
A Comparison of Machine and Deep Learning
Models for Detection and Classification

of Android Malware Traffic
Giampaolo Bovenzi, Francesco Cerasuolo, Antonio Montieri,

Alfredo Nascita, Valerio Persico, Antonio Pescapé
DIETI, University of Napoli “Federico II”, Napoli, Italy

giampaolo.bovenzi@unina.it, fran.cerasuolo@studenti.unina.it, antonio.montieri@unina.it,
alfredo.nascita@unina.it, valerio.persico@unina.it, pescape@unina.it

Abstract—With the increasing popularity of mobile-app ser-
vices, malicious software is increasing as well. Accordingly, the in-
terest of the scientific community in Machine and Deep Learning
solutions for detecting and classifying malware traffic is growing.
In this work, we provide a fair assessment of the performance of
a number of data-driven strategies to detect and classify Android
malware traffic. Three models are taken into account (Decision
Tree, Random Forest, and 1-D Convolutional Neural Network)
considering both flat (i.e. non-hierarchical) and hierarchical
approaches. The experimental analysis performed using a state-
of-art dataset (CIC-AAGM2017) reports that Random Forest
exhibits the best performance in a flat setup, while moving
to a hierarchical approach could cause significant variation in
precision and recall. Such results push for further investigating
advanced hierarchical setups and learning schemes.

Index Terms—Android Malware, Malware Traffic Detection,
Adware Traffic Detection, Traffic Classification, Machine Learn-
ing, Deep Learning, Hierarchical Classification.

I. INTRODUCTION

According to the latest Ericsson mobility report [1] at the
end of 2021, total mobile traffic was 65 EB per month (one
order of magnitude more than 5 years before) fueled by the
rising number of smartphone subscriptions and the increasing
data-volume per subscription. More than 50% of mobile
traffic is generated by Android devices, the most popular
mobile operating system in the world, which dominates the
smartphone market scene together with Apple devices [2].
Together with this trend, an increase of malicious software
potentially compromising users’ privacy and security (e.g.,
tracing of user activities or theft of private information) is
observed: in 2021 more than 80% of attacks was carried
out using mobile malware with adware accounting for the
largest share (42.42%) of all detected threats [3]. Therefore,
the detection and prevention of malware and adware of various
types has become a challenge of primary importance for
the entire Internet community. Android malware detection
techniques can be primarily divided into static techniques
and dynamic techniques [4]: the former aim at detecting
malicious or incorrect code without running the mobile app
but processing the app package; the latter monitor the traffic
generated attempting to identify notable patterns highlighting
unwanted and unexpected behaviors.

In this work, we focus on detecting and classifying malware
traffic. In this regards, data-driven techniques have recently
attracted the attention of the networking research community,
resulting in a number of solutions involving Machine Learning
(ML) and Deep Learning (DL) approaches [2, 5–10]. Indeed,
these latter have proved to be a viable solution to attain
high performance in the dynamic and challenging mobile
context [11]. Specifically, we investigate the performance of
various strategies to identify and classify Android malware
traffic. More specifically, we evaluate the benefits of hier-
archical approaches against non-hierarchical (i.e. flat) ones,
with the aim of reaping the benefits of model parallelism
and problem splitting in sub-problems (viz. divide-et-impera)
provided by the former. Concerning the specific algorithms
whose performance are investigated, we consider two classic
ML tree-based models, namely single (Decision Tree) and
ensemble (Random Forest), and a DL network (1-Dimensional
Convolutional Neural Network). For the latter, we have also
evaluated the benefit of considering embedding layers as a way
to augment information carried by input data to the classifier.
For the experimental validation, we analyze a public dataset
containing Android malware traffic—namely Android Adware
and General Malware Dataset CIC-AAGM2017 [2]—as a
relevant case study to fairly compare the performance of the
proposed detection and classification methods. Results witness
the superiority of Random Forest and show that hierarchical
approaches (besides intrinsic benefits [12, 13]) do not achieve
significantly better performance in the considered evaluation
scenario (in spite of a higher precision) but provide room for
improvements through the design of more advanced setups.

The rest of the paper is organized as follows: Section II
positions our contribution in the context of previous work;
Section III describes the experimentation, introducing the data-
driven solutions, the dataset, and the performance metrics;
Section IV discusses the results of the experiments; Section V
concludes the paper.

