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Abstract—The spread of handheld devices has led to the
unprecedented growth of traffic volumes traversing both local
networks and the Internet, appointing mobile traffic classification
as a key tool for gathering highly-valuable profiling information,
other than traffic engineering and service management. However,
the nature of mobile traffic severely challenges state-of-art
Machine-Learning (ML) approaches, since the quickly evolving
and expanding set of apps generating traffic hinders ML-based
approaches, that require domain-expert design. Deep Learning
(DL) represents a promising solution to this issue, but results in
higher completion times, in turn suggesting the application of the
Big-Data (BD) paradigm. In this paper, we investigate for the first
time BD-enabled classification of encrypted mobile traffic using
DL from a general standpoint, (a) defining general design guide-
lines, (b) leveraging a public-cloud platform, and (c) resorting to a
realistic experimental setup. We found that, while BD represents
a transparent accelerator for some tasks, this is not the case for
the training phase of DL architectures for traffic classification,
requiring a specific BD-informed design. The experimental setup
is built upon a three-dimensional investigation path in the BD
adoption, namely: (i) completion time, (ii) deployment costs, and
(iii) classification performance, highlighting relevant non-trivial
trade-offs.

Index Terms—traffic classification; mobile apps; big data; deep
learning; Android apps; iOS apps; encrypted traffic.

I. INTRODUCTION

Traffic Classification (TC) consists in inferring the appli-
cation (or service) generating the observed network traffic.
Currently, TC is both fueled and challenged by the huge
and increasing amount of mobile traffic generated by the
widespread use of handheld devices (mobile data volume has
grown by ≈ 88% only between 2017 and 2018 [1]). Hence, the
interest in classifying mobile traffic is raising nowadays, for
the purpose of e.g., differentiated billing, personalized adver-
tising, cyber-crime detection and prevention, while extracting
valuable profiling information in the process [2].

Over time, the popular adoption of dynamic ports and
encrypted protocols (clustered to a few well-known ports) [3],
has increasingly challenged accurate TC, crippling traditional
port-based and Deep Packet Inspection (DPI) techniques [4],
still effective only in closed-world scenarios (e.g., enterprise
networks) enabled by man-in-the-middle proxies [5]. In the
mobile-traffic context, achieving targeted TC performance is
further undermined by a successful multi-platform framework-
based development and distribution model [6], implying (i) the
embedding of common (third-party) network services to im-
plement app features; (ii) the quick proliferation of (similar)

apps to discriminate from; (iii) a fast-paced update cycle of
apps, development frameworks, and operating systems.

For TC all these characteristics impair app-fingerprints
collection, definition, and update, also possibly reducing the
number of training samples available per app, due to limited
time between updates. While classifiers based on Machine
Learning (ML) have been proposed to cope with the shortcom-
ings of port-based and DPI techniques, they resulted unable to
keep the pace of mobile network traffic evolution [7, 8]. The
main reason is that standard ML classifiers are underpinned by
the design of handcrafted (i.e. domain-expert driven) features,
which in TC context usually correspond to statistics extracted
from the sequence of packets [7] or exchanged messages [9].
Unfortunately, such process is time-consuming, unsuited to
automation, and thus unsuccessful in practical mobile TC.

Recently, a cutting-edge subset of ML techniques, known
as Deep Learning (DL) [10], has emerged as the springboard
toward the fulfillment of high performance in the dynamic and
challenging (encrypted) TC context, allowing to train classi-
fiers directly from input data by automatically distilling struc-
tured and complex feature representations [10]. Accordingly,
several works recently appeared tackling TC via DL [11–14],
but such approach resulted thorny, and generally less well
understood than standard ML [15]. Indeed, DL algorithms may
generate learning networks with a very dense and complex
structure [10], whose training may result in completion times
orders-of-magnitude higher than those acceptable according to
the constraints of the specific application domain.

The constant repetition of tasks requiring high computa-
tional power and strict time constraints is the target of Big-
Data (BD) frameworks. Hence, leveraging BD parallelization
potential is sought to be a solution to DL-based TC. However,
although BD framework embodies a transparent accelerator to
separable computation tasks (e.g. the test phase of inference
systems), this is not the case for non-naturally-parallelizable
ones, like the optimization in DL training procedure [16].

