
Network Anomaly Detection Methods in IoT Environments via Deep Learning:
A Fair Comparison of Performance and Robustness

Giampaolo Bovenzia, Giuseppe Acetoa, Domenico Ciuonzoa, Antonio Montieria, Valerio Persicoa, Antonio Pescapèa

aUniversity of Napoli Federico II, Department of Electrical Engineering and Information Technologies (DIETI), Via Claudio 21, Naples, 80125, Italy

Abstract

The Internet of Things (IoT) is a key enabler in closing the loop in Cyber-Physical Systems, providing “smartness” and thus addi-
tional value to each monitored/controlled physical asset. Unfortunately, these devices are more and more targeted by cyberattacks
because of their diffusion and of the usually limited hardware and software resources. This calls for designing and evaluating new
effective approaches for protecting IoT systems at the network level (Network Intrusion Detection Systems, NIDSs). These in turn
are challenged by the heterogeneity of IoT devices and the growing volume of transmitted data.

To tackle this challenge, we select a Deep Learning architecture to perform unsupervised early anomaly detection. With a
data-driven approach, we explore in-depth multiple design choices and exploit the appealing structural properties of the selected
architecture to enhance its performance. The experimental evaluation is performed on two recent and publicly available IoT datasets
(IoT-23 and Kitsune). Finally, we adopt an adversarial approach to investigate the robustness of our solution in the presence of
Label Flipping poisoning attacks. The experimental results highlight the improved performance of the proposed architecture, in
comparison to both well-known baselines and previous proposals.

Keywords: Anomaly Detection, Deep Learning, Internet of Things, Intrusion Detection System, Network Security, Robustness.

1. Introduction

The Internet of Things (IoT) is the (most exposed) forefront
of the latest industrial revolution, permeating both production
systems and post-market management and monitoring of goods.
It constitutes the enabler in closing the loop of Cyber-Physical
Systems (CPSs), providing geographically-distributed intelli-
gence and thus additional value to each monitored/controlled
physical asset, as well as the system of which they are part.
Because of their increasingly pervasiveness, IoT devices are
estimated to count 55.7B units by 2025,1 pushing the need
for IoT-tailored security solutions. Indeed, these devices are
characterized by (economical and physical) constraints, lead-
ing to limited hardware and software resources. This reason,
together with their distributed nature and their key role in cur-
rent CPSs evolution, makes IoT devices a primary target for
cyberattacks [1, 2]: 1.5B attacks targeted IoT devices in the 1H
2021, doubling their estimate with respect to the 1H 2020.2

In general, systems performing attack detection (Intrusion
Detection Systems, IDSs) can be implemented both at the de-
vice level (host-based IDS) and at the network level (Network
IDS or NIDS): for the aforementioned characteristics of IoT
devices, NIDSs are usually preferred. Moreover, the high het-
erogeneity of IoT devices and the growing volume of transmit-
ted data to be analyzed in quasi-real-time make the design and
evaluation of effective IDSs in IoT environments particularly
challenging. Equally important, to grant pro-active response

1https://bit.ly/idc-future-of-industry-ecosystems
2https://bit.ly/kaspersky-iot-attacks-doubling

against novel (unknown) attacks, unsupervised Anomaly Detec-
tion (AD) represents a key milestone.

To respond to this urge, in recent years the research has fo-
cused on approaches based on neural networks and more specif-
ically on Deep Learning (DL) ones, for their capability of effec-
tively performing feature extraction (or limiting it), thus avoid-
ing (or reducing) costly and slow human expert involvement.
Moreover, biased inputs—erroneously inflating classification
performance but not meaningful in realistic scenarios—have
been employed for the design and evaluation of many of these
approaches [3]. Linked to this issue and given the black-box na-
ture of such neural-network-based approaches, the understand-
ing of their behavior (and thus the reliability of results) has been
barely investigated. Finally, almost all relevant works focus on
post-mortem analysis and assume ideal conditions, as they use
flow-based inputs (summary data over whole communications)
and hypothesize a “clean” (viz. attack-free) benign dataset for
training, severely limiting the usefulness of proposed solutions
for protecting CPSs in a real-world adversarial setting.

Accordingly, in this work, we tackle and solve these limi-
tations by providing the following main contributions, which
capitalize on several design and evaluation choices.

• We select state-of-art DL architectures to perform unsu-
pervised AD, namely “classic” AutoEncoders (AEs) and
the recent KitNET proposal [4], to face the need for rapid
adaptation to both new devices and new (unknown) at-
tacks. In designing the architectures, we adopt advanced
approaches (ensemble learning) to reach improved perfor-
mance and obtain operational advantages in terms of mod-

Preprint submitted to Computers & Security March 27, 2023

https://bit.ly/idc-future-of-industry-ecosystems
https://bit.ly/kaspersky-iot-attacks-doubling

ularity and thus adaptability to fast-evolving scenarios.

• We adopt packet-level processing to be able to perform
early AD, obtaining a response for a bidirectional flow af-
ter just 4 packets. To this aim, we investigate the impact
of different design factors, such as the number of packets
considered per biflow and the depth of the DL architec-
tures (both with operational significance).

• We perform an in-depth exploration of the distance met-
rics used to learn and assess the inner representation of
the input data: leveraging Mahalanobis-based distances,
ablation studies, and comparative evaluations on different
datasets, we find the best-performing (and the most stable)
parameter set.

• We propose and evaluate multiple enhancements of the
original KitNET, attaining better detection performance
and improved robustness: (i) ensemble equalization,
(ii) changing the output stage reconstruction target, and
(iii) ensemble normalization.

• We compare the performance of the designed DL archi-
tectures with standard Machine Learning (ML) techniques
performing AD: Isolation Forest, Local Outlier Factor, and
One-Class Support Vector Machine.

• We assess the robustness of the proposed detectors in ad-
versarial (more realistic) scenarios. In detail, we conduct
a Data Poisoning Attack (specifically, a Label Flipping At-
tack) to gradually degrade the training set, where the at-
tacker can affect the traffic on the observed network during
the (periodically needed) re-training of the NIDS.

• We perform the experimental evaluation on two real, re-
cent, and publicly available IoT-traffic datasets [4, 5] us-
ing only unbiased inputs. The experimental results vali-
date our goal of improving both well-known baselines and
previous proposals.3

The rest of the paper is organized as follows. Section 2 sur-
veys the recent application of DL-based techniques to network
AD in IoT environments, positioning our contribution against
related literature. Section 3 describes the considered AD-based
methodology; the experimental setup and the related experi-
mental results are reported in Secs. 4 and 5, respectively. Sec-
tion 6 ends the paper with conclusions and future directions of
research.

2. Related Work

Related works designing Network IDSs mainly leverage two
main approaches: AD or Misuse Detection (MD). The former
aims at modeling anomalies as deviations (i.e. outliers) from

3Preliminary results have been published as a conference publication [6].
Detailed contributions and positioning with respect to our previous work are
discussed in Sec. 2.

the profile of benign traffic, while the latter at directly identi-
fying patterns of known attacks. Given the increasing adoption
of ML and DL approaches for designing effective NIDSs, the
main advantage of AD methods is that they are trained only on
benign traffic, whereas MD ones require both benign and mali-
cious samples [19, 20, 21, 22].

Table 1 summarizes the most recent works performing AD,
positioning our paper against the latter according to different
axes. Specifically, we consider recent works published in the
last five years and categorize them by highlighting their key
aspects. The last row summarizes the present paper. Firstly,
we focus on unsupervised AD approaches that do not require
malicious samples during training. In this regard, we under-
line that some works combine both unsupervised and super-
vised techniques [11], also at different levels of the detec-
tion/classification architecture in a hierarchical fashion [12, 13].

First of all, we can notice that the works aiming at detect-
ing cyberattacks against IoT devices employ different recent
datasets (e.g., Kitsune [4], N-BaIoT [8], Bot-IoT [20], IoT-
23 [5]) as opposed to other works who commonly leverage the
“traditional” KDD99 [23] or NSL-KDD [24]. Unfortunately,
the latter datasets hardly exhibit a current real-world network
traffic profile, particularly considering that they were collected
more than two decades ago.

We also underline that almost all related works leverage dif-
ferent variants of the deep AE (see the DL column) which out-
perform the classic outlier detector models (e.g., Isolation For-
est, One-Class Support Vector Machine, Local Outlier Factor)
reaching higher detection rate and incurring very low error in
confirming a normal behavior. Interestingly, the usage of a shal-
low (i.e. non-deep) AE to detect Distributed Denial of Service
(DDoS) attacks [25] is only investigated in [14]—achieving
better performance than considered baselines (i.e. up to 82%
detection with 0% false-positive rate)—in Zhu et al. [18]—
testing both DL and shallow methods for AD—and in [4]—
proposing an ensemble of shallow AEs.

Similarly, regarding the traffic segmentation adopted, we ob-
serve that bidirectional flows (briefly biflows) and single pack-
ets are the most common choices as traffic objects. In addition
to these latter, HTTP/HTTPS requests [7] and coarse-grained
sequences of flows [10] are also employed. Indeed, such
choices depend on the specific scenario (e.g., attacks against
web applications [7]) or the specific technique and input data
considered (e.g., generation of “sentences” representing a con-
versation between computers [10]).

Unfortunately, also when considering the finest-grained traf-
fic objects (i.e. single packets), the choice of input data can
prevent early AD. As relevant examples, Mirsky et al. [4]
and Meidan et al. [9] compute (context and statistical) features
based on time windows going up to one minute into the past
for each packet to analyze. On the other hand, when leveraging
input data suited for early AD, as in [18], these encompass bi-
ased fields (e.g., local IP/ETH addresses or source/destination
ports) that are likely to inflate AD performance [26]. Interest-
ingly, in the case of biflows and coarse-grained traffic objects,
most works employ “post-mortem” features, namely they man-
ually engineer statistics on the sets of packet/payload lengths,

2

Table 1: Related papers using unsupervised Machine Learning and Deep Learning approaches for Anomaly Detection. The papers are ordered by year. The last row
summarizes the present work. Acronyms’ meaning is reported at the bottom of the table.