II. RELATED WORK

This section provides a brief overview of works perform-
ing malware classification mainly by means of ML/DL ap-



TABLE I: Details on the 1D-CNN architecture: layers and hyperpa-
rameters. Two configurations with and without the embedding layer
have been evaluated.

Layer Hyperparameters

Input Input Shape: (Nb, 1)
Embedding Input Dim: 256, Output Dim: 10, Input Length: 512
Convolutional1D Filters: 16, Activation: ReLU
MaxPooling1D Pool Size: 3
Convolutional1D Filters: 32, Activation: ReLU
MaxPooling1D Pool Size: 3
Convolutional1D Filters: 64, Activation: ReLU
MaxPooling1D Pool Size: 3
Flatten -
Dropout Rate: 0.25
Dense Nodes: 256, Activation: ReLU
Dropout Rate: 0.25
Dense Nodes: 3, Activation: Softmax

proaches. Previous works concerning classification of Android
malware exploit string matching on HTTP headers and IP/DNS
blacklisting [14], behavioral analysis [15], or ML-based flat
classifiers [2, 6–10] possibly considering the CIC-AAGM2017
dataset [2, 9, 10].

Despite ML-based hierarchical learning [16–18] and
DL [19–21] for malware classification purposes are broadly
explored in the networking literature, these studies are usually
conducted leveraging outdated datasets (such as KDD-Cup-99
and NSL-KDD). Given their collection periods, such datasets
hardly exhibit a current real-world network traffic profile,
and the counter-productively use of handcrafted statistics they
provide, does not permit automatic extraction of knowledge
from raw traffic data, nullifying a key advantage of DL. The
sole exceptions are represented by more recent works [22–25]
which extract different engineered input data from raw traffic
traces but mainly considering IoT or non-mobile traffic.

For what concerns considered DL algorithms most
works apply AutoEncoders (AE) [22], Deep Neural Net-
works (DNNs) [20, 23], Convolutional Neural Networks
(CNNs) [21, 24, 25], and variants of Recurrent Neural Net-
works (RNNs) [19, 25]. Regarding ML ones, ensembles
commonly outperform single classifiers, with hierarchical ap-
proaches providing further benefits by design [12, 13].

In the present work, we evaluate on a state-of-the-art
Android malware dataset [2], both ML and DL classification
models, with the former models being evaluated in a flat
and a hierarchical setup. ML and DL models are fed with
properly designed statistical features and raw-packet payload
data, thus supporting an offline and an early-detection [26]
application scenario, respectively. Finally, the benefits carried
by the adoption of embedding layers are also experimentally
measured.

III. EXPERIMENTAL SETUP

A. Malware Classification via ML and DL

Herein, we conduct traffic classification of Android mal-
wares: given a traffic object [26] (i.e. an aggregation of
traffic packets sharing common properties), the considered
classification task aims to assign a label among L classes

(each corresponding to benign traffic or to a malware family)
within the set {1, · · · , L}.1 Specifically, we segment traffic into
bidirectional flows (viz. biflows), defined as a stream of packets
sharing the same 5-tuple (i.e. transport-level protocol, source
and destination IP addresses and ports) regardless of the direc-
tion of communication.2 In the following, we describe ML and
DL techniques exploited for Android malware classification in
either flat or hierarchical fashion.

Machine Learning Approaches: Firstly, we employ two
ML-based models commonly used as state-of-the-art traffic
classifiers, fed with 34 statistical features extracted from
the sequence of packet lengths and inter-arrival times of
each biflow and selected based on previous state-of-the-art
results [9, 12, 25, 27], namely: min, max, mean, standard de-
viation, variance, mean absolute deviation, skewness, kurtosis,
and 10th to 90th percentiles.3 In detail, we evaluate a Decision
Tree (DT)—a model that makes predictions by learning simple
decision rules from the data features–and a Random Forest
(RF) classifier—a meta-estimator operating as an ensemble of
multiple DTs trained on various sub-samples of the dataset
and taking decision on testing samples based on the majority
voting or soft combination of the outcomes of DTs.

