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Abstract—The generation of synthetic network traffic is nec-
essary to several fundamental networking activities, ranging
from device testing to path monitoring, with implications on
security and management. While literature focused on high-rate
traffic generation, for many use cases accurate traffic generation
is of importance instead. These scenarios have expanded with
Network Function Virtualization, Software Defined Networking,
and Cloud applications, which introduce further causes for
alterations of generated traffic. Such causes are described and
experimentally evaluated in this work, where the generation accu-
racy of D-ITG, an open-source software generator, is investigated
in a virtualized environment. A definition of accuracy in terms
of Mean Absolute Percentage Error of the sequences of Payload
Lengths (PLs) and Inter-Departure Times (IDTs) is exploited
to this end. The tool is found accurate for all PLs and for
IDTs greater than one millisecond, and after the correction of a
systematic error, also from 100µs.

Index Terms—network traffic generation; network manage-
ment; virtual environments; Software Defined Networking; Net-
work Function Virtualization.

I. INTRODUCTION

The complex and ever-evolving nature of traffic traversing
the Internet, and the parallel rapid evolution of networking
infrastructure and services, both prompted for the need of
advanced and automated tools for evaluating network paths,
devices, and applications. A fundamental activity related to
such evaluations is the capability of generating network traffic
with desired characteristics: Traffic Generation (TG). Such
activity is necessary e.g. to test security appliances such as
firewalls, intrusion and anomaly detection systems, but also for
testing the new network automation management infrastructure
offered by programmable network paradigms such as Software
Defined Networking (SDN) and Network Function Virtualiza-
tion (NFV). While much research has been performed in the
past regarding high performance traffic generation, focused on
generating high rates of traffic, little attention has been devoted
to accurate traffic generation, whose purpose is to reproduce
the timing and dimensions of packets with maximum control
on the error. Such accuracy generally benefits the repeata-
bility of the experiments, but has gained more importance
due to the adoption of data-hungry advanced deep learning
methods showing great success in identifying, classifying, and
predicting (encrypted) network traffic. Indeed, such methods
need sizeable datasets to learn a model of traffic, and dataset
augmentation approaches are being researched to satisfy these
needs [1]. In these scenarios, by generating traffic affected

by unchecked alterations may either fail to trigger the iden-
tification and classification capabilities of a trained model (if
used for testing), or could constitute an ineffective source for
augmenting the dataset (if used for training). While hardware-
based network traffic generators can in principle be configured
to provide the highest accuracy, they are severely restricted in
usage scenarios due to their limited deployment possibilities
and high cost; on the contrary, software-based generators not
only can be easily deployed in high number of instances, but
also can be easily “moved” to every end-system and middle-
box on the network. Moreover, software-based network traffic
generators can be deployed in virtualized environment, better
emulating the actual modern application deployment scenario,
including cloud services and NFV. On the other hand, the
execution in virtualized environments and on general-purpose
operating systems can impact in many ways the accuracy of
both timing and dimension (aggregation) of packets. Potential
causes of discrepancies include: processing overhead in the
networking stack; timing “noise” due to other processes; opti-
mization features such as interrupt coalescence and offloading
to the network interface card of segmentation and reassembly.
Therefore an assessment of actual generation capabilities for
a virtualized network traffic generator (and possible remedies)
is in order.

Given the lack of scientific literature regarding the accurate
software-based network traffic generation [2], in this work we
propose an assessment of TG accuracy, taking into account all
above considerations regarding TG via (virtualized) software
solutions. To validate the proposed methodology, we present
an assessment of the accuracy in terms of Payload Length and
Inter-Departure Time generated by an open-source traffic gen-
erator tool called Distributed Internet Traffic
Generator (D-ITG) [3]. This software has been chosen
for its great flexibility, allowing to explore accurate traffic
generation (and in future works also mixes of different kinds
of traffic generation).

To summarize we present the following key contributions:
• we define generation accuracy (in terms of inter-departure

time and transport-layer payload length sequences), and
propose a methodology to assess, regardless of the gen-
eration tool, how accurate the traffic generation is;

• we provide an experimental evaluation of D-ITG accu-
racy in generating network traffic according to user-given
requirements in a virtualized environment;

• we apply and evaluate the correction of systematic error



that adversely affect the required inter-departure time
sequences;

• we perform all the analyses with reference to a dataset
of human-generated real mobile app traffic, to quantify
the impact of error in a real-world scenario.