This motivated our research, in which for the first time
in literature we investigate and experimentally evaluate the
adoption of DL-based network traffic classification strategies
as supported by BD frameworks. In more details, pursuing our
analysis along three different (but inter-playing) dimensions—
i.e. classification performance, training completion time, and
costs—we designed, deployed, and evaluated state-of-art DL
networks (1D-CNN and LSTM) for classifying encrypted
mobile traffic via BD. In our experimental campaigns, we



ran classification tasks adopting the BD platform of a public-
cloud service provider and leveraging human-generated mobile
and encrypted traffic datasets. This provides results related to
popular and reproducible setups as well as to real-world traffic.
Accordingly, our work is able to deliver a picture detailed at a
depth never achieved before, producing interesting outcomes
and useful guidelines for both researchers and practitioners
willing to harvest the benefits deriving from the joint adoption
of DL and BD in network traffic analysis.

The rest of the paper is organized as follows. Sec. II briefly
reviews the existing literature on ML/DL-based TC and Big
Data network analytics; Sec. III describes the reference Big
Data-enabled DL framework for mobile TC, focusing on key
aspects pertaining to the design phase; Sec. IV describes the
experimental evaluation setup considered, with corresponding
results discussed in Sec. V; Sec. VI ends our work with
conclusions and future avenues of research.

II. RELATED WORK

In this section we position our contribution against both
(a) the existing proposals for mobile TC classification based
on ML/DL and (b) the available BD-based solutions to address
networking issues.

Various works have tackled mobile TC in recent years,
mostly via standard ML techniques and often under encrypted-
traffic assumption [7, 8]. Also, a number of proposals have
lately emerged proving the appeal of DL to Internet TC. How-
ever, for the latter only initial design attempts are provided,
all related to either non-mobile [12–14] or non-encrypted
scenarios [11] (except for our previous work [15]).

In line with the interest of the scientific community, many
works have employed BD solutions in the broad field of
networking to capitalize the value of network data, notwith-
standing the constraints they impose. These works mostly fall
in the area of either network security [17–19], or mobile and
social networks analytics [20, 21], and (almost) all benefit
from distributed computations aimed at reducing the time
required for training ML models. Instead, only a few works
specifically leveraged BD solutions to focus on network TC
via ML [22, 23] (with only [23] tackling the mobile case).

Recently, a few frameworks have bloomed for leveraging
BD infrastructures to train (and run) DL algorithms in different
flavours. However, only a very limited set of works has already
adopted BD for addressing networking issues through DL
algorithms [21, 24]. Alsheikh et al. [21] focused on an activity
recognition based on mobile-device data and evaluated the
proposed setup in terms of both speedup efficiency and accu-
racy. Differently, Abeshu and Chilamkurti [24] envisaged DL
adoption in fog-to-things communication scenario for attack
detection. Nonetheless, all these works mainly focused on how
BD frameworks are able to reduce the completion time of the
DL heavy tasks and—to the best of our knowledge—none
of them evaluated the detrimental effect of distributing data-
analysis tasks across several (loosely coordinated) workers.

To the best of authors’ knowledge, (i) no work has per-
formed TC by means of BD-enabled DL classifiers to date.
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Fig. 1: Scheme for the proposed BD-enabled DL mobile TC solution.

Equally important, (ii) the challenging scenario of encrypted
mobile traffic data has been only touched tangentially within
the BD framework, even considering (classic) ML techniques.
Finally, (iii) the validation leveraging human-generated traf-
fic—that is of paramount importance toward real-world imple-
mentations in mobile contexts—has been often overlooked.

III. DESIGN OF BD-ENABLED DL-BASED MOBILE TC

A basic scheme for the proposed BD-enabled DL mobile
classification solution is reported in Fig. 1. Its related design
choices can be categorized in those strictly concerning the TC
workflow (that are BD-independent) and those related to the
training mechanisms enforced by the DL architectures when
deployed on a BD framework (that are BD-dependent, by
definition). The former are refreshed in Sec. III-A, while the
latter are discussed in Sec. III-B.