Deep Learning Approaches: Additionally, with the aim
of performing an “early” classification of Android malware
traffic, we leverage a 1-Dimensional Convolutional Neural
Network (1D-CNN) having a base architecture (i.e. layers and
related hyperparameters) inspired by that proposed in [29]
being an enhancement of the architecture successfully used
for malware classification in [30].4

Table I reports the details of the 1D-CNN considered in
this work. More specifically, the architecture is composed of
three 1D convolutional layers (with 16, 32, and 64 filters,
respectively), each followed by a 1D max-pooling, one dense
layer (with 256 nodes) and is terminated with one softmax
layer. It is worth noting the presence of 2 dropout layers to
avoid the overfitting phenomenon. For training this network,
we employ the Adam optimizer with its default parameters and
the early stopping technique measured on the training accuracy
(as an additional overfitting countermeasure)5.

As a further refinement to provide a better representation
of the input, an embedding layer has been added to the 1D-
CNN architecture described above. The embedding layer is
defined as the first hidden layer of a network and is described

1In the case of benign vs. malware detection, L = 2 and the classification
task is binary.

2To distinguish biflows occurring multiple times in the dataset, we construct
an unique 6-tuple exploiting the timestamp of the first packet of each biflow.

3We adopt the established procedure described in [28] for feature extraction.
4Starting with state-of-the-art proposals [29, 30], these choices have been

driven by both our past experience [11] and further preliminary analyses (not
shown for brevity).

5We highlight that the most common approach requires a validation set
to monitor early-stopping. However, due to the class-imbalance of the CIC-
AAGM2017 dataset (see Sec. III-B), some classes in the training set have a
limited number of samples. Hence, using part of the (whole) training set for
validation could impair performance associated with such minority classes.
For this reason, we use early-stopping on training data by monitoring the
“knee” of the training accuracy, and exiting when this condition is satisfied.
Similar approaches were also recently proposed in [31].



103 104 105

Number of Biflows

Benign

Adware

 GMalware

Fig. 1: Amount of biflows for each traffic category (Benign,
Adware, and GMalware) in the CIC-AAGM2017 dataset.

by 3 parameters: input dimension, output dimension, and
input length. The input dimension represents the size of the
vocabulary in the input data; the output dimension is the size
of the vector space in which words will be embedded; the
input length is the length of input sequences. Since our inputs
are integers constrained within the range [0, 255], we set the
input dimension to 256, the output dimension to 10, and the
input length to 512, the latter being the number of bytes
Nb we consider in our experimentation. Indeed, embeddings
project the (unnormalized) inputs into a fixed-dimensional
space, where each byte is represented by a dense vector which
represents the projection of the byte into a continuous vector
space. The position of a byte within the vector space is learned
from input data and is based on other bytes surrounding it.

For each biflow, we feed the 1D-CNN with the first Nb bytes
of transport-layer payload (from up to the first 32 packets)
arranged in a byte-wise way and normalized within [0, 1].
Samples longer than Nb bytes are truncated to the designed
length, whereas shorter instances are padded with zeros.

Flat vs. Hierarchical Approaches: In our experimentation,
we have also considered the benefits deriving from the adop-
tion of a hierarchical approach as opposed to a flat one.
We aim to attain gains—in terms of malware classification
performance or increased scalability—by splitting the classi-
fication task in sub-problems and employing a set of local
classifiers each tackled to a specific sub-problem (i.e. a top-
down approach). Although hierarchical approaches may result
in slight increased training complexity, we can leverage model
parallelism, due to their scalability and modularity. We resort
to this approach as it is particularly suitable for the considered
task, being the information associated with the latter naturally
structured in a hierarchy of levels (i.e. benign vs. malware
and specific multi-class malware classification). Specifically,
we adopt the widely used Local Classifier per Parent Node
(LCPN) hierarchical structure [12, 13, 32] which requires
a multi-class classifier for each parent node in the class
hierarchy, trained to distinguish among its children nodes.

