
META MIMETIC: Few-Shot Classification
of Mobile-App Encrypted Traffic
via Multimodal Meta-Learning

Giampaolo Bovenzi1, Davide Di Monda1,2, Antonio Montieri1, Valerio Persico1, Antonio Pescapé1
1University of Napoli Federico II, Napoli (Italy) and 2IMT School for Advanced Studies, Lucca (Italy)

{giampaolo.bovenzi, davide.dimonda, antonio.montieri, valerio.persico, pescape}@unina.it

Abstract—Despite its proven effectiveness in classifying en-
crypted network traffic, deep learning requires large amounts
of labeled data to feed typical data-hungry training processes.
Few-shot learning provides means to overcome these limitations,
supporting classification tasks related to traffic with few labeled
data available. Its extensive investigation in other domains
notwithstanding (e.g., computer vision), it has been only pre-
liminarily adopted for classifying encrypted traffic.

In this work, we design and evaluate META MIMETIC a novel
multimodal few-shot learning solution for classifying mobile-app
encrypted traffic. The proposal is based on the meta-learning
paradigm and introduces enhancements via the adoption of a
multimodal feature extractor trained via a novel ad-hoc meta-
learning procedure. Since META MIMETIC is orthogonal to the
specific few-shot learning approach, in our experimentation, we
adapt it to a number of different meta-learning approaches
(namely MatchingNet, ProtoNet, RelationNet, MetaOptNet, fo-
MAML, and ANIL). We provide an empirical assessment of these
approaches, considering the Mirage-2019 dataset as a test
bench. Results show that META MIMETIC represents the best
trade-off in terms of performance and complexity in mobile-app
traffic classification (up to 91% F1-score) when compared to state-
of-the-art solutions. The in-depth analysis of the performance of
its components allows us to shed light on the multimodal internal
mechanisms and further improve classification performance.
Finally, we demonstrate the robustness of our proposal (only
≈ 2% F1-score drop) against the next variations introduced
by the TLS 1.3 encryption that may impair the information
exploitable by payload-based traffic classifiers.

Index Terms—Traffic Classification; Mobile Apps; Encrypted
Traffic; Deep Learning; Multimodal; Few Shot Learning; Meta-
Learning.

I. INTRODUCTION

Traffic classification is essential, as it serves as a crucial
component in various network management tasks such as
resource allocation, billing, accounting, intrusion detection, as
well as user activity identification and profiling. Accordingly, it
is a constantly evolving research field that requires adaptation
to the changing nature of networks and traffic traversing them.

Notably, the classification of mobile-app traffic is of particu-
lar interest given the valuable profiling information that can be
inferred, which may also imply privacy issues. In fact, it comes
with intrinsic challenges given by many apps to discriminate
from, frequent app updates, and the presence of common third-
party services [1].

Today, traffic classification approaches often use statistical
or time-series features to address the shortcomings of port-

based approaches (applications rely on non-standard or vari-
able port numbers to conceal their traffic) and the challenges
due to the increasing adoption of encryption (compromising
deep-packet inspection, which may also collide with privacy
preservation efforts) [2]. The mentioned features can be em-
ployed to feed the training of data-driven Machine Learning
models. However, the adoption of the latter may not scale
well when traffic classes change rapidly over time, as the
intervention of domain experts may be required to guide fea-
ture extraction. Deep Learning (DL) overcomes this limitation
via end-to-end techniques, taking advantage of large amounts
of labeled data to train supervised models and automatically
extracting relevant features from raw data.

Nonetheless, feeding the training of these data-hungry ap-
proaches with satisfactorily abundant data is not trivial. Indeed,
collecting extensive labeled network-traffic datasets requires
huge resources for capturing and segmenting traces and care-
fully assigning labels, also raising privacy concerns [3, 4].
Furthermore, the fast-evolving nature of traffic exacerbates the
problem, resulting in the need for continual collection pro-
cesses aiming at keeping these large traffic datasets updated.
Consequently, the available labeled data are often unbalanced,
with limited examples for certain classes, making it challeng-
ing to adopt DL techniques that struggle with poor knowledge
of some classes (i.e. class imbalance problem).

The goal of Few-Shot Learning (FSL) is to properly learn
when limited samples are available by capitalizing on the
knowledge from related tasks to build a model that can gener-
alize well to new tasks. FSL was first explored in depth in the
computer vision domain, leading to a diverse range of available
solutions that differ in how the prior knowledge is exploited:
(i) Algorithm-based approaches utilize prior knowledge to
modify the search strategy for new parameters [5]; (ii) Model-
based approaches jointly learn a set of initial tasks that are
related to reducing the search space for optimal parameters [6–
8]; (iii) Data-based approaches utilize prior knowledge to
augment the data of the few-shot tasks.

In light of its promising results in other domains, recent
studies have explored the application of FSL to address
network-traffic classification. However, most networking-
related FSL works are based on previous computer-vision
solutions, with only minor variations proposed [9–12], and
mainly focus on attack-traffic classification [9–11, 13–15].



f c
g

Support set
samples

Embedding
functions

Comparator

Query set
sample

Feature
vectors

Score for
each class

Figure 1: Meta-learning general framework. Support and query sam-
ples are compressed via an embedding function (f and g, respec-
tively). Model-based approaches use a comparator c that exploits the
embeddings of the support set to classify those of the query set.

In this work, we propose META MIMETIC, a novel solution
aiming to improve the performance of FSL for mobile-app
encrypted traffic classification. It is based on a multimodal
embedding function to perform the extraction of the features
while capitalizing on its capability to distill informative details
from multiple views of the same bidirectional flow (i.e. the
sequence of its packet fields and payload bytes). The devised
solution tackles the non-obvious adaptation of an advanced
multimodal-training procedure to the general meta-learning
paradigm. It results in a two-phase training that is agnostically
applicable to all the approaches adopting meta-learning.

The validation of the proposal considers six state-of-the-
art FSL approaches based on meta-learning. The proposal is
also compared against multiple state-of-the-art single-modal
embedding functions, such as 1D- and 2D-Convolutional
Neural Networks (1D-CNN and 2D-CNN), also deepening
the benefits of advanced multimodal-training strategies against
naïve ones. The META MIMETIC internal mechanisms are
inspected in-depth, providing the analysis of per-modality be-
haviors and the exploration of few-shot hyperparameters, such
as the number of shots, and the capitalization of per-modality
embeddings. Finally, we assess the robustness of the proposed
solution to the adoption of TLS 1.3—which extends the
encryption also to the TLS handshake—by performing an
occlusion analysis of the SNI (Server Name Indication).