A. DL-based Mobile TC Workflow

In order to design a DL system for TC, milestone design
choices should be made about: (i) the traffic object, i.e. the
traffic aggregate atom which induces the segmentation crite-
rion; (ii) the type(s) of input data, i.e. the number and the
sets of input selected from each traffic object to feed the DL
architecture; (iii) the DL architecture (e.g. the composition
instance of elementary learning layers) coping with input
constraints originating from the design choices concerning the
type of input data. We briefly discuss these aspects in the
following, pointing to [15] for a more detailed analysis.

The traffic object defines how raw traffic is segmented into
multiple discrete units. Most related works considered either
flows or biflows [4], with the latter choice leading to better
performance. In detail, a flow is a stream of packets sharing
the same 5-tuple (i.e. source IP and port, destination IP and
port, and transport-level protocol) taking into account their
directions. Differently, in a biflow the source and destination
(IP, port) pairs can be swapped. Another appealing choice is
the so-called Service Burst (SB), recently proposed in mobile
TC [7], and defined by aggregating packets with an inter-
packet time smaller than a given “burst” threshold and then
grouping those that belong to biflows with the same transport



protocol and destination (IP, port). Still, SBs have not seen
their direct application to security and policy enforcement so
far, as opposed to established (bi-)flows.

The next step after segmentation is to extract for each
TC object the corresponding unbiased input set(s), especially
those suited for “early” TC [4] (i.e. using only the first portion
of traffic aggregate to take a decision). The most relevant types
of input data [15] of a generic TC object ingested by DL
architectures may be roughly grouped within two categories:
(i) the first Nb bytes of the payload at transport level or
higher [11, 12]; (ii) selected informative data fields of the first
Np packets [14]. In the first case, the payload data being fed to
the DL architecture is represented in binary format, arranged
in a byte-wise fashion and normalized so as to constrain it
within [0, 1]. In the second case, the type of input data is
represented by selected protocol fields (not pertaining to the
explicit inspection of encrypted payload, e.g. the packet size)
of the first Np packets.1

Finally, the DL architectures are topped with a softmax
layer providing inference among L possible apps, and are
obtained by composition of elementary layers [10], whose
common choices are dense, convolutional, pooling, and re-
current layers. Dense layers are the simplest atoms of DL
architectures, consisting of a linear transformation and an
entry-wise activation. Convolutional and pooling layers are
the basic blocks of Convolutional Neural Networks (CNNs),
made of a set of translation-invariant filters (to extract fea-
tures of a certain region) and down-sampling intermediate
representations (to reduce complexity and mitigate overfitting),
respectively. Recurrent layers present “loopy” unit connections
and have in Long Short-Term Memory (LSTM) and gated
recurrent unit their most popular variants: they are in charge
of “recalling” values (via a state vector) over time and accept
as input a vector sequence, whereas they output either the final
state or its entire time-evolution. An exhaustive evaluation of
the DL architectures is out of the scope of this work. We refer
to [15] for their selection, the choice of the parameters, and
an in-depth discussion of the related aspects.

B. Training DL-based Mobile TC architectures on Big Data

The learning process for DL architectures may be slow and
computationally demanding, since they consist of many hidden
layers, millions of parameters and require a high number of
training samples. BD solutions are meant to offer a way to
address these issues, providing processing frameworks able
to parallelize computation tasks by splitting the information
base and distributing it across N cooperating working nodes
(workers) coordinated by a single central node (master).

Specifically, BD-enabled DL relies on data parallelism and
federated learning [16] to reduce the overall training time of
the considered DL architecture, by capitalizing the peculiarity
of BD paradigm. In essence, the workers w1, . . . , wN are given
N distinct partitions D1, . . . ,DN of the training set D to

1We remark that instances longer (resp. shorter) than the considered fixed-
length (Nb or Np) data inputs are truncated (resp. zero-padded) to the
designed length of bytes (Nb) or packets (Np).

learn independent replicas of the (same) given DL architecture.
Clearly, deploying a higher number of workers allows to
enhance the parallelization (the higher N , the smaller the size
of the partitions D1, . . . ,DN assigned to the workers). On
the other hand, each worker is able to learn only a “data-
partial” DL model, being the outcome of its limited-view
training partition, in principle. Additionally, since learning
is based on (sophisticated versions of) stochastic gradient
descent, the process of the nth worker is naturally iterative and
performed over Nepo “epochs”, composed of different mini-
batches (scanning the whole Dn), with the model at time t
completely specified by the parameter set θnt .

