, Network traffic application identifi-
cation based on message size analysis, Journal of Network and Computer
Applications 58 (2015) 130–143.

[12] C.-N. Lu, C.-Y. Huang, Y.-D. Lin, Y.-C. Lai, High performance traffic
classification based on message size sequence and distribution, Journal of
Network and Computer Applications 76 (2016) 60–74.

[13] Y.-D. Lin, C.-N. Lu, Y.-C. Lai, W.-H. Peng, P.-C. Lin, Application clas-
sification using packet size distribution and port association, Journal of
Network and Computer Applications 32 (5) (2009) 1023–1030.

[14] G. Aceto, D. Ciuonzo, A. Montieri, A. Pescapé, Traffic Classification of
Mobile Apps through Multi-classification, in: accepted at IEEE Global
Communications Conference (GLOBECOM), 2017.

[15] L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule, K. Salamatian, Traf-
fic classification on the fly, ACM SIGCOMM Computer Communication
Review 36 (2) (2006) 23–26.

[16] L. Bernaille, R. Teixeira, K. Salamatian, Early application identification,
in: ACM CoNEXT conference, 6, 2006.

[17] A. Este, F. Gringoli, L. Salgarelli, On the stability of the information car-
ried by traffic flow features at the packet level, ACM SIGCOMM Com-
puter Communication Review 39 (3) (2009) 13–18.

[18] L. Peng, B. Yang, Y. Chen, Z. Chen, Effectiveness of statistical features
for early stage internet traffic identification, International Journal of Par-
allel Programming 44 (1) (2016) 181–197.

[19] A. Dainotti, A. Pescapé, C. Sansone, Early classification of network traffic
through multi-classification, in: International Workshop on Traffic Moni-
toring and Analysis (TMA), Springer, 122–135, 2011.

[20] W. De Donato, A. Pescapé, A. Dainotti, Traffic identification engine: an
open platform for traffic classification, IEEE Network 28 (2) (2014) 56–
64.

[21] H. He, C. Che, F. Ma, J. Zhang, X. Luo, Traffic classification using en-
semble learning and co-training, in: WSEAS Proceedings of the 8th con-
ference on Applied informatics and communications (AIC), 2008.

[22] G. Szabo, I. Szabo, D. Orincsay, Accurate traffic classification, in: IEEE
International Symposium on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM), 1–8, 2007.

[23] L. I. Kuncheva, Combining pattern classifiers: methods and algorithms,
John Wiley & Sons, 2004.

[24] L. I. Kuncheva, J. J. Rodríguez, A weighted voting framework for classi-
fiers ensembles, Knowledge and Information Systems 38 (2).

[25] S. Dai, A. Tongaonkar, X. Wang, A. Nucci, D. Song, Networkprofiler:
Towards automatic fingerprinting of Android apps, in: Proceedings of
IEEE INFOCOM, 809–817, 2013.

[26] A. Tongaonkar, A Look at the Mobile App Identification Landscape,
IEEE Internet Computing 20 (4) (2016) 9–15, ISSN 1089-7801.

[27] T. Stöber, M. Frank, J. Schmitt, I. Martinovic, Who do you sync you are?
smartphone fingerprinting via application behaviour, in: Proceedings of
the 6th ACM conference on Security and privacy in wireless and mobile
networks (WISEC), 7–12, 2013.

[28] Q. Wang, A. Yahyavi, B. Kemme, W. He, I know what you did on your
smartphone: Inferring app usage over encrypted data traffic, in: IEEE
Conference on Communications and Network Security (CNS), 433–441,
2015.

[29] V. F. Taylor, R. Spolaor, M. Conti, I. Martinovic, Robust smartphone app
identification via encrypted network traffic analysis, IEEE Transactions
on Information Forensics and Security .

[30] H. F. Alan, J. Kaur, Can Android Applications Be Identified Using Only
TCP/IP Headers of Their Launch Time Traffic?, in: Proceedings of the
9th ACM Conference on Security & Privacy in Wireless and Mobile Net-
works, ACM, 61–66, 2016.

[31] W. M. Shbair, T. Cholez, J. Francois, I. Chrisment, A multi-level frame-
work to identify HTTPS services, in: IEEE/IFIP Network Operations and
Management Symposium (NOMS), 240–248, 2016.

[32] T. Bakhshi, B. Ghita, On Internet Traffic Classification: A Two-Phased
Machine Learning Approach, Journal of Computer Networks and Com-
munications .

[33] M. Conti, L. V. Mancini, R. Spolaor, N. V. Verde, Analyzing android
encrypted network traffic to identify user actions, IEEE Transactions on
Information Forensics and Security 11 (1) (2016) 114–125.

