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Abstract

Mobile Traffic Classification (TC) has become nowadays the enabler for valuable profiling information, other than being the
workhorse for service differentiation or blocking. Nonetheless, a main hindrance in the design of accurate classifiers is the adoption
of encrypted protocols, compromising the effectiveness of deep packet inspection. Also, the evolving nature of mobile network traf-
fic makes solutions with Machine Learning (ML), based on manually- and expert-originated features, unable to keep its pace. These
limitations clear the way to Deep Learning (DL) as a viable strategy to design traffic classifiers based on automatically-extracted
features, reflecting the complex patterns distilled from the multifaceted traffic nature, implicitly carrying information in “multi-
modal” fashion. Multi-modality in TC allows to inspect the traffic from complementary views, thus providing an effective solution
to the mobile scenario. Accordingly, a novel multimodal DL framework for encrypted TC is proposed, named MIMETIC, able
to capitalize traffic data heterogeneity (by learning both intra- and inter-modality dependences), overcome performance limitations
of existing (myopic) single-modality DL-based TC proposals, and support the challenging mobile scenario. Using three (human-
generated) datasets of mobile encrypted traffic, we demonstrate performance improvement of MIMETIC over (a) single-modality
DL-based counterparts, (b) state-of-the-art ML-based (mobile) traffic classifiers, and (c) classifier fusion techniques.

Keywords: traffic classification; mobile apps; Android apps; iOS apps; encrypted traffic; deep learning; automatic feature
extraction; multimodal learning.

1. Introduction

Thee efficacy of security and quality-of-service enforcement
devices, as well as network monitors, is limited (or qualitatively
hampered) when there is no accurate knowledge of the applica-
tion generating the traffic. The process inferring such informa-
tion, known as network Traffic Classification (TC), has a long-
standing application in many fields [1] and is facing unprece-
dented challenges due to the users massive shift toward mobile
devices (as witnessed by recent Internet traffic evaluations [2]),
leading to a multifaceted and evolving composition of network
traffic [3].

Hence, the appeal of mobile TC has bloomed nowadays, nur-
tured (other than usual TC drivers, e.g. service differentiation)
by valuable profiling information (e.g., to advertisers, security
agencies, and insurance companies), while also implying pri-
vacy downsides (e.g., recognition of context-sensitive appli-
cations, such as dating and health ones, and bring-your-own-
devices policies). The effort towards the protection of privacy
and security has fueled the widespread adoption of encrypted
protocols (TLS). This shift, together with the use of dynamic
transport ports or the clustering on a few well-known (and com-
monly unblocked) ports, resulted in the hampering of accurate
TC, as both Packet Inspection (DPI) and port-based techniques
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become ineffective [1]. As a consequence these traditional ap-
proaches remain effective only in closed-world (e.g. enterprise)
scenarios via application-level firewalls (analogous to man-in-
the-middle attacks) [4]. Also, achieving targeted TC perfor-
mance in mobile-traffic context is undermined by the presence
of several (similar) apps to discriminate from and a scarce num-
ber of training samples per app.

In this context, Machine Learning (ML) classifiers have
proved to be a good fit, since they suit also encrypted traffic
while not expressly relying on port information [5, 6, 7, 8].
However, their usual form resorts to the process of obtaining
handcrafted (domain-expert driven) features (e.g. packet se-
quence statistics), which is time-consuming, unsuited to au-
tomation, and it is unable to keep the pace of network traffic
evolution. Therefore, Deep Learning (DL) is emerging as the
stepping stone toward the fulfillment of high performance in
the dynamic and challenging (encrypted) TC contexts, allow-
ing to train classifiers directly from input data by automatically
distilling structured (and complex) feature representations [9].
Accordingly, several works recently appeared tackling TC via
DL [10, 11, 12, 13, 14, 15]. However, DL benefits should not
be taken for granted and its naïve adoption to encrypted TC
has been shown to imply misleading design choices and lead to
biased conclusions, due to the peculiar (and tricky) nature of
network traffic data [16]. Last but not least, the nature of traffic
data is heterogeneous and its whole capitalization is yet to be
achieved.

Indeed, most of these DL-based efforts have focused on one
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type of input information (e.g. payload bytes or header fields),
despite traffic data being naturally “multimodal”; this means
that the same concept can be described by different data types
(known as “views” or “modalities”). Hence, the main asset of
multimodal DL is the ability to automatically learn a hierarchi-
cal representation exploiting jointly all the available modalities,
instead of handcrafting modality-specific features for a given
ML approach [17].

Summary of the Contributions
Based on the aforementioned motivations, the main contri-

butions of this work are summarized as follows:

• We address the multi-view capitalization of traffic data via
a novel MultImodal DL-based MobilE TraffIc Classi-
fication (MIMETIC) framework, having the capability
of exploiting effectively the heterogeneous nature of the
different views of a TC object, by capturing both intra-
and inter-modalities dependence. Although the adoption
of multimodal DL is obtaining a growing and wider inter-
est in the scientific literature [17, 18, 19], no such approach
has been proposed in (mobile) TC literature to date, up to
our knowledge.

• Since the capitalization of multi-modality in DL architec-
tures is far from trivial [19], it requires a thorough design
which cannot ignore expertise from network traffic moni-
toring (e.g. the definition of a set of unbiased input views
[16, 20]). Hence, MIMETIC approach is carefully defined
herein in terms of (i) the general architecture and (ii) pro-
posed training procedure.

• Our MIMETIC approach is compared with single-
modality DL-based and state-of-the-art ML-based traf-
fic classifiers. Such detailed comparison is performed
(a) through the systematic performance evaluation ground-
work provided in [16, 20] and (b) based on three datasets
collected by human users, so as to draw close-to-general
take-aways.

• Experimental results highlight a performance improve-
ment of a MIMETIC instance (in terms of both concise
and fine-grained measures) while reporting a lower train-
ing time (more than three times) with respect to existing
(single-modality) DL-based traffic classifiers. Specifically,
the proposed implementation outperforms the best base-
line up to +8.58% in terms of F-measure (i.e. 82.99%
when classifying traffic generated by iOS apps). The im-
provement is also observed with respect to classifier fusion
[21] of best single-modality DL baselines, also unexplored
to date.

• Finally, MIMETIC is enriched (to provide it with a finer
performance control) with the option of censoring some
classifications, while allowing to label only traffic aggre-
gates for which the multimodal architecture emits a sure
verdict (i.e. a “reject option”). Corresponding results re-
port very high performance with a moderate (controllable)
number of unclassified instances.

Table 1: List of the acronyms used in the manuscript.

Acronym Definition

CNN Convolutional Neural Network
CR Classified Ratio
DL / ML Deep/Machine Learning
FB / FBM FaceBook / FB Messenger
GRU Gated Recurrent Unit
LSTM Long Short-Term Memory
MIOB-C Maximum Improvement Over Best - Classifier
MIOB-FT Maximum Improvement Over Best - Fusion Technique
MLP MultiLayer Perceptron
MV Majority Voting
RF Random Forest
RTPE Run Time Per-Epoch
SOA Soft-Output Average
TC Traffic Classification
TLF Trainable Late Fusion

We remark that the present study strikes a significant differ-
ence with respect to our recent work [16] (and its extended ver-
sion [20]), wherein (a) a systematic dissection of “practical”
single-modality DL-based TC approaches was put forward and
(b) a performance evaluation benchmark was proposed to en-
able TC designers with a set of useful performance tools at the
analysis stage. In this respect, the present work provides a con-
structive design-oriented contribution (namely, the MIMETIC
framework). The unbiased single-modality DL baselines and
the performance evaluation framework individuated and de-
fined in [16, 20], respectively, are merely exploited in this work
to show the appeal of MIMETIC from different standpoints.