The rest of this paper is organized as follows. Section II
describes background and related work in TG. Section III
details the methodology proposed for validating TG accuracy
and the setup used for the experimentation. Section IV presents
the evaluation results and provides guidance for the generation
of real traffic traces. Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

While synthetic TG is an activity widely performed for testing
and active network measurements, different aspects are of
interest according to the use case. For testing purposes, the
main desired characteristic is the capacity of generating high
throughput, able to saturate the path under test [2]. For
other purposes (e.g., active measurements, training of machine
learning algorithms), the ability to accurately emulate or even
faithfully replicate the smallest-detail traffic properties (in
terms of payload length and inter-departure time) is much
more significant, but is investigated only in ad-hoc cases, not
under the general umbrella of synthetic TG. High-performance
traffic generators can be implemented via dedicated hardware,
but besides being relatively very expensive [4], they lack the
deployment flexibility allowed by software, that is the more
needed the more SDN and NFV become widely adopted.
Besides deployment flexibility, also the ease of configuration
and update play in favor of software-based traffic genera-
tors [5], that therefore provide attractive solutions in nearly all
application scenarios. Software-based traffic generators can be
categorized in three classes described hereafter.

• Replay engines—work based on pre-recorded packet
traces and are able to replicate (a portion of) such traffic.
Examples of such generators are [3], [6], [7], [8], [9].

• Model-based—allow to generate network traffic based on
theoretical statistical distribution or distributions learned
from data using machine learning and deep learning
techniques (e.g., [7], [10], [11], [12]).

• Application-based generators are related to specific type
of network traffic and network conditions at different
levels of the protocol stack. Examples of this kind of
tools are [13], [14], [15], [16].

D-ITG is able to act as both replay engine and model-
based generator. More in detail, D-ITG supports: (i) packets
generated in a stateful way that allows to better replicate the
behavior of real network applications; (ii) a flexible generation
in terms of user-configurable parameters, in addition to a TG
by pre-configured well-known statistical distribution; (iii) the
possibility to replicate a synchronized bidirectional traffic from
Packet CAPture (PCAP) pre-recorded traces.

This last feature is an essential factor in the evaluation
we propose, since it allows to inject traffic into the network
with characteristics as close as possible as the required ones.
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Figure 1: Experimental setup. Sender and receiver software
components are executed on different Virtual Machines (VM
in the figure), in turn running on distinct physical machines
interconnected via a layer-2 switch; tcpdump is executed on
the guest.

For this analysis, we have considered other publicly available
software generation tools (i.e. [6], [7], [9], [10], [16]) but,
despite each offering its peculiar features, none of them
focused on accurate traffic generation or allowed the necessary
flexibility to explore it.

While the deployment in virtualized environment caters to
modern ICT infrastructure needs, it also constitutes an addi-
tional challenge to the accuracy of software traffic generators.
Indeed, the presence of further software layers for sending
and receiving packets can affect timing accuracy. Regarding
this aspect, Whiteaker et al. [17] quantify the virtualization
impact, showing that a solution Xen-based adds about a
hundred microseconds on round-trip time; similar values
(40− 80 µs) have been found investigating a high-performing
SDN setup [18]. Wang and Ng [19] instead focused on intra-
datacenter delay considering the Amazon EC2 infrastructure-
as-a-service, recording delays higher than 10ms in some
cases. Real-world network traffic traces have been collected
and exploited in a vast literature: we considered the recent
publicly available MIRAGE dataset [20], for extracting the
inter-departure times and payload lengths relevant for actual
scenarios. All these measurements provide a reference frame
for the attainable accuracy and traffic characteristics of inter-
est: in such a frame, in this work we measure the generation
accuracy of a software-based traffic generator, D-ITG [5] in
a virtualized environment, discussing the implied factors and
possible solutions.

III. METHODOLOGY

In this section we define how we evaluate the generation accu-
racy of a software-based TG tool in a virtualized environment.
First, we describe the experimental setup we refer to, also
providing the implementation details for the experimental cam-
paigns we have conducted. Then, we discuss the parameters
of interest we focus on to quantify the TG accuracy, as well
as the evaluation metrics we consider. Finally, we present how
we have designed our experimental campaigns, based on the
observation of real traffic.
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Figure 2: Cumulative distribution function of IDTs for up-
stream (a) and downstream (b) flows on real traffic.