The rest of the paper is organized as follows: Sec. II
provides the required background and positions our contri-
bution against related works; the proposed META MIMETIC is
presented along with meta-learning approaches we evaluated
in Sec. III; then, we detail the experimental setup in Sec. IV
and discuss the experimental results in Sec. V; conclusions
and future perspectives are provided in Sec. VI.

II. BACKGROUND AND RELATED WORK

This section provides a background on the meta-learning
paradigm when applied to the few-shot classification task
(Sec. II-A). Then, we discuss the most related studies facing
traffic classification under few-shot assumptions and frame the
present work in relation to them (Sec. II-B).

A. Meta Learning for Few-Shot Learning

Meta-learning refers to the capability of an algorithm of
“learning to learn”, namely to leverage the accumulated
experience to improve the performance on a new task. A

meta-learner aims to distill the regularities existing over a
distribution of tasks, each having a specific internal structure
and objective. Therefore, where the meta-learning goal is
building a model that can quickly learn new tasks, FSL aims
to build a model that can learn how to distinguish an unknown
class when only few samples of that class are available.

To fulfill these goals, meta-learning is combined with
episodic learning, which consists in organizing the model
training in a series of learning tasks each related to a limited
number of classes and samples, i.e. N -way K-shot episodes.
In each episode, N classes are randomly sampled (N -way)
and then two non-overlapping partitions are obtained: (i) the
support set having N × Ks samples (where Ks defines the
K-shot setup) and (ii) the query set having N ×Kq samples.

Formally, the employed dataset D = {Dnf , Df } en-
compasses the samples belonging to two disjoint sets of
classes: Dnf is used during the training phase of the model
and contains the samples from non-few classes, while Df is
used during the operational phase and contains the samples
from few-shot classes (i.e. the least-populated ones). In detail,
during the meta-training, the model learns from a set of
episodes/tasks using the support-set samples and evaluates the
error on the query set. Afterward, the operational phase of
the model is emulated, assessing its ability to generalize on
unknown few-shot classes via a meta-testing phase, which
leverages an analogous episode-based procedure.

In this work, we exploit meta-learning approaches belonging
to the algorithm- and model-based FSL families. For both
families, the process of feature extraction is performed by
an embedding function that maps the samples belonging to
a d-dimensional space Rd into a smaller m-dimensional space
Rm (with m < d). In the embedded space, similar samples are
closer, whereas dissimilar ones are more easily differentiable.

Algorithm-based approaches use prior knowledge to assist
in finding the best set of parameters in the hypothesis space1

or providing a starting point as close as possible to the
optimal hypothesis. In other words, they start from a model
already trained on similar tasks and adapt it by fine-tuning
the target task. Differently, model-based approaches make the
hypothesis space smaller via prior knowledge to reduce the
risk of overfitting. They exploit a comparator that measures
the similarity between the embeddings of the support set and
those of the query set to perform the classification. Figure 1
shows the general framework of meta-learning approaches.
Whereas algorithm-based approaches are characterized by the
learning procedure for finding optimal parameters, model-
based ones differ by the comparator (i.e. the c block in Fig. 1).

B. Related Work

Learning from few samples is a relevant problem that
has attracted the interest of researchers from a number of

1Hypothesis space represents the range of possible solutions for a given
learning problem. The learning algorithm explores this hypothesis space to
find the best model, or in other words, the best parameters/weights, that fits
the data and generalizes well to unseen samples.



different domains. FSL originated in the field of computer
vision [5–8, 16, 17]. Hence, its applications to the networking
domain mostly exploit minor variants of solutions designed
for computer vision. The recent interest of the networking
community in this topic is witnessed by the relevant studies of
FSL in this domain [9–15, 18, 19], all dating to 2018–2023.

Most of these works leverage FSL in the context of attack-
traffic classification and intrusion detection [9, 10, 13–15].
Notably, all the mentioned studies focus on the problem of
classifying unseen traffic with just few samples. In other
words, we do not consider here studies dealing with FSL that
perform the model evaluation on seen classes, i.e. where the
main goal is simply mitigating the class imbalance in data.

Most of the works exploit available knowledge via meta-
learning. Notably, an alternative paradigm to meta-learning,
that is transfer learning, is considered in [12, 18, 19].
Mostly, the applied FSL approaches belong to model-based
and algorithm-based families.

Going into details, several solutions that exploit meta-
learning approaches were recently proposed. Huang et al.
[14] developed a solution for network anomaly detection by
integrating a gating technique into MatchingNet [6]. The
gates provide a similarity score that evaluates the importance
of known and unknown anomalies against a test instance.
Other recent works [9, 11] are based on RelationNet [8].
Zheng et al. [9] combines meta-learning with a data-based
method, augmenting the training set by adding noise to data.
Zhao et al. [11] optimizes the embedding function of the
RelationNet by leveraging an ensemble of CNNs. While
these works have proposed variations from the computer-
vision solutions, others have utilized these methods without
significant changes, such as Rong et al. [13] that applies the
original ProtoNet [7] for intrusion detection and Feng et al.
[15] that exploits MAML [5] to perform anomaly detection.

Regarding the transfer-learning paradigm, Xiao et al. [18]
propose a supervised approach based on deep neural networks.
The proposed architecture is first pre-trained, then the knowl-
edge on few-shot tasks is acquired by adding new branches.
Similarly, Rezaei and Liu [19] propose a semi-supervised
solution for encrypted traffic classification, based on a CNN
that is first pre-trained using a large unlabeled dataset. Then,
this model is further fine-tuned with few labeled flows, with
the aim of classifying the few-shot classes they belong to.

We underline that only few studies [10, 12, 13] provide eval-
uation including more than one FSL approach. Based on this
analysis of the literature, only a limited part of related work
deals with (encrypted) traffic classification [11, 12, 18, 19].
To the best of our knowledge, the only paper that focuses
on mobile-app traffic is our previous work [12], which is
limited to a comparative assessment of FSL approaches with
no robustness analysis provided. Moreover, no work considers
the adoption of a multimodal feature extractor for FSL.