B. Dataset Description

For the experimental evaluation, we used the public CIC-
AAGM2017 dataset [33], generated and labeled by the Cana-
dian Institute for Cybersecurity in 2017. Concerning the gen-
eration of benign traffic, the first 1500 apps of the Google Play
Store ranking were installed and launched in rounds of 20 at a
time. As for malicious traffic, 400 malware apps were chosen

from adware and general malware, including popular families
of malware, such as Airpsuh, Dowgin, Kemoge, Mobidash,
and Shuanet (for adware) and AVpass, FakeAV, FakeFlash,
GGtracker, and Panetho (for general malware). Malware traffic
was captured with the same procedure used for benign traffic,
but configuring the smartphone at each installation.

Overall, the dataset has a dimension of 9.5 GB and is
composed of raw traffic traces (available in PCAP format)
labeled as follows (see Fig. 1): (i) Benign: 173 traces, 1500
apps, 197670 biflows; (ii) General Malware (GMalware):
7 traces, 150 apps, 1411 biflows; (iii) Adware: 62 traces,
250 apps, 60997 biflows. The evident unbalance between
benign and malicious traffic (and the higher number of adware
samples) reflects the desire to represent a scenario as realistic
as possible. Indeed, according to the recent reports [3, 34],
the normal distribution of benign and malware apps in the
real world is 80% to 20%, which is the proportion kept in the
dataset, with a predominance of adware threats.

C. Performance Metrics

The experimental evaluation is based on a stratified hold-
out technique: we split the dataset into training (80%) and test
(20%) sets by keeping the realistic proportion of samples as
they appear in the overall dataset. The following performance
metrics are then employed: precision (the per-class ratio of de-
cisions being correct), recall (the class-conditional accuracy),
and F-measure (the harmonic mean of precision and recall).6

Specifically, we consider their macro (i.e. arithmetically-
averaged over classes) version for multi-class tasks. Formal
definitions of binary and multi-class considered metrics are
given in the following [11]. Eqs. 1–3 report the formula of
binary precision (prec), recall (rec), and F-measure (F-meas)
for a binary classification task (e.g., benign vs. malware), while
Eqs. 4–6 generalize the formulas to a multi-class classification
task (macro averaged over the L classes):

prec =
TP

TP + FP
(1)

rec =
TP

TP + FN
(2)

F -meas =
2 · TP

2 · TP + FP + FN
(3)

prec =
1

L

L∑
l=1

precl =
1

L

L∑
l=1

∑
i∈Cl

TPi∑
i∈Cl

TPi + FPi
(4)

rec =
1

L

L∑
l=1

recl =
1

L

L∑
l=1

∑
i∈Cl

TPi∑
i∈Cl

TPi + FNi
(5)

F -meas =
1

L

L∑
l=1

2 · precl · recl
precl + recl

(6)

6Given the imbalance between the classes encompassing CIC-AAGM2017,
we do not use the accuracy which would provide a performance figure biased
toward majority classes.



TABLE II: Performance measures [%] of ML and DL classifiers pre-
dicting finer-granularity classes. F stands for flat, H for hierarchical.

Traffic Classifier Family Approach Precision Recall F-measure*

RF ML F 80 97 86
1D-CNN (Emb) DL F 97 77 83
1D-CNN DL F 97 75 82
DT ML F 80 79 80
RF ML H 97 80 85

*F-measure is considered for ranking purposes.

/ classifiernode / pred. class

Fig. 2: Hierarchical classifier structure. R stands for root, B for
benign, M for malware, A for adware, and G for general malware.

where TP are the True Positives, FP the False Positive, FN
the False Negatives, and TN the True Negatives; Cl is the lth

class with l ∈ {1, · · · , L}.
In addition, we exploit confusion matrices to provide a

graphical representation that showcases (mis)classification pat-
terns at a finer grain. Clearly, a higher concentration toward the
diagonal (where predicted app equals the actual one) implies
better performance of the classifier.

IV. EXPERIMENTAL RESULTS

In this section, we analyze the performance of the ML/DL
malware classification solutions under investigation. Table II
briefly reports their performance figures in terms of precision,
recall, and F-measure.

Focusing on ML models evaluated in a flat setup, we have
performed a preliminary sensitivity analysis to evaluate the
performance of RF with respect to the number of estimators—
reported in Appendix A for the sake of completeness—
attaining the best trade-off with 100 trees. Considering this
configuration, from Tab. II it is evident that DT and RF
practically result in the same precision (80%). However,
the ensemble method (i.e. RF) provides better performance
overall, with a significant increase in terms of recall (+18%)
and F-measure (+6%).

