
Classifying Attack Traffic in IoT Environments via Few-Shot Learning

Giampaolo Bovenzia, Davide Di Mondaa,b, Antonio Montieria, Valerio Persicoa, Antonio Pescapéa

aUniversity of Napoli Federico II, Naples, Italy
bIMT School for Advanced Studies, Lucca, Italy

Abstract

The Internet of Things (IoT) is a key enabler for critical systems, but IoT devices are increasingly targeted by cyberattacks
due to their diffusion and hardware and software limitations. This calls for designing and evaluating new effective approaches
for protecting IoT systems at the network level. While recent proposals based on machine- and deep-learning provide effective
solutions to the problem of attack-traffic classification, their adoption is severely challenged by the amount of labeled traffic they
require to train the classification models. In fact, this results in the need for collecting and labeling large amounts of malicious
traffic, which may be hindered by the nature of the malware possibly generating little and hard-to-capture network activity. To
tackle this challenge, we adopt few-shot learning approaches for attack-traffic classification, with the objective to improve detection
performance for attack classes with few labeled samples. We leverage advanced deep-learning architectures to perform feature
extraction and provide an extensive empirical study—using recent and publicly available datasets—comparing the performance of
an ample variety of solutions based on different learning paradigms, and exploring a number of design choices in depth (impact
of embedding function, number of classes of attacks, or number of attack samples). In comparison to non-few-shot baselines, we
achieve a relative improvement in the F1-score ranging from 8% to 27%.

Keywords:
Attack-Traffic Classification, Internet of Things, Deep Learning, Few-Shot Learning, Network Security

1. Introduction

In recent years, the Internet of Things (IoT) is gaining mo-
mentum, enabling the connection and communication of a wide
variety of devices and smart objects (e.g., cyber-physical sys-
tems or smart home devices), possibly leading to increased ef-
ficiency and cost savings in industrial sectors like manufactur-
ing, transportation, healthcare, and smart cities. The number of
IoT devices connected worldwide is estimated to reach 55.7B
by 2025,1 pushing for IoT security like never before. Indeed,
the IoT environment is characterized by serious security con-
cerns, as IoT devices are known to have low-cost production
processes that increase the variety and the amount of related
vulnerabilities [1]. Besides, severe cyberattacks are globally in-
creased by 53% from 2018 to 2022—also driven by the Russo-
Ukrainian (cyber-)war—with the malware category accounting
for the 38% of the share.2 Detailing, 1.5B attacks targeted IoT
devices in the first half of 2021—doubling the number from
the first half of 2020.3 The ENISA Threat Landscape report4

Email addresses: giampaolo.bovenzi@unina.it
(Giampaolo Bovenzi), davide.dimonda@{unina.it, imtlucca.it}

(Davide Di Monda), antonio.montieri@unina.it (Antonio Montieri),
valerio.persico@unina.it (Valerio Persico), pescape@unina.it
(Antonio Pescapé)

1https://bit.ly/idc-future-of-industry-ecosystems
2https://bit.ly/clusit-report-2022
3https://bit.ly/kaspersky-iot-attacks-doubling
4https://bit.ly/enisa-threat-landscape

highlights that IoT devices are an essential initial attack sur-
face for malicious actors. It further underscores this concern,
revealing that Mirai botnets—notorious for hijacking IoT de-
vices to launch large-scale attacks—were responsible for over
7M attacks in the early months of 2022 alone. Moreover, the
report highlights a shift towards IoT devices for Distributed
Denial-of-Service (DDoS) attacks due to the limited resources
and weak security. To compound the problem, attackers in-
creasingly leverage zero-day vulnerabilities to create new bot-
nets and unleash even more sophisticated attacks5. As a conse-
quence, the impact of the cost of cybercrime for businesses is
estimated to reach $10.5T by 2025.6

Accordingly, monitoring the heterogeneous and highly dy-
namic traffic flowing across networks to understand its na-
ture is a critical activity. Indeed, network-traffic classification
(i.e. associating a traffic object to the application or the ac-
tivity that generated it) underpins several use cases, such as
billing, accounting, network provisioning, resource manage-
ment, and also network security (e.g., detection and classifica-
tion of anomalies, attacks, or malware).

Traffic classification approaches evolved over time according
to the nature of networks and their traffic. Early solutions based
on port numbers and deep packet inspection were severely chal-
lenged: the first by the usage of non-standard ports (not even

5https://bit.ly/mirai-variant-iot-devices
6https://bit.ly/cybersecurity-ventures-cybercrime-cost-

by-2025

Preprint submitted to Journal of Information Security and Applications April 13, 2024

https://bit.ly/idc-future-of-industry-ecosystems
https://bit.ly/clusit-report-2022
https://bit.ly/kaspersky-iot-attacks-doubling
https://bit.ly/enisa-threat-landscape
https://bit.ly/mirai-variant-iot-devices
https://bit.ly/cybersecurity-ventures-cybercrime-cost-by-2025
https://bit.ly/cybersecurity-ventures-cybercrime-cost-by-2025

present when IP datagrams do not encapsulate TCP/UDP seg-
ments, as may happen for attack traffic), the latter by traffic-
encryption schemes, limiting the inspection to a reduced set of
cleartext header fields, such as the Server Name Indication for
TLS. Also, the rise of Machine Learning (ML) approaches was
limited by the required domain-expert-driven feature-extraction
process, leaving room for end-to-end learning capabilities (with
automatic feature extraction from raw data) offered by Deep
Learning (DL), at the cost of a large amount of labeled data
needed to train supervised models.