III. META MIMETIC

This section describes the methodology we apply to tackle
mobile-app traffic classification in a few-shot context by

PAY
branch

PSQ
branch

Conv

Dense

Recurrent
Pooling

Dropout

Norm
Flatten

Input

Figure 2: Architectural view of META MIMETIC embedding function.
Each branch is fed with the related input type (i.e. PAY or PSQ).

capitalizing on multimodal DL via meta-learning. Firstly, we
define the traffic segmentation adopted and the related infor-
mation fed to the classification architecture (Sec. III-A). Then,
in Sec. III-B we present and detail the peculiarities of META
MIMETIC, our novel FSL solution leveraging a multimodal
embedding function and an innovative advanced way for meta-
training. Finally, in Sec. III-C, we introduce the meta-learning
approaches we apply META MIMETIC to (belonging to both
model-based and algorithm-based FSL families).

A. Traffic Object and Network Input

We make use of the bidirectional flow (biflow) as the
elementary sample of our classification task. More specifically,
a biflow is defined as an aggregation of all network packets
sharing the same 5-tuple (i.e. source IP, source port, destination
IP, destination port, and transport-level protocol) including
both directions of communication.

The input data used to feed the FSL approaches exploited
herein are organized in two input sets: packet-field sequences
(PSQ) and payload bytes (PAY). Both PAY and PSQ input data
are normalized within [0, 1] using a Min-Max normalization.
We underline that we have chosen the traffic object and input
types based on previous works [15, 20, 21] and preliminary
validation analyses not shown for brevity.
PSQ Input. For each biflow, a set of F informative unbiased
fields is extracted from the sequence of the first Np packets,
resulting in an Np × F matrix. In particular, the selected
F = 4 fields are: (i) the number of bytes in the transport
layer payload; (ii) the packet direction (can be −1 or 1);
(iii) the TCP window size (equal to 0 for UDP packets);
(iv) the elapsed time since the arrival of the previous packet
(i.e. the inter-arrival time).
PAY Input. For each biflow, we extract the first Nb bytes (each
arranged as an integer ranging from 0 to 255) of the L4-layer
payload data. It is worth underlining that the effectiveness
of this input is increasingly threatened by ubiquitous traffic
encryption. This is especially true for TCP, which has been
further secured through the enforcement of TLS 1.3, which
encrypts also the small amount of cleartext data present in the
TLS handshake of previous TLS versions (e.g., the supported
cipher suites and the SNI extension).

B. Capitalizing on Multimodal Embedding Functions

This section describes how we capitalize on multimodal
embedding functions to improve FSL solutions for mobile-



Algorithm 1 META MIMETIC Meta-Learning Procedure

Require: ϕ1, · · · , ϕM , ωstub
1 , · · · , ωstub

M , ϕ, ω
1: for modality m← 1 to M do ▷ Pre-training
2: for each epoch in pre-training do
3: metaTraining(ϕm, ωstub

m )
4: metaValidation(ϕm, ωstub

m )
5: removeStub(ωstub

m )
6: for layer l← 1 to (Lm − 1) do
7: freezeLayer(ϕm, l)
8: for each epoch in fine-tuning do ▷ Fine-tuning
9: metaTraining(ϕ1, · · · , ϕM , ϕ, ω)

10: metaValidation(ϕ1, · · · , ϕM , ϕ, ω)
11: metaTesting(ϕ1, · · · , ϕM , ϕ, ω) ▷ Evaluation

app encrypted traffic classification. Traffic classifiers based on
multimodal DL are known to achieve high performance in non-
few contexts and outperform single-modal ones by effectively
distilling knowledge from the heterogeneous views of the same
traffic object [20–22]. Their success relies on the presence
of complex interconnections between single-modal branches
that can capture both intra- and inter-modality dependencies.
However, their potentialities may be not fully exploited in
FSL when training a multimodal embedding function with the
default (naïve, viz. monolithic) meta-learning procedure.

To fill this gap, we devise a novel two-step meta-
learning procedure specifically designed for multimodal em-
bedding functions. Detailing, the ad-hoc training involves
a pre-training and a fine-tuning phase, both conducted via
the episodic meta-learning procedure. The preliminary pre-
training allows the embedding function to separately distill
peculiar knowledge from each modality. Then, the fine-tuning
optimizes the whole multimodal architecture after the interme-
diate fusion of single-modality representations. In this way, we
can fully capitalize on the multimodal traffic representation
exploited. We name the resulting FSL solution, based on
a multimodal embedding function and the related properly-
designed ad-hoc meta-learning procedure, META MIMETIC.

The architecture of the embedding function of META
MIMETIC is depicted in Fig. 2 and is made of two branches,
each corresponding to a different modality. The first branch is
fed with the PAY input and is made of two 1D convolutional
layers—each followed by a 1D max-pooling layer—and a final
dense layer. Differently, the second branch is fed with the
PSQ input and consists of a Bidirectional Gated Recurrent
Unit and one dense layer. The intermediate features extracted
by each modality are concatenated and further elaborated via
a shared dense layer (i.e. the penultimate dark-red layer in
Fig. 2) before the model head.2

Algorithm 1 details the general procedure devised for META
MIMETIC training and testing. We define with ϕm the set

2The term “model head” is used to refer to the dense layer with soft-
max/sigmoid activation connected to the last layer of the embedding function.

of trainable parameters of the mth single-modal branch, with
m ∈ [1,M ] and M being the number of modalities.3

During the pre-training phase (lines 1–7), each single-modal
branch is updated individually (i.e. without the shared layers).
More specifically, the last layer of the mth branch is linked to
a stub layer ωstub

m that outputs the soft values. First (line 3),
the mth “stubbed” branch is trained in a meta-learning fashion
to minimize the classification loss function Lm(·). Formally,

Lm(ϕm, ωstub
m ) =

N·Kq∑
i=1

CE(t(i), p(i)[ϕm, ωstub
m ]) (1)

being pi fi [p1,(i), · · · , pN,(i)] the vectors of the softmax
probabilities for the N classes in the query set, which depend
on (ϕm, ωstub

m ) parameters. The goal is to make these proba-
bilities as similar as possible to the one-hot representation of
the ground truth t(i) fi [t1,(i), · · · , tN,(i)] by minimizing the
categorical cross-entropy loss CE(t, p) fi −{

∑
ℓ=1 tℓ log pℓ}.