Concerning DL models, we have evaluated the performance
of 1D-CNN with different values for the number of bytes
Nb used as input. The assessed dimensions are 512, 784,
and 1024 (according to the most common choices in recent
literature [30, 35]). Since results highlighted no appreciable
differences when varying Nb, in the following we refer to the
performance obtained with Nb = 512 bytes. Indeed, this con-
figuration has the benefit of resulting in the lowest number of
trainable parameters, therefore reporting the shortest training
(and inference) time. In terms of classification effectiveness,

1D-CNN achieves a high precision (97%). However, it exhibits
a recall lower than DT. Overall, a loss of −4% in terms
of F-measure with respect to RF is observed. As a further
improvement, for the 1D-CNN network, we evaluated the
performance obtained with the introduction of an embedding
layer. With this refinement, it is possible to achieve a gain of
+2% and +1% for recall and F-measure, respectively.

As the RF resulted the most promising model for malware
classification in our experimentation, we have also tested
the beneficial impact of implementing it in a hierarchical
setup. Notably, in the preliminary evaluation provided in this
work, we only consider a naı̈ve implementation of the LCPN
hierarchical classifier where all the nodes implement the same
classification algorithm (RF) and are fed with the same feature
set (see Sec. III-A). We leave further refinements in the design
as a future work.

In this case, the classification architecture results in two
classifiers operating in cascade (see Fig. 2): (i) the upstream
classifier is in charge of telling Benign from Malware
traffic and (ii) the downstream classifier distinguishes between
Adware and GMalware. In detail, the classification tree
starts from a binary classifier (R) that discriminates samples
between Benign (B) and Malware (M) classes [12]. We
recall that at this level (L0) the instances whose labels are
either Adware or GMalware are grouped into the Malware
class. If an instance is predicted to be Malware, then we
move to the next classification level (L1), where another
binary classifier (M) discriminates between Adware (A) and
GMalware (G) being the leaves of the tree (L2).

Deepening into obtained results, in Fig. 3 confusion ma-
trices are shown for both hierarchical and flat RF, in order
to better analyze the per-class errors at different levels of
the aforementioned hierarchy of labels. A first outcome is
shown in Fig. 3a, with the root (binary) classifier (R in Fig. 2)
obtaining 98.9% TNR (True Negative Rate, viz. the fraction of
correctly classified Benign samples) and scoring 6.6% FNR
(False Negative Rate, viz. the fraction of Malware samples
wrongly labeled as Benign).

In addition, Figs. 3b and 3c show the overall perfor-
mances obtained by the flat and the hierarchical approach,
respectively. Despite results seem to be quite similar, some
differences can be spotted looking at the GMalware fam-
ily, with the hierarchical approach better confining wrongly
classified GMalware samples within the malware classes. In
particular, GMalware traffic is less confused with Benign,
passing from a misclassification ratio of 43.3% (Fig. 3b)
to 41.8% (Fig. 3c). It is worth noting that improvements
regard the minority class, showing some mitigation of the
class-imbalance issue. Finally, Fig. 3d shows the fine-grained
behavior of the malware classifier (M in Fig. 2), with the
Benign instances wrongly classified by the R node (i.e. errors
propagated downward the hierarchy to L1) which are mainly
confused with the Adware class (99.1%), an effect probably
due to the intra-malware class-imbalance (between Adware
and GMalware) that is worth to be further investigated (and
possibly mitigated) in future works.



Benign Malware
True Label

Be
ni

gn
M

al
w

ar
e

Pr
ed

ic
te

d 
La

be
l

98.9 6.6

1.1 93.4

0

20

40

60

80

100

(a) Flat/Hierarchical L1.

Benign Adware GMalware
True Label

Be
ni

gn
Ad

w
ar

e
G

M
al

w
ar

e
Pr

ed
ic

te
d 

La
be

l 98.9 5.9 43.3

1.1 94.1 10.6

0.0 0.0 46.1

0

20

40

60

80

100

(b) Flat L2.