The rest of the paper is organized as follows. Sec. 2 contains
a literature background of (mobile) TC (including most relevant
DL works), whereas Sec. 3 describes MIMETIC framework;
the experimental setup and evaluation are given in Secs. 4 and 5,
respectively; finally, Sec. 6 provides conclusions and future di-
rections. Also, Tab. 1 summarizes the acronyms used in the text
for readability.

2. Related Works

Various works have recently tackled mobile TC, mostly in
presence of encrypted traffic and via usual ML techniques.
Hence, ML-based approaches in mobile TC are described first
(Sec. 2.1). Then DL-based Internet TC (i.e. mostly in non-
mobile scenarios and resorting only to a single-modality) is
discussed (Sec. 2.2). A wrap-up discussion, highlighting the
limitations of current literature, ends the section (Sec. 2.3).

2.1. Mobile TC via standard ML

Stöber et al. [22] devise a device-fingerprinting scheme by
learning traffic patterns of background activities. An accu-
racy ≥ 90% is obtained (among 20 users with different com-
binations of apps installed on Android OS only) using a Sup-
port Vector Classifier and K-Nearest Neighbors fed with sta-
tistical features from 3G data bursts. Differently, Wang et al.
[23] investigate app-usage classification (among 13 iOS apps
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within 8 different categories) via a Random Forest (RF) clas-
sifier, whose features are extracted from Wi-Fi encrypted traf-
fic. Results show some counterintuitive behavior with increas-
ing training time, highlighting the impact of inaccurate ground-
truth on classification performance.

Taylor et al. [7] propose AppScanner, a framework based on
a ML classifier (namely, RF) to identify smartphone apps using
packet sizes and directions (accessible also from encrypted traf-
fic). Based on bot-generated traffic from the 110 most popular
Android apps and considering also variation of app versions,
employed devices, and fingerprint aging, results show app re-
identification with up to 96% accuracy in the best case, outper-
forming baselines taken from website fingerprinting, with good
tolerance to fingerprints aging. The same methods employed
for website fingerprinting are also adopted in [24] to check out
whether Android apps can be identified from their launch-time
(bot-generated) traffic using payload sizes of the first 64 pack-
ets. Therein, the best classifier achieves 88% accuracy when
training and testing are performed on the same device, with
a drop to −26% when the OS version or vendor is different.
Fu et al. [6] propose CUMMA approach to classify (and detect
anomalous) service usages in mobile messaging apps, based on
RF, hidden Markov models and clustering. Results, based on
human-generated data from 15 volunteers using Whatsapp and
WeChat, report ≥ 96% accuracy for both apps.

A two-tier hierarchical TC framework is proposed in [25] to
identify services running within HTTPS connections. Statis-
tics on inter-arrival times and packet/payload sizes are used
to train/test C4.5 and RF classifiers. The evaluation, via real
traffic traces, shows a recall within [95, 100]% in 50 out of
the 68 HTTPS services considered. Recently, in [21] a multi-
classification approach is devised leveraging state-of-the-art
classifiers proposed for mobile (encrypted) TC, considering
four combining classes differing in classifiers’ outputs used,
learning philosophy, and training requirements. Exploiting iOS
and Android datasets of real users’ activity, combination results
produce a performance gain (up to +9.5% recall) w.r.t. the best
state-of-the-art ML classifier.

2.2. State of the art on TC via DL
A first DL approach applied to clear traffic identification

(seamlessly applicable also to encrypted traffic) is presented
in [10], employing Stacked AutoEncoders and comparing them
to standard neural networks. Results show that the Stacked Au-
toEncoders outperforms the latter and achieves ≥ 90% preci-
sion and recall in protocol identification (on 25 most popular
protocols), and ≥ 80% class prediction probability on 6.7k out
of 10k traffic samples unrecognizable via DPI. On the other
hand, Wang et al. [11] propose a method for TC, explicitly de-
vised for encrypted traffic, based on 1D Convolutional Neural
Networks (CNNs). Experiments are conducted on a selection of
the “ISCX VPN-nonVPN” (non-mobile) dataset [26] and con-
sist of four different setups including VPN/nonVPN (binary)
classification, encrypted TC, and TC of VPN-encapsulated
data. Input data employed to feed the DL traffic classifier is
characterized by the protocol layer (“ALL” vs. “L7”) and the
TC object (“Flow” vs. “Biflow”) considered, with “Biflow +

ALL” input combination achieving the best performance. Un-
fortunately, such design choice led to biased results (for a com-
parison taking into account this issue see [16]). The same
dataset is used to test Deep Packet [12] and Datanet [27], two
DL-based encrypted traffic classifiers working at packet-level
and adopting a 1D/2D-CNN, a (deep) MLP or a Stacked Au-
toEncoder. In the former case, Deep Packet achieves an average
95% (resp. 97%) F-measure for the application identification
(resp. traffic characterization) task, consisting of 17 applica-
tions (resp. 12 activities). In the latter case, Datanet reaches
≥ 96% F-measure for both the Stacked AutoEncoder and 2D-
CNN in discriminating among (a subset of) 15 applications. In
both studies the first 1480 bytes of L2 payload are used as the
input, thus leading to biased performance.

The work in [28] tackles malware TC through a DL-based
approach (exploiting both raw data and handcrafted features)
which uses a “weighted” backpropagation (to deal with the is-
sues of an imbalanced dataset) and adopts hierarchical learning.
The proposed approach outperforms standard ML/DL alterna-
tives (i.e. 99.63% accuracy and 85.44% precision on a self-
generated dataset), performing real-time TC and unseen mal-
ware identification.

Different DL architectures for encrypted TC, based on hy-
brid compositions of Long Short-Term Memory (LSTM) and
2D-CNN layers, are proposed in [13]. The best-performing
of these variants attains an accuracy (resp. F-measure) up to
96.32% (resp. 95.74%) on a dataset captured on Spanish aca-
demic backbone network and consisting of ≈ 266k biflows
belonging to 108 distinct services. The analysis also high-
lights (i) a performance drop by including inter-arrival times
in the input and (ii) that 5 ÷ 15 packets are enough for satis-
fying results. As a further innovation, Huang et al. [29] pro-
pose a multi-task DL approach (with a 2D-CNN) to simultane-
ously solve: (i) malware (binary) detection, (ii) (binary) recog-
nition of VPN-encapsulation, and (iii) Trojan classification (9
classes). Devised approach is successfully tested on data as-
sembled from “CTU-13” (malware) and “ISCX VPN-nonVPN”
traffic datasets.

Similarly, Chen et al. [30] propose Seq2Img, a pipeline made
of reproducing kernel Hilbert space embeddings (producing
an equivalent image) and a 2D-CNN architecture, suitable for
early TC (namely, based on the first 10 packets), where three
packet informative fields (e.g. the size difference, the inter-
arrival time and the direction) and the server IP address are used
as the input. The approach is validated on two self-generated
datasets whose traffic is generated by five protocols and five In-
ternet applications, respectively, achieving 99.84% and 88.42%
accuracy. In [15] a flow-based TC approach based on a cascade
of a RF (designed at flow-level) and a 1D-CNN (operating at
packet level) combined with majority voting (to aggregate per-
packet classification outcomes at the flow level) is designed for
discriminating (encrypted) Google services running over QUIC
protocol, based on the first 1400 bytes of its payload. The ap-
proach is tested on a bot-generated (via web-browser explo-
ration) non-mobile dataset, and comprising five services using
QUIC.

Differently, in [14] the Byte Segment Neural Network ar-
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chitecture, based on LSTM & GRU layers, is proposed for
datagram-based classification, based on L4 payload. The exper-
imental analysis, on a self-generated dataset made of 10 classes
(protocols and applications), reports a ≥ 90% F-measure for the
applications/protocols considered.