Paper Dataset IoT DL TO Input Data EAD AD Technique R

Mac et al. [7], 2018 CSIC2010 # H HTTP/HTTPS request tokens AE, OC-SVM†,
IF†, LSTM†

Madani and Vlajic [8], 2018 NSL-KDD # B Flow-based statistics AE, PCA† ✓

Mirsky et al. [4], 2018 Kitsune* G# P Time window-based statistics KitNET, AE†

Meidan et al. [9], 2018 N-BaIoT* P Time window-based statistics AE, OC-SVM†,
IF†, LOF†

Radford et al. [10], 2018 ISCXIDS2012 # S Per-protocol #bytes & L4 ports BiLSTM ✓

Andresini et al. [11], 2019 NSL-KDD # B Flow-based statistics AE, CNN†,
LSTM†, RNN†

Khan et al. [12], 2019 KDD99, UNSW-NB15 # B Flow-based statistics AE

Bovenzi et al. [13], 2020 Bot-IoT B Flow-based statistics of the first Np packets ✓ M2-DAE, AE†

Yang et al. [14], 2020 SYNT*, MAWI,
UNB2017

B Flow-based statistics AE, PCA†,
DT†, IF†, OC-SVM†

Vu et al. [15], 2020 N-BaIoT P Time window-based statistics
MAE, MDAE, MVAE,
AE†, DAE†, VAE†,
DBN†, RF†

Kye et al. [16], 2022 NSL-KDD,
CIC-IDS2018

B Flow-based statistics AE

Yang and Hwang [17], 2022 UNSW-NB15 # B Flow-based statistics AE

Zhu et al. [18], 2022 Kitsune, CICIDS2017,
MAWILAB, UNSW-NB15

G# G# P Per-packet L2-L4 fields ✓
KitNET, IF,
LR, MLP

✓

Bovenzi et al. [6], 2022 Kitsune B Flow-based statistics AE, KitNET ✓

This paper Kitsune, IoT-23 B Flow-based statistics of the first Np packets ✓
AE-1/2/3, KitNET-1/2/3,
OC-SVM†, IF†, LOF†

✓

IoT: Internet of Things. DL: Deep Learning. TO: Traffic Object: Biflow (B), Flow (F), HTTP/HTTPS request (H), Packet (P), Sequence of Biflows (S).
EAD: Early Anomaly Detection. R: Robustness against data poisoning attacks.
Anomaly Detection Technique: AutoEncoder (AE), Bidirectional LSTM (BiLSTM), Convolutional Neural Network (CNN), Denoising AE (DAE), Deep Belief Network

(DBN), Decision Tree (DT), Isolation Forest (IF), Local Outlier Factor (LOF), Linear Regressor (LR), Long Short-Term Memory (LSTM), Multimodal Deep AE (M2-DAE),
Multidistribution AE (MAE), Multidistribution DAE (MDAE), MultiLayer Perceptron (MLP), Multidistribution VAE (MVAE), One-Class Support Vector Machine (OC-
SVM), Principal Component Analysis (PCA), Random Forest (RF), Recurrent Neural Network (RNN), Variational AE (VAE).
“∗” symbol indicates self-generated datasets; “†” symbol indicates baselines; present, G# partial, # lacking.

inter-arrival times, etc. regarding the whole traffic object (i.e.
needing to wait for its end) [7, 10, 14, 15, 17], or they lever-
age already preprocessed datasets (e.g., KDD-Cup-99, NSL-
KDD) [8, 11, 12, 16]. Conversely, in our previous works, we
calculate statistical features related to the first Np packets (up
to 25), aiming to attain early AD [13], or perform a robustness
analysis when leveraging “post-mortem” features [6].

Referring to the specific AD technique applied, all the
works—with the exception of [10]—employ variants of the AE.
Indeed, as mentioned before, AEs are inherently simple neu-
ral network models, composed of low-complexity layers, and
thus demanding limited computing resources; also, we recall
that AEs naturally allow to exploit the unsupervised learning
paradigm, thus not requiring labeled traffic for training. Among
the various proposals, it is worth mentioning KitNET [4], a
double-stage ensemble of shallow AEs, where each AE be-
longing to the first stage is fed with a subset of the features;
then the reconstruction errors from the first stage are fed to a
single AE at the second stage which implements a voting pro-

cedure. Moreover, in [13], we have first proposed M2-DAE
(Multi-Modal Deep AutoEncoder), a multimodal variant of an
AE-based approach for AD having similar performance but re-
duced model size with respect to a common deep AE. In ad-
dition to other AE variants (e.g., multi-distribution, variational,
and denoising AEs) [15], several ML/DL approaches are com-
monly used as baselines for comparison (flagged with a † in
Tab. 1), usually showing poorer performance than (deep) AE-
based ones. They include both ML methods (e.g., Isolation
Forest, Local Outlier Factor, MultiLayer Perceptron, One-Class
Support Vector Machine, and Random Forest) and baseline DL
architectures (e.g., Convolutional Neural Network, Long Short-
Term Memory, and Recurrent Neural Network).

In the last column of Tab. 1, we highlight the works evaluat-
ing the robustness of AD approaches against data poisoning
attacks: Label Flipping Attacks (viz. adversarial contamination
during training) [6, 8, 10] and generation (via e.g., Generative
Adversarial Networks) of forged data packets to evade NIDS
detection [18]. Indeed, due to the unsupervised nature of the

3

training phase of AEs, the injection of malicious data during
training is more effective than in the supervised scenario, since
no labeling is required and malicious traffic could be injected
without knowledge of the underlying model and features (i.e.
black-box attacks). We underline that similar investigations are
conducted in CPSs by evaluating the vulnerability of anomaly-
detecting AEs to different types of adversarial attacks in e.g.,
water treatment [27] and industrial control systems [28]. De-
spite being potential targets of attack by malicious actors, such
scenarios are beyond the scope of this paper. Finally, to the
best of our knowledge, existing works barely optimize model
hyperparameters without providing hints about the model gen-
eralization capabilities [4, 14].

Contribution Positioning. In this work, in accordance with
the recent literature [4, 9, 13, 15, 18], we rely on datasets truly
containing cyberattacks targeting IoT devices (i.e. Kitsune [4]
and IoT-23 [5]). Secondly, we design and evaluate a compre-
hensive set of variants of single/ensemble shallow/deep AEs
(as opposed to [16, 17]) and compare them with ML-based AD
approaches. Thirdly, all the approaches considered herein are
fed with unbiased input data allowing us to attain early AD,
a practical assumption which contrasts most of the reviewed
literature (i.e. save from [13, 18]). Finally, our study is comple-
mented with a robustness assessment of the effects associated
with data poisoning (which well models both intentional and
unintentional attacks), which has been tackled only by a rela-
tively small part of the recent literature [8, 10, 18, 6]. Therefore,
to the best of our knowledge, we provide an all-around analy-
sis in terms of both the effectiveness and robustness of various
AD approaches in IoT environments not present in the related
literature to date.
Furthermore, with respect to our previous proposal [6], in this
paper: (i) we compare AE-based detectors with ML-based
baselines (i.e. Isolation Forest, Local Outlier Factor, and One-
Class Support Vector Machine); (ii) we evaluate the usage of
deep AEs with different sizes at both stages of KitNET (result-
ing in KitNET-2 and KitNET-3); (iii) we implement the fol-
lowing enhancements to the KitNET architecture: (a) ensem-
ble equalization, (b) changing the output stage reconstruction
target, and (c) ensemble normalization; finally (iv) we eval-
uate the robustness of AD via different distance metrics (i.e.
RMSEINT/RMSEEXT, MHLNINT/MHLNEXT, SAP, and NAP).

3. Methodology

This section aims at introducing the proposed methodology.
Section 3.1 presents the DL detectors based on reconstruction
error, while Sec. 3.2 those based on ML algorithms. The selec-
tion of the detection threshold is deepened in Sec. 3.3. Finally,
Sec. 3.4 discusses the threat model.

3.1. Reconstruction-based DL Detectors
Autoencoder-based Detectors. An AutoEncoder (AE) is a pe-
culiar neural network able to self-reproduce data. It is made of
two principal components: an encoder g(·)–which computes a
compression of the input vector (x) into a latent space; a de-
coder f (·)–which tries to reconstruct the input vector starting

Figure 1: Structure of shallow AE (left) vs deep AE (right).

Internal distancesExternal
distance

Figure 2: Datapath of a generic AE architecture. The second half round of re-
construction (dashed red line) is used to compute SAP, NAP, and partial distance
metrics.

from the encoder output (i.e. the latent space). An AE can be
broadly considered either as a shallow or a deep AE, with the
main difference between these represented by the number of
encoding/decoding layers (see left and right side of Fig. 1, re-
spectively): the shallow AE has a single encoder/decoder layer
whereas a deep AE presents multiple encoding/decoding layers
(i.e. g(·) = gℓ ◦ . . . ◦ g1(·) and f (·) = fℓ ◦ . . . ◦ f1(·)). The
whole reconstruction (encoding plus decoding) path is generi-
cally denoted with x̂ = (f ◦ g)(x). Once the reconstruction is
obtained, the anomaly score is calculated as aae(x) = L(x̂, x),
where L(·) is commonly the squared loss. Despite these mod-
els can be used in a standalone fashion, recent proposals [4, 13]
showed the advantage of considering shallow AEs in an ensem-
ble architecture.
Reconstruction Errors. According to [29], herein we adopt a
reconstruction error taking into account also the terms originat-
ing from the hidden layers of the AEs and possibly based on
the adoption of Mahalanobis distance. In brief, the idea is to
combine the classic output reconstruction error with the error
committed at the hidden layers in a double round of reconstruc-
tions. For convenience, before proceeding and referring to a
generic (deep) AE, we give the following auxiliary definitions:
(i) hi(x) = (gi ◦ · · · ◦ g1)(x) and (ii) ĥi(x) = (gi ◦ · · · ◦ g1)(x̂) =
(gi ◦ · · · ◦ g1)((g ◦ f)(x)). The former hold for i ≥ 1. In the
special case i = 0, it holds h0(x) = x and ĥ0(x) = x̂.

The resulting reconstruction errors are referred to as Sim-
ple Aggregation along Pathway (SAP) and Normalized Aggre-
gation along Pathway (NAP). Specifically, SAP is computed
based on the Root Mean Squared Error (RMSE) on the con-
catenation of output and hidden layers reconstructions, whereas

4

Figure 3: KitNET structure.

NAP is computed on the same reconstructions but with the Ma-
halanobis distance. In other terms, the anomaly score based on
SAP is:

asap(x) =
ℓ∑

i=0

∥∥∥hi(x) − ĥi(x)
∥∥∥2 = ∥∥∥h(x) − ĥ(x)

∥∥∥2 (1)

where the stacked vectors h(x) ≜
[
h0(x)T · · · hℓ(x)T

]T
and

ĥ(x) ≜
[
ĥ0(x)T · · · ĥℓ(x)T

]T
have been used in the last equal-

ity. Hence, SAP considers an anomaly score that relies on the
reconstruction errors from multiple AE layers—i.e. the output
layer i = 0 and the internal (viz. encoder) layers i = 1, . . . , ℓ—
and weights them equally. Conversely, the anomaly score based
on NAP is based on a Mahalanobis-type distance:

anap(x) =
∥∥∥(d(x) − µx)T VΣ−1

∥∥∥2 (2)

where d(x) ≜ (h(x) − ĥ(x)), µx is the average of d(x) on the
training set, and D̄ = UΣVT , with D̄ being the matrix obtained
by stacking all the vectors d(xi) within the training set and sub-
tracting the mean µx from each.4

KitNET [4]. We evaluate an Ensemble of Autoencoders (Fig. 3)
named KitNET [4] that is composed of two stages. Specif-
ically, the first stage (the “ensemble” stage) is constituted of
several autoencoders, each one reconstructing a portion of the
input data. More specifically, partitioning the input in P non-
overlapping portions as x =

[
xT

1 · · · x
T
P

]T
, there is one AE for

each portion, namely x̂p = (f p ◦ gp)(xp) for the pth portion.
Then, the second stage (the “output” stage) is made of a single
AE that enforces a non-linear voting mechanism by reconstruct-
ing the reconstruction errors from the ensemble stage. Specifi-
cally, for each portion, the corresponding reconstruction error is
calculated as Lp= L(xp, x̂p). Then, the AE is trained to recon-
struct ℓ = [L1 · · · LP] T via the encoding-decoding structure,
resulting in ℓ̂ = frec ◦ grec(ℓ). Once the reconstruction is ob-
tained, the anomaly score is calculated as akitnet(x) = L(ℓ̂, ℓ),
where L(·) is the error loss (specifically, RMSE).

4To deal with the application of the Singular Value Decomposition (SVD)
when computing the Mahalanobis distance, we resort to a randomized SVD
with an (empirically-)fixed cutting threshold (equal to 10−10) to avoid the in-
clusion of nearly-zero singular values.

There are different design choices for the aforementioned
structure, such as the number of input portions and the grouping
within a given portion. We also investigate the performance en-
hancements achievable by KitNET by optimizing these aspects.
KitNET Enhanced. Hereinafter, we describe three enhance-
ments we propose for KitNET, each one tailored to solve a spe-
cific problem. In particular, we implement the following solu-
tions.