In federated learning different workers are federated by the
master to optimize a central DL model (specified at time t
by the parameter set θ̄t) exploiting their DL model replicas
by minimizing a single (common) loss function L(·) (for TC
a categorical cross-entropy [10]) and implicitly capitalizing
the whole training set D. This is achieved by periodically
synchronizing the state of each worker with the (centralized)
view of the master, whose model is incrementally updated
leveraging the information provided by the workers. The
master is in charge of the coordination mechanism and has the
responsibility to incorporate model updates periodically com-
ing from the workers (worker commits), and to serve requests
of the most updated central model (worker pulls). Between
subsequent commits each worker learns independently on its
training partition. The worker update frequency F at which
the workers execute a commit is thus a design parameter. Such
frequency ranges from one update per mini-batch to exchanges
after several epochs, the higher (resp. lower) values leading to
tighter (resp. looser) coupling.

Additionally, depending on the communication protocol
governing the exchange of commits/pulls between the workers
and master, BD-enabled DL approaches can be categorized
into two main groups: synchronous and asynchronous. In the
former case, commits from the workers are aligned through
a synchronization barrier, and the pull operation puts all the
nodes in the same state θ̄t+1 after the master aggregation. In
the latter case, commits from the workers are handled in a
first-come first-served fashion by the master, which provides
the updated central model θ̄t+1 based on the message from
the worker. Although the latter solution can incur the side-
effect that some workers are computing (and committing)
updates based on old central-model states (because the master
incorporates updates into the central model asynchronously),
it is more time-efficient because it does not include locking
mechanisms (that make all workers wait for the slowest
one: the so-called straggler issue) and works well also with
heterogeneous hardware.

Lastly, the federated-optimization algorithm is another
degree of freedom of the BD DL-based TC system proposed.
It is defined by both local workers computation and master
update policy and is tightly coupled to the communication pro-
tocol choice. Precisely, for each update of the central model,
in the synchronous (resp. asynchronous) case the master uses
all the commits at once (resp. one commit at a time).



Accordingly, the adoption of BD framework to support the
learning process of DL architectures is expected to greatly
reduce the time required for its training on the whole D.
However this benefit comes at a cost: since no node has the
chance of working on the whole dataset, the DL architecture
resulting from this training procedure represents a sub-optimal
solution to the TC problem, exposing performance possibly
worse than that of a centralized solution (with much longer
processing periods but working on the D training set as a
whole). Hence, next section investigates the dependence of DL
training in mobile TC on the non-transparent BD accelerator.

IV. EVALUATION SETUP

In this section we detail the setup designed and adopted for
the experimental evaluation. First, in Sec. IV-A we describe the
mobile TC problems addressed and the corresponding datasets
leveraged for the evaluation. Then, in Sec. IV-B we specify
the BD-enabled DL TC architecture deployed and the tools we
adopted. Finally, in Sec. IV-C we introduce the performance
metrics to investigate the proposed TC system along different
dimensions induced by BD solutions.

A. Classification problems and description of the datasets

Our evaluation resorts to two datasets, either recommended
or produced by a global mobile solution provider2, associated
to different mobile and encrypted TC tasks (a summary is
given in Tab. I), to understand if and how the performance
of the different mobile TC problems are impacted by the
BD infrastructure. These datasets contain traffic from apps
running on both Android and iOS devices (covering the two
most popular mobile OSes), and have been collected by human
users instead of relying on bot-generated traffic, as opposed to
recent works on mobile TC [7]. For the sake of a consistent
assessment of almost all DL-based TC works published so
far [12, 14, 15], we have chosen to operate at the biflow
level. Finally, the ground truth has been obtained by labeling
each traffic trace with the generating app (running each app
separately limited the presence of background traffic).

The first (binary, L = 2) dataset (FB/FBM) was collected in
the ARCLAB laboratory at the University of Naples “Federico
II”. In detail, the capture sessions were run on a Xiaomi Mi5
and refer to either Facebook (FB) or Facebook Messenger
(FBM) traffic data. This dataset allows to evaluate the capa-
bility of the classifiers to discriminate between two apps with
extremely similar fingerprints, for e.g., billing differentiation.
More than 100 users were requested to perform various
activities for both the apps, including login/registration/logged-
use cases (to explore diversity). Overall, the dataset contains
> 34k instances (see Tab. I), with 19.3k (resp. 15.0k) biflows
generated by FB (resp. FBM), with a 56% (resp. 44%) share,
guaranteeing also a good balance between FB/FBM samples.