Recently, Aceto et al. [16] define a systematic framework
to dissect the encrypted (mobile) TC problem using DL and
compare a number of the aforementioned techniques (includ-
ing [10, 11, 13]) on three datasets of real human users’ activity,
highlighting their pitfalls, design guidelines, and challenges.
Different viewpoints are taken into account, such as: (i) the TC
object adopted, (ii) the type and the amount of input data, (iii)
the DL architecture employed, and (iv) the required set of per-
formance measures for a comprehensive evaluation. The survey
of current DL-based traffic classifiers highlights the need for (a)
input data that are unbiased (to avoid experiencing inflated per-
formance), informative, and heterogeneous (composed of dif-
ferent complementary views), and (b) a rigorous performance
evaluation workbench.

2.3. Limitations of Existing Literature

The above literature review highlights the following limita-
tions, which are addressed by the present work.

First, all the works specifically dealing with mobile TC
mostly either consider iOS- [23] or (bot-generated) Android-
traffic [7, 22, 24], as opposed to our work (covering both mo-
bile operating systems with human-generated traffic). Indeed,
the different nature and history of the software and hardware
ecosystems revolving around the two mobile OSes suggest that
app traffic could inherit different properties as well. Conse-
quently, app discrimination ability on one OS cannot be as-
sumed as generalizable to the other. Similar concerns regard
bot-generated traffic when extending results to actual (human-
generated) mobile app traffic.

Secondly, the analysis of current literature highlights the lack
of flexibility (and adaptation) of ML-based approaches in real-
istic mobile contexts. Moreover, it shows the inability of cur-
rent DL approaches of consistently outperforming the former in
these challenging scenarios [16]. We traced these deficiencies
back to the use of only a single-modality in their end-to-end
design [10, 11, 13, 12, 15]. As a consequence, in contrast to
existing DL-based TC literature, our MIMETIC framework is
designed to exploit different modalities (viz. views or inputs)
jointly, and thus to reap DL promised benefits. Precisely, our
proposal is shown to provide a performance improvement in the
challenging mobile scenario with respect to (ML) state-of-the-
art [7], single-mode DL baselines in [11, 13], and even classifier
fusion attempts of their outputs, thus proving that the gain is due
to our prescribed framework, and not the mere combination of
DL algorithms.

Finally, most of the existing DL-based TC approaches are
analyzed in terms of per-class or synthetic classification met-
rics [31, 11, 13, 12, 14], without analyzing their performance
behavior at a finer-level. Differently, to draw firm conclusions,
our performance evaluation resorts to the systematic evaluation
framework developed in [16], allowing to compare and assess

performance comprehensively, e.g. from complementary view-
points (i.e. classification performance and complexity) and at
different levels of granularity.

3. Description of MIMETIC framework

Herein, we describe the MIMETIC framework, starting from
a high-level architectural description in Sec. 3.1. We then fo-
cus, in Sec. 3.2, on the general procedure adopted for training
it. Both the architectural description and the training procedure
are shown in Fig. 1 from a conceptual standpoint. Finally, in
Sec. 3.3, we focus on the specific instance of MIMETIC (see
Fig. 2) chosen and evaluated in later Sec. 5. Table 2 describes
the mathematical notations used in the following.

Table 2: List of the mathematical notations used to define the
MIMETIC framework.

Symbol Definition

M Number of training samples
M` Number of training samples of the `th app
P Number of different inputs (modalities)
Jp Number of single-modality layers
x(m) mth sample of the training set
`(m) Label (true class) of x(m)
t(m) One-hot representation of `(m)
c(m) Predicted class confidences of x(m)
CE(t, c) Categorical cross-entropy between t and c
wm Weight assigned to x(m)
θp Parameters of the pth single-modality layers
θ↑p Parameters optimized in pre-training and fine-tuning
θ↓p Parameters optimized only in pre-training
θstub

p Parameters of the pth “stub” layer
θ0 Parameters of the shared representation layers
θ̂p Pre-trained parameters of the pth single-modality layers
θ̂stub

p Trained parameters of the pth “stub” layer
Lp(·) Loss function minimized in pre-training of pth modality
L(·) Loss function minimized in fine-tuning
h[t] State vector of recurrent layers

3.1. Architectural Overview

The mobile TC problem consists in assigning a label among
L applications within the set {1, · · · , L} to each TC object [1]
observed. Specifically, traffic object segmentation defines how
raw traffic is segmented into multiple discrete units [1]—a given
subset of network packets—that will constitute the object of la-
bel assignment. Virtually all works tackling (encrypted) TC
using DL considered as classification objects either flows or bi-
flows (except for [12, 14], working on single packets/datagrams,
cf. Sec. 2), with the latter achieving better performance. In de-
tail, a flow (resp. biflow) is a stream of packets sharing the
5-tuple (i.e. source IP and port, destination IP and port, and
transport-level protocol), taking into account (resp. irrespective
of) their directions. We mention that other noteworthy choices
of TC object—so far adopted in contexts different from mobile
encrypted TC—are the TCP connection [1] (differing from the
biflow only for the termination criterion) and the service burst
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Figure 1: General illustration of MIMETIC framework. (a) depicts the architecture by highlighting single-modality representation layers, differ-
entiated as those that are only pre-trained (IM1) and those that are also fine-tuned (IM2), and shared representation-layers (MM), along with the
corresponding parameter set. (b) and (c) depict the proposed training procedure based on pre-training and fine-tuning.

[7] (aggregating packets toward the same destination IP & port
pair).

We remark that ML-based, as well as DL-based traffic clas-
sifiers, rely on a training set to learn the distinctive fingerprint
of each app. Therefore, for notational convenience, we define
the mth TC object of the training set (made of M samples, with
M` being the number of samples belonging to `th app) as x(m)
while the corresponding label as `(m), belonging to one out of
the L different classes considered. As opposed to ML-based
TC, DL approaches are able to learn app fingerprints in a end-
to-end fashion, i.e. directly from the type of input selected,
thus defeating the tedious and lowly-adaptable process of fea-
ture design [16]. However, the traffic data is highly-structured
by design, as it contains information referring to the whole pro-
tocol stack. As a result, a monolithic DL architecture taking
the whole information coming from a TC object in bulk—early
(or data) fusion—is likely to be suboptimal, since the parame-
ter set would overfit to one input subset while underfitting the
others. Differently, capitalization of score-results (late fusion)
of DL-based traffic classifiers built on different modalities, al-
though effective in some cases [21], is not able to fully exploit
the benefits of multi-modality (as also shown experimentally in
Sec. 5). Based on these reasons, multimodal DL is here fore-
seen as an appealing alternative toward a sophisticated form of
information fusion, named intermediate fusion [19], overcom-
ing both the limitations of the early (or data) fusion and late
(or score/decision) fusion, offering a truly-flexible tool for prac-
tical mobile TC enjoying multi-modality. The description of
MIMETIC framework is provided hereinafter.

As sketched in Fig. 1(a), at an abstract level, the architecture
of MIMETIC is fed with P different inputs (modalities or views)

for each TC object to be classified, with pth modality provided
from Input-datap extraction block. Such deep network archi-
tecture is first composed of Jp single-modality (input-specific)
layers, allowing to extract in an increasingly-abstract fashion
the discriminative features pertaining to pth view, capitalizing
intra-modality dependence. Specifically, the set of parameters
referring to single-modality layers of pth modality is referred to
as θp. On the top of these layers, the abstract features are joined
via a merge layer (cf. Fig. 1), which represents the first layer
channeling the modality-specific distilled information toward
a joint multimodal representation. Although the most general
(and common) choice is represented by a concatenation opera-
tion, other approaches may be pursued in case the abstract fea-
tures originating from different modalities have the same size,
e.g. averaging, entry-wise maximum, etc.

Finally, the architecture is completed with a few shared rep-
resentation layers, distilling features capturing inter-modality
dependencies, and the usual softmax layer, returning the soft-
output vector for the mobile TC task considered. Hereinafter,
the set of parameters referring to shared representation layers
(plus final softmax) is referred to as θ0. Also, to promote regu-
larization (so as to avoid overfitting), dropout between succes-
sive layers and early-stopping techniques are adopted [9]. We
now briefly recall some common choices for single-modality
and shared-representation layers, i.e. dense, convolutional,
pooling, and recurrent layers.