• Ensemble Equalization—to properly schedule the features
for the AE of the ensemble stage. This enhancement re-
sults in an unsupervised procedure that aims at balancing
the training of the ensemble stage. In detail, the ensem-
ble equalization procedure assigns each feature to a spe-
cific ensemble AE in a round-robin fashion, taking each
feature based on its feature-importance rank. To deter-
mine the latter, because the AD scenario is somewhat un-
supervised, we resort to the Arithmetic Mean-Geometric
Mean (AMGM) feature-ranking procedure. This disper-
sion measure is used to rank the features: the higher the
value, the more relevant the feature.

• Changing the Output Stage Reconstruction Target—to en-
hance the reconstruction error. This enhancement aims at
substituting the reconstruction error used to train the out-
put stage (i.e. the RMSE) with more advanced solutions,
such as the NAP.

• Ensemble Normalization—to adjust the output stage mod-
eling. This enhancement aims at transforming the ensem-
ble stage output (i.e. the output stage input) into a prob-
ability distribution. Particularly, this procedure scales up
the reconstruction errors introduced with the previous en-
hancement.

We underline that these enhancements have been experi-
mentally evaluated in terms of both detection performance and
model robustness, considering the impact of each of them taken
individually and the effect of their combination.

3.2. ML-based Detectors

Isolation Forest (IF). The IF is designed with the idea that
anomalies are “few and distinct” data points. It is an ensemble
method (similar to the well-known supervised Random Forest)
where each tree is built by randomly selecting a feature and
then randomly selecting a split value between the maximum
and minimum values of the selected feature. Since recursive
partitioning can be represented by a tree structure, the number
of splittings required to isolate a sample is equivalent to the path
length from the root node to the terminating node. As a result,
random partitioning produces noticeably shorter paths it’s for
anomalies. Hence, when a forest collectively produces shorter
path lengths for particular samples, they are highly likely to
be anomalies. Hence the path length, averaged over a forest of
such random trees, is a measure of normality and it is employed
as aif(x) = ρ(

∑T
t=1 it(x)), where ρ(·) is a decreasing function of

this average.

5

Local Outlier Factor (LOF). The LOF belongs to the class of
local outlier methods and uses the notion of “reachability dis-
tance”, defined as:

dreach(x, x j) = max
{
dknn(x j), d(x, x j)

}
(3)

This distance is used to calculate the local reachability density
of a point:

lrd(x) =
|Ni|∑

j∈Ni
dreach(x, x j)

(4)

Finally, this density measure is compared with that of neighbor-
ing points to determine the local outlier factor:

alof(x) =
∑

j∈Ni
lrdk(x j)

|Ni| lrdk(x)
(5)

which is then used as the anomaly score.
One-Class Support Vector Machine (OC-SVM). The OC-SVM
basically separates all the benign input points from the origin
in the input space x and maximizes the distance from this hy-
perplane to the origin. This results in a binary function that
captures regions in the input space where the probability den-
sity of the normal data lives. Thus, the mapping returns +1 in a
“small” region (capturing the benign data points) and −1 else-
where. Hence, such a method creates a hyperplane that has (i)
maximal distance from the origin and (ii) separates all the data
points from the origin. This leads to the following form:

aocsvm(x) =
n∑

i=1

αi K(x, xi) (6)

where n denotes the number of training samples used as sup-
port.

3.3. Choice of the Detection Threshold

When training an anomaly detector to flag malicious traffic,
the likelihood of the traffic object being considered is an in-
creasing function of the anomaly score (e.g., the reconstruction
error for AE-based AD techniques). Once the anomaly score
is computed using the generic AD technique, it is interesting to
understand how a threshold can be designed to ensure a given
false-alarm rate cap. In this work, we consider a data-driven
threshold expressed in the form:

λ = µaben + k · σaben (7)

where µaben and σaben represent the average and standard devia-
tion of the generic anomaly score, respectively, when evaluated
on (training) benign traffic [9], and k is a positive integer.

3.4. Threat Model – Label Flipping Attack

The main assumption of recent works proposing unsuper-
vised AD-based solutions for IoT devices is the cleanliness of
training traffic data [4, 9, 13], meaning that at the moment of
the model construction, no malicious biflows are present.

In this section, we introduce the threat model defined by re-
laxing this assumption (Fig. 4), which requires not only that

Dataset SplitDataset Anomaly-based
Model Training

Train
Dataset Benign

Malicious

% Poisoning% Train

Figure 4: Threat model workflow of the Label Flipping Attack. The arrows
follow the flowing of data (gray boxes) and the dots connect functions (red
rounded boxes) to related attributes (green boxes). The dotted lines denote info
which are available only in controlled scenarios.

benign traffic generated by IoT devices must be collected im-
mediately after the device installation, but also that no attack-
ers should inject malicious traffic into the monitored network,
adversarially introducing adversarial faults into the learned
model. The consequent condition after the training of the detec-
tor is identifiable as a variant of a Data Poisoning Attack (DPA),
named Label Flipping Attack (LFA) [30].

From the adversarial ML perspective, the DPA involves the
forging of input features that deviates the learning phase from
the expected behavior when fed to the ML-based model. DPA
is a causative attack, which means that the attacker can alter
the training data used by the detector [31]. LFA belongs to this
family of attacks but impacts the sole label space, namely the
attacker flips the label of a specific class to the target class label,
e.g., network-attack samples are labeled as benign. Thus, LFA
does not resort to any modification of the feature space.

DPA can cause different kinds of damage depending on the
target of the attacker. In fact, when benign traffic is misclas-
sified, DPA could evolve into a DoS for legitimate users [32]
(i.e. availability disruption). On the other hand, when mali-
cious traffic is confused with benign traffic (i.e. integrity dis-
ruption), DPA could ensure evasion. The capabilities required
from an attacker range from direct control of a portion of the
generated traffic (e.g., one of the devices is already infected) to
the influence in the traffic generation path (e.g., injecting crafted
traffic from an external network).

From the defensive point of view, the attacker’s actions can
be mitigated by limiting the knowledge of (i) the learning algo-
rithm, (ii) the feature space, and (iii) the training and evaluation
data [31]. However, limiting the first two goes in the security-
by-obscurity direction, which should be avoided. Moreover,
acting on the collected data is infeasible because we assume
a workflow that automatically extracts traffic features from the
raw network traffic, with no means to distinguish the poisoned
biflows from the legitimate ones. Once explored the other al-
ternatives, what remains is acting on the preprocessed traffic
samples or on the design of the detector model [31], thus re-
sulting in a simple cleaning mechanism of the training dataset
for the former, or in the design of robust detection solutions for
the latter. However, from our preliminary work [6], in contrast
to what was experienced in [33], the usage of advanced detec-
tor models (i.e. an ensemble of classifiers) has not resulted in
higher robustness to DPA.

Based on the aforementioned issues, to enhance and extend
the analysis we conducted in our previous work [6], in this pa-
per we evaluate the robustness of different ML- and AE-based
AD solutions, showing for the latter the impact of several op-
timization strategies on attack robustness. More specifically,

6

starting from the commonly assumed traffic cleanliness, we
consider the scenario where an AD model is trained with only
benign traffic data. Then, we emulate the presence of an at-
tacker performing LFA by purposely injecting into the training
dataset an increasing percentage of malicious traffic.

4. Experimental Setup

In the following, we describe the experimental setup, with
the aim of fostering the reproducibility of the conducted analy-
sis. In detail, in Sec. 4.1, we present the two datasets we lever-
age herein and the related preprocessing operations. Then, in
Sec. 4.2, we introduce the features used to feed the anomaly
detectors. Finally, in Sec. 4.3, we discuss the evaluation met-
rics and the tools adopted.

4.1. Datasets and Pre-processing Operations

In this work, we employ two publicly-available datasets col-
lecting benign and malicious network traffic captured in IoT en-
vironments. Hereinafter, we provide the description of common
pre-processing operations performed on them before giving in-
dividual details on each.

Specifically, pre-processing steps parse raw network traffic
to obtain the relevant traffic object and associated information
(viz. input) to feed the ML and DL algorithms that perform the
AD task. To conduct our analysis we segment (PCAP) network
traces into bidirectional flows (viz. biflows), being the most
common choice of the vast majority of state-of-art works tack-
ing AD (see Tab. 1). Each biflow is a set of packets sharing the
same 5-tuple {Src IP, Src Port, Dst IP, Dst Port, Proto}
where the source and destination IP addresses and ports of the
5-tuple can be swapped [13], in order to capture the bidirec-
tional communication pattern between sender and receiver.
IoT-23. The first dataset employed is IoT-23 [5], collected at
the Stratosphere Laboratory of the Czech Technical University
during 2018-19. IoT-23 is made of 23 PCAP traffic traces cap-
tured in a controlled IoT environment with an unrestrained net-
work connection. Each trace corresponds to a specific malware
sample or to benign traffic, with a total of 20 malicious and 3
benign traces. A Raspberry Pi infected with a certain malware
is exploited to generate malicious traffic, while three real IoT
devices (i.e. a Philips HUE Smart Led Lamp, an Amazon Echo
Home, and a Somfy Smart Doorlock) generate benign one. The
dataset is manually labeled (at biflow level) by describing the
relation between malicious flows and malicious activities per-
formed, while non-malicious traffic is simply labeled as “be-
nign”.5 IoT-23 exhibits a severe class imbalance problem: the
four most highly-populated classes (i.e. PartOfAHorizontal-
PortScan, Okiru, DDoS, and Benign) have more than 15M bi-
flows and the three least-populated classes (i.e. C&C-Mirai,
Okiru-Attack, and PartOfHorizontalPortScan-Attack) present

5We refer to IoT-23 website [5] for further details on the labels used for
malicious traffic. Unfortunately, the meaning of the various C&C attacks (ex-
cept for the C&C generic attack) is not specified. We assume that each part of
the label indicates a different phase of the same attack session.

less than 10 biflows, whereas all the other classes have no more
than 40k biflows. To address this issue, we down-sampled (ran-
domly, without replacement) the former majority classes to the
0.25% of the original dataset6, and we have removed the latter
minority classes. We underline that—although preprocessing
operations guarantee a sufficient number of biflows for each
class and reduce the computational burden—given the unbal-
anced per-class share of samples, such a dataset represents a
realistic and challenging evaluation testbed. After such pre-
processing operations, the IoT-23 dataset comprises ≈ 870k
biflows distributed among 13 (one benign + 12 attacks) classes,
as depicted in Fig. 5a.
Kitsune. The second dataset used in our experimental evalu-
ation is the Kitsune network-attack dataset [4]. The dataset is
collected in an IP-based commercial surveillance system by set-
ting up an IoT network testbed consisting of two deployments
of four HD surveillance cameras each. The authors release raw
data (in PCAP format) and per-packet labeling information that
we exploited to assign a (benign/attack) label to each biflow.
The attacks are conducted by means of different tools (e.g.,
Nmap, Hping3, Ettercap) and are targeted to affect the availabil-
ity and integrity of the video uplinks. In more detail, the authors
focused on 9 attack classes grouped into 4 categories. Given
the unbalanced yet manageable per-class share of biflows, in
this case, we have not adopted any pre-processing operations.
Overall, Kitsune counts ≈ 150k biflows distributed among 10
(one benign + 9 attacks) classes. Figure 5b gives the details on
the distribution of biflows across the classes.

4.2. Feature Definition & Extraction

Starting from raw traffic data, feature extraction is performed
by computing (experts-defined) characteristics related to traffic
objects. The identified features can encompass different aspects
of interest, such as the set of statistical features that can be read
(i) by observing the sequence of packets composing a traffic ob-
ject and (ii) by inspecting their content (i.e. the value of some
packet fields or even their payload). Since traffic encryption
dramatically hinders the information that can be extracted from
a ciphered payload, we focus on the former kind of features to-
gether with some (IP and TCP/UDP) header fields which are
not subject to encryption. This choice is also motivated by the
increasing need for IoT devices to protect communications with
encryption [34] (for both security and privacy reasons). In ad-
dition, it is worth mentioning that the features can be either
extracted considering the entire traffic object (AD), or from its
first chunks (early AD). For the sake of prompt and close-to-
practical AD, we focus on the latter case.