The second (multi-class, L > 2) dataset (iOS), contains
traffic generated by 45 iOS apps. This dataset was directly

2Due to NDA with the provider we can not report its name, details of its
network, detailed information on the datasets, nor release the datasets.

handled by the solution provider and is here explored for
evaluating TC for e.g. prioritization purposes.

We mention that the traces were generated by users with
different devices and OS/app versions, and were provided
already anonymized.3 Differently from FB/FBM dataset, in
this case we have 1 ÷ 48 traces per app, leading to a non-
negligible class imbalance.

B. Architecture deployment

Herein we detail the experimental setup designed and im-
plemented to evaluate the performance of the DL-based TC
solutions when deployed onto BD architectures.

In line with the strategies usually adopted today by en-
terprises aiming at achieving both technical and economical
advantages, we run all our experimental-evaluation campaigns
onto a cloud platform. In detail, we utilized the services of
Microsoft Azure, one of the market leaders among the cloud
providers. The impact of this decision on our analysis is two-
fold: (i) some of the following deployment choices depend
upon the options commercialized by the provider; (ii) the
adoption of a public-cloud platform puts under the spotlight
the economical expenditure generated by the execution of
DL tasks. Though this choice may place constraints on the
experimental analysis because of the finite budget available, it
allows us to further enrich our study with interesting results
along dimensions other than classification performance, such
as the cost charged to cloud customers for accomplishing
model training tasks (see Sec. IV-C).

All the results discussed in Sec. V have been obtained
leveraging Distributed Keras [16], a distributed DL framework
built on top of Apache Spark4 and Keras5. In details, we
relied on Azure Databricks6, which provides analytic services
based on an Apache Spark environment optimized for DL.
Distributed Keras provides several state-of-art optimization
algorithms (based on data-parallelism and federated learning)
and is claimed to reduce the time spent for training models
with respect to traditional centralized approaches.

Specifically, the inputs for the experimental setup (number
of workers N , worker update frequency F ) were selected
according to budget constraints as well as observed trends,
so as to explore satisfactorily the space generated by all their
combinations. In detail, we consider deployments with the
number of workers ranging from N = 2 to N = 16, while for
F we have considered values from one update per mini-batch
(i.e. ≈ 139 updates per epoch in our experimentation) to one
update every Nepo epochs (i.e. one single update per worker).

Furthermore, the setup of master and worker nodes was
chosen according to the offers of the cloud provider, by
adhering to the default setting which employs the same node
configuration for both the master and the workers. In detail,
general-purpose DS4v2 nodes (8 vCPUs, 28 GiB RAM, 0.698
e/hour) are used in all our experiments, with better-performing

3In detail, ≈ 85% of iOS traces were captured during 2016.
4https://spark.apache.org/.
5https://keras.io/.
6https://azure.microsoft.com/it-it/services/databricks/.



TABLE I: Datasets for the evaluation of BD-enabled DL architectures. Avg. trace duration is ≈ 5 mins. ET stands for Encrypted Traffic.

Dataset Type #Apps #Traces #Biflows ET OS Version Collection Source Main Aim

� Binary L = 2 > 1100 34.3k 91% Android 6.0.1 May ’17–Mar. ’18 Self-generated@UniNa Billing differentiation
 Multi-class L = 45 419 44.0k 60% 7.0–10.0 Sept. ’14–Jan. ’17 Mobile solutions provider Service prioritization

D32sv3 nodes (32 vCPUs, 128 GiB RAM, 2.456 e/hour)
leveraged for specific analyses, as detailed later.

Finally, the DL architectures selected are those with the
best performance (for each input type, see Sec. III-A) in a
centralized deployment [15]: a 1D-CNN [12] (fed with the
first Nb = 784 payload bytes of the transport level) and an
LSTM [14] (fed with four informative fields7, of first Np = 20
packets in a biflow). These correspond to 5.82M and 52.3k
(resp. 5.86M and 56.6k) training parameters for FB/FBM
(resp. iOS) dataset, respectively. Concerning the optimization
algorithm, we adopted the AEASGD (with Nepo = 90) [16],
being asynchronous and thus able to avoid the straggler issue.