Dense layers are the simplest atoms of DL architectures,
made of a linear transformation and an entry-wise activation.
Differently the Convolutional layers are the basic blocks of
CNNs, made of a set of translation-invariant (1D or 2D, based
on the specific input nature) filters which aim at extracting fea-
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tures of a certain region. Pooling layers are other key ele-
ments of CNNs, down-sampling intermediate representations
from convolutional layers, with the aim of complexity and over-
fitting mitigation. Finally, recurrent layers present loopy con-
nections and have in Long Short-Term Memory (LSTM) and
Gated Recurrent Unit (GRU) their most popular variants [9].
These are in charge of recalling values over time, via a state
vector h[t], and accept as input a vector sequence. Differently,
they output either the final state h[T ] or its entire time-evolution
h[1], · · · , h[T ]. LSTM/GRU layers can be also conceived in an
improved “bidirectional” form, i.e. their internal representation
is split into forward and backward directions.

Given the general definition of MIMETIC architecture, we
next describe the algorithmic procedure for its training.

3.2. Proposed Training Procedure

The high-level procedure suggested for training a classifier
in the MIMETIC architecture is shown as pseudocode in Algo-
rithm 1 and described hereafter.

/* pre-training */
1 for Modality p ∈ [1, P] do /* parallelizable */
2 ( θ̂p, θ̂

stub
p )← trainSingleM(θp,θstub

p ,TrainingSet)
/* θ̂stub

p is discarded */
3 [θ̂↓p θ̂

↑
p]← θ̂p ; /* θ̂p is split */

4 end

/* fine-tuning */
5 θ↓ ← θ̂↓1,...,P ; /* frozen */
6 θ↑ ← θ̂↑1,...,P ; /* initialized */
7 ( θ0, θ

↑ )← trainMultiM(θ0,θ↓,θ↑,TrainingSet)
Algorithm 1: Pseudo-code of MIMETIC Training Proce-
dure.

The architecture of MIMETIC is trained via a two-stage
phase, made of pre-training and fine-tuning [9]. The reason
for a preliminary pre-training procedure is to correctly distill
discriminative information from each modality so as to capital-
ize the advantage of the multimodal traffic representation. Be-
fore proceeding, we recall that training of DL approaches resort
to the “one-hot” representation [9] of each label `(m), namely
t(m) fi [t1,(m), · · · , tL,(m)], whose entries are all zero, save from a
single “1” corresponding to `th

(m) class.
Specifically, each single-modality stack is first (pre-)trained

independently, i.e. without the shared representation layers and
by topping each modality chain with a softmax layer “stub”
(whose parameters are collected within θstub

p ), see Alg. 1 lines
1–4 and Fig. 1(b). Specifically, pth “stubbed” chain is trained to
minimize the classification loss functionLp(·) with the intent of
promoting pth modality capability to solve the TC task alone,
defined as:

Lp
`

θp, θ
stub
p

˘

=

M∑
m=1

wm CE(t(m), c(m)[θp, θ
stub
p ]) (1)

Herein, the vector c(m) fi [c1,(m), · · · , cL,(m)] collects the pre-
dicted class confidences of DL classifier (which depend on the
network parameters) for the label of mth training sample. These
confidences should be as close as possible to the (ground-truth
originated) one-hot vector t(m) fi [t1,(m), · · · , tL,(m)]. Such dis-
tance is measured via CE(t, c) fi −

{∑
`=1 t` log c`

}
, denoting the

categorical cross-entropy of mth training sample. Furthermore,
MIMETIC includes the minimization of a general weighted
form of the categorical cross-entropy, with wm denoting the
weight of mth sample, enabling cost-sensitive learning [9]. In-
deed, the weight wm allows penalizing/favoring (during training
phase) the discrimination capability toward some app(s) and/or
mitigating the class-imbalance problem. The learned parame-
ters from the above optimization are indicated with (θ̂p, θ̂

stub
p ).

Then, during the fine-tuning phase (Fig. 1(c) and Alg. 1 lines
5–7), the above softmax stubs are removed (i.e. θ̂stub

1 , · · · , θ̂stub
P

are discarded from the optimization) and training of the whole
MIMETIC architecture is performed (i.e. including both the
parameters of single-modality layers θ1, · · · , θP and of shared
representation layers θ0, associated to block MM). However,
as a result of the pre-training phase, a share of single-modality
layers (i.e. those corresponding to low-layers in DL hierar-
chy, named IM1) are typically frozen when fine-tuning phase
is performed. This is due to the fact that low-level layers re-
fer to intra-modality automatic feature extraction [18]. In other
terms, within θP fi

“

θ↓p θ↑p
‰

only the subset θ↑p is (further) op-
timized during fine-tuning (i.e. those corresponding to IM2),
while θ↓p is kept fixed to the value learned during pre-training,
i.e. θ↓p = θ̂↓p. As a result, the following weighted form of the
categorical cross-entropy is minimized:

L

´

θ↑1, · · · , θ
↑

P, θ0

¯

fi

M∑
m=1

wm CE(t(m), c(m)[θ
↑

1, · · · , θ
↑

P, θ0]) (2)

The loss functions concerning pre-training and fine-tuning
phases (Lp(·) and L(·), respectively) are minimized via stan-
dard first-order local optimizers (e.g., SGD, ADAM, etc.),
resorting to the usual back-propagation for gradient evalua-
tion [9]. We now present the specific instance obtained from
MIMETIC framework and used for experimental evaluation.

3.3. Implementation of a Traffic Classifier
based on MIMETIC

The specific implementation1 of the proposed MIMETIC
framework (see Fig. 2) operates at biflow level (aiming at
a consistent comparison with earlier works–except for [12]–
employing single-modality DL for TC) and is made of P = 2
modalities. These are fed with the corresponding two types of
input, that are naturally suited for “early” TC [34] and have
been already employed successfully in most related works per-
forming TC via single-modality DL [10, 11, 13, 16]: (I) the

1We highlight that we have leveraged DL models provided by Keras [32]
(Python) API running on top of TensorFlow [33] to implement and test the
MIMETIC instance described in this section and DL-based classifiers used as
baselines.
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Figure 2: Implementation of considered traffic classifier based on MIMETIC framework. Background colors specify the groups of layers IM1 (in
yellow), IM2 (in blue), and MM (in purple).

first Nb bytes (normalized within [0, 1]) of payload [10, 11];
(II) informative protocol fields, not pertaining to the explicit in-
spection of the encrypted payload—namely: number of bytes in
transport-layer payload, TCP window size (set to zero for UDP
packets), inter-arrival time, and packet direction ∈ {0, 1}—of
first Np packets [13]. We remark that we focus on payload at
application-layer in TCP/IP stack in (I) and, also, we do not
consider port info in (II), as otherwise these may both lead to
biased and inflated performance, as shown in [16]. Finally, in
the case of instances with inputs longer (resp. shorter) than the
considered fixed-length data formats, these inputs are truncated
(resp. padded with zeros) to the designed length of bytes (Nb) or
(Np) packets. We underline that the above “traffic-originated”
modalities refer to different levels of abstraction (packet vs.
biflow depth) and standpoints (encryption-dependent vs. en-
cryption independent) for the observed traffic. This inspired the
adoption of a multi-modal architecture to improve classification
performance, as later supported by the experimental validation
in Sec. 5. For the mentioned reasons, we parallel the use of both
modalities as for audio and video modalities in natural language
understanding.