In detail, we extracted 79 unique features from both datasets
focusing on the characteristics of the first N packets, with
N ∈ [1, . . . , 20]. These features are: (i) Number of Packets,
(ii) Packet Size (PS), (iii) Inter-Arrival-Time (IAT), (iv) Time
To Live, (v) TCP Window, (vi) TCP Flags (FLG), and (vii)

6We have chosen to down-sample the whole dataset, as opposed to the sole
training set, since the latter choice would have biased the overall accuracy (eval-
uated on the test set) toward the performance of the majority classes.

7

10 100 1000 10000 100000
Number of Biflows

PartOfAHorizontalPortScan
Okiru

Benign
DDoS

C&C-HeartBeat
C&C

Attack
C&C-PartOfAHorizontalPortScan

C&C-HeartBeat-Attack
C&C-FileDownload

C&C-Torii
FileDownload

C&C-HeartBeat-FileDownload

(a) IoT-23.

10 100 1000 10000 100000
Number of Biflows

OSScan
SSDPFlood

Benign
MiraiBotnet

Fuzzing
SSLRenegotiation

SYNDoS
ActiveWiretap

ARPMitM
VideoInjection

(b) Kitsune.

Figure 5: Number of per-class biflows (in log scale) of preprocessed IoT-23 and Kitsune datasets. For details on label meaning, please refer to [5] and [4],
respectively.

Byte Rate. Regarding time-series characteristic (ii-v), we com-
pute 17 statistics for each, namely minimum, maximum, av-
erage, standard deviation, mean absolute deviation, kurtosis,
skew, variance, and percentiles from 10th to 90th with step 10.
Uniquely for the PS, we report its summation (viz. the total
number of transmitted bytes). Moreover, to compute statistics
for the IAT we discard zero values (viz. the IAT of the first
packet of each biflow). Finally, we encode FLG by using 8
counters, each one reporting the number of occurrences of the
corresponding flag.

4.3. Evaluation Metrics and Adopted Tools

In this section, we provide details about used (i) evalua-
tion metrics and (ii) tools/procedures. First, the experimental
evaluation is performed by applying a 10-fold stratified cross-
validation procedure, in order to better assess detection capabil-
ities. Hence, the reported metrics are averaged over the consid-
ered folds and, when needed to assess statistical significance,
also confidence intervals are included.

AD performance is evaluated through the classic True Posi-
tive Rate (TPR) and False Positive Rate (FPR) which represent
the rate of malicious biflows correctly labeled as malicious and
the rate of benign biflows wrongly labeled as malicious, respec-
tively. We underline that usually the FPR can be set by adjust-
ing the anomaly threshold λ to which the anomaly score a(x)
is compared. The behavior of AD when varying the threshold
and reporting the TPR vs. FPR is summarized by means of the
(Receiver Operating Characteristics) ROC curve. Furthermore,
to report concise results about a given AD technique, we also
report the well-known F1 Score (i.e. the harmonic mean of pre-
cision and recall for the AD task) evaluated at 1% of FPR.

Additionally, we consider the area under the ROC curve
(AUC), which is often used to summarize in a single number
the detection ability of the generic AD approach. The AUC is
simply defined as the area of the ROC space that lies below the
ROC curve, i.e.

AUC =
∫ 1

0
TPR(fpr) dfpr (8)

Unfortunately, the (plain) AUC integrates also taking into ac-
count high FPR values which may be of little practical value

for AD. Hence, the idea of the partial AUC (pAUC) is to re-
strict the evaluation of given ROC curves in the range of FPR
values that are considered interesting for AD purposes:

pAUC =
∫ pu

pℓ
TPR(fpr) dfpr (9)

where pu (resp. pℓ) represents the highest (resp. the lowest)
FPR value evaluated in the integral. Accordingly, in the follow-
ing, we leverage the pAUC when pℓ = 0 and pu = 0.01, namely
considering the AUC limited at the 1% FPR.

The prototypes we used are written in Python, leveraging the
tensorflow library. Details about the configuration of each
model are reported in Tab. 2. The AE-based detectors we con-
sider in this work are six: the first three are autoencoders at
increasing depths, namely AE-1 is a shallow autoencoder, while
AE-2 and AE-3 are two deep autoencoders with two and three
encoding/decoding layers, respectively; the last three are en-
sembles of such variants of autoencoders, resulting in KitNET-
1, KitNET-2, and KitNET-3, which are ensembles of AE-1, AE-
2, and AE-3, respectively. It is worth noting that we maintained
unaltered the size of the coding at 0.50× the input size (viz.
number of features).

All the models are trained using the Stochastic Gradient De-
scent (SGD) optimizer with a learning rate of 0.01, a Momen-
tum of 0.9, the Mean Squared Error (MSE) as a loss function,
and a batch size set to 32. The training lasts up to 200 epochs,
with an early stopping mechanism that monitors the validation
set (10% of the training set) with patience of 10 epochs and
minimum delta of 10−4. Min-Max scaling is applied to project
each feature in the range [0, 1] before feeding the AD mod-
els. It is worth underlining that the scaling is applied by fitting
the sole training set. Finally, when the ensemble normalization
optimization is enforced, the intermediate distance metrics—
which are computed from the KitNET ensemble stage to feed
its output stage—are converted into a probability vector.

5. Experimental Evaluation

In the experimental analysis that follows, we describe the
data-driven design aimed at identifying the most suitable con-
figurations for the IoT anomaly detectors under investigation.

8

Table 2: Details about the AE-based detectors employed.

Name Configuration

AE-1 I(n); D(0.50×n,R); D(n, S).

AE-2 I(n); D(0.75×n,R); D(0.50×n,R); D(0.75×n,R);
D(n, S).

AE-3 I(n); D(0.83×n,R); D(0.66×n,R); D(0.50×n,R);
D(0.66×n,R); D(0.83×n,R); D(n, S).

KitNET-1

5 ensemble autoencoders:
I(0.20×n); D(0.50×0.20×n,R); D(0.20×n, S).

output autoencoder:
I(5); D(3,R); D(5, S).

KitNET-2

5 ensemble autoencoders:
I(0.20×n); D(0.75×0.20×n,R); D(0.50×0.20×n,R);
D(0.75×0.20×n,R); D(0.20×n, S).

output autoencoder:
I(5); D(4,R); D(3,R); D(4,R); D(5, S).

KitNET-3

5 ensemble autoencoders:
I(0.20×n); D(0.83×0.20×n,R); D(0.66×0.20×n,R);
D(0.50×0.20×n,R); D(0.66×0.20×n,R);
D(0.83×0.20×n,R); D(0.20×n, S).

output autoencoder:
I(5); D(5,R); D(4,R); D(3,R); D(4,R); D(5, S);
D(5, S).

Legend: Input (I), #feats (n), Dense (D), ReLU (R), and Sigmoid (S).

Specifically, we inspect the impact of several factors, such
as the number of packets per biflow taken into account in the
training and in the inference phase, the distance metric used to
compute the distance between representations (Sec. 5.1), and
the depth of the DL architectures (Sec. 5.2). Also, we deepen
the nature of the different distance metrics considered, both
investigating the distribution of the scores provided and their
impact on the detection thresholds that can be defined in a prac-
tical scenario (Sec. 5.3) and putting them in relation with the
contribution imputable to either the external representations or
the latent space, which is leveraged by more advanced solutions
(Sec. 5.4). Then, we investigate the enhancements that can be
enforced when exploiting KitNET-based detectors (Sec. 5.5).
Finally, we consider an adversarial scenario, where the train-
ing phase of the model is partially compromised (i.e. where the
supposedly benign amount of traffic used to train the architec-
tures contains a fraction of malicious samples), thus providing
an evaluation of the robustness of the designed solution against
data poisoning attacks (Sec. 5.6).

5.1. Sensitivity to the Number of Packets

First, we aim at identifying the optimal number of packets
to be taken into account for each biflow. These packets are
then used during both the training and inference phases. In-
deed, on the one hand, considering a higher number of pack-
ets can improve the detection performance of the models (i.e.

50
55
60
65
70
75
80
85
90
95

100

pA
UC

 [%
] @

1%
FP

R Dataset = Kitsune

1 3 5 7 9 11 13 15 17 19
#Packets

50
55
60
65
70
75
80
85
90
95

100

pA
UC

 [%
] @

1%
FP

R Dataset = IoT-23

Model
KitNET-1
AE-1
LOF
OC-SVM
IF

Distance Metric
RMSEext
SAP
NAP
ML

Figure 6: Sensitivity to the number of packets. The results are shown as avg.±
95% CI over a 10-fold cross-validation procedure.

larger knowledge to capitalize on). On the other hand, it neg-
atively impacts the complexity of the model (i.e. larger input
to manage) and introduces delays during the inference phase
reducing the “earliness” of detection: the detector has to wait
for more packets to observe before providing its verdict—with
inter-arrival times possibly depending on the specific applica-
tion generating the traffic.

Hence, in this first analysis we empirically assess the impact
of the number of packets on the detection performance. Specif-
ically, in Fig. 6 we experimentally evaluate how varying the
number of observed packets from 1 to 20 impacts the effective-
ness of detection (measured through pAUC@1%FPR, which we
recall corresponds to pℓ = 0 and pu = 0.01 in Eq. (9)) of each
shallow model (i.e. AE-1 and KitNET-1, see Tab. 2) and con-
sidering the three distance criteria (i.e. RMSE, SAP, and NAP).
In addition, three state-of-the-art ML detectors, namely LOF,
OC-SVM, and IF, are considered as baselines. The analysis is
performed on both Kitsune and IoT-23 datasets, reporting the
results averaged over a 10-fold cross-validation procedure.

Looking at the results, a clear trend emerges: for both models
and regardless of the distance metric the pAUC@1%FPR (which
is a stable indicator) reaches a plateau starting from the 12th

packet. This applies to both Kitsune and IoT-23. Deepening,
the maximum pAUC@1%FPR is attained by looking at the first
4 packets: at this value, some of the curves even show perfor-
mance peaks. In general, the models based on NAP outperform
those based on RMSE and SAP. Noteworthy, despite ML-based
detectors fail in the majority of cases, LOF reaches outstanding
performance on IoT-23, with pAUC @1%FPR stable at ≈ 95%
regardless of the number of packets considered.

According to these results, we select NAP as the most promis-
ing option to be investigated in the following analyses. Further-
more, we select 4 as the number of packets to take into account
for both datasets. Also, since the datasets contain both TCP
and UDP traffic, this choice allows us to avoid limiting the ob-
servations to the sole three-way handshake for TCP biflows.

9

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune

10 3 10 2 10 1 100

FPR

Dataset = IoT-23
Model

AE-1
AE-2
AE-3
KitNET-1
KitNET-2
KitNET-3

Figure 7: Sensitivity to the model depth via ROC curve. Models are fed with
4 packets and anomalies are detected via NAP score. The results are shown as
avg. ± 95% CI over a 10-fold cross-validation procedure.

5.2. Sensitivity to the Depth of the Model
AE-based architectures can be naturally designed with vary-

ing complexity, i.e. introducing additional layers to both the
encoding and decoding (sub)networks. The following analysis
aims at providing an empirical assessment of the impact of this
design choice on the detection performance.

In more detail, we evaluate the benefit of increasing the depth
of the considered architectures: to investigate the effects of sup-
plementary encoding/decoding layers, we consider three vari-
ants (with different depths) for each architecture, which are
named based on the number of layers constituting both the en-
coding and the decoding network [17, 16], i.e. AE-1, KitNET-1
(one internal encoding/decoding layer), AE-2, KitNET-2 (two
internal encoding/decoding layers), AE-3, and KitNET-3 (three
internal encoding/decoding layers).