C. Evaluation Metrics

Here we introduce the metrics adopted to evaluate the DL
architectures when deployed on (cloud) BD frameworks. In de-
tail, our experimental analysis resorts to a stable performance-
evaluation setup, based on a stratified ten-fold cross-validation.
Hence, for each of the metrics discussed in what follows,
we report its mean and the standard deviation. Notably, our
experimental evaluation is performed along three distinct di-
mensions: (i) training completion time, (ii) cloud deployment
cost, and (iii) classification effectiveness. We are interested
in investigating the trade-offs existing among these three
intertwined dimensions. The metrics defined and adopted for
each dimension are detailed in the following.
Training Completion Time. Since reducing the processing
time required for a task completion is arguably the major
driver leading to the adoption of BD architectures, we provide
a detailed evaluation of this key aspect, focusing on the
wallclock time T required for completing the training phase
of DL architectures.8 This analysis is of great interest since
mobile TC systems require frequent re-training operations, due
to aging of training data as a result of both app and OS
updates [7, 15]. Precisely, since (distributed) DL training is
performed on multiple epochs [10], we report such information
in a normalized way, as Wallclock Time Per-Epoch (WTPE).
Cloud Deployment Cost. Cloud services are characterized
by pay-as-you-go billing strategies, thus abolishing capital ex-
penditure for configuring and maintain the BD infrastructure.
Accordingly, here we consider the total cost C charged to the
cloud customers for running the processing tasks needed for
training the DL architecture. Specifically, our cost evaluation
function is C = (ρN+ρM )T , where N denotes the number of
workers, ρ (resp. ρM ) the hourly cost for deploying one worker
node (resp. the master), and T the Training Completion Time.

7Packet size, packet direction, TCP window size, inter-arrival time.
8We recall that time reduction trends of testing phase are less interesting,

due to perfect parallelization.

Classification effectiveness. Because BD frameworks do not
represent a transparent accelerator for the training phase of
DL-based traffic classifiers, to evaluate the effectiveness of the
corresponding DL-based TC solutions, the adopted evaluation
metrics include common classification measures [4] such as
the (macro) recall (i.e. the arithmetic average of per-app
accuracies) and F-measure (i.e. the harmonic mean of per-
app precision and recall, arithmetically averaged over all the
considered apps). Finally, we also consider confusion matrices
to identify the most frequent misclassification patterns.

V. RESULTS AND DISCUSSION

Herein we discuss the results of the experimental campaigns
we run deploying the designed system on Azure PaaS to
evaluate its performance against two mobile TC tasks (binary
and multi-class, see Sec. IV-A), along the three evaluation
dimensions (completion time, cost, and classification effective-
ness, see Sec. IV-C). For each of these, we assess the impact
of different design choices such as the number of workers (N ),
the update frequency (F ), and the DL architecture.
Completion Time vs. Number of Workers (N ).
Figs. 2a and 2d show the WTPE for the two considered DL-
based TC architectures on FB/FBM and iOS datasets, respec-
tively, when increasing N from 2 to 16. Herein, the worker
update frequency F is set to one update per epoch. To stress
the overhead incurred by each BD-enabled DL architecture,
we consider the corresponding WTPE T1 needed to run it in
a centralized fashion, i.e. when one worker is in charge of
processing the whole training set. Accordingly, we report the
ideal-WTPE curve, defined as T1/N and corresponding to a
lower-bound on the achievable WTPE.

The results show an intuitive decreasing trend with N for
both TC tasks (with slightly higher WTPE for iOS, in line
with the more complex classification task), thus confirming
the appeal of the BD framework which is able to reduce
the training time up to −91.8% (resp. −88.5%) when a
1D-CNN is used in the case of FB/FBM (resp. iOS), with
respect to an analogous centralized deployment. For example,
with N = 8 workers, ≤ 10s WTPE is required in both
TC tasks. Additionally, the overhead incurred with respect
to the theoretical curve also increases for higher values of
N (i.e. the larger N , the higher the overhead), but remains
negligible. Finally, a direct comparison of the two different DL
architectures shows that the more complex 1D-CNN benefits
more from parallelization with respect to the “lighter” LSTM.
Cost vs. Number of Workers (N ). Figs. 2b and 2e show
the impact of the number of workers (N ∈ {2, 4, 8, 16})
on the training cost of the two considered DL architectures
in line with the pay-as-you-go billing model enforced, when
addressing mobile TC tasks of FB/FBM and iOS datasets,
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Fig. 2: Impact of no. of workers on WTPE, Monetary cost, and F-measure for FB/FBM dataset (a, b, and c) and for iOS dataset (d, e, and
f). Both 1D-CNN and LSTM architectures are considered. Average on 10-folds with ±3σ confidence bands are shown.
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(c) 8 workers.
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(d) 16 workers.