Benign Adware GMalware
True Label

Be
ni

gn
Ad

w
ar

e
G

M
al

w
ar

e
Pr

ed
ic

te
d 

La
be

l 98.9 5.8 41.8

1.1 94.2 11.7

0.0 0.0 46.5

0

20

40

60

80

100

(c) Hierarchical L2.

Benign Adware GMalware
True Label

Ad
w

ar
e

G
M

al
w

ar
e

Pr
ed

ic
te

d 
La

be
l

99.1 100.0 21.5

0.9 0.0 78.5

0

20

40

60

80

100

(d) Hierarchical L2 (M classifier).

Fig. 3: Confusion matrices of Random Forest classifier performing flat classification (a, b) and hierarchical classification (a, c, d). It is worth
noting that Hierarchical L1 (a) is also Flat L1.

Summarizing, although overall performance figures reach
values around 86% F-measure, applying hierarchical ap-
proaches in the naı̈ve setup provides results that are not
entirely satisfactory. Compared against the flat approach (first
and last row in Tab. II), the hierarchical approach achieves
almost the same results in terms of F-measure. However,
looking at precision and recall, we have a completely opposite
situation. In detail, the hierarchical approach shows a lower
recall but a higher precision (+17%), thus obtaining more
robust results, i.e. less malicious samples are classified as
Benign. In conclusion, applying hierarchical solutions has a
better potential, since it leaves room for possible optimizations,
such as optimizing (i) the way of using the local information at
each node or (ii) the hierarchical architecture itself by select-
ing different/optimal algorithms and number/type of features
at each node of the hierarchy [12]. Such improvements would
provide a higher recall without sacrificing the precision (i.e.
an overall better F-measure), thus mitigating the possibility
of treating a benign sample as malicious and consequently
impacting the quality of experience of mobile users. We leave
this aspect for future works.

V. CONCLUSION AND FUTURE WORK

Leveraging a state-of-the-art Android malware dataset, in
this paper we have evaluated the effectiveness of ML and
DL models to identify and classify Android malware with
the aim of detecting possible vulnerabilities that could affect
such complex distributed systems. Different models have been
considered: DT, RF, and 1D-CNN, with the implementation
of the latter also refined with the adoption of an embedding
layer. Experimental results show that among these solutions,
RF provides the best performance when considering a flat (i.e.
non-hierarchical) setup, with 97% recall and 86% F-measure.
Hence, RF is also evaluated in a hierarchical setup, imple-
menting a cascade of two binary classifiers, distinguishing
between (i) Benign and Malware traffic and (ii) Adware and
General Malware, respectively. Results witness that the con-
sidered implementation of the hierarchical approach—besides
its intrinsic benefits by design—does not provide improved
performance figures overall, even if a significant improvement
in terms of precision is observed (+17%) leaving also room
for enhancements.

The outcomes of the present work are particularly relevant
for the distributed systems community. Indeed, they constitute
a starting point toward the adoption of federated solutions
for classification of malware traffic that would exploit model
parallelism (intrinsic to a hierarchical framework) and data
parallelism (e.g., by integrating DL architectures with big
data platforms) [13]. Both are appealing future perspectives.
As a future work, we also aim to further investigate the
benefits of hierarchical approaches, relaxing the constraints
of having the same model and features for each node of the
hierarchy. Moreover, we plan to exploit more complex DL
architectures but with a lightweight design originated from
pruning, quantization, and distillation techniques. Finally, we
aim at capitalizing the heterogeneity of traffic via multimodal
architectures, as well as jointly tackling benign traffic classi-
fication and malware classification in a multitask fashion.

ACKNOWLEDGMENT

The authors would like to thank Ms. Anna Lamboglia, Mr.
Daniel Parisi, and Mr. Francesco Ottata for their collaboration
to the preliminary experiments to this study.

REFERENCES

[1] F. Jejdling et al., “Ericsson Mobility Report.” Ericsson AB, Business
Area Networks, Stockholm, Sweden, Tech. Rep. EAB-21, vol. 10887,
November 2021.

[2] A. Habibi Lashkari, A. F. Abdul kadir, H. Gonzalez, K. Mbah, and
A. Ghorbani, “Towards a Network-Based Framework for Android Mal-
ware Detection and Characterization,” in 2017 15th Annual conference
on privacy, security and trust (PST). IEEE, 2017, pp. 233–23 309.