A. Experimental Setup

The experimental architecture we refer to for our analysis
is reported in Fig. 1. All the experiments are conducted lever-
aging D-ITG version 2.9.1. The two parts of the distributed
traffic generator (sender and receiver, namely) run on two dif-
ferent virtual machines (guests), which are in execution on two
distinct physical machines (hosts). The two physical machines
are interconnected via a layer-2 switch. This setup fits with
our scenario of interest, where the software components run on
dedicated—though virtual—machines. Specifically, the simple
network path interconnecting the machines is in line with the
goals of our experimentation, which intentionally focuses on
the accuracy of the traffic generated by the client. Interference
by other processes or devices is meant to be avoided, as its
assessment is outside of the scope of our investigation.

To keep the measurements as close as possible to the
generating process, we put our probes in the same virtualized
environment. Although this could cause interference among
the generation, capture, and logging activities, we minimize
such an impact by leveraging standard process scheduling util-
ities (i.e. nice/ionice and ramdisk for logging) to have
both a reliable and close-to-generator reading and a general-
purpose setup analogous to a real-world virtualized client-
server scenario. Network traffic is captured via tcpdump.

In the following, we report the implementation details
to guarantee reproducibility. The proposed setup is general
enough to be applied to evaluate any network-traffic software
generation tool. Both virtual machines are provided with 4 GB
RAM and 2 vCPU and run Linux operating system. OpenStack
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Figure 3: Cumulative distribution function of PLs for upstream
(a) and downstream (b) flows or real traffic.

(with KVM hypervisor) is used to deploy the virtual machines.
The interconnecting link has 1 Gbps capacity.

Hereinafter, we present the results on the traffic as observed
on the guest at sender side. We verified that no significant
discrepancy is noticeable when comparing the same generation
observed at the sender and at the receiver side: analyses
and results do not suffer from significant noise added by
the virtualization technology, the host operating systems, or
the switch, and are thus representative of the investigated
phenomenon (generation accuracy).

B. Evaluating Generation Accuracy

In this work, we focus on the ability of a virtualized
software-based TG tool to accurately reproduce network traf-
fic. This ability can be defined via two distinct but interrelated
capabilities: (i) generating packets with requested Inter-De-
parture Times (IDTs); (ii) generating packets of requested
transport-layer Payload Lengths (PLs). The assumption is that
the traffic generator is requested to generate a sequence of
packets, with the sequences of IDTs and PLs being given.
The accuracy is evaluated comparing the requested sequences
with the generated ones.
Generating Requested IDTs. A number of causes for inac-
curate IDTs have been identified in the literature which can
be divided in internal and external factors [5]: the former are
dependent on tasks performed by the traffic generator itself
(e.g., for logging information about outgoing packets), while
the latter depend upon other tasks (e.g., related to the operating
system or other concurrent processes). Internal factors can
be tackled with a careful design and implementation of the



software, while external interference can be mitigated via the
isolation of the generating process.

To quantitatively assess IDT generation accuracy, we com-
pare the sequences of IDTs requested and generated, and rely
on Mean Absolute Error (MAE) and Mean Absolute Percent-
age Error (MAPE), as the two metrics are complementary in
their utility to interpret the practical implications about how
accurate we are at generating a specific IDT sequence and how
we can make corrections to possible sources of inaccuracy.
Generating Requested PLs. When using the TCP transport-
layer protocol, there is no guarantee (by design) that the data
committed in a single sending (a message) will fit in a single
network-layer packet. In fact, the process of TCP segmentation
will dynamically adapt to network conditions. As a result,
TCP can bundle up many messages in a single segment,
or split a message into many segments. In addition, other
mechanisms (aimed at improve the network stack efficiency in
terms of throughput or latency achievable) may also generate
interference. For instance, TSO/GSO [21] allows the network
stack to submit large packets directly to the hardware which
is in charge of splitting them into smaller appropriate-sized
packets. Furthermore, Interrupt Coalescing [22] allows to hold
back send events either until a certain amount of work is
pending, or a timeout timer triggers. This technique reduces
interrupt overhead, while incurring latency penalties.

When the mentioned approaches are in place, they interfere
with the accuracy in the generation of PL sequences, also
impacting IDT accurate reproduction. In the following, when
inspecting for accurate PL generation, we refer to coalesced
packets when multiple requested packets are aggregated in a
single one, regardless of the cause. For this reason, in our
analysis we check whether the generated PL sequence exactly
matches the requested one: when this condition does not hold,
we exclude the coalesced packets from the evaluation of IDT
sequence accuracy. In this way we can assess the two errors
(on size and timing) separately and in a reliable way.