Hereinafter, we refer to the building blocks of Fig. 2 to
describe the specific implementation of proposed MIMETIC
framework. The single-modality layers of the first view (the
“payload” modality) are two 1D convolutional layers (CONV1.1
and CONV1.2, made of 16 and 32 filters, respectively, with ker-
nel size of 25, unit stride, and Rectified Linear Unit activa-
tions), each followed by a 1D max-pooling layer (POOL1.1 and
POOL1.2, with unit stride and spatial extent equal to 3) and, fi-
nally, by one dense layer (DENS E1.1, with 256 nodes). The
reason for this choice is the ability of 1D convolutional lay-
ers to extract spatially-invariant (discriminative) patterns from
the payload. On the other hand, the single-modality layers
of the second view (the “protocol fields” modality) are, in or-
der, a bidirectional GRU (GRU2.1, with 64 nodes and return-
sequences behavior) and one dense layer (DENS E2.1, with 256
nodes). Such choice was driven by GRU ability to capture long-
term dependencies pertaining to the initial segments of the bi-
flow, while requiring slightly-less parameters with respect to a
more common LSTM [9]. The intermediate features of the two

branches are then concatenated via a merge layer (>>), and fed
to a dense (shared representation) layer (DENS E, with 128
nodes), before the softmax (S MAX). In all the layers, the out-
puts are obtained via Rectified Linear Unit activations. Finally,
20% dropout is applied after (a) each dense layer (including the
merge layer) and (b) after flattening the 2D representation of
both the stack of convolutional/pooling layers and GRU.

The considered architectural instance is trained via the two-
stage phase described in Sec. 3.2. Specifically, all the classi-
fication loss functions (L1(·), · · · ,LP(·) and L(·)) include cost-
sensitive learning, here exploited to mitigate natural class im-
balance found in mobile traffic [21]. To this end, the weight
wm fi M/M`(m) is assigned to mth sample, being inversely pro-
portional to the number of training set samples labeled with `(m),
thus magnifying (resp. decreasing) the contribution of apps
with a few (resp. high) number of samples. Concerning the pre-
training phase, each single-modality stack is first (pre-)trained
independently for 25 epochs each by topping a softmax layer
stub and by minimizing the loss Lp(·) (cf. Eq. (1)), so that
mobile TC could be performed on either (transport-layer) pay-
load or protocol layer fields. Then, fine-tuning of the whole
multimodal DL architecture is performed (for 40 epochs) after
freezing IM1 (low-layers, namely, the convolutional and recur-
rent layers, CONV1.1/CONV1.2 and GRU2.1, respectively) and
by minimizing the loss L(·) (cf. Eq. (2)). For both phases,
ADAM optimizer (batch size of 50) and early-stopping tech-
nique (to prevent overfitting) measured on the training accuracy
have been employed. We underline that the overall number of
epochs (25 × 2 + 40 = 90) has been chosen by considering the
values suggested in more-related works [11, 13] so as to keep
the complexity low, while properly training the architecture.

4. Experimental Setup

Hereinafter, we describe the three mobile traffic datasets,
along with the performance evaluation framework, used for as-
sessment of proposed MIMETIC framework.

4.1. Dataset Description
We considered both Android and iOS mobile OSes (instead

of only one, as usually done in related works), with an am-
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ple representation of apps. Moreover all the datasets have been
collected by real human users using the mobile apps (instead
of relying on automatically-generated traffic, as done in related
works). The collection of first dataset (FB/FBM) has been rec-
ommended by a global mobile solution provider, while the other
two (namely Android and iOS) have been produced and handed
to us directly by the same provider2. The envisioned usage sce-
narios for such datasets are related to key network management
tasks, e.g. service prioritization, billing differentiation, censor-
ship. For all the datasets, the ground truth has been obtained by
labeling each traffic trace with the generating app, since each
app has been run separately, thus limiting the presence of back-
ground traffic.

The first (binary) dataset was collected in the ARCLAB lab-
oratory at the University of Napoli “Federico II”, during May
’17 - Mar. ’18. In detail, the capture sessions have been run
on a Xiaomi Mi5 (with Android OS 6.0.1 and CyanogenMod
13.0 distro) and pertain to either Facebook (FB) or Facebook
Messenger (FBM) traffic data, to analyze the capability of clas-
sifiers to discriminate between similar apps’ fingerprints for
e.g., billing differentiation. More than 100 users have been in-
volved in its construction on a voluntary basis for sittings last-
ing less than 2 hours, being required to perform different activ-
ities for both the apps (to explore their diversity), in union with
login/registration/logged-in use cases. Each traffic-capture ses-
sion lasted from 5 to 10 minutes, with > 1100 traffic traces col-
lected. During each capture session, a user executed only one
app in foreground. Background traffic was then removed from
the collected traces in post-processing, based on the system-
calls traced on the mobile device. The whole dataset contains
≈ 31k instances, with 13.5k (resp. 17.5k) biflows from FBM
(resp. FB) app and a 44%/56% share.3 The encrypted biflow
ratio corresponds to 91%.

The other two (multi-class) datasets, obtained from the
global mobile solutions provider and generated from 49
(resp. 45) apps on Android (resp. iOS) devices, are explored for
prioritization purposes. The corresponding Android (resp. iOS)
traces have been collected during Apr. ’15 - Jan. ’17 (resp.
Sept. ’14 - Jan. ’17), generated by users with different de-
vices and OS/app versions, and provided already anonymized
and cleaned from background traffic.4 As a whole, the dataset
is made up of 607 (resp. 419) traffic traces, with an aver-
age duration of 282 (resp. 296) seconds and 1 to 60 (resp.
1 to 48) traces per app in Android (resp. iOS), leading to a
non-negligible class imbalance. Then, after biflow segmenta-
tion, 55.5k (resp. 37.2k) labeled biflows are obtained for the
Android (resp. iOS) dataset, with 47% (resp. 60%) encrypted
biflow ratio. Finally, a detailed report of per-class biflow statis-
tics can be found in [21], where both datasets were employed
for ML-based (handcrafted) mobile TC.

2Due to NDA with the provider we can not report its name, details of its
network, detailed information on the datasets, nor release them.

3The current dataset constitutes a larger version w.r.t. that considered
in [16], in terms of both depth and diversity, while improving also FB/FBM
samples balance (i.e. 44%/56% vs. 38%/62% share of [16]).

4In detail, ≈ 89% (resp. ≈ 85%) of Android (resp. iOS) traces has been
captured during 2016.

4.2. Performance Evaluation Framework
Our evaluation includes the following well-known perfor-

mance measures [1]: accuracy (the fraction of correctly clas-
sified instances), precision (prec, i.e. the proportion of clas-
sifier decisions for a given class which are actually correct),
and recall (rec, i.e. the app-conditional accuracy). For the
latter two (defined on a per-app basis), the usual F-measure
F fi (2 · prec · rec)/(prec + rec) is considered for conciseness,
and its arithmetically-averaged (viz. macro) version is adopted.
In addition, the “global behavior” of DL-based TC is evalu-
ated by means of Top-K accuracy, defining a correct classifi-
cation event if the actual class is within the top K predicted
apps (K < L is a free parameter and K = 1 coincides with the
standard accuracy) and allowing to investigate the soft-output
of a DL classifier. Besides, the confusion matrices are used to
highlight fine-grain misclassification patterns.

The classifiers are also tested when a reject option (viz. a
censoring policy of “unsure” outcomes) is adopted, i.e. the
classification is performed only if the highest class prediction
probability (max`=1,...,L p`) exceeds a threshold γ, thus emitting
a confident verdict. Its adoption has been justified in the context
of mobile traffic [7]. Indeed, since apps typically establish mul-
tiple flows when they are running, there remains high chance
to identify them from their more distinctive flows, without the
need to classify all the instances. Hence, tuning γ provides fur-
ther (useful) flexibility to mobile TC, since classification perfor-
mance can be improved while incurring a negligible drawback,
i.e. a decreased ratio of classified instances (CR).