Unfortunately, building large labeled network traffic datasets
is a difficult and time-consuming task. It involves capturing
network data, breaking it down into traffic objects, and adding
labels. This often requires specialized setups [2] and raises con-
cerns about user privacy and sensitive business information [3].
Additionally, because network traffic changes rapidly over time,
this process must run continuously to maintain large, compre-
hensive, and up-to-date datasets.

These issues are exacerbated when dealing with attack traf-
fic, where reproducing attack scenarios for attacks rarely ob-
served (thus still having partially unknown dynamics, as in the
case of sophisticated unknown/zero-day or morphed attacks), is
even more problematic. Often, these situations require manual
intervention and labeling by domain experts [4].

As a result, it is common that labeled data are scarce for some
attack-traffic classes, an imbalanced situation that is well re-
flected by the dataset used in this work (i.e. IoT-23 [4]), which
encompasses attacks with less than 100 samples (cf. Sec. 4.1).
This lack of sufficient data hinders the usage of ML and DL ap-
proaches that fall short with only limited knowledge available.

Few-Shot Learning (FSL) aims to tackle this challenge—
i.e. learning to classify the traffic of attacks rarely observed
without the need to collect a large amount of expensive la-
beled data—by leveraging non-few knowledge to build a model
whose purpose is to generalize enough to new tasks with only
few samples available. In other words, FSL leverages an al-
ready trained DL model as a feature extractor and builds a clas-
sifier on top of it using few labeled samples for each new class.
The problem of learning with few samples has attracted the in-
terest of research communities in a number of domains (e.g.,
computer vision), where FSL was initially investigated and ex-
plored in-depth. Accordingly, the taxonomy of the available
solutions is particularly rich and consists of different strategies
to capitalize on prior knowledge.

Given the promising results achieved in various domains, re-
cent research endeavors have aimed to apply FSL techniques
to network-traffic classification. In fact, most of the existing
works leveraging FSL in this context are based on previously
established computer vision methods, often with only minor
modifications [5–9]. Notably, despite the extensive body of lit-
erature on FSL, the application of these techniques to network-
traffic classification remains somewhat limited in its exploration
of the full spectrum of FSL possibilities. Furthermore, the ex-
perimental assessments in these studies are often constrained,
as they primarily compare proposed solutions against non-FSL
counterparts [5, 6, 8, 10–14], thus emphasizing the general ad-

vantages of FSL without delving into the specific benefits of-
fered by distinct FSL approaches. Accordingly, in this paper,
we contribute as listed in the following.

• With the unprecedented heterogeneity and dynamicity of
IoT networks that increase the variety and number of re-
lated vulnerabilities, we focus on the problem of classi-
fying attack traffic in IoT environments. We consider the
case of supervised learning with limited supervised knowl-
edge for certain attacks, namely with only a few labeled
samples available.

• We adopt advanced DL architectures to perform feature
extraction (embedding functions) fed with network input
proven informative for attack-traffic classification. Re-
markably, such network input enables early attack-traffic
classification, i.e. that provides verdicts based only on the
initial part of the traffic objects, thus enhancing the respon-
siveness of the classifier.

• We leverage IoT-23, a public dataset containing the traf-
fic of (rarely observed) attacks against IoT devices, whose
adoption also fosters the reproducibility of our experimen-
tal analyses. Moreover, we consider three further datasets
including both benign and malicious IoT traffic (i.e. IoT-
NID, Bot-IoT, and Edge-IIoTset) to evaluate the gener-
alization capability of considered approaches in other IoT
environments.

• We provide extensive empirical results of FSL approaches
for attack-traffic classification. We conduct an experi-
mental assessment of their classification performance and
compare them with non-few-shot baselines, obtaining im-
proved performance figures.

• We evaluate a number of design choices with the aim of
optimizing attack-traffic classification performance. We
consider the impact of varying the embedding function,
number of ways (i.e. number of classes considered), num-
ber of shots (i.e. number of samples available for each
class), and non-few prior knowledge.

The rest of the paper is organized as follows. Section 2 pro-
vides the background on FSL and discusses the related work
employing FSL for attack-traffic classification. Section 3 in-
troduces the methodological framework for adapting and ap-
plying FSL to attack-traffic classification. Section 4 presents
the experimental setup we consider, describing the dataset, the
FSL setup, and the metrics we use for the evaluation. Section 5
describes the results of our experimental evaluation, with their
main take-home messages. Finally, Section 6 concludes the pa-
per, drawing the main remarks.