Figure 7 shows the sensitivity of the model to the depth
via the ROC curve for the resulting architectural configura-
tions, leveraging the NAP score and considering 4 input pack-
ets.7 When focusing on the AE-based models, no major perfor-
mance discrepancy can be spotted from the results obtained on
the Kitsune dataset. On the other hand, the analysis involv-
ing IoT-23 suggests that AE-2 and AE-3 perform better than
AE-1. Concerning KitNET-based models, the ROC curves sug-
gest that KitNET-1, KitNET-2, and KitNET-3 report compara-
ble performance on IoT-23, whereas on Kitsune they provide
different performance pictures. In fact, while KitNET-1 results
in a larger AUC, overall, the major benefits come for FPR val-
ues larger than 10−2, which are of little practical interest for
network AD. Moreover, focusing on smaller values (left side
of the figure), KitNET-2 even outperforms the other KitNET-
based models, boosting higher TPR even for very low FPR val-
ues, i.e. 45.83% TPR @0.1%FPR scored by KitNET-2 against
37.85% obtained by KitNET-3.

From the results attained on both datasets, we select the AE-2
and the KitNET-2 as the best detectors when using NAP.

5.3. Deepening the Impact of the Distance Score
In Sec. 5.1 the (black-box) analysis led to the selection of

NAP as the most suitable distance score. In this section, we fur-
ther focus on the motivations that drove us to this result. With

7We underline that we have obtained analogous results with a higher number
of packets (i.e. 8), not shown for brevity since the related outcomes are in line
with those reported for 4 packets.

10 2 10 1

RMSEext

100

101

102

103

Co
un

t

Benign
Malicious
 @ FPR=1%

TPR=47.96%
 @ Avg.

TPR=97.41%
FPR=32.11%
 @ Avg.+Std.

TPR=96.40%
FPR=6.40%

(a) RMSEEXT score on Kitsune.

10 3 10 2 10 1

SAP

100

101

102

103

Co
un

t

Benign
Malicious
 @ FPR=1%

TPR=47.72%
 @ Avg.

TPR=97.45%
FPR=31.02%
 @ Avg.+Std.

TPR=63.74%
FPR=6.25%

(b) SAP score on Kitsune.

10 5 10 3 10 1 101 103 105 107

NAP

100

101

102

103
Co

un
t
Benign
Malicious
 @ FPR=1%

TPR=96.47%
 @ Avg.

TPR=96.96%
FPR=13.31%
 @ Avg.+Std.

TPR=96.50%
FPR=2.78%

(c) NAP score on Kitsune.

Figure 8: Comparison of predicted scores on Kitsune considering the AE-2.
Each vertical line represents a different detection threshold. Values are com-
puted on a single fold for visualization purposes.

this aim in mind, we dissect the impact of distance metrics by
analyzing the distributions of the score values attainable with
the different distance metrics.

Taking into account the case of AE-2 as an example of spe-
cific interest (also according to the analysis in Sec. 5.2), Fig. 8
reports the histograms of the counts of the anomaliness score
a(x) obtained with the three distance metrics in an execution on
Kitsune. Results on IoT-23 and KitNET-2 show analogous
behaviors and are not reported for brevity.

When comparing the distributions achieved with the dif-
ferent metrics, it is evident that the score obtained via NAP
(Fig. 8c) is more effective in separating benign and mali-
cious samples, namely, the distribution of red and green bars
are less overlapped than those attained with RMSE and SAP
(Figs. 8a and 8b, respectively). This results in a remarkably
higher TPR (when FPR = 1%), which moves from ≤ 48% (for
RMSE and SAP) up to 97% (for NAP).

Also, for each model, we have evaluated the performance at-
tainable when setting the threshold based on a data-driven anal-
ysis, namely by relying on the scores observed during the train-
ing phase. Specifically, we have considered two strategies for
defining the threshold λ, according to Eq. (7). Specifically, λ

10

50
55
60
65
70
75
80
85
90
95

100

pA
UC

 [%
] @

1%
FP

R

Dataset = Kitsune
Distance Metric

RMSEext
RMSEint
SAP
MHLNext
MHLNint
NAP

AE-1 AE-2 KitNET-1 KitNET-2
Model

50
55
60
65
70
75
80
85
90
95

100

pA
UC

 [%
] @

1%
FP

R

Dataset = IoT-23

Figure 9: Ablation study for RMSE-based and Mahalanobis-based distances
using AE-2 and KitNET-2models. The results are shown as avg.±95% CI over
a 10-fold cross-validation procedure.

is set to: (i) the average of the scores associated with benign
samples @Avg. (corresponding to k = 0 in Eq. (7)) and to (ii)
@Avg.+Std. (corresponding to k = 1 in Eq. (7)) as done in re-
cent works [4, 9]. Noteworthy, the NAP score clearly reduces the
gap between the theoretical threshold and the two data-driven
ones, easing the development of robust anomaly detectors. In-
deed, we can more reliably set the detection threshold empiri-
cally to the @Avg. or to the @Avg.+Std. scores associated with
the benign (training) samples.

In summary, the NAP distance score performs always better
than RMSE and SAP. Following this direction, we further ex-
plore the nature of this improvement with the ablation study
performed hereinafter.

5.4. Ablation Study for Distance Metrics

Both SAP (cf. Eq. (1)) and NAP (cf. Eq. (2)) aim at improving
the detection capability of reconstruction-based models taking
into account the errors that can be observed also in the latent
space. This analysis points to dissect the contribution of in-
ternal and external layers in the computation of error metrics
based on RMSE and Mahalanobis distances, in order to better
explain the results achieved so far.

Accordingly, we decompose the score evaluated by SAP in-
vestigating RMSEINT and RMSEEXT (corresponding to i = 1, . . . , ℓ
and i = 0 in Eq. (1), respectively) separately—with the lat-
ter matching the more “classic” RMSE-based score already
evaluated in Sec. 5.1. Similarly, NAP scores are analyzed by
observing “internal” and “external” Mahalanobis-based scores
(MHLNINT and MHLNEXT, respectively) separately. In other terms,
in the external (resp. internal) case, the formula in Eq. (2) is
applied by using hext(x) ≜

[
h1(x)T · · · hℓ(x)T

]T
(resp. h0(x))

and ĥext(x) ≜
[
ĥ1(x)T · · · ĥℓ(x)T

]T
(resp. ĥ0(x)).

Results are shown in Fig. 9, for both the datasets (top
Kitsune and bottom IoT-23) and considering 4 packets.
For this setup, we investigate both 1-layer and 2-layer
reconstruction-based models, namely AE-1, AE-2, KitNET-1,
and KitNET-2. Three main trends emerge: (i) the use of

20
15
10

5
0
5

10
15
20

pA
UC

 G
ai

n
[%

]
@

1%
FP

R

Dataset = Kitsune
Enhancement

Nor
Equ
Equ+Nor

KitNET-1 KitNET-2 KitNET-3
Model

20
15
10

5
0
5

10
15
20

pA
UC

 G
ai

n
[%

]
@

1%
FP

R

Dataset = IoT-23

Figure 10: KitNET enhancements evaluation looking at the NAP score. The
gain with respect to the KitNET without optimizations is shown. The results
are shown as avg. ± 95% CI over a 10-fold cross-validation procedure.

Mahalanobis-based score is beneficial on both datasets and
for all models considered, independently on the layer cho-
sen (i.e. for hidden, output, or both layers, corresponding to
RMSEINT →MHLNINT, RMSEEXT →MHLNEXT, and SAP →NAP, re-
spectively); (ii) the effects of the combination of internal and
external contribution through Mahalanobis-based score using
NAP (as opposed to MHLNINT or MHLNEXT individually) strongly
depend on the dataset: such effects are always positive (or at
least non-detrimental) on IoT-23 while on Kitsune this joint
use rarely outperforms the pAUC achieved by internal or external
contribution alone; (iii) the combination of internal and external
contributions through an equally weighted score, that is, using
SAP (as opposed to either RMSEINT or RMSEEXT individually) does
not seem to provide an appreciable benefit.

5.5. KitNET Enhancements

This section experimentally assesses the benefits of KitNET
enhancements introduced in Sec. 3.1, namely (i) the ensemble
equalization, (ii) changing the output stage reconstruction tar-
get, and (iii) the ensemble normalization.

The impact of the ensemble-related enhancements (i and iii)
is reported in Fig. 10, focusing on NAP distance score. Look-
ing at the figure, the following observations can be drawn: on
the Kitsune dataset (top row) the ensemble equalization gives
the highest improvements; on the IoT-23 dataset (bottom row)
neither an advantage nor a loss is obtained from the adoption
of (part of) these enhancements. For this reason, we recom-
mend the adoption of equalization due to its benefits in more
challenging contexts.

On the other hand, the advantages introduced by (ii)
are shown in Fig. 11. The intuition behind this enhance-
ment derives from the higher detection capabilities shown by
Mahalanobis-based distances as anomaliness scores: because
the AE in the output stage of the KitNET acts as a non-linear
voting mechanism, having a more stable reconstruction of the
training set on the ensemble stage autoencoders exploiting the

11

MHLNext

MHLNint

NAP

RMSEext

RMSEint

SAP

Di
st

an
ce

 M
et

ric
78 76 78 75 74 74

78 76 81 74 75 73

78 76 79 75 74 74

77 65 77 65 65 65

78 75 81 71 73 66

77 72 77 65 65 65

Dataset = IoT-23 | Model = KitNET-1

78 79 88 75 76 75

77 75 86 74 76 75

78 79 86 75 76 76

76 73 78 65 74 73

76 71 87 75 75 74

76 72 78 74 74 74

Dataset = IoT-23 | Model = KitNET-2

79 79 89 76 76 76

79 78 80 76 76 76

79 78 83 75 76 76

78 78 78 74 76 75

78 78 78 74 75 76

78 78 78 74 76 76

Dataset = IoT-23 | Model = KitNET-3

MHLNext
MHLN int NAP

RMSEext
RMSE int SAP

Train Distance Metric

MHLNext

MHLNint

NAP

RMSEext

RMSEint

SAP

Di
st

an
ce

 M
et

ric

91 72 84 73 72 73

91 68 87 50 50 50

90 72 84 73 71 73

73 71 73 67 63 67

78 69 73 50 50 50

75 71 73 67 59 67

Dataset = Kitsune | Model = KitNET-1

MHLNext
MHLN int NAP

RMSEext
RMSE int SAP

Train Distance Metric

87 73 82 73 65 72

92 72 86 67 66 68

89 77 84 73 69 73

73 71 72 67 50 67

86 68 83 67 51 67

79 71 76 67 51 67

Dataset = Kitsune | Model = KitNET-2

MHLNext
MHLN int NAP

RMSEext
RMSE int SAP

Train Distance Metric

90 76 85 73 72 73

86 76 82 64 73 72

91 75 86 73 73 73

87 80 84 67 68 67

90 81 81 66 67 66

89 81 82 67 68 67

Dataset = Kitsune | Model = KitNET-3

Figure 11: Evaluation of KitNET enhancements looking at the training distance impact on pAUC @1%FPR using 4 packets. The results are shown as avg. over a
10-fold cross-validation procedure.

Mahalanobis-based distances, could enhance the general detec-
tion capabilities of the KitNET. To this end, the pAUC@1%FPR
is shown by considering different combinations of distance met-
rics (i.e. MHLNEXT, MHLNINT, NAP, RMSEEXT, RMSEINT, and SAP)
used for training the output stage autoencoder of the KitNET
(i.e. Train Distance) and for detection purposes (i.e. Distance).