[34] M. Shen, M. Wei, L. Zhu, M. Wang, Classification of Encrypted Traffic
with Second-Order Markov Chains and Application Attribute Bigrams,
IEEE Transactions on Information Forensics and Security .

[35] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, D. Estrin, A first
look at traffic on smartphones, in: Proceedings of the 10th ACM SIG-
COMM conference on Internet measurement, ACM, 281–287, 2010.

[36] L. Breiman, Random forests, Machine learning 45 (1) (2001) 5–32.
[37] R. Alshammari, A. N. Zincir-Heywood, Can encrypted traffic be identi-

fied without port numbers, IP addresses and payload inspection?, Com-
puter networks 55 (6) (2011) 1326–1350.

[38] Y. S. Huang, C. Y. Suen, A method of combining multiple experts for the
recognition of unconstrained handwritten numerals, IEEE Transactions
on Pattern Analysis and Machine Intelligence 17 (1) (1995) 90–94.

[39] D. M. J. Tax, R. P. W. Duin, M. V. Breukelen, Comparison between prod-
uct and mean classifier combination rules, in: Proc. Workshop on Statis-
tical Pattern Recognition, Prague, Czech, 1997.

[40] G. Fumera, F. Roli, Performance analysis and comparison of linear com-
biners for classifier fusion, Structural, Syntactic, and Statistical Pattern
Recognition (2002) 47–64.

[41] J. A. Benediktsson, J. R. Sveinsson, O. K. Ersoy, P. H. Swain, Parallel
consensual neural networks, IEEE Transactions on Neural Networks 8 (1)
(1997) 54–64.

[42] Q. Liu, Z. Liu, A comparison of improving multi-class imbalance for
internet traffic classification, Information Systems Frontiers 16 (3) (2014)
509–521.

[43] L. Peng, H. Zhang, Y. Chen, B. Yang, Imbalanced traffic identification us-
ing an imbalanced data gravitation-based classification model, Computer
Communications 102 (2017) 177–189.

[44] N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer, Synthetic
Minority Over-sampling Technique, Journal of Artificial Intelligence Re-
search 16 (2002) 321–357.

[45] I. H. Witten, E. Frank, Data Mining: Practical Machine Learning Tools
and Techniques, 2nd ed., Morgan Kaufmann, 2005.

[46] A. Panchenko, L. Niessen, A. Zinnen, T. Engel, Website fingerprinting
in onion routing based anonymization networks, in: Proceedings of the
10th annual ACM workshop on Privacy in the electronic society, ACM,
103–114, 2011.

[47] D. Tammaro, S. Valenti, D. Rossi, A. Pescapé, Exploiting packet-
sampling measurements for traffic characterization and classification, In-
ternational Journal of Network Management 22 (6) (2012) 451–476.

15

Table 6: F-measure (%) of hard combiners as function of the pool of selected classifiers considering Android (iOS) traffic. Highlighted values:
maximum per pool, maximum per combiner, overall maximum.

Pool of classifiers Combiners

Her_Pure Her_TF Her_Cos Lib_NB Tay_RF Tay_SVC CART MV WMV REC NB BKS WER

X X X X X X X 76.1 (73.8) 76.7 (73.9) 76.1 (73.6) 74.7 (72.3) 75.7 (72.7) 73.4 (70.2)
X X X X X X 75.7 (72.8) 76.4 (73.3) 75.5 (72.7) 74.7 (71.8) 74.8 (70.4) 73.3 (69.8)
X X X X X 73.1 (69.7) 73.8 (70.1) 73.0 (69.9) 72.7 (70.9) 71.4 (68.3) 73.8 (70.6)

X X X X 76.3 (73.2) 76.7 (73.8) 76.3 (73.9) 74.8 (72.7) 73.0 (69.9) 73.6 (70.4)
X X X 77.5 (77.6) 77.2 (76.0) 77.7 (77.0) 75.7 (75.7) 70.0 (67.8) 72.9 (69.7)
X X 75.1 (73.2) 75.1 (73.2) 75.4 (73.6) 74.4 (74.0) 71.5 (69.0) 73.1 (70.9)

Table 7: F-measure (%) of soft combiners as function of the pool of selected classifiers considering Android (iOS) traffic. Highlighted values:
maximum per pool, maximum per combiner, overall maximum.

(a) Class-conscious (CC) non-trainable combiners (1).