Fig. 3: Confusion matrices of 1D-CNN on iOS dataset for centralized case (a) and BD-solution with N ∈ {2, 4, 16} workers (b-c-d) ([%]
in log scale).

respectively (F is again set to one update for epoch). To stress
the overhead cost incurred by BD-enabled DL architectures,
we also report (for each architecture) the ideal-cost curve
corresponding to (ρN+ρM )·(T1/N), i.e. the cost required to
train the DL architecture in the ideal case the BD framework
guarantees perfect parallelization, being a lower-bound on the
achievable cost—with ρM = ρ in our case (see Sec. IV-B).
While the hourly cost for cloud system deployment linearly
increases with N (namely ρ (N + 1)), the resulting total cost
C for completing the training phase is also proportional to
the required time T . As the training time may deviate from
its ideal value as shown in the previous analysis for higher
values of N (e.g. only negligible benefits are achieved moving
N from 8 to 16 when using 1D-CNN for iOS), similarly, the
resulting monetary cost may increase as the decreased training

time does not always match a balanced gain in terms of hourly
cost. Accordingly, while the deployment cost for LSTM (for
both mobile TC tasks) and 1D-CNN (for FB/FBM) almost
saturates for larger values of N , this is not the case for 1D-
CNN for iOS. In the latter case (see Fig. 2e), deploying a larger
number of workers (N = 16) leads to significantly higher costs
(+54.2% with respect to the case N = 8) while the benefit in
terms of reduced training time is negligible (−2.3%).
Classification Effectiveness vs. Number of Workers (N ).
Figs. 2c and 2f report the effectiveness of the two DL
architectures accomplishing binary and multi-class mobile TC
tasks respectively, when deployed on clusters where N ranges
from 2 to 16. Experimental results witness (solid lines) how the
degree of parallelization hinders the classification performance
achieved, with F-measure values significantly decreasing as N
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Fig. 4: Impact of no. of epochs (reciprocal of worker update frequency) on WTPE (a), Monetary cost (b), and F-measure (c) for FB/FBM
dataset and 1D-CNN (L7-784) architecture. Average on 10-folds with ±3σ confidence intervals are shown.

increases. Accordingly, the worst classification performance is
observed when relying on a 16-node cluster, namely −53.4%
(resp. −41.5%) compared to a centralized solution when ad-
dressing binary (resp. multi-class) classification via 1D-CNN
(resp. LSTM). On the other hand, classification performance
obtained by 2-node deployments are closer to those attainable
by centralized DL implementations (dashed lines). To deepen
the above investigation, we show in Fig. 3 the confusion
matrices pertaining to the (best performing) 1D-CNN on iOS
dataset by investigating the error patterns for N ∈ {2, 8, 16} in
comparison to the centralized case. Confusion matrices show
a general degradation with growing N , with some apps not
recognized in most of the cases, as also confirmed by the
corresponding recall (e.g. 47.50% for N = 16).

Such results witness how the adoption of DL deployments
leveraging the power of BD frameworks may generate sig-
nificant performance loss: though current solutions provide
ready-to-use implementations with interfaces similar to (if not
matching) the centralized counterparts, DL training stage is not
naturally parallelizable, thus resulting in worse classification
results due to reduced training accuracy collectively provided
by workers when operating on smaller dataset portions.