At the end of the pre-training phase, each ωstub
m is discarded

(line 5), and all layers of each single-modal branch are frozen
except for the last dense layer (lines 6 and 7, where Lm

denotes the number of layers of the mth single-modal branch).
During the fine-tuning phase (lines 8–10), the whole META

MIMETIC architecture is trained. In detail, the optimization
involves the trainable parameters of the non-frozen layers of
the single-modal branches (ϕ1, · · · , ϕM ) and of the shared
layer (ϕ) and the model head ω. Similar to Eq. 1, the objective
of the meta-training (line 9) is to minimize the classification
loss function related to the fine-tuning phase L(·), which is
also based on a categorical cross-entropy:

L(ϕ1, · · · , ϕM , ϕ, ω) =

N·Kq∑
i=1

CE(t(i), p(i)[ϕ1, · · · , ϕM , ϕ, ω]) (2)

Finally, META MIMETIC performance is assessed via meta-
testing at the end of the fine-tuning phase (line 11).

We recall that meta-training and meta-testing are per-
formed via the episodic meta-learning procedure introduced in
Sec. II-A for a given number of epochs. In both pre-training
and fine-tuning, in addition to meta-training on Dnf1 (lines 3
and 9) and meta-testing on Df (line 11), we perform meta-
validation on Dnf2 (lines 4 and 10). This dataset has a disjoint
label space from the other two, i.e. Dnf =Dnf1 ∪Dnf2 |Dnf1

∩Dnf2 = ∅. Specifically, Dnf2 is used (i) to implement an
early-stopping procedure, which relies on the accuracy and
loss achieved on it, and (ii) to select the model showing the
highest performance on it once meta-training is finished.

It is worth highlighting that exploiting a multimodal em-
bedding function enables us to extract features at different
granularities. In fact, both the outputs of the single-modal
branches (i.e. the per-modality feature vectors) and the shared-
representation output can be distilled. Accordingly, we can
explore various combinations of these feature vectors, not

3The specific architecture of META MIMETIC embedding function consid-
ered herein consists of two branches/modalities (i.e. M = 2), namely the set
of trainable parameters of the two single-modal branches are ϕ1 and ϕ2.



limiting our study only to the shared-representation one, with
the aim of enhancing the latent space representation obtained.

C. FSL Approaches

META MIMETIC is orthogonal to the specific FSL approach
used, as long as it exploits an embedding function as a feature
extractor. In the following, we introduce the FSL approaches
based on meta-learning we deal with in our experimentations.

Regarding algorithm-based approaches, we consider
MAML [5] and ANIL [17]. Both learn an initial parameter
set via meta-learning and further refine it using knowledge
extracted from few-shot classes.

Model-Agnostic Meta-Learning (MAML) aims to find a
highly adaptable set of parameters by continuously updating
the initial meta-learned parameter set based on the perfor-
mance. Almost No Inner Loop (ANIL) is a computationally
faster version of MAML: it applies the parameter updates only
to the head of the model.

Conversely, model-based approaches differ mainly by the
comparator, i.e. the similarity measure/mechanism exploited:
(i) Matching Networks (MatchingNet) [6] perform a gen-
eralized form of nearest-neighbors classification based on Eu-
clidean distance; (ii) Prototypical Networks (ProtoNet) [7]
classify a sample via a Euclidean distance function cal-
culated between its embedding and a prototype, i.e. a
centroid representative of a class; (iii) Relation Network
(RelationNet) [8] employs a relation module based on a
convolutional network that measures the similarity between
the embeddings of query and support samples of each class;
(iv) MetaOptNet [16] exploits a linear Support Vector Ma-
chine, trained on labeled support samples, as the comparator
and measures the generalization error on query samples.

IV. EXPERIMENTAL SETUP

This section provides details on the experimental setup we
adopted in the following analyses. Hence, we describe the
mobile-app traffic dataset we used (Sec. IV-A), the FSL setup
we leveraged (Sec. IV-B), the baselines against which META
MIMETIC is compared (Sec. IV-C), and the performance
metrics we consider (Sec. IV-D).

A. Dataset

We use the public Mirage-2019 dataset [3] collected at
the University of Napoli “Federico II” in 2017–2019 involving
more than 300 students and researchers voluntarily partic-
ipating. Mirage-2019 includes the traffic of 40 Android
apps generated by imitating their common functionalities (e.g.,
service registration and login, habitual interactions, and use
cases).4 Mirage-2019 is collected in PCAP format at client-
side, leveraging the architecture described in [3]. In addition,
for each capture, metadata are saved and exploited to label
each biflow with the pertinent Android-package name and
generate the ground truth.

4https://traffic.comics.unina.it/mirage/mirage-2019.html

Mirage-2019 contains 92k TCP and 5k UDP labeled
biflows. The number of per-app biflows ranges from 361 to
8246, with 32 out of 40 apps having more than 1k biflows.
The latter number depends on the peculiarities of each specific
app, despite the time that apps are used being roughly the
same. Therefore, mobile-app traffic classification carried out
on Mirage-2019 defines a real-world and challenging task.

B. FSL Setup

The first aspect to detail is the meta-learning setup in
terms of dataset partitioning and episode definition. To define
a reasonable few-shot scenario, Mirage-2019 apps are
divided into three disjunct subsets. Dnf1 contains the 24
most populous apps, Dnf2 the most populous 8 apps besides
those in Dnf1 , and Df the 8 remaining least-populous apps.5

Regarding episode definition, we set N = 8 (i.e. the number
of apps in Df ) in all meta-learning phases: our goal is
solving a classification task where the biflows of 8 apps are
available during the operational phase (i.e. at inference time)
and by exploiting the latter setup also during meta-training.
Conversely, we set Ks and Kq depending on the aim of the
analysis. Specifically, for meta-training, we use Kq = Ks (i.e.
the same number of biflows for query and support set). For
meta-validation and meta-testing, Ks is the same used during
meta-training, while we keep Kq = 100. This choice aims to
improve the coverage and the stability of obtained results.