C. Design of the Experimentation

Generation accuracy is known to depend upon the charac-
teristics of the requested traffic, with shorter IDTs and smaller
PLs being harder to be generated accurately. Therefore, in our
experimental campaigns, we instruct D-ITG to generate traffic
with different IDT and PL values.

In fact, real traffic may have different characteristics in
terms of volume, packet rate, and bit rate, depending upon
the application that produces it. In this study, we consider
as a scenario of specific interest the traffic generated by
mobile applications. More specifically, we refer to the MI-
RAGE project [20] considering a real-world reference dataset—
containing the traffic generated by 9 apps (namely, Zoom,
Skype, Messenger, Teams, Meet, Webex, GotoMeeting, Discord,
and Slack)—and inspect the distribution of PL and IDT as ob-
served in this traffic. Figures 2 and 3 report the empirical distri-
bution for IDT and PL, considering upstream and downstream
direction separately. Despite the distributions remarkably vary
according to the specific application (as expected), the analysis
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Figure 4: Average ratio of coalesced packets for different IDT
and PL combinations. Green cells depicts combinations of
IDTs and PLs in which no coalescence occurs.

highlights how in real traffic the observed IDTs range from
few microsecond to tens seconds, whereas PLs span from few
bytes to around 1500B. Notably, significant discrepancies are
also evident, depending on traffic direction.

Accordingly, in our experimentation we have considered
PL values in the range 1–1398B (in accordance with the
1450B maximum transfer unit in our setup, to avoid undesired
fragmentation) and IDT values in the range 1 µs-10 s, in order
to evaluate the traffic generation accuracy when aiming at
mimicking the traffic generated by mobile apps. For each
combination of IDT and PL, we generate 20 flows of 100
packets each.

IV. EXPERIMENTAL EVALUATION

Based on the methodology discussed in Sec. III, this section
provides the evaluation of D-ITG in generating packet se-
quences with requested IDTs (sec. IV-A) and PLs (Sec. IV-B).
Based on the knowledge acquired, we also introduce a calibra-
tion mechanism in order to tackle the systematic error assessed
(Sec. IV-C).

A. PL Sequences Evaluation

To assess the accuracy of PLs generated, Fig. 4 depicts the
percentage of coalesced packets for each combination of IDT
and PL requested. Firstly, we underline that the experiments
with PL greater than 100B showed a total absence of coa-
lescence and thus Fig. 4 focuses solely on the PL range 1B-
100B w.r.t. the whole range of requested IDT (spanning from
1 µs to 1 sec). Each cell of heatmap reports the percentage
of requested packets that suffered from coalescence, averaged
over all the repetitions of the same experiment. Going into
details, we can notice that the phenomenon is particularly
evident for IDTs < 100 µs and PLs in the range 1–50B with
the highest peak of coalescence (≈ 90%) observed when D-
ITG is requested to generate 1B packets. On the other hand,
the higher the IDT/PL values, the lower the ratio of coalesced
packets: for PLs > 60B and IDTs > 100 µs the phenomenon
disappears (cells colored in green). More specifically, for IDT
= 100 µs, the coalescence is observed only for PLs ≤ 50B, but
rarely (≈ 10%). Such analysis proves that for IDTs < 100 µs,
the sequence of PLs actually injected into the network may
not reflect those requested by the user. Since this phenomenon
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Figure 6: MAE and MAPE for different IDTs. PL of 900B.

affects the evaluation of generated IDTs, in the following
analyses, we filter out coalesced packets.

B. IDT Sequences Evaluation

In order to investigate the dependence of IDT genera-
tion accuracy upon PL (even in absence of the coalescence
phenomenon), we have performed an extensive experimental
campaign, covering the range of values of interest for both
parameters. Specifically, we have considered PL values from
1 to 1398 B and IDTs from 1 µs to 100 s. The results of the
whole campaign are not shown for brevity but summarized
hereafter. Figure 5 depicts the total MAE in generating IDTs
∈ [1 µs, 1ms]. The results show that the interquartile ranges
are distributed around [70 µs, 90ms], regardless of IDT. In
addition, the outliers do not show any PL dependency, as no
clusters are visible.