For completeness, we also investigate the computational
complexity of (multimodal) DL-architectures by reporting their
training phase runtime. The latter is a key aspect in mobile TC,
where frequent re-training is required, due to aging of training
data as a result of apps and OS updates [7, 24]. Precisely, since
training is performed on multiple epochs [9], we report such in-
formation in a terse way, by providing the Run-Time Per-Epoch
(RTPE). We note that, for each analysis, our evaluation is based
on a (stratified) ten-fold cross-validation, (i) representing a sta-
ble evaluation process and (ii) mantaining the same share of
class imbalance in both training and test sets within each fold.
Thus, we report both the mean and the standard deviation of
each performance measure by evaluating them on the ten dif-
ferent folds.

5. Experimental Evaluation

This section examines the performance (from both classifi-
cation and complexity standpoints) of MIMETIC approach and
methodically compares it to existing (single-modality) DL al-
ternatives [11, 13], approaches to fuse their information [21],
and ML-based state-of-the-art in mobile TC [7].

In the following, for compactness we will refer with “L7-Nb”
to the first Nb bytes of payload data [11] and with “MAT-Np”
to the Np × 4 matrix of protocol fields extracted from each bi-
flow [13]. We point out that, with a view to limit complex-
ity, preliminary analyses (omitted for brevity) of different input
combinations for each single-modality branch have been per-
formed to select the values of Nb and Np. Specifically, varying
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Table 3: Accuracy and F-measure [%] comparison of MIMETIC with the four groups of baselines: (I) best single-modality DL classifiers, (II)
shallow neural networks, (III) state-of-the-art ML-based mobile-traffic classifier, (IV) classifier fusion techniques. Results are in the format avg. (±
std.) obtained over 10-folds. The last group reports the Maximum Improvement Over Best - Classifier (MIOB-C) and the Maximum Improvement
Over Best - Fusion Technique (MIOB-FT) [%] of MIMETIC framework. Highlighted values: overall best classifier, best baseline classifier (�),
and best baseline fusion technique (‡) for each dataset and performance measure.

Architecture
FB/FBM Android iOS

Accuracy F-measure Accuracy F-measure Accuracy F-measure

MIMETIC 79.98 (± 0.49) 79.63 (± 0.51) 89.49 (± 0.32) 81.51 (± 0.93) 89.14 (± 0.82) 82.99 (± 1.14)

I
{ 1D-CNN [11] (L7-784) 75.92 (± 0.76) 75.45 (± 1.12) 85.44 (± 0.45) � 78.13 (± 1.73) � 83.29 (± 0.62) � 74.41 (± 1.28) �

LSTM + 2D-CNN [13] (MAT-20) 74.26 (± 0.98) 73.23 (± 0.95) 75.24 (± 0.58) 64.35 (± 0.87) 70.80 (± 1.06) 57.87 (± 1.15)

II
{ MLP-1 (L7-784) 74.46 (± 0.88) 73.89 (± 0.86) 78.71 (± 0.65) 69.79 (± 1.17) 77.16 (± 0.63) 67.61 (± 1.07)

MLP-1 (MAT-20) 68.93 (± 1.32) 67.86 (± 0.94) 64.94 (± 0.47) 48.26 (± 0.96) 54.42 (± 0.63) 40.86 (± 1.04)
III RF (flow-based) [7] 79.56 (± 0.62) � 78.73 (± 0.62) � 84.78 (± 0.30) 75.49 (± 0.89) 80.77 (± 0.84) 72.39 (± 1.39)

IV


MV 75.13 (± 0.92) 74.48 (± 1.14) 80.41 (± 0.40) 71.28 (± 0.85) 77.24 (± 0.62) 66.49 (± 0.97)
SOA 78.86 (± 0.79) ‡ 78.37 (± 1.00) ‡ 87.08 (± 0.29) ‡ 80.07 (± 0.81) ‡ 84.68 (± 0.55) ‡ 75.94 (± 1.10) ‡
TLF 74.61 (± 1.57) 73.60 (± 1.80) 68.87 (± 1.05) 48.82 (± 1.92) 62.01 (± 0.97) 39.07 (± 1.52)

MIOB-C + 0.42 (± 0.65) + 0.90 (± 0.68) + 4.04 (± 0.67) + 3.38 (± 1.79) + 5.84 (± 0.97) + 8.58 (± 1.52)
MIOB-FT + 1.12 (± 0.89) + 1.26 (± 1.14) + 2.40 (± 0.48) + 1.44 (± 1.56) + 4.46 (± 1.01) + 7.05 (± 1.43)

Nb ∈ {256 − 2034} and Np ∈ {4 − 32}, employed values proved
to achieve the best performance, keeping both the complexity
low and also allowing an “earlier” TC. In detail, our MIMETIC
instance is fed with the same two input types (cf. Sec. 3) of
single-modality DL classifiers used as baselines, but with dif-
ferent (i.e. shorter) amounts of data, i.e. Nb = 576 bytes and
Np = 12 packets, respectively.

5.1. Description of Baselines
Precisely, four types of baselines are included for the sake of

a complete analysis.

• The first type of baseline is represented by the best single-
modality DL classifiers fed with each of the P = 2 in-
puts considered in the MIMETIC approach, that is, the
1D-CNN (with L7-784 as input) in [11] and the LSTM +

2D-CNN (with MAT-20 as input) in [13]. We remark that
the number of payload bytes (resp. packets) used in 1D-
CNN (resp. LSTM + 2D-CNN) differs from that used for
MIMETIC implementation: the reason was to report per-
formance for corresponding input-optimized versions pro-
posed in respective works [11, 13]. Nonetheless, prelim-
inary experimental results (reported in [20]) on these ar-
chitectures did not demonstrate an appreciable gain when
using Nb = 576 bytes (resp. Np = 12 packets). Both ar-
chitectures are trained for a total of 90 epochs, following
the suggestions in related studies [11, 13], with ADAM
optimizer (batch size of 50) and early-stopping technique
measured on the training accuracy.

• The second type of baseline corresponds to a lower-bound
on achievable performance, namely we consider a Multi-
Layer Perceptron (MLP) with only one hidden layer (with
100 nodes), here denoted as MLP-1, trained on the same
inputs as single-modality DL architectures, so as to pro-
vide the performance achievable by “shallow” learning in
the same setup. Aiming at a consistent comparison, the

same number of epochs (i.e. 90), optimizer (i.e. ADAM)
and batch size (i.e. 50) are used for training of MLP-1
(along with early-stopping).

• The third baseline is given by the flow-based RF devel-
oped in [7], taking as input 40 carefully handcrafted fea-
tures, being a subset of statistics5 computed on the sets of
upstream, downstream, and complete (i.e. both of them)
IP packet lengths. Such flow-based RF represents the cur-
rent state-of-the-art mobile-traffic classifier, but is applica-
ble only in the case of “post-mortem” TC (as opposed to
all types of input considered in the DL/shallow baselines
investigated herein).

• The fourth type of baseline corresponds to classifier fu-
sion techniques [21], capitalizing the best single-modality
DL architecture for each of the P = 2 inputs considered
(namely, the architectures representing the first set of base-
lines) and combining them to get (hopefully-)improved
classification results. The combination can be either per-
formed with (simpler) non-trainable strategies, such as
(i) Majority Voting (MV) and (ii) Soft-Output Average
(SOA) [21]. Alternatively, (iii) “Trainable” Late Fusion
(TLF) can be pursued by concatenating the softmax layers
of the two single-modality DL architectures and connect-
ing them to a “fusion” softmax layer (in the same spirit of
“KL weights” in [21]). In the latter case, the same train-
ing algorithm (with the same parameters) as the other DL
baselines has been adopted. These combiners are the sim-
plest way to fuse these off-the-shelf DL traffic classifiers.