Additionally, we have tuned the hyperparameters based on
a preliminary experimental campaign on Dnf2 , not reported
for brevity. Concerning input data, we set Np = 10 for PSQ
and Nb = 512 for PAY. Pre-training and fine-tuning phases
of META MIMETIC are conducted for 280 and 440 epochs,
respectively. In each epoch, the meta-learning procedure is
conducted for 100 episodes. The optimizer exploits the Adam
algorithm set with a learning rate of 10−4. Moreover, we use
an early-stopping mechanism as described in Sec. III-B, with
a minimum improvement of 0.01 and patience of 20 epochs.

The implementations of FSL approaches are taken from
computer-vision public repositories. In detail, we refer
to the well-established GitHub repositories [6, 8] for
MatchingNet and RelationNet, and to the learn2learn
framework [23] for the other approaches.

C. Comparison Baselines

To define performance baselines for the sake of a com-
parative evaluation, we resort to different multimodal and
single-modal state-of-the-art DL architectures used as alter-
native embedding functions. These architectures were initially
proposed and utilized for traffic classification in both non-
few [20, 24, 25] and few-shot scenarios [12].

Firstly, we compare META MIMETIC with a multimodal
architecture that has the same structure and inputs as our
proposal (depicted in Fig. 2) but is trained in a monolithic
fashion, namely not leveraging the novel meta-learning proce-
dure proposed in Sec. III-B. This baseline aims to corroborate

5We chose for Df the apps with less than 1000 biflows. The same number
of apps was then selected for Dnf2 .

https://traffic.comics.unina.it/mirage/mirage-2019.html


Table I: Complexity (viz. # Trainable Parameters) of embedding
functions. 1D-CNN is 3× more complex than META MIMETIC.

Embedding Function # Trainable Parameters

META MIMETIC / NAIVE-MM 821k = 392k† + 356k‡ + 64k◦

1D-CNN 3M

2D-CNN 530k

† PAY branch layers; ‡ PSQ branch layers; ◦ shared layers.

the effectiveness of META MIMETIC training procedure in cap-
italizing on the benefit of a multimodal traffic representation.
We refer to such a baseline as NAIVE-MM [12].

We also consider two single-modal baselines fed with
different input types. The first one is a single-modal 1D-
CNN originally proposed in [24]. It is made of two 1D
convolutional layers, each followed by a 1D max-pooling
layer, and is terminated with a dense layer. 1D-CNN is fed
with the PAY input. The second is a single-modal 2D-CNN
firstly proposed in [25]. It consists of two 2D convolutional
layers, each followed by a 2D max-pooling layer and by a
batch normalization operation, and ends with a dense layer.
According to the 2D nature of the convolutional layer, we feed
the 2D-CNN with the PSQ input. In summary, we consider 6
META MIMETIC variants and compare them with 18 baselines
obtained from the combination between the 6 meta-learning
approaches and the 3 embedding function architectures.

D. Performance Metrics

To evaluate the performance of FSL approaches, we use
the macro F1-score and the silhouette score. The macro
F1-score is the harmonic mean of per-class precision and
recall arithmetically averaged over apps. The silhouette score
quantifies how similar a sample is to its own cluster compared
to the others. It ranges from −1 (worst) to +1 (best). This is
paramount since most FSL approaches based on meta-learning
behave like a nearest-neighbor classifier in the embedded
space. For both metrics, we show the per-episode mean and
standard deviation attained on Df . Specifically, the results are
shown as avg.±std. over 100 episodes. Finally, to investigate
the computational complexity, we also report the number of
trainable parameters and the overall training time (all the
analyses are executed on a machine with 12 Intel(R) Xeon(R)
CPU E5-2430 v2 @ 2.50GHz and 62GB of memory).

V. EXPERIMENTAL EVALUATION

In this section, we show the results of the experimental
evaluation conducted. We first report the overall classification
performance of all meta-learning approaches when using both
single-modal and multimodal embedding functions (Sec. V-A);
then we inspect the internal mechanisms of our META
MIMETIC proposal with the aim of improving it (Sec. V-B);
finally, we perform a robustness analysis of meta-learning
approaches against the novel encryption process introduced
with TLS 1.3 (Sec. V-C).

META MIMETIC Naive-MM 2D-CNN 1D-CNN
Embedding Functions

0
10
20
30
40
50
60
70
80

F1
-s

co
re

 [%
] MatchingNet

ProtoNet
RelationNet
MetaOptNet
fo-MAML
ANIL

(a) F1-score.

META MIMETIC Naive-MM 2D-CNN 1D-CNN
Embedding Functions

0.12
0.09
0.06
0.03
0.00
0.03
0.06
0.09
0.12

Si
lh

ou
et

te
 S

co
re MatchingNet

ProtoNet
RelationNet
MetaOptNet
fo-MAML
ANIL

(b) Silhouette Score.

Figure 3: Comparison of meta-learning approaches with differ-
ent multimodal and single-modal embedding functions. META
MIMETIC and 1D-CNN obtain comparable performance figures with
MatchingNet.

A. Overall Performance

This experimental campaign shows the performance of the
various meta-learning approaches considered when leverag-
ing different embedding functions. Particularly, we compare
META MIMETIC with the baselines described in Sec. IV-C.

The results in Fig. 3a show that MatchingNet is
always the top-performing meta-learning approach regard-
less of the specific embedding function, followed by
MetaOptNet and ProtoNet. Conversely, fo-MAML,
ANIL, and RelationNet obtain unsatisfactory F1-scores.
Notably, leveraging META MIMETIC leads to an F1-score im-
provement for the latter worse-performing approaches. Over-
all, META MIMETIC attains the best performance for 4 out of
6 meta-learning approaches, proving its versatility to different
FSL families and paradigms. Also, the comparison of the two
multimodal embedding functions shows that all meta-learning
approaches perform better with META MIMETIC as opposed
to NAIVE-MM, demonstrating the effectiveness of the ad-hoc
meta-learning procedure we propose herein.

Focusing on the top-performing MatchingNet, the high-
est improvement is attained with META MIMETIC and 1D-
CNN, which both achieve an F1-score higher than 80%.
Interestingly, MatchingNet is also the most robust approach
w.r.t. the goodness of the embedding space, which is reported
by depicting the silhouette score in Fig. 3b. Indeed, while the
other approaches have an F1-score strongly dependent on the
related silhouette score, MatchingNet shows high F1-scores
also for poor silhouette scores, likely due to its comparator
implementing a mechanism simpler than that of other meta-
learning approaches (cf. Sec. III-C).