Accordingly, in the following analyses we adopt a fixed PL
of 900B, corresponding to the median (instead of the mean,
for better robustness to outliers) of the PLs observed in the
real-world reference dataset (see Fig. 3).
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1 µs–200 µs.
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To investigate the accuracy of generation w.r.t. timing,
hereinafter we present an analysis at different time scales, in
terms of MAE and MAPE between requested and generated
IDTs. Figure 6 depicts the performance at the seconds (IDTs
∈ [10 s, 100 s]) and milliseconds (IDTs ∈ [1ms, 1 s]) time
scales1, respectively. Also, from the results reported in Fig. 4,
it is evident that for IDTs > 1ms there are no coalescence
occurrences; hence, the accuracy in IDT generation is not
influenced by the specific PL considered.

Figure 6 shows that D-ITG offers a good accuracy in
generating the requested IDTs. In Fig. 6a there is an evident
trend for MAE—going from ≈ 0.01 s for 10 s IDT to ≈ 0.05 s
for 100 s IDT—corresponding to a very small MAPE (Fig. 6b)
always lower than 0.075%. A similar situation can be noted at
smaller time-scales. Figure 6c reveals that in absolute terms
there is a consistent error of hundreds of microseconds for
all required IDTs (MAE ≈ 0.1ms). In relative terms, Fig. 6d
shows a decreasing error as the required IDT increases, with
a MAPE of ≈ 8% when an IDT of 0.1ms is requested and
less than 1% (and commonly < 0.1%) for higher IDTs.

1The [10 s, 100 s] range is of special interest since it constitutes at least
the 20% of the traffic from the reference real-world dataset (see Fig. 2).



C. IDT Calibration Analysis
Based on these considerations, in the following, we focus

on IDTs ∈ [1 µs, 200 µs] in which a greater variability of errors
between requested and generated IDTs can be observed. With
the aim of highlighting possible systematic errors, in Fig. 7
we show the cumulative distribution (aggregated by PL) of
the timing errors, that are expressed as the difference between
generated and requested IDTs. We can notice that 99% of
errors are between 65 µs and 120 µs. Also, the evident slope
of the distribution suggests that the timing error is due to a
systematic source. This error value can be estimated by cal-
culating the average of the errors committed in generating all
the required IDTs and approximating this average value to the
nearest required IDT. In this way, we obtain a calibration value
of 80 µs. Based on this result, we propose a simple calibration
mechanism that corrects the systematic error affecting the IDT
to be generated before requesting it to D-ITG. In more details,
we apply this calibration mechanism to the requested IDTs,
so as to mitigate such a consistent error: when the requested
IDT > 80 µs, the requested generation time is anticipated by
80 µs; conversely, when the requested IDT ≤ 80 µs, we instruct
D-ITG to generate an IDT of 0 µs (i.e. back-to-back packets
are requested). The effects of this calibration are reported in
Fig. 8 in terms of MAPE between requested and generated
IDTs by comparing the error with and without the calibration
in the range [1 µs, 200 µs]. We note that for requested IDTs
< 40 µs, the effect of calibration is negligible, while for
higher IDT values its beneficial effect is increasingly evident,
achieving more than an order of magnitude reduction in MAPE
when IDTs > 100 µs are requested.

V. CONCLUSIONS AND FUTURE PERSPECTIVES

In this paper we have addressed the issue of accurate traf-
fic generation and provided a general methodology for the
evaluation of generation accuracy in terms of both IDT and
PL, which can be applied to any software generation tool,
also in virtualized environments. We provided an assessment
of generation accuracy using D-ITG, which had never been
assessed under the conditions we set, as it was designed
to maintain average generation rates. We have verified that
D-ITG shows great accuracy (MAPE ≤ 0.1%) for any PL
and for IDTs >1ms, while a systematic source of error of
≈80 µs impacts IDTs≤ 1ms. By applying a simple calibration
we reduce the MAPE of one order of magnitude for IDTs
down to 100 µs, effectively reaching the physical limit found
in literature for traffic traversal in virtual switches. In a future
work, we intend to build on this analysis to propose D-ITG
as a data augmentation tool for training models on a mix of
real and synthetic traffic captures, in order to improve the
performance of the same models in the case of class-imbalance
problems, and to reduce risks of privacy compromise when real
data are used in model training. Other more complex scenarios,
involving a mix of traffic flows, can be explored as well.
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