Pool of classifiers Combiners

Her_Pure Her_TF Her_Cos Lib_NB Tay_RF Tay_SVC CART Mean Maximum Minimum Median PP

X X X X X X X 73.8 (70.9) 55.0 (50.3) 39.3 (36.1) 76.9 (74.3) 39.5 (36.5)
X X X X X X 73.2 (70.4) 55.2 (50.7) 39.6 (36.1) 74.6 (72.2) 39.6 (36.3)
X X X X X 70.4 (67.7) 62.3 (60.9) 52.0 (51.3) 71.5 (69.1) 55.6 (55.1)

X X X X 75.7 (73.1) 71.6 (70.0) 64.0 (61.6) 76.3 (73.7) 67.5 (66.3)
X X X 74.8 (73.9) 71.1 (70.2) 64.7 (63.0) 76.6 (75.3) 67.9 (66.3)
X X 77.5 (74.1) 76.6 (72.8) 79.0 (75.2) 77.5 (74.1) 75.8 (73.1)

(b) Class-conscious (CC) non-trainable combiners (2).

Pool of classifiers Combiners

Her_Pure Her_TF Her_Cos Lib_NB Tay_RF Tay_SVC CART Trim Mean Harm Mean Geom Mean Gen Mean

X X X X X X X 76.2 (73.5) 39.3 (35.9) 39.6 (36.5) 75.7 (73.2)
X X X X X X 75.5 (72.7) 39.5 (36.2) 39.8 (36.1) 74.6 (72.2)
X X X X X 71.9 (69.0) 52.3 (51.8) 58.7 (56.5) 71.3 (69.1)

X X X X 76.3 (73.7) 65.2 (62.1) 72.1 (68.2) 76.6 (74.4)
X X X 76.7 (75.3) 65.1 (63.5) 71.5 (67.8) 76.3 (75.7)
X X 77.5 (74.1) 79.2 (75.7) 79.6 (76.8) 78.8 (75.3)

(c) Class-conscious (CC) trainable combiners.

Pool of classifiers Combiners

Her_Pure Her_TF Her_Cos Lib_NB Tay_RF Tay_SVC CART Fuzzy Integral K weights KL weights

X X X X X X X 75.6 (72.2) 75.2 (71.7) 79.1 (76.8)
X X X X X X 70.5 (70.4) 72.1 (69.2) 79.4 (76.8)
X X X X X 72.0 (69.4) 73.5 (69.8) 79.3 (76.4)

X X X X 72.3 (70.7) 74.9 (72.9) 79.4 (76.5)
X X X 72.9 (71.0) 76.3 (73.6) 78.8 (76.2)
X X 71.6 (69.3) 76.7 (73.1) 78.2 (75.1)

(d) Class-Indifferent (CI): Decision Templates (DT) and Dempster-Shafer (DS) approaches.

Pool of classifiers Combiners

Her_Pure Her_TF Her_Cos Lib_NB Tay_RF Tay_SVC CART DT-SE DT-L1 DT-FSD DS-L2

X X X X X X X 73.1 (69.1) 72.8 (70.7) 72.5 (69.3) 73.2 (69.7)
X X X X X X 73.1 (69.1) 72.8 (70.8) 72.4 (69.3) 73.2 (69.5)
X X X X X 70.5 (67.7) 68.8 (66.9) 68.1 (65.5) 70.2 (67.8)

X X X X 73.1 (70.6) 72.5 (69.3) 72.2 (70.1) 72.8 (70.2)
X X X 73.7 (72.0) 74.1 (71.5) 73.3 (72.2) 73.9 (71.7)
X X 73.3 (70.3) 73.9 (70.2) 73.7 (69.5) 73.2 (70.1)

Table 8: Maximum Improvement Over Best Classifier (MIOBC) of the F-measure (%), as function of the pool of selected classifiers, for each
class of hard and soft combiners, considering Android (iOS) traffic.

Pool of classifiers Combiners

Her_Pure Her_TF Her_Cos Lib_NB Tay_RF Tay_SVC CART Hard CC non-trainable CC trainable CI

X X X X X X X +4.4 (+4.5) +4.6 (+4.9) +6.8 (+7.4) +0.9 (+1.3)
X X X X X X +4.1 (+3.9) +3.2 (+3.3) +7.1 (+7.4) +0.9 (+1.4)
X X X X X +1.5 (+1.5) -0.4 (-0.3) +7.0 (+7.0) -1.8 (-1.6)

X X X X +4.4 (+4.5) +4.3 (+5.0) +7.1 (+7.1) +0.8 (+1.2)
X X X +5.4 (+8.2) +4.4 (+6.0) +6.5 (+6.8) +1.8 (+2.8)
X X +3.1 (+4.2) +7.3 (+7.4) +5.9 (+5.7) +1.6 (+0.9)

16

	Introduction
	State-of-the-art Techniques for Traffic Classification of Mobile Apps
	Traffic Classification Definitions and Features
	Traffic View
	Statistical Features

	Classification Algorithms
	Classifier Fusion Techniques
	Hard Combiners
	Soft Combiners

	Experimental Results
	Dataset Description
	Performance Metrics
	Burst Threshold Impact on Performance and Hints on Dataset Pre-processing
	Classification Results

	Conclusions and Future Directions