Finally, Tab. I focuses on the computational complexity
of considered embedding functions. We can notice that, de-
spite reaching similar performance, 1D-CNN has a number
of trainable parameters more than 3× larger than META
MIMETIC, thus possibly introducing deployability issues when



0 10 20 30 40 50 60 70 80
F1-score [%]

ANIL

fo-MAML

MetaOptNet

RelationNet

ProtoNet

MatchingNet

PAY Branch PSQ Branch META MIMETIC

(a) F1-score achieved by varying the meta-learning
approach we apply META MIMETIC to.

5 15 25 50 100
Shots

30
40
50
60
70
80
90

100

F1
-s

co
re

 [%
]

PAY Branch PSQ Branch META MIMETIC

0
5
10
15
20
25
30
35

Tr
ai

n 
Ti

m
e 

[h
]

META MIMETIC train time

(b) F1-score and training time using MatchingNet
for different number of shots. The training time
required for META MIMETIC includes pre-training
of single-modal branches and later fine-tuning.

Figure 4: Insights about the multimodal internal architecture by
comparing F1-score obtained by PAY and PSQ branches before fine-
tuning and by the overall META MIMETIC architecture after fine-
tuning: (a) thoughtful comparison of meta-learning approaches; (b)
sensitivity to the number of shots using MatchingNet.

dealing with devices with constrained computing resources. In
summary, our proposal META MIMETIC proves to be the best
trade-off between classification performance and complexity.

B. Inspection and Enhancement of META MIMETIC Internal
Structure

Hereinafter, we go into details of the internal mechanisms
of META MIMETIC with the goal of deepening and further
capitalizing on its multimodal structure. To this aim, we
compare the performance of pre-trained single-modal branches
(i.e. PAY and PSQ branches) with that of the fine-tuned multi-
modal architecture. As depicted in Fig. 4a, the latter performs
approximately on par w.r.t. the PAY branch and significantly
outperforms the PSQ one for all meta-learning approaches.
Notably, fo-MAML has a > 20% F1-score improvement with
META MIMETIC w.r.t. either single-modal branch.

We deepen the analysis, focusing on the best-performing
MatchingNet and evaluating the performance of META
MIMETIC and its single-modal branches for different values
of Ks ∈ {5, 15, 25, 50, 100}. Figure 4b highlights that the
performance of MatchingNet significantly improves for
higher values of Ks: it gains up to +30% F1-score with
Ks = 100 (> 90% F1-score with META MIMETIC) compared
to the initial value of Ks = 5. Given that the number of shots

PAY Branch
PSQ Branch

65

70

75

80

85

F1
-s

co
re

 [%
]

Pre fine-tuning
Post fine-tuning

META MIMETIC

META MIMETIC w/ RC
65

70

75

80

85

F1
-s

co
re

 [%
]

(a) Comparison of the per-
formance of the single-modal
branches of META MIMETIC
before and after fine-tuning.

PAY Branch
PSQ Branch

65

70

75

80

85

F1
-s

co
re

 [%
]

Pre fine-tuning
Post fine-tuning

META MIMETIC

META MIMETIC w/ RC
65

70

75

80

85

F1
-s

co
re

 [%
]

(b) Classification performance
of META MIMETIC with and
without residual connections.

Figure 5: Deepening of META MIMETIC using MatchingNet, by
showing (a) the impact of the fine-tuning phase and by evaluating
(b) the META MIMETIC variant w/ Residual Connections. Bar charts
are zoomed in to better highlight differences in performance.

...

...PAY
branch

PSQ
branch

Dense

Dropout

Feature
Vector

Residual
Connection

Original
Connection

PAY branch
output

PSQ branch 
output

Shared layer
output

Figure 6: View of the residual connections of META MIMETIC W/
RC. Residual Connections are used to enrich the output of the shared
layer by concatenating it with the output of each single-modal branch.
Dropouts are used only during the meta-training.

significantly impacts the training time, in Fig. 4b, we report
also the total time (in hours) needed to train MatchingNet
for each Ks. When passing from Ks = 5 to Ks = 100,
we observe that the times grow in a linear way. We identify
Ks = 25 as the best trade-off between performance and
training complexity. At this value, a clear decrease of the
steepness of the F1-score curves can be observed, and training
times are low and close to the ones registered at 5 and 15 shots,
namely circa 5 hours. Therefore, we set such a value as the
number of shots in the following experiments.

Once we have assessed the performance of META
MIMETIC, we further inspect the benefits deriving from its
characteristics and the room for improvements this solution
offers. Hence, we investigate both the performance benefits
of fine-tuning and the performance advantages achievable by
taking advantage of its structure. Such investigations focus on
the best-performing MatchingNet.

First, experiments show the beneficial impact of the fine-
tuning procedure. In detail, Fig. 5a shows the F1-score
achieved by single-modal branches before and after fine-
tuning. The experimental results highlight that at the end of the
fine-tuning phase devised for META MIMETIC, the F1-score
of each branch is improved: significantly for the PSQ branch
(≈ +3%) and marginally for the PAY one (< 1%).

Starting from these results, we further capitalize on the



SNI
extension

other TLS
bytes

masked

server
hostname

padded masking
255 bytes

excluded
bytes

Figure 7: Sketch of information-removal schemes. SNI-extension
bytes are colored in red, the masked ones are colored in gray, the
other TLS bytes considered in the PAY∗ input are colored in green,
and those excluded from the PAY∗ input are in yellow. Extra bytes
considered in the PAYabl input (w.r.t. PAY) are shown with a green
zigzagged line and bytes ablated in the PAYpad input (w.r.t. PAY)
are shown with a yellow zigzagged line.

connectionist philosophy of META MIMETIC by variously
merging the features extracted from single-modal and shared
layers. Particularly, we investigate the performance of a variant
of META MIMETIC (named META MIMETIC W/ RC) that
enriches the output of the shared layer by concatenating it with
the output of each branch via Residual Connections (RC). The
changes that characterize this variant are depicted in Fig. 6,
where the outputs of the two single-modal branches are prop-
agated by skipping the shared layers and then concatenated
to the shared representation to construct the feature vector.
Formally, ν fi [υ1,1, · · · , υa,1, υ1,2, · · · , υb,2, υ1,3, · · · , υc,3],
where a, b, and c are the dimensions of the feature vectors
being the outputs of the branches above. Accordingly, Fig. 5b
presents the F1-score of META MIMETIC with and without
the latter feature concatenation. By leveraging this improved
feature concatenation, META MIMETIC W/ RC can outperform
its “base” version (up to 2.24% F1-score).