In Fig. 11 some macro effects can be observed. First, the im-
pact of a greater depth on the base AEs composing the KitNET,
namely moving from KitNET-1 to KitNET-2 and KitNET-3,
highlights a weaker sensitivity to the choice of the distance met-
ric used for detection. This trend applies to both datasets, i.e.
IoT-23 and Kitsune. Specifically, using RMSE-based train
distances (the last three columns of each matrix) negatively im-
pacts the detection performance in all devised scenarios. On
the other hand, using Mahalanobis-based train distances, like
MHLNEXT and NAP, show higher detection capabilities when com-
bined with Mahalanobis-based detection distances (the top-left
3 × 3 square of each matrix).

5.6. Robustness to Label Flipping Attacks

This section aims at analyzing the robustness capabilities of
the detector models which have been evaluated in the previ-
ous sections. Consequently, we relax the assumption of traffic
cleanliness for the training phase and perform LFAs that involve
portions of the training data with increasing size (see Sec. 3.4).
In other words, we inject an increasing percentage of malicious
traffic into the training set—which should be only composed of
network traffic labeled as benign in the ideal case—analyzing
the impact of a poisoning percentage ranging within 0.5%-5%
of the benign traffic. To better assess the robustness of the de-
tectors and to adhere to the distribution of samples across the

Table 3: pAUC@1%FPR by selecting the best configuration per poisoning ratio.
Values are shown as avg. over 10 folds.

Dataset
Poisoning
Percentage Model

Distance
Metric Enha.

Train
Distance

pAUC [%]
@1%FPR

LOF - - - 59.34
0.0 AE-2 MHLNINT - - 93.55

KitNET-2 NAP Equ RMSEEXT 92.91
IF - - - 57.84

Kitsune 1.0 AE-2 RMSEEXT - - 66.41
KitNET-2 MHLNEXT Nor RMSEEXT 74.19
LOF - - - 50.39

5.0 AE-2 RMSEEXT - - 52.37
KitNET-2 SAP Nor RMSEEXT 74.12
LOF - - - 94.37

0.0 AE-2 NAP - - 92.51
KitNET-2 MHLNEXT None NAP 88.01
OC-SVM - - - 66.12

IoT-23 1.0 AE-2 NAP - - 83.56
KitNET-2 MHLNEXT None NAP 76.86
IF - - - 67.92

5.0 AE-2 NAP - - 72.62
KitNET-2 MHLNEXT Equ RMSEEXT 70.03

malicious classes, we keep the proportions of the classes of ma-
licious traffic to be injected in the training set balanced (viz.
stratified poisoning selection). We underline that the random
selection of poisoning samples is re-generated at each fold.

Table 3 summarizes the remarkable results of this analysis,
reporting for each dataset and at varying values of poisoning
ratio (0%, 1%, and 5%) the best-performing approach for each
family (ML-based, AE-based, KitNET-based) with the result-
ing pAUC @1%FPR. The related configuration (model, depth,
distance metric, and optimizations) is also mentioned. Con-
versely, an in-depth analysis of (i) a larger set of detectors, (ii)
the entire poisoning range, and (iii) varying FPR values (via

12

the ROC) is reported in Appendix A. Looking at the Kitsune
dataset, when no poisoning is enforced, AE-2 is the best ap-
proach (93.5% pAUC @1%FPR). However, for larger portions
of the dataset being compromised (1%, 5%), KitNET-2 proves
to be more robust, showing a more limited performance de-
cay (74.2%–74.1% pAUC @1%FPR and boasting up to +22%
pAUC @1%FPR w.r.t. AE-2 in the same poisoning condition).
Focusing on the IoT-23 dataset, the scenario is quite similar,
with the best performing LOF (94.4% without poisoning) out-
performed by AE-2 when the poisoning percentage moves to
1.0% and 5.0%. Hence, reconstruction-based methods (AE-2
and KitNET-2) prove to be more robust to poisoning attacks.

6. Conclusions

In this paper, we have investigated advanced strategies for
network AD in IoT environments. We have considered two
(families of) state-of-the-art DL-based solutions, namely “clas-
sic” autoencoders and KitNET, investigating a number of vari-
ants and enhancements. Relying on an experimental campaign
based on two recent publicly-available IoT datasets (i.e. IoT-
23 and Kitsune), we have provided a data-driven design of the
considered architectures, evaluating the impact of the available
choices, and aiming at identifying the most suitable configura-
tions for the detectors considered.

Specifically, we have assessed the impact of the number of
packets taken into account for each biflow when training and
running the detectors. The experimental evidence derived from
both datasets shows that considering the input provided by the
first 4 packets is the most suitable option. The above result
demonstrates the feasibility of early AD of network attacks tar-
geting the IoT ecosystem.

Concerning the distance metrics we have considered, the NAP
score (leveraging both the errors evaluated at the external and
internal layers via the Mahalanobis distance) proved the most
suitable alternative, outperforming the other options evaluated
in all the scenarios considered. Also, we have investigated the
sensitivity of the so-far optimal architecture to model depth.
Results suggested that detectors can benefit from deeper archi-
tectures, with the solutions with two layers (AE-2 and KitNET-
2) providing the best performance when using NAP.

Further investigating the nature of the scores provided by the
distance metrics, we found that NAP is able to guarantee a bet-
ter separation between benign and malicious samples. Also,
NAP reduces the gap between the theoretical and the data-driven
threshold practically enforceable, thus easing the fine-grained
control of false alarms in realistic scenarios. Moreover, re-
sults witness that the adoption of Mahalanobis-based scores is
always beneficial w.r.t. analogous (i.e. internal, external, and
joint) RMSE-based metrics and that NAP must be preferred to
SAP when merging internal and external scores. Referring to
KitNET enhancements, it has been shown that it can be greatly
beneficial to apply ensemble equalization in some challenging
contexts. Finally, looking at robustness in non-ideal conditions,
the higher appeal of reconstruction-based DL methods (i.e. AE
and Kitnet families) has been underlined when subject to the

reported poisoning attack (LFA) in comparison to standard ML
approaches (i.e. IF, LOF, and OC-SVM).

Future works will include: (i) evaluate the effectiveness of
countermeasures against DPA, (ii) include a larger set of state-
of-the-art techniques to be tested for (network) early AD in IoT
context, (iii) the evaluation of such models in an online deploy-
ment (i.e. models are updated incrementally when new traffic
data arrive/are collected), (iv) use of eXplainable Artificial In-
telligence (XAI) tools to interpret (and possibly improve) the
working principle of DL-based AD, and (v) design/deployment
of lightweight techniques.

Acknowledgments

This work is partially supported by the Italian Research Pro-
gram “PON Ricerca e Innovazione 2014-2020 (PON R&I) –
Asse IV: Istruzione e ricerca per il recupero – REACT-EU
– Azione IV.4: Dottorati e contratti di ricerca su tematiche
dell’innovazione”, the “Centro Nazionale HPC, Big Data e
Quantum Computing – Italian Center for Super Computing
(ICSC)” and the “RESTART” Project funded by MUR.

References

[1] C. Yin, S. Zhang, J. Wang, N. N. Xiong, Anomaly detection based on
convolutional recurrent autoencoder for iot time series, IEEE Transac-
tions on Systems, Man, and Cybernetics: Systems 52 (2020) 112–122.

[2] K. Ferencz, J. Domokos, L. Kovacs, Review of Industry 4.0 security
challenges, in: IEEE 15th International Symposium on Applied Compu-
tational Intelligence and Informatics (SACI), 2021, pp. 245–248.

[3] G. Aceto, D. Ciuonzo, A. Montieri, A. Pescapé, Mobile encrypted traf-
fic classification using deep learning: Experimental evaluation, lessons
learned, and challenges, IEEE Transactions on Network and Service
Management 16 (2019) 445–458.

[4] Y. Mirsky, T. Doitshman, Y. Elovici, A. Shabtai, Kitsune: An Ensemble
of Autoencoders for Online Network Intrusion Detection, Network and
Distributed Systems Security Symposium (NDSS) (2018).

[5] S. Garcia, A. Parmisano, M. J. Erquiaga, IoT-23: A labeled dataset
with malicious and benign IoT network traffic, 2020. URL: https:

//www.stratosphereips.org/datasets-iot23. doi:http://doi.
org/10.5281/zenodo.4743746.

[6] G. Bovenzi, A. Foggia, S. Santella, A. Testa, V. Persico, A. Pescapé, Data
poisoning attacks against autoencoder-based anomaly detection models:
a robustness analysis, in: IEEE International Conference on Communi-
cations (ICC), 2022, pp. 5427–5432.

[7] H. Mac, D. Truong, L. Nguyen, H. Nguyen, H. A. Tran, D. Tran, De-
tecting attacks on web applications using autoencoder, in: 9th ACM In-
ternational Symposium on Information and Communication Technology
(SoICT), 2018, pp. 416–421.

[8] P. Madani, N. Vlajic, Robustness of deep autoencoder in intrusion detec-
tion under adversarial contamination, in: 5th ACM Annual Symposium
and Bootcamp on Hot Topics in the Science of Security (HoTSoS), 2018,
pp. 1–8.

[9] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. Breiten-
bacher, Y. Elovici, N-baiot: network-based detection of IoT botnet attacks
using deep autoencoders, IEEE Pervasive Computing 17 (2018) 12–22.

[10] B. J. Radford, L. M. Apolonio, A. J. Trias, J. A. Simpson, Network
traffic anomaly detection using recurrent neural networks, arXiv preprint
arXiv:1803.10769 (2018).

[11] G. Andresini, A. Appice, N. Di Mauro, C. Loglisci, D. Malerba, Ex-
ploiting the auto-encoder residual error for intrusion detection, in: IEEE
European Symposium on Security and Privacy Workshops (EuroS&PW),
2019, pp. 281–290.

13

https://www.stratosphereips.org/datasets-iot23
https://www.stratosphereips.org/datasets-iot23
http://dx.doi.org/http://doi.org/10.5281/zenodo.4743746
http://dx.doi.org/http://doi.org/10.5281/zenodo.4743746

[12] F. A. Khan, A. Gumaei, A. Derhab, A. Hussain, A novel two-stage deep
learning model for efficient network intrusion detection, IEEE Access 7
(2019) 30373–30385.

[13] G. Bovenzi, G. Aceto, D. Ciuonzo, V. Persico, A. Pescapé, A hierarchical
hybrid intrusion detection approach in iot scenarios, in: IEEE Global
Communications Conference (GLOBECOM), 2020, pp. 1–7.

[14] K. Yang, J. Zhang, Y. Xu, J. Chao, DDos attacks detection with autoen-
coder, in: IEEE/IFIP Network Operations and Management Symposium
(NOMS), 2020, pp. 1–9.

[15] L. Vu, Q. U. Nguyen, D. N. Nguyen, D. T. Hoang, E. Dutkiewicz, et al.,
Learning latent representation for IoT anomaly detection, IEEE Transac-
tions on Cybernetics (2020).

[16] H. Kye, M. Kim, M. Kwon, Hierarchical detection of network anoma-
lies: A self-supervised learning approach, IEEE Signal Processing Letters
(2022).

[17] D. Yang, M. Hwang, Unsupervised and ensemble-based anomaly detec-
tion method for network security, in: 2022 14th International Conference
on Knowledge and Smart Technology (KST), IEEE, 2022, pp. 75–79.

[18] Y. Zhu, L. Cui, Z. Ding, L. Li, Y. Liu, Z. Hao, Black box attack and
network intrusion detection using machine learning for malicious traffic,
Computers & Security (2022) 102922.

[19] A. Kumar, M. Shridhar, S. Swaminathan, T. J. Lim, Machine learning-
based early detection of iot botnets using network-edge traffic, Computers
& Security 117 (2022) 102693.

[20] N. Koroniotis, N. Moustafa, E. Sitnikova, B. Turnbull, Towards the de-
velopment of realistic botnet dataset in the internet of things for network
forensic analytics: Bot-iot dataset, Future Generation Computer Systems
100 (2019) 779–796.