[3] T. Shishkova and A. Kivva, “Kaspersky Lab - Mobile malware
evolution 2021,” 2021, https://securelist.com/mobile-malware-evolution-
2021/105876/.

[4] T. Sharma and D. Rattan, “Malicious application detection in android—a
systematic literature review,” Computer Science Review, vol. 40, p.
100373, 2021.

[5] S. Shamshirband, M. Fathi, A. T. Chronopoulos, A. Montieri,
F. Palumbo, and A. Pescapè, “Computational intelligence intrusion
detection techniques in mobile cloud computing environments: Review,
taxonomy, and open research issues,” Journal of Information Security
and Applications, vol. 55, p. 102582, 2020.

[6] A. H. Lashkari, A. F. A.Kadir, L. Taheri, and A. A.Ghorbani, “Toward
Developing a Systematic Approach to Generate Benchmark Android
Malware Datasets and Classification,” IEEE Network, pp. 1–7, 2018.

[7] A. Arora and S. K. Peddoju, “Minimizing Network Traffic Features
for Android Mobile Malware Detection,” in Proceedings of the 18th
International Conference on Distributed Computing and Networking,
ser. ICDCN ’17, 2017.



[8] M. Abuthawabeh and K. Mahmoud, “Enhanced Android Malware Detec-
tion and Family Classification, using Conversation-level Network Traffic
Features,” The International Arab Journal of Information Technology,
vol. 17, no. 4A, pp. 607–614, 2020.

[9] K. Lee and H. Park, “Malicious adware detection on android platform
using dynamic random forest,” in International Conference on Innova-
tive Mobile and Internet Services in Ubiquitous Computing. Springer,
2019, pp. 609–617.

[10] A. Karami, “An anomaly-based intrusion detection system in presence
of benign outliers with visualization capabilities,” Expert Systems with
Applications, vol. 108, pp. 36–60, 2018.

[11] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “Mobile en-
crypted traffic classification using deep learning: Experimental evalu-
ation, lessons learned, and challenges,” IEEE Transactions on Network
and Service Management, vol. 16, no. 2, pp. 445–458, 2019.

[12] A. Montieri, D. Ciuonzo, G. Bovenzi, V. Persico, and A. Pescapé,
“A Dive into the Dark Web: Hierarchical Traffic Classification of
Anonymity Tools,” IEEE Transactions on Network Science and Engi-
neering, vol. 7, no. 3, pp. 1043–1054, 2020.

[13] G. Bovenzi, G. Aceto, D. Ciuonzo, V. Persico, and A. Pescapé, “A
big data-enabled hierarchical framework for traffic classification,” IEEE
Transactions on Network Science and Engineering, vol. 7, no. 4, pp.
2608–2619, 2020.

[14] D. Iland, A. Pucher, and T. Schauble, “Detecting Android Malware on
Network Level,” University of California, Santa Barbara, vol. 12, no.
2011, 2011.

[15] L. Tenenboim, O. Barad, A. Shabtai, D. Mimran, L. Rokach, B. Shapira,
and Y. Elovici, “Detecting Application Update Attack on Mobile Devices
Through Network Features,” in 2013 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS). IEEE, 2013, pp.
91–92.

[16] C. Guo, Y. Ping, N. Liu, and S.-S. Luo, “A two-level hybrid approach
for intrusion detection,” Neurocomputing, vol. 214, pp. 391–400, 2016.

[17] S.-Y. Ji, B.-K. Jeong, S. Choi, and D. H. Jeong, “A multi-level intrusion
detection method for abnormal network behaviors,” Elsevier JNCA,
vol. 62, pp. 9–17, 2016.

[18] F. A. Khan, A. Gumaei, A. Derhab, and A. Hussain, “TSDL: A Two-
stage Deep Learning Model for Efficient Network Intrusion Detection,”
IEEE Access, 2019.

[19] C. Yin, Y. Zhu, J. Fei, and X. He, “A deep learning approach for
intrusion detection using recurrent neural networks,” IEEE Access,
vol. 5, pp. 21 954–21 961, 2017.

[20] A. A. Diro and N. Chilamkurti, “Distributed attack detection scheme
using deep learning approach for Internet of Things,” Future Generation
Computer Systems, vol. 82, pp. 761–768, 2018.