5.2. General Overview of Performance
As a high-level performance comparison, in Tab. 3 we report

the results (in terms of accuracy and F-measure) of the proposed

5The 40 best-ranked statistics (i.e. min, max, mean, standard deviation,
variance, mean absolute deviation, skewness, kurtosis, and percentiles) based
on the Gini impurity score [7].
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MIMETIC approach, along with those of the baselines previ-
ously introduced. First, it is apparent that the multimodal-DL
architecture outperforms all the considered elements of com-
parison for both metrics on all the three considered datasets,
with an improvement up to +8.58% and +7.05% (i.e. F-measure
on the iOS dataset) over the best classifier (MIOB-C) and fusion
technique (MIOB-FT), respectively. Further, results pertain-
ing to binary dataset FB/FBM highlight that, although single-
modality DL classifiers are able to outperform the correspond-
ing MLP-1 (shallow) counterparts, these are not able to reach
performance of (off-line) RF, even employing fusion techniques
of single-modality DL approaches (i.e. SOA). This may be at-
tributed to the fact that FB and FBM rely on several shared ser-
vices. Hence, their generated traffic looks very similar. Accord-
ingly, either the whole biflow is required to reach a confident
decision or more sophisticated approaches (e.g. MIMETIC) are
required to infer complex traffic patterns from the first pack-
ets. On the other hand, referring to the multi-class datasets,
single-modality DL approaches are not only able to provide
improved performance w.r.t. shallow classifiers with analo-
gous inputs, i.e. MLP-1 (L7-784/MAT-20), but even outper-
form ML-based state-of-the-art RF, thus motivating the strong
appeal of DL framework and representing the best baseline in
most cases. For example, in Android setup, 85.44% accuracy
and 78.18% F-measure are achieved by 1D-CNN (L7-784), as
opposed to 84.78% and 75.49%, respectively, obtained by the
RF, and a similar reasoning applies to iOS case. An improved
(although similar) trend is obtained by leveraging the SOA (the
best fusion baseline observed) of the single-modality DL archi-
tectures, whose results are however worse than those obtained
with MIMETIC approach. This outcome can be directly at-
tributed to the gain, ensured by the (multimodal) MIMETIC
approach, arising from sophisticated fusion of the input types
considered. Indeed, the latter provides a higher discriminative
power in the case of very similar apps, like FB and FBM, and
also further improves the effectiveness of DL in the multi-class
setups.

5.3. Training Complexity of DL Architectures
A useful analysis towards real-world implementations, com-

plementing the overview of performance, is the investigation of
the training complexity of the proposed multimodal-DL clas-
sifier. With this aim, Fig. 3a and Fig. 3b show, respectively,
the RTPE and the overall number of trainable parameters of
the considered instance of MIMETIC framework (considering
both phases of the proposed training procedure). MIMETIC
complexity is then compared against that of single-modality DL
classifiers when they are fed with the inputs extracted from the
three datasets. For completeness, also the complexity of TLF
baseline is considered. Differently, the complexity of the other
two classifier fusion baselines (namely, SOA and MV) is not re-
ported, since it is strongly linked to the training requirements of
the single-modality DL classifiers being combined. Precisely,
it corresponds to the more complex single-modality baseline
(resp. the sum of baseline complexities) in the case of a parallel
(resp. sequential) implementation. We point out that a similar
reasoning applies to the pre-training phase of MIMETIC, for
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FB/FBM Android iOS

MIMETIC? 0.9346 1.6202 1.6176

1D-CNN [11] (L7-784) 5.8223 5.8705 5.8664
LSTM + 2D-CNN [13] (MAT-20) 0.4260 0.7380 0.7376

TLF 6.2484 6.6133 6.6081

(b) Number of trainable parameters (in millions). ? numbers refer to the
whole MIMETIC framework.

Figure 3: Complexity analysis. Run-Time Per Epoch (RTPE) (a) and
number of trainable parameters (b) of MIMETIC framework and DL-
based baselines.

which the most penalizing sequential implementation of per-
modality pre-training is assumed in this comparison. We high-
light that the times refer to the same hardware architecture (8 ×
Intel(R) Core(TM) i7-4710MQ CPU @ 2.50GHz with Ubuntu
16.04 (64 bit)) in the same load conditions (i.e. being the DL
classifier the sole CPU-intensive process running on it). As ex-
pected, a decreasing RTPE is obtained when the size of the
classification problem is reduced (i.e. moving from the An-
droid dataset, to the iOS and FB/FBM datasets) with a stronger
trend for 1D-CNN (L7-784) and TLF, being the more complex
architectures. Interestingly, multimodal-DL classifier not only
reaches the highest classification performance, but it also shows
an RTPE > 3.5× lower than its “main competitor” 1D-CNN
(L7-784) (i.e. 38.34 (±0.82) s vs. 142.72 (±1.74) s) in the hard-
est classification (i.e. Android) setup. This is due mainly to
shorter inputs and simpler (viz. computationally-lighter) layers
involved in the MIMETIC instance (cf. Sec. 3.3), allowed by an
improved capitalization of the inputs available. It is worth not-
ing that the same reasoning equally applies with respect to MV
and SOA baselines, whose complexities are dominated (in the
best case) by the more complex single-modality DL architec-
ture. Moreover, MIMETIC shows also the lowest complexity
increase when passing to a harder classification problem (i.e.
it exhibits a higher scalability), being highly desirable in mo-
bile contexts. Indeed, a +41% increment in RTPE (against
+64% for 1D-CNN, +105% for LSTM+2D-CNN, and +116%
for TLF) is observed when moving from the FB/FBM to the An-
droid dataset. Finally, the inspection of Fig. 3b highlights that
the RTPE is strongly related to the number of parameters to be
trained, with the MIMETIC approach (in its complete architec-
tural configuration) having ≈ 3.6× and ≈ 4.1× fewer trainable
parameters than 1D-CNN and TLF, respectively.
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Table 4: Top-K accuracy [%] comparison of MIMETIC with the four types of baselines. Results refer to multi-class datasets and are in the format
avg. (± std.) obtained over 10-folds. Top-K accuracy of MV is not reported due to unavailability of soft-outputs. Highlighted values: overall best
classifier, best baseline classifier (�), and best baseline fusion technique (‡) for both multi-class datasets and each K considered.

Architecture
Android iOS

K = 1 K = 3 K = 5 K = 1 K = 3 K = 5

MIMETIC 89.49 (± 0.32) 94.29 (± 0.28) 95.82 (± 0.28) 89.14 (± 0.82) 95.17 (± 0.37) 96.74 (± 0.32)

I
{ 1D-CNN [11] (L7-784) 85.44 (± 0.45) � 91.48 (± 0.24) 93.48 (± 0.22) 83.29 (± 0.62) � 91.04 (± 0.36) � 93.42 (± 0.22)

LSTM + 2D-CNN [13] (MAT-20) 75.24 (± 0.58) 85.60 (± 0.47) 89.80 (± 0.34) 70.80 (± 1.06) 83.34 (± 0.69) 87.82 (± 0.48)

II
{ MLP-1 (L7-784) 78.71 (± 0.65) 86.93 (± 0.40) 89.88 (± 0.37) 77.16 (± 0.63) 86.96 (± 0.50) 90.40 (± 0.51)

MLP-1 (MAT-20) 69.94 (± 0.47) 79.22 (± 0.51) 84.94 (± 0.34) 54.42 (± 0.63) 72.47 (± 0.59) 80.03 (± 0.56)
III RF (flow-based) 84.78 (± 0.30) 91.69 (± 0.31) � 93.89 (± 0.24) � 80.77 (± 0.84) 90.70 (± 0.61) 93.58 (± 0.52) �

IV
{ SOA 87.08 (± 0.29) ‡ 92.83 (± 0.31) ‡ 94.66 (± 0.26) ‡ 84.68 (± 0.55) ‡ 92.36 (± 0.28) ‡ 94.65 (± 0.23) ‡

TLF 68.87 (± 1.05) 79.35 (± 0.92) 83.41 (± 0.86) 62.01 (± 0.97) 75.03 (± 0.64) 80.40 (± 0.55)
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(b) MIMETIC Android.
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(c) MIMETIC iOS.
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(e) SOA Android.
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(f) SOA iOS.