We remark that the versatility of META MIMETIC is a
significant point in its favor compared to other FSL solutions
exploiting monolithic embedding functions, such as its single-
modal branches and state-of-the-art baselines (e.g., 1D-CNN
and 2D-CNN), as witnessed by the gain obtained with this
“simple” modification. Indeed, such versatility has allowed us
to realize a novel FSL solution that can outperform all its
competitors in terms of both classification performance and
computational complexity (residual connections do not imply
any additional training parameter nor improved training time)
by capitalizing on its multimodal embedding function.

C. Robustness to TLS 1.3 Encrypted Client Hello

When the bytes of the PAY input are carried over a TCP
connection with TLS encryption, they can still transport the
hostname of the server as cleartext within the Server Name
Indication (SNI) extension of the Client Hello (CH) message.
The latter is proven to carry rich information that can be
leveraged to guess the generating application [26]. However,
the recent adoption of TLS 1.3 may hinder the contribution of
SNI to traffic classification due to the Encrypted Client Hello
(ECH) extension. In fact, this optional mechanism provided

by TLS 1.3 results in appending the encryption of the entire
CH to the CH itself: in this way, the actual SNI is transmitted
encrypted, and the outer cleartext SNI (used only for backward
compatibility) may no longer be considered relevant.

Accordingly, as shown in Fig. 7, we adopt three further
variants of the PAY input for emulating the removal of the
SNI bytes information at a growing extent, resulting in the
following information removal schemes:
• PAYmsk, where the sole server hostname is masked being

replaced by random values;6 this scheme leaves unaltered
the SNI-length information that is explicitly set in the SNI
extension header.

• PAYabl, where the entire SNI is ablated from the CH; this
scheme introduces extra input bytes (the portion with a green
zigzagged line in Fig. 7), thus increasing the information
that can be exploited (w.r.t. PAY input), which can partially
compensate for the SNI ablation.

• PAYpad, where the SNI is first padded to 255 bytes as
suggested by the related IETF draft7 and then masked with
random values6; differently from the previous scheme, this
reduces the knowledge passed to the model, thus it is
expected to cause a worsening of performance. It is worth
noting that the discarded bytes—the portion with a yellow
zigzagged line in Fig. 7—likely encode the server certificate
(along with the name of the certification authority), which
may be very informative in diversifying applications.

We apply these information-removal schemes to all the TLS
biflows (79% of the overall dataset and 83% of the TCP ones).
Table II reports the results obtained when exploiting such PAY-
input variants.

First, all the information-removal schemes result in a drop in
performance as expected, with single-modal 1D-CNN being
the most affected ones, as it exploits the PAY-input only. It
is worth underlining that the results presented leveraging the
1D-CNN can be also considered as a proxy to assess the
robustness of the PAY branch of META MIMETIC, since the
1D-CNN and the PAY branch have the same input. Going into
detail, the masking of the sole SNI (PAYmsk) degrades only
the 1D-CNN performance by 0.92% F1-score. On the other
hand, both multimodal solutions based on META MIMETIC
are not impacted by this scheme. Such a limited performance
drop is likely related to the presence of the SNI-length field,
which carries valuable information for the classification task.

Indeed, the above interpretation is confirmed by the largest
performance drop obtained when the SNI is completely ablated
(PAYabl): in this case, both META MIMETIC and 1D-CNN
experience a performance drop, but the latter has again the
worst degradation (i.e. 1.98% F1-score drop). Surprisingly,
META MIMETIC W/ RC slightly improves its performance
(+0.78% F1-score): this finding confirms the benefit of having
a more complex embedding space that is capable of extracting
more discriminative knowledge from the input data.

6 For each biflow, the random masking is achieved by sampling—with
replacement—the required number of bytes from those preceding the SNI
extension.

7https://datatracker.ietf.org/doc/draft-ietf-tls-esni/

https://datatracker.ietf.org/doc/draft-ietf-tls-esni/


Table II: F1-scores [%] of META MIMETIC (w/ and w/o RC) and
1D-CNN when diverse SNI removal schemes are enforced. The
discrepancy from no information removal scheme (PAY input) is
reported in round brackets. The best F1-scores are reported in bold.
The standard deviation is always < 2%.

Information Removal Scheme

Embedding Function∗ PAY PAYmsk PAYabl PAYpad

META MIMETIC W/ RC 83.38 83.58 (+0.20) 84.14 (+0.76) 81.21 (−2.17)

META MIMETIC 81.14 81.20 (+0.06) 80.32 (−0.82) 78.02 (−3.12)

1D-CNN 82.06 81.14 (−0.92) 80.08 (−1.98) 72.97 (−9.09)

∗2D-CNN is not reported since its PSQ input is not affected by the TLS 1.3 ECH.
Nevertheless, 2D-CNN reaches 81.14% F1-Score at most.

Finally, with the most aggressive information removal
scheme enforcing both padding and masking (PAYpad), the
performance of 1D-CNN decreases by 9.09% F1-score,
against the 2.17% drop revealed by META MIMETIC W/ RC:
overall, META MIMETIC W/ RC has an F1-score drop ≈ 4×
lower than 1D-CNN and outperforms it by 8.24% F1-score.

VI. CONCLUSIONS AND FUTURE PERSPECTIVES

In this paper, we presented META MIMETIC, a novel
multimodal-based FSL solution for mobile-app encrypted traf-
fic classification using meta-learning. META MIMETIC (i) dis-
tills informative features from multiple traffic data views, (ii)
combines them through intermediate fusion, and (iii) intro-
duces advanced strategies for training single-modal branches
and shared layers of the multimodal embedding function,
designed for episodic meta-learning.