Impact of worker update frequency (F ). In Fig. 4, we
evaluate the three considered dimensions versus worker update
period 1/F (reported in terms of either number or fraction
of epochs), with a range 1

F ∈ [1/139, 90] epochs (i.e. from
one update every mini-batch to one update during the whole
training phase). For brevity and budget constraints, the analysis
focuses on the best performing BD-enabled DL architecture
(i.e. 1D-CNN) trained and tested on the binary FB/FBM
dataset with N = 4 workers. For both WTPE and cost analyses
(Figs. 4a and 4b), we consider as the lower-bound counterparts
the values obtained considering the loosest coupling between
the workers and the master ( 1

F = 90), while for the F-
measure the upper-bound value of the centralized case. As
expected, both WTPE and cost (Figs. 4a–4b) increase with
F . Interestingly, a steep reduction is evident when passing
from one update every single mini-batch to one every 7 mini-
batches (i.e. from 1

F = 1
139 to 1

F = 1
20 epoch) with a −80.3%

decrease. On the other hand, when the update period goes from
1
F = 1

20 to 1
F = 90 the decrease is only −53.2%.

Finally, Fig. 4c shows the classification effectiveness in
terms of F-measure. The best performance is obtained with
1
4 ≤

1
F ≤ 10 with a significant degradation for 1

F ≤
1
10

and 1
F ≥ 30. Whilst worse performance is expected when the

exchange of updates is less frequent (right side of Fig. 4c),
this phenomenon is unexpected in the presence of tight
coupling (i.e. 1

F ≤
1
10 , left side of Fig. 4c). To shed light

on this evidence, we have performed additional experiments
(not shown for brevity) with better-performing worker/master
nodes (D32sv3). Results highlight that in this case the F-
measure obtained with 1

F = 1
7 and 1

F = 1
10 is comparable with

the best-performing case, thus not showing any performance
decrease due to the tight coupling. Nonetheless, the same
performance trend of Fig. 4c is observed for 1

F ≤
1
20 . This

result suggests that a computational bottleneck exists at the
master, hindering the correct collection of the updates from the
workers, hence resulting in a worse-performing DL model.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We tackled TC of mobile traffic via DL architectures sup-
ported by BD solutions, providing a comprehensive method-
ological evaluation and comparison, pursued along three dif-
ferent (intertwined) dimensions, i.e. training completion time,
costs, and classification performance. Specifically, we de-
signed, deployed, and evaluated TC state-of-art DL networks
for classifying encrypted mobile traffic via BD. In the exper-
imental campaign we adopted the BD platform of a leading
public-cloud service provider (Microsoft Azure) and leveraged
two human-generated mobile and encrypted traffic datasets.
Accordingly, our work provided an in-depth analysis never
achieved so far, producing interesting outcomes and useful
guidelines for harvesting the benefits deriving from the joint
adoption of DL and BD, with specific focus on mobile TC.

In detail, although the adoption of the BD framework
to support DL architectures significantly reduces the overall
training time (with even more significant trends expected in
larger datasets), especially in the case of high paralleliza-
tion, its non-transparent nature has a direct implication on



DL classification performance. Indeed, the joint use of data
parallelism and federated learning provides a final trained DL
architecture representing a sub-optimal solution to the TC
task, not reaching the performance of a centralized solution
(that takes longer times, but works on the training set as a
whole), with more marked effects in the high-parallelization
case (N = 16 workers in our experiments). Such performance
gap significantly depends also on the worker update frequency
F , and TC “centralized” performance may be approached
only through higher frequency values. Sadly, this inherent
tradeoff leads to higher computational overhead for the master
(viz. more powerful hardware required) and impacts on both
time and cost performance. This precludes a wallclock time
cut proportional to the number of workers, which reflects on
the cost unsuitability, highlighted by a cost-optimal number
of workers. Concluding, the above outcomes highlight the
dependence of BD-enabled DL-based mobile traffic classifiers,
in a non-trivial way, on (a) the degree of parallelization
and (b) the communication frequency of the BD architecture
supporting the training phase of DL-based traffic classifiers.

The present study motivates several research directions:
(i) deployment and validation of advanced BD-enabled
DL-based traffic classifiers, exploiting multimodal data fusion
and adopting more sophisticated DL layers (e.g. inception,
residual connections, etc.); (ii) accelerated exploitation of
massive unsupervised data for transfer learning, granted by
BD solutions; (iii) prototyping of BD-enabled DL architec-
tures able to exploit both model and data parallelism [16];
(iv) stream-based learning implementations [17] of BD-en-
abled DL-based traffic classifiers to account for concept drift.
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