[21] M. Woźniak, J. Siłka, M. Wieczorek, M. Alrashoud, Recurrent Neural
Network Model for IoT and Networking Malware Threat Detection, IEEE
Transactions on Industrial Informatics 17 (2020) 5583–5594.

[22] I. Guarino, G. Bovenzi, D. Di Monda, G. Aceto, D. Ciuonzo, A. Pescape,
On the use of machine learning approaches for the early classification
in network intrusion detection, in: IEEE International Symposium on
Measurements & Networking (M&N), 2022, pp. 1–6.

[23] UC Irvine, KDD Cup 1999 Data, 2022. URL: http://kdd.ics.uci.
edu/databases/kddcup99/kddcup99.html.

[24] M. Tavallaee, E. Bagheri, W. Lu, A. A. Ghorbani, A detailed analysis
of the kdd cup 99 data set, in: 2009 IEEE symposium on computational
intelligence for security and defense applications, Ieee, 2009, pp. 1–6.

[25] A. Dainotti, A. Pescapè, G. Ventre, A cascade architecture for dos
attacks detection based on the wavelet transform, J. Comput. Secur.
17 (2009) 945–968. URL: https://doi.org/10.3233/JCS-2009-

0350. doi:10.3233/JCS-2009-0350.
[26] A. Nascita, F. Cerasuolo, D. D. Monda, J. T. A. Garcia, A. Montieri,

A. Pescapè, Machine and deep learning approaches for iot attack classi-
fication, in: IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), 2022, pp. 1–6.

[27] A. Goodge, B. Hooi, S.-K. Ng, W. S. Ng, Robustness of Autoencoders
for Anomaly Detection Under Adversarial Impact., in: 29th International
Joint Conference on Artificial Intelligence (IJCAI), 2020, pp. 1244–1250.

[28] M. Kravchik, L. Demetrio, B. Biggio, A. Shabtai, Practical evaluation of
poisoning attacks on online anomaly detectors in industrial control sys-
tems, Computers & Security (2022) 102901.

[29] K. H. Kim, S. Shim, Y. Lim, J. Jeon, J. Choi, B. Kim, A. S. Yoon, Rapp:
Novelty detection with reconstruction along projection pathway, in: In-
ternational Conference on Learning Representations (ICLR), 2019, pp.
1–14.

[30] F. A. Yerlikaya, Ş. Bahtiyar, Data poisoning attacks against machine
learning algorithms, Expert Systems with Applications 208 (2022)
118101.

[31] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, J. D. Tygar, Adver-
sarial machine learning, in: 4th ACM workshop on Security and artificial
intelligence (AISec), 2011, pp. 43–58.

[32] B. I. Rubinstein, B. Nelson, L. Huang, A. D. Joseph, S.-h. Lau, S. Rao,
N. Taft, J. D. Tygar, Antidote: understanding and defending against poi-
soning of anomaly detectors, in: 9th ACM SIGCOMM Conference on
Internet Measurement (IMC), 2009, pp. 1–14.

[33] G. Apruzzese, M. Colajanni, L. Ferretti, M. Marchetti, Addressing ad-
versarial attacks against security systems based on machine learning, in:
11th IEEE International Conference on Cyber Conflict (CyCon), volume

900, 2019, pp. 1–18.
[34] O. Alrawi, C. Lever, M. Antonakakis, F. Monrose, SoK: security evalu-

ation of home-based iot deployments, in: IEEE Symposium on Security
and Privacy (SP), 2019, pp. 1362–1380.

Appendix A. ROC Results on Poisoning

In this Appendix, we provide an analysis of the effect of
LFAs for (i) a larger set of detectors, (ii) the entire poisoning
range, and (iii) varying FPR values (via the ROC for each AD).
Specifically, in Fig. A.12 we show ROC curves for ML models,
AE-2 and KitNET-2 by varying the distance score. A similar
analysis is provided for KitNET-2 enhancements related to the
ensemble stage, namely the equalization and the normalization
in Fig. A.13. Finally, in Fig. A.14, we investigate the effect of
poisoning on KitNET-2 by focusing on the output stage, namely
the selection of different train distance metrics.

14

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://doi.org/10.3233/JCS-2009-0350
https://doi.org/10.3233/JCS-2009-0350
http://dx.doi.org/10.3233/JCS-2009-0350

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune

10 3 10 2 10 1 100

FPR

Dataset = IoT-23
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 RMSEext ML IF None
 Kitsune: 0.0-10 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10

 IoT-23: 0.0-10 0.5-10 1.0-8 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10

(a) IF.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0
TP

R
Dataset = Kitsune

10 3 10 2 10 1 100

FPR

Dataset = IoT-23
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 RMSEext ML LOF None
 Kitsune: 0.0-10 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10

 IoT-23: 0.0-8 0.5-8 1.0-8 1.5-8 2.0-8 2.5-8 3.0-8 3.5-8 4.0-8 4.5-7 5.0-7

(b) LOF.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune

10 3 10 2 10 1 100

FPR

Dataset = IoT-23
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 RMSEext ML OC-SVM None
 Kitsune: 0.0-10 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10

 IoT-23: 0.0-8 0.5-8 1.0-8 1.5-8 2.0-8 2.5-8 3.0-8 3.5-7 4.0-8 4.5-6 5.0-7

(c) OC-SVM.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune

10 3 10 2 10 1 100

FPR

Dataset = IoT-23
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 RMSEext RMSEext AE-2 None
 Kitsune: 0.0-10 0.5-9 1.0-9 1.5-9 2.0-9 2.5-9 3.0-9 3.5-9 4.0-9 4.5-9 5.0-9

 IoT-23: 0.0-10 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-9 4.5-9 5.0-9

(d) AE-2 +RMSEEXT.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune

10 3 10 2 10 1 100

FPR

Dataset = IoT-23
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 RMSEext RMSEint AE-2 None
 Kitsune: 0.0-10 0.5-9 1.0-9 1.5-9 2.0-9 2.5-9 3.0-9 3.5-9 4.0-9 4.5-9 5.0-9

 IoT-23: 0.0-10 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-9 4.5-9 5.0-9

(e) AE-2 +RMSEINT.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune

10 3 10 2 10 1 100

FPR

Dataset = IoT-23
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 RMSEext SAP AE-2 None
 Kitsune: 0.0-10 0.5-9 1.0-9 1.5-9 2.0-9 2.5-9 3.0-9 3.5-9 4.0-9 4.5-9 5.0-9

 IoT-23: 0.0-10 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-9 4.5-9 5.0-9

(f) AE-2 +SAP.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune

10 3 10 2 10 1 100

FPR

Dataset = IoT-23
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 RMSEext MHLNext AE-2 None
 Kitsune: 0.0-10 0.5-9 1.0-9 1.5-9 2.0-9 2.5-9 3.0-9 3.5-9 4.0-9 4.5-9 5.0-9

 IoT-23: 0.0-10 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-9 4.5-9 5.0-9

(g) AE-2 +MHLNEXT.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune

10 3 10 2 10 1 100

FPR

Dataset = IoT-23
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 RMSEext MHLNint AE-2 None
 Kitsune: 0.0-10 0.5-9 1.0-9 1.5-9 2.0-9 2.5-9 3.0-9 3.5-9 4.0-9 4.5-9 5.0-9

 IoT-23: 0.0-10 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-9 4.5-9 5.0-9

(h) AE-2 +MHLNINT.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune

10 3 10 2 10 1 100

FPR

Dataset = IoT-23
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 RMSEext NAP AE-2 None
 Kitsune: 0.0-10 0.5-9 1.0-9 1.5-9 2.0-9 2.5-9 3.0-9 3.5-9 4.0-9 4.5-9 5.0-9

 IoT-23: 0.0-10 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-9 4.5-9 5.0-9

(i) AE-2 +NAP.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune

10 3 10 2 10 1 100

FPR

Dataset = IoT-23
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 RMSEext RMSEext KitNET-2 None
 Kitsune: 0.0-10 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10
 IoT-23: 0.0-10 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10

(j) KitNET-2 +RMSEEXT.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune

10 3 10 2 10 1 100

FPR

Dataset = IoT-23
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 RMSEext RMSEint KitNET-2 None
 Kitsune: 0.0-10 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10
 IoT-23: 0.0-10 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10

(k) KitNET-2 +RMSEINT.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune

10 3 10 2 10 1 100

FPR

Dataset = IoT-23
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 RMSEext SAP KitNET-2 None
 Kitsune: 0.0-10 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10
 IoT-23: 0.0-10 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10

(l) KitNET-2 +SAP.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune

10 3 10 2 10 1 100

FPR

Dataset = IoT-23
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 RMSEext MHLNext KitNET-2 None
 Kitsune: 0.0-10 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10
 IoT-23: 0.0-10 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10

(m) KitNET-2 +MHLNEXT.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune

10 3 10 2 10 1 100

FPR

Dataset = IoT-23
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 RMSEext MHLNint KitNET-2 None
 Kitsune: 0.0-10 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10
 IoT-23: 0.0-10 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10

(n) KitNET-2 +MHLNINT.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune

10 3 10 2 10 1 100

FPR

Dataset = IoT-23
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 RMSEext NAP KitNET-2 None
 Kitsune: 0.0-10 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10
 IoT-23: 0.0-10 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10

(o) KitNET-2 +NAP.

Figure A.12: ROC curves for ML models, AE-2 and KitNET-2 varying the distance score, showing robustness to poisoning. Results are shown as avg. over 10
folds.

15

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune

10 3 10 2 10 1 100

FPR

Dataset = IoT-23
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 RMSEext RMSEext KitNET-2 Equ
 Kitsune: 0.0-9 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10
 IoT-23: 0.0-1 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10

(a) KitNET-2 +RMSEEXT +Equ.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune

10 3 10 2 10 1 100

FPR

Dataset = IoT-23
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 RMSEext RMSEext KitNET-2 Nor
 Kitsune: 0.0-9 0.5-3 1.0-3 1.5-3 2.0-3 2.5-3 3.0-3 3.5-3 4.0-3 4.5-3 5.0-3
 IoT-23: 0.0-2 0.5-3 1.0-3 1.5-3 2.0-3 2.5-3 3.0-3 3.5-3 4.0-3 4.5-3 5.0-3

(b) KitNET-2 +RMSEEXT +Nor.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune

10 3 10 2 10 1 100

FPR

Dataset = IoT-23
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 RMSEext RMSEext KitNET-2 Equ+Nor
 Kitsune: 0.0-5 0.5-3 1.0-3 1.5-3 2.0-3 2.5-3 3.0-3 3.5-3 4.0-3 4.5-3 5.0-3
 IoT-23: 0.0-2 0.5-3 1.0-3 1.5-3 2.0-3 2.5-3 3.0-3 3.5-3 4.0-3 4.5-3 5.0-3

(c) KitNET-2 +RMSEEXT +Equ+Nor.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune

10 3 10 2 10 1 100

FPR

Dataset = IoT-23
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 RMSEext RMSEint KitNET-2 Equ
 Kitsune: 0.0-9 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10
 IoT-23: 0.0-1 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10

(d) KitNET-2 +RMSEINT +Equ.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune

10 3 10 2 10 1 100

FPR

Dataset = IoT-23
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 RMSEext RMSEint KitNET-2 Nor
 Kitsune: 0.0-9 0.5-3 1.0-3 1.5-3 2.0-3 2.5-3 3.0-3 3.5-3 4.0-3 4.5-3 5.0-3
 IoT-23: 0.0-2 0.5-3 1.0-3 1.5-3 2.0-3 2.5-3 3.0-3 3.5-3 4.0-3 4.5-3 5.0-3

(e) KitNET-2 +RMSEINT +Nor.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune

10 3 10 2 10 1 100

FPR

Dataset = IoT-23
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 RMSEext RMSEint KitNET-2 Equ+Nor
 Kitsune: 0.0-5 0.5-3 1.0-3 1.5-3 2.0-3 2.5-3 3.0-3 3.5-3 4.0-3 4.5-3 5.0-3
 IoT-23: 0.0-2 0.5-3 1.0-3 1.5-3 2.0-3 2.5-3 3.0-3 3.5-3 4.0-3 4.5-3 5.0-3

(f) KitNET-2 +RMSEINT +Equ+Nor.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune

10 3 10 2 10 1 100

FPR

Dataset = IoT-23
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 RMSEext SAP KitNET-2 Equ
 Kitsune: 0.0-9 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10
 IoT-23: 0.0-1 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10

(g) KitNET-2 +SAP +Equ.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune

10 3 10 2 10 1 100

FPR

Dataset = IoT-23
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 RMSEext SAP KitNET-2 Nor
 Kitsune: 0.0-9 0.5-3 1.0-3 1.5-3 2.0-3 2.5-3 3.0-3 3.5-3 4.0-3 4.5-3 5.0-3
 IoT-23: 0.0-2 0.5-3 1.0-3 1.5-3 2.0-3 2.5-3 3.0-3 3.5-3 4.0-3 4.5-3 5.0-3

(h) KitNET-2 +SAP +Nor.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune

10 3 10 2 10 1 100

FPR

Dataset = IoT-23
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 RMSEext SAP KitNET-2 Equ+Nor
 Kitsune: 0.0-5 0.5-3 1.0-3 1.5-3 2.0-3 2.5-3 3.0-3 3.5-3 4.0-3 4.5-3 5.0-3
 IoT-23: 0.0-2 0.5-3 1.0-3 1.5-3 2.0-3 2.5-3 3.0-3 3.5-3 4.0-3 4.5-3 5.0-3

(i) KitNET-2 +SAP +Equ+Nor.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune

10 3 10 2 10 1 100

FPR

Dataset = IoT-23
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 RMSEext MHLNext KitNET-2 Equ
 Kitsune: 0.0-9 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10
 IoT-23: 0.0-1 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10

(j) KitNET-2 +MHLNEXT +Equ.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune

10 3 10 2 10 1 100

FPR

Dataset = IoT-23
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 RMSEext MHLNext KitNET-2 Nor
 Kitsune: 0.0-9 0.5-3 1.0-3 1.5-3 2.0-3 2.5-3 3.0-3 3.5-3 4.0-3 4.5-3 5.0-3
 IoT-23: 0.0-2 0.5-3 1.0-3 1.5-3 2.0-3 2.5-3 3.0-3 3.5-3 4.0-3 4.5-3 5.0-3

(k) KitNET-2 +MHLNEXT +Nor.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune

10 3 10 2 10 1 100

FPR

Dataset = IoT-23
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 RMSEext MHLNext KitNET-2 Equ+Nor
 Kitsune: 0.0-5 0.5-3 1.0-3 1.5-3 2.0-3 2.5-3 3.0-3 3.5-3 4.0-3 4.5-3 5.0-3
 IoT-23: 0.0-2 0.5-3 1.0-3 1.5-3 2.0-3 2.5-3 3.0-3 3.5-3 4.0-3 4.5-3 5.0-3

(l) KitNET-2 +MHLNEXT +Equ+Nor.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune

10 3 10 2 10 1 100

FPR

Dataset = IoT-23
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 RMSEext MHLNint KitNET-2 Equ
 Kitsune: 0.0-9 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10
 IoT-23: 0.0-1 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10

(m) KitNET-2 +MHLNINT +Equ.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune

10 3 10 2 10 1 100

FPR

Dataset = IoT-23
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 RMSEext MHLNint KitNET-2 Nor
 Kitsune: 0.0-9 0.5-3 1.0-3 1.5-3 2.0-3 2.5-3 3.0-3 3.5-3 4.0-3 4.5-3 5.0-3
 IoT-23: 0.0-2 0.5-3 1.0-3 1.5-3 2.0-3 2.5-3 3.0-3 3.5-3 4.0-3 4.5-3 5.0-3

(n) KitNET-2 +MHLNINT +Nor.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune

10 3 10 2 10 1 100

FPR

Dataset = IoT-23
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 RMSEext MHLNint KitNET-2 Equ+Nor
 Kitsune: 0.0-5 0.5-3 1.0-3 1.5-3 2.0-3 2.5-3 3.0-3 3.5-3 4.0-3 4.5-3 5.0-3
 IoT-23: 0.0-2 0.5-3 1.0-3 1.5-3 2.0-3 2.5-3 3.0-3 3.5-3 4.0-3 4.5-3 5.0-3

(o) KitNET-2 +MHLNINT +Equ+Nor.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune

10 3 10 2 10 1 100

FPR

Dataset = IoT-23
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 RMSEext NAP KitNET-2 Equ
 Kitsune: 0.0-9 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10
 IoT-23: 0.0-1 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10

(p) KitNET-2 +NAP +Equ.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune

10 3 10 2 10 1 100

FPR

Dataset = IoT-23
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 RMSEext NAP KitNET-2 Nor
 Kitsune: 0.0-9 0.5-3 1.0-3 1.5-3 2.0-3 2.5-3 3.0-3 3.5-3 4.0-3 4.5-3 5.0-3
 IoT-23: 0.0-2 0.5-3 1.0-3 1.5-3 2.0-3 2.5-3 3.0-3 3.5-3 4.0-3 4.5-3 5.0-3

(q) KitNET-2 +NAP +Nor.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune

10 3 10 2 10 1 100

FPR

Dataset = IoT-23
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 RMSEext NAP KitNET-2 Equ+Nor
 Kitsune: 0.0-5 0.5-3 1.0-3 1.5-3 2.0-3 2.5-3 3.0-3 3.5-3 4.0-3 4.5-3 5.0-3
 IoT-23: 0.0-2 0.5-3 1.0-3 1.5-3 2.0-3 2.5-3 3.0-3 3.5-3 4.0-3 4.5-3 5.0-3

(r) KitNET-2 +NAP +Equ+Nor.

Figure A.13: ROC curves for KitNET-2 enhancements related to the ensemble layer, namely the equalization and the normalization, varying the distance score,
showing robustness to poisoning. Results are shown as avg. over 10 folds.

16

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = IoT-23
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 NAP RMSEext KitNET-2 None
 Kitsune: 0.0-0 0.5-0 1.0-0 1.5-0 2.0-0 2.5-0 3.0-0 3.5-0 4.0-0 4.5-0 5.0-0

 IoT-23: 0.0-10 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10

(a) KitNET-2 +RMSEEXT
+tNAP.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0
TP

R

Dataset = IoT-23
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 NAP RMSEint KitNET-2 None
 Kitsune: 0.0-0 0.5-0 1.0-0 1.5-0 2.0-0 2.5-0 3.0-0 3.5-0 4.0-0 4.5-0 5.0-0

 IoT-23: 0.0-10 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10

(b) KitNET-2 +RMSEINT
+tNAP.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = IoT-23
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 NAP SAP KitNET-2 None
 Kitsune: 0.0-0 0.5-0 1.0-0 1.5-0 2.0-0 2.5-0 3.0-0 3.5-0 4.0-0 4.5-0 5.0-0

 IoT-23: 0.0-10 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10

(c) KitNET-2 +SAP +tNAP.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = IoT-23
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 NAP MHLNext KitNET-2 None
 Kitsune: 0.0-0 0.5-0 1.0-0 1.5-0 2.0-0 2.5-0 3.0-0 3.5-0 4.0-0 4.5-0 5.0-0

 IoT-23: 0.0-10 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10

(d) KitNET-2 +MHLNEXT
+tNAP.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = IoT-23
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 NAP MHLNint KitNET-2 None
 Kitsune: 0.0-0 0.5-0 1.0-0 1.5-0 2.0-0 2.5-0 3.0-0 3.5-0 4.0-0 4.5-0 5.0-0

 IoT-23: 0.0-10 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10

(e) KitNET-2 +MHLNINT
+tNAP.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0
TP

R
Dataset = IoT-23

Poisoning Ratio
No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 NAP NAP KitNET-2 None
 Kitsune: 0.0-0 0.5-0 1.0-0 1.5-0 2.0-0 2.5-0 3.0-0 3.5-0 4.0-0 4.5-0 5.0-0

 IoT-23: 0.0-10 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10

(f) KitNET-2 +NAP +tNAP.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 MHLNext RMSEext KitNET-2 None
 Kitsune: 0.0-10 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10

 IoT-23: 0.0-0 0.5-0 1.0-0 1.5-0 2.0-0 2.5-0 3.0-0 3.5-0 4.0-0 4.5-0 5.0-0

(g) KitNET-2 +RMSEEXT
+tMHLNEXT.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 MHLNext RMSEint KitNET-2 None
 Kitsune: 0.0-10 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10

 IoT-23: 0.0-0 0.5-0 1.0-0 1.5-0 2.0-0 2.5-0 3.0-0 3.5-0 4.0-0 4.5-0 5.0-0

(h) KitNET-2 +RMSEINT
+tMHLNEXT.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 MHLNext SAP KitNET-2 None
 Kitsune: 0.0-10 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10

 IoT-23: 0.0-0 0.5-0 1.0-0 1.5-0 2.0-0 2.5-0 3.0-0 3.5-0 4.0-0 4.5-0 5.0-0

(i) KitNET-2 +SAP +tMHLNEXT.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 MHLNext MHLNext KitNET-2 None
 Kitsune: 0.0-10 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10

 IoT-23: 0.0-0 0.5-0 1.0-0 1.5-0 2.0-0 2.5-0 3.0-0 3.5-0 4.0-0 4.5-0 5.0-0

(j) KitNET-2 +MHLNEXT
+tMHLNEXT.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 MHLNext MHLNint KitNET-2 None
 Kitsune: 0.0-10 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10

 IoT-23: 0.0-0 0.5-0 1.0-0 1.5-0 2.0-0 2.5-0 3.0-0 3.5-0 4.0-0 4.5-0 5.0-0

(k) KitNET-2 +MHLNINT
+tMHLNEXT.

10 3 10 2 10 1 100

FPR
0.2

0.4

0.6

0.8

1.0

TP
R

Dataset = Kitsune
Poisoning Ratio

No Pois.
0.5%
1.0%
1.5%
2.0%
2.5%

3.0%
3.5%
4.0%
4.5%
5.0%

4 MHLNext NAP KitNET-2 None
 Kitsune: 0.0-10 0.5-10 1.0-10 1.5-10 2.0-10 2.5-10 3.0-10 3.5-10 4.0-10 4.5-10 5.0-10

 IoT-23: 0.0-0 0.5-0 1.0-0 1.5-0 2.0-0 2.5-0 3.0-0 3.5-0 4.0-0 4.5-0 5.0-0

(l) KitNET-2 +NAP +tMHLNEXT.

Figure A.14: ROC curves for KitNET-2 enhancement related to the output layer, namely the selection of a different train distance metric (preceded by a t), varying
the distance score, showing robustness to poisoning. Results are shown as avg. over 10 folds.

17

	Introduction
	Related Work
	Methodology
	Reconstruction-based DL Detectors
	ML-based Detectors
	Choice of the Detection Threshold
	Threat Model – Label Flipping Attack

	Experimental Setup
	Datasets and Pre-processing Operations
	Feature Definition & Extraction
	Evaluation Metrics and Adopted Tools

	Experimental Evaluation
	Sensitivity to the Number of Packets
	Sensitivity to the Depth of the Model
	Deepening the Impact of the Distance Score
	Ablation Study for Distance Metrics
	KitNET Enhancements
	Robustness to Label Flipping Attacks

	Conclusions
	ROC Results on Poisoning