The experimental evaluation exploited Mirage-2019, a
publicly-available mobile-app traffic dataset. We considered
six meta-learning-based FSL approaches and compared META
MIMETIC with NAIVE-MM, 1D-CNN, and 2D-CNN em-
bedding functions. META MIMETIC outperformed all, achiev-
ing 81.14% F1-score and 73% fewer trainable parameters
(−2.2M) compared to the best competitor. Moreover, META
MIMETIC internal mechanisms were investigated, achieving
a remarkable 91% F1-score with 100 shots. On this basis,
we devised a novel multimodal feature combination technique
using concatenation and residual connections, which resulted
in +2.24% F1-score without increasing the computational
complexity. Finally, we evaluated META MIMETIC robustness
to future TLS evolution, particularly the SNI encryption intro-
duced in TLS 1.3. META MIMETIC with residual connections
had an F1-score drop 4× smaller than its best-performing
competitor and outperformed it by 8.24% F1-score.

Future work will explore multimodal modeling for transfer
learning in FSL, optimize single-modal embedding functions,
and apply META MIMETIC to other real-world problems like
intrusion detection and malware classification.

ACKNOWLEDGMENTS

This work has been funded in the framework of the Huawei
Innovation Lab project on "Network Traffic and AI en-
abled Network Technologies" by Huawei Technologies France
SASU at DIETI, University of Napoli Federico II.

REFERENCES
[1] G. Aceto, et al. Characterization and prediction of mobile-app traffic

using markov modeling. IEEE Transactions on Network and Service
Management, 18(1):907–925, 2021.

[2] E. Papadogiannaki et al. A survey on encrypted network traffic
analysis applications, techniques, and countermeasures. ACM Computing
Surveys, 54(6):1–35, 2021.

[3] G. Aceto, et al. MIRAGE: Mobile-app Traffic Capture and Ground-
truth Creation. In 4th IEEE International Conference on Computing,
Communications and Security, pages 1–8, 2019.

[4] C. Wang, et al. AppClassNet: A commercial-grade dataset for applica-
tion identification research. ACM SIGCOMM Computer Communication
Review, 52(3):19–27, 2022.

[5] C. Finn, et al. Model-Agnostic Meta-Learning for Fast Adaptation of
Deep Networks. In Proceedings of the 34th International Conference
on Machine Learning, volume 70, pages 1126–1135, 2017.

[6] O. Vinyals, et al. Matching networks for one shot learning. Advances
in neural information processing systems, 29, 2016.

[7] J. Snell, et al. Prototypical networks for few-shot learning. Advances
in neural information processing systems, 30, 2017.

[8] F. Sung, et al. Learning to compare: Relation network for few-shot
learning. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1199–1208, 2018.

[9] W. Zheng, et al. Learning to classify: A flow-based relation network for
encrypted traffic classification. In Proceedings of The Web Conference
2020, pages 13–22, 2020.

[10] Z.-M. Wang, et al. A Few-Shot Learning-Based Siamese Capsule
Network for Intrusion Detection with Imbalanced Training Data. Com-
putational Intelligence and Neuroscience, 2021:7126913, 2021.

[11] Z. Zhao, et al. A Few-Shot Learning Based Approach to IoT Traffic
Classification. IEEE Communications Letters, 26(3):537–541, 2022.

[12] G. Bovenzi, et al. Few Shot Learning Approaches for Classifying Rare
Mobile-App Encrypted Traffic Samples. In IEEE INFOCOM 2023-IEEE
Conference on Computer Communications Workshops, 05 2023.

[13] C. Rong, et al. UMVD-FSL: Unseen Malware Variants Detection Using
Few-Shot Learning. In 2021 International Joint Conference on Neural
Networks, pages 1–8, 2021.

[14] S. Huang, et al. A Gated Few-shot Learning Model For Anomaly
Detection. In 2020 International Conference on Information Networking,
pages 505–509, 2020.

[15] T. Feng, et al. Few-Shot Class-Adaptive Anomaly Detection with Model-
Agnostic Meta-Learning. In 2021 IFIP Networking Conference, pages
1–9, 2021.

[16] K. Lee, et al. Meta-learning with differentiable convex optimization.
In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 10657–10665, 2019.

[17] A. Raghu, et al. Rapid learning or feature reuse? towards understanding
the effectiveness of maml. arXiv preprint arXiv:1909.09157, 2019.

[18] Y. Xiao, et al. Common Knowledge Based Transfer Learning for Traffic
Classification. In 2018 IEEE 43rd Conference on Local Computer
Networks, pages 311–314, 2018.

[19] S. Rezaei et al. How to achieve high classification accuracy with just a
few labels: A semi-supervised approach using sampled packets. arXiv
preprint arXiv:1812.09761, 2018.

[20] G. Aceto, et al. MIMETIC: Mobile encrypted traffic classification using
multimodal deep learning. Elsevier Computer Networks, 165:106944,
2019.

[21] P. Lin, et al. A Novel Multimodal Deep Learning Framework for En-
crypted Traffic Classification. IEEE/ACM Transactions on Networking,
2022.

[22] X. Wang, et al. App-net: A hybrid neural network for encrypted mobile
traffic classification. In IEEE INFOCOM 2020-IEEE Conference on
Computer Communications Workshops, pages 424–429, 2020.

[23] S. M. Arnold, et al. learn2learn: A library for meta-learning research.
arXiv preprint arXiv:2008.12284, 2020.

[24] W. Wang, et al. End-to-end encrypted Traffic Classification with
one-dimensional convolution neural networks. In IEEE International
Conference on Intelligence and Security Informatics, pages 43–48, 2017.

[25] M. Lopez-Martin, et al. Network traffic classifier with convolutional
and recurrent neural networks for Internet of Things. IEEE Access, 5:
18042–18050, 2017.

[26] A. Nascita, et al. Unveiling MIMETIC: Interpreting Deep Learning
Traffic Classifiers via XAI Techniques. In 2021 IEEE International
Conference on Cyber Security and Resilience, pages 455–460, 2021.


	Introduction
	Background and Related Work
	Meta Learning for Few-Shot Learning
	Related Work

	Meta Mimetic
	Traffic Object and Network Input
	Capitalizing on Multimodal Embedding Functions
	FSL Approaches

	Experimental Setup
	Dataset
	FSL Setup
	Comparison Baselines
	Performance Metrics

	Experimental Evaluation
	Overall Performance
	Inspection and Enhancement of Meta Mimetic Internal Structure
	Robustness to TLS 1.3 Encrypted Client Hello

	Conclusions and Future Perspectives