[21] K. Wu, Z. Chen, and W. Li, “A novel intrusion detection model for
a massive network using convolutional neural networks,” IEEE Access,
vol. 6, pp. 50 850–50 859, 2018.

[22] G. Bovenzi, G. Aceto, D. Ciuonzo, V. Persico, and A. Pescapé, “A
hierarchical hybrid intrusion detection approach in IoT scenarios,” in
GLOBECOM 2020-2020 IEEE Global Communications Conference.
IEEE, 2020, pp. 1–7.

[23] T. M. Booij, I. Chiscop, E. Meeuwissen, N. Moustafa, and F. T.
den Hartog, “ToN IoT: The Role of Heterogeneity and the Need for
Standardization of Features and Attack Types in IoT Network Intrusion
Datasets,” IEEE IoT Journal, 2021.

[24] O. Barut, Y. Luo, T. Zhang, W. Li, and P. Li, “Multi-task hierarchical
learning based network traffic analytics,” in ICC 2021-IEEE Interna-
tional Conference on Communications. IEEE, 2021, pp. 1–6.

[25] A. Nascita, F. Cerasuolo, D. Di Monda, J. T. A. Garcia, A. Montieri, and
A. Pescapé, “Machine and Deep Learning Approaches for IoT Attack
Classification,” in 2022 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS). IEEE, 2022, pp. 1–6.

[26] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “Toward effective
mobile encrypted traffic classification through deep learning,” Neuro-
computing, vol. 409, pp. 306–315, 2020.

[27] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, “Robust smart-
phone app identification via encrypted network traffic analysis,” IEEE
Transactions on Information Forensics and Security, vol. 13, no. 1, pp.
63–78, 2017.

[28] G. Aceto, D. Ciuonzo, A. Montieri, V. Persico, and A. Pescapé,
“MIRAGE: Mobile-app Traffic Capture and Ground-truth Creation,” in
2019 4th International Conference on Computing, Communications and
Security (ICCCS). IEEE, 2019, pp. 1–8.

[29] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang, “End-to-end
encrypted traffic classification with one-dimensional convolution neural
networks,” in 2017 IEEE international conference on intelligence and
security informatics (ISI). IEEE, 2017, pp. 43–48.

[30] W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng, “Malware Traffic
Classification using convolutional neural network for representation
learning,” in IEEE International Conference on Information Networking,
2017, pp. 712–717.

[31] D. Duvenaud, D. Maclaurin, and R. Adams, “Early stopping as non-
parametric variational inference,” in Artificial Intelligence and Statistics.
PMLR, 2016, pp. 1070–1077.

[32] L. Grimaudo, M. Mellia, and E. Baralis, “Hierarchical learning for
fine grained internet traffic classification,” in 8th International Wireless
Communications and Mobile Computing Conference, 2012, pp. 463–
468.

[33] C. I. for Cybersecurity, “Android Adware and General Malware Dataset
(CIC-AAGM2017),” 2017, data retrieved for the first time in 03/31/2021
at https://www.unb.ca/cic/datasets/android-adware.html.

[34] S. S. Center, “Internet Security Threat Report,” 2016,
https://www.symantec.com/security-center/threat-report.

[35] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “DISTILLER:
Encrypted traffic classification via multimodal multitask deep learning,”
Journal of Network and Computer Applications, vol. 183, p. 102985,
2021.

APPENDIX A
SENSITIVITY ANALYSIS FOR RANDOM FOREST

(a) Accuracy. (b) Training Time.

Fig. 4: Sensitivity Analysis for the Random Forest classifier with
respect to the number of estimators.

In this supplementary analysis, we have evaluated how the
performance of the Random Forest classifier (in terms of
accuracy, for the sake of simplicity) changes as the number
of estimators (i.e., the trees considered as base classifiers)
increases. We also consider the training time to account for the
complexity of the obtained classifier. Looking at the results in
Fig. 4, we can notice that using 100 estimators is a good trade-
off between accuracy and training time. Indeed, increasing the
number of trees increases the accuracy only marginally (< 1%
improvement) at the cost of much higher training times (one
order of magnitude).