Figure 4: Confusion matrices of architecture based on MIMETIC framework (top) and Soft-Output Average (SOA) of best single-modality DL
classifiers (bottom) for the FB/FBM (a & d), Android (b & e), and iOS (c & f) datasets. Note that the log scale is used to evidence small errors
(except for FB/FBM). Categorical class-labels for multi-class datasets are the same as in [21].

5.4. Fine-Grained Performance

We now deepen the (classification) performance investiga-
tion of the MIMETIC framework (along with the baselines),
initially by reporting their Top-K accuracy (K ∈ {1, 3, 5}) on
the multi-class datasets in Tab. 4. We highlight that the above
table does not include MV Top-K accuracy score, as the lat-
ter is based on classifiers’ hard outputs and therefore there is
no (natural) definition for the confidence vector associated to
its decision. Clearly, from the inspection of these fine-grained
results it is apparent that all the considered classifiers are able

to improve their accuracy when a larger pool of predicted apps
may be taken into consideration, (shallow) MLP-1 classifiers
included. However, the latter classifiers approach neither the
accuracy of the MIMETIC architecture nor of their single-
modality DL counterparts. This is due to their inability of in-
ferring deeply-structured traffic patterns as a whole. Indeed,
they are not able to predict the true label even when consid-
ering the Top-K classes ranked by their confidence. On the
other hand, MIMETIC reports also the highest global accuracy
(soft-output) behavior in both the multi-class datasets. Indeed,
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(b) Android.
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(c) iOS.
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(d) FB/FBM.
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(e) Android.
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(f) iOS.

Figure 5: Accuracy (a-c), F-measure (d-f), and ratio of classified samples (CR) [%] vs. censoring threshold γ of MIMETIC (MM) framework vs.
best single-modality DL classifier (DL) and state-of-the-art ML-based mobile-traffic classifier (RF). Average on 10-folds and corresponding ±3σ
confidence interval are shown. To ease direct comparison, the y-axes are limited to percentages over 50%: only CR of RF continues dropping
below that threshold, to values of little practical interest.

although the (off-line) RF classifier provides a slightly better
global behavior than the best single-modality DL classifier (for
K ∈ {3, 5} on Android dataset and K = 5 on iOS dataset),
namely 1D-CNN (L7-784), it is able to outperform neither the
proposed MIMETIC approach nor the simpler SOA combina-
tion of single-modality DL classifiers. This result suggests that
the capitalization of multiple modalities improves the global
discrimination capabilities of DL-based classifiers. In detail,
in Android (resp. iOS) scenario, the MIMETIC architecture is
able to reach 94.29% and 95.82% (resp. 95.17% and 96.74%)
accuracy when the Top-3 and Top-5 predicted apps are consid-
ered, respectively.

Then, to assess possible relevant misclassification-patterns
and their mitigation through intermediate-fusion, Fig. 4 shows
the confusion matrices of the MIMETIC approach in the
three datasets, and compares them with those obtained via
SOA. From direct inspection, MIMETIC clearly achieves less-
structured and milder error patterns in the three cases consid-
ered, as opposed to SOA. This confirms the flexibility of the
information fusion provided by our framework. Equally im-
portant, the confusion matrices highlight the appeal of cost-
sensitive learning within the MIMETIC formulation (see the
definition of loss functions in Eqs. (1) and (2)), able to deal
with imbalanced TC problems (which are common in the mo-
bile context) by preventing a classification imbalance toward
the most-represented classes.

5.5. Performance vs. Reject Option
Finally, as a complementary analysis oriented to finer per-

formance control, Fig. 5 shows the accuracy and F-measure
(first and second row of plots, respectively) of (a) the proposed
MIMETIC approach, (b) the best single-modality DL approach
(1D-CNN (L7-784)), and (c) the flow-based RF developed in
[35] (i.e. the current ML-based state-of-the-art traffic classifier)
vs. the censoring threshold γ on each of the three datasets. We
exclude herein the SOA approach, due to lower performance
(while having a common “fusion” rationale) with respect to
MIMETIC. We notice that a threshold value implying varying
performance w.r.t unclassified samples, can be observed only
if γ ≥ 1/L (L corresponds to the number of classes).6 In all
the plots, for the sake of a thorough comparison, we also report
the ratio of classified samples (CR) vs. γ (for γ ≥ 50%, be-
ing smaller values of little practical interest). We highlight that
we opted to keep the visualization of accuracy/F-measure and
CR separate so as to provide a finer understanding of the cor-
responding interplay among the two conflicting measures. By
looking at the qualitative profiles of CR and both performance
measures, the following considerations can be drawn. First, re-
sults highlight that all the methods enjoy improved classifica-
tion performance when increasing γ, at the price of a decreasing
CR. Secondly, the RF approach has the sharpest improvement
of accuracy & F-measure with γ which is paid, unfortunately,
with a quick CR decrease. This outcome may be explained with

6Specifically, this value corresponds to 0.5 in the case of the FB/FBM
dataset, whereas it equals ≈ 0.02 for Android and iOS datasets.
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a high number of biflows classified with low confidence by RF.
As an example, by looking at Android dataset and having a 90%
F-measure as a target, the RF approach rejects double of the
tested biflows w.r.t. the proposed MIMETIC approach (20% vs.
10%, respectively). On the other hand, comparing MIMETIC
with the (best) single-modality DL architecture, a similar be-
havior of the CR with γ is observed for the two approaches,
whereas MIMETIC provides an almost-constant performance
improvement over all the range. This again confirms the global
performance gain originating from the adoption of multimodal-
DL in our proposal. Specifically, by rejecting the classification
of only 10% of instances, on the Android dataset, the proposed
MIMETIC approach is able to achieve accuracy and F-measure
such that ≥ 95% and ≥ 90%, respectively. Similarly, for the
iOS dataset, the proposed approach is able to achieve (roughly)
the same targeted performance. Unfortunately, in the FB/FBM
scenario, achieving ≥ 90% target performance on both mea-
sures would require ≈ 30% biflows to be censored. This result
reflects the difficulty in solving an “overlapped-apps” classifica-
tion task, sharing many third-party (common) services in their
execution.

6. Conclusions and Future Directions

In this work we tackled classification of mobile (encrypted)
traffic via a multimodal-DL approach, named MIMETIC,
proposing a general TC framework able to capitalize hetero-
geneous input data (capturing intra- and inter-modal depen-
dences) and implemented a specific instance tested on three
real users’ datasets of mobile traffic. The latter implemen-
tation has been show to outperform both ML- and DL-based
baselines (with up to +8.58% improvement over the best base-
line, i.e. 82.64% on iOS dataset), while having a RTPE > 3.5×
lower than its “main single-mode DL competitor”. A compari-
son of fine-grained performance also showed the superiority of
the MIMETIC approach in a highly multi-class TC task, reach-
ing 96.74% score when considering Top-5 accuracy on iOS
dataset and a uniform misclassification pattern (as a result of
cost-sensitive learning), as underlined by confusion matrices.
Finally, enriching MIMETIC with a reject option allowed to
report a ≥ 90% F-measure on both multi-class datasets (resp.
binary dataset), by rejecting 10% (resp. 30%) of the examined
biflows.

The proposed MIMETIC framework suggests the following
research directions. First, the generality of the multimodal-
DL TC framework proposed allows the adoption and the use
of more sophisticated DL layers, such as inception and residual
connections. Secondly the training procedure considered, in-
cluding a pre-training phase, can be used in conjunction with
the exploitation of massive unsupervised data for improved
transfer learning. Thirdly, it is of clear interest the prototyping
of multimodal-DL architectures able to cope with more chal-
lenging TC objects (e.g. service burst [7]), especially in the
definition of the corresponding multiple modalities associated
to different input types. Finally, a real-world implementation
of multimodal-DL architectures in open-source tools (e.g. TIE
[36]) is of relevant interest.
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