2. Few-Shot Learning Background and Related Work

This section offers a description and a taxonomy of the main
concepts that will be discussed in the present paper (Sec. 2.1).
It also summarizes the most related studies facing attack-traffic
classification in a few-shot scenario (Sec. 2.2) and frames this
work in relation to them (Sec. 2.3).

2

Support Set Query Set

BB
B

DD
D

BB
B

DD
D

Episode

Sampling
N=2
Ks=3
Kq=3

Non-few Classes Few-shot Classes

Dnf Df

A B C D E F G

Figure 1: Example of creation of 2-way 3-shot episodes during meta-
training. Each episode contains 12 samples: 6 for the support set and
6 for the query set.

2.1. Background on Few-Shot Learning

Few-Shot Learning (FSL) allows classification where only
few (viz. very limited) labeled samples are available [15]. Ex-
pressly, the goal of FSL is to derive a model that is general
enough to classify observations into classes characterized by
the availability of (very) few samples, i.e. to fulfill a few-
shot task, by capitalizing on the knowledge from related (non-
few) tasks. This is different from traditional learning meth-
ods, which need a large number of samples for these classes
to acquire knowledge during training and achieve satisfactory
performance in the operational phase. Overall, FSL helps in
dealing with the problem of strong label-distribution skewness
in data (cf. Sec. 4.1) and can be extremely useful for several
tasks related to traffic analysis, which suffer from this issue
(e.g., encrypted and mobile-app traffic classification and mal-
ware identification). For instance, in the case of attack-traffic
classification, FSL allows for the design of solutions capable
of detecting zero-day attacks, namely a scenario where attack
samples are very scarce and not observed during training. In-
deed, while traditional ML and DL approaches fall short [16]
and require retraining from scratch once enough data is avail-
able, FSL can learn from a limited number of labeled samples
per class by extrapolating prior knowledge from already avail-
able and abundant data.

The way prior knowledge is utilized in FSL determines three
families of approaches [17]: (i) Algorithm-based approaches:
they employ prior knowledge to modify and optimize the strat-
egy for searching new parameters; this serves as a valuable
guideline tailored to the specific few-shot task at hand [18].
(ii) Model-based approaches: their focus is on jointly learning a
set of related initial tasks; the goal is reducing the search space
for optimal parameters by leveraging prior knowledge [19–21].
(iii) Data-based approaches: they exploit prior knowledge to
augment the data associated with the few-shot tasks.

Moreover, FSL can be fulfilled by leveraging different learn-
ing paradigms. We provide the fundamentals of two popu-
lar FSL paradigms adopted herein: meta learning and transfer
learning.

Meta-Learning Fundamentals. This paradigm enhances the

performance on a novel task by distilling meta-knowledge ob-
tained from various tasks through a meta-learner, whose goal is
“learning to learn”. In the context of FSL, meta-learning is used
together with episodic learning, which involves organizing the
training into a sequence of learning tasks named episodes. In
each episode, a limited number of samples and classes is con-
sidered. This setup facilitates the model (i) in rapidly acquiring
new knowledge by drawing insights from learning tasks faced
and (ii) in effectively classifying unknown classes with only few
samples.

Consequently, meta-learning approaches should preliminar-
ily manage the creation of N-way K-shot episodes. More specif-
ically, given a dataset D “ tDnf , D f u, we assume that Dnf and
D f have a disjoint label space. Dnf includes the samples of
“non-few” classes (i.e. the most populated ones). D f encom-
passes the samples of “few-shot” classes (i.e. the least popu-
lated ones). The training phase and the operational phase ex-
ploit Dnf and D f , respectively.7 Going into detail, each episode
is constructed by randomly sampling N classes (N-way) and
then obtaining two partitions (non-overlapping): (i) the support
set consisting of N ˆ Ks samples (with Ks defining the K-shot
setup) and (ii) the query set consisting of N ˆ Kq samples. An
example with N “ 2 and K “ Ks “ Kq “ 3 is reported in
Fig. 1.

Starting from the definition of such episodes, (i) the model
learns from a set of T classification tasks—i.e. N-way K-shot
tasks—during meta-training: it uses the samples of the sup-
port set for training and measures the error on the query set;
(ii) then, the model is operated on unknown few-shot classes to
test its generalization ability: meta-testing emulates this opera-
tional phase by leveraging an akin episode-based procedure.

Transfer-Learning Fundamentals. Transfer learning seeks to
learn generic features from a large dataset of non-few classes
(Tnf task, also referred to as pre-training), and then specializes
in a new task with only few labeled samples during the oper-
ational phase (T f task, also referred to as adaptation). Conse-
quently, in a similar way to the meta-learning, D “ tDnf , D f u,
with D f encompassing the samples of the few-shot classes.
Specifically, the Tnf task learns knowledge on the (pre-)training
data extracted from Dnf . With an analogous learning procedure,
the T f task enriches (viz. transfers) the knowledge gained dur-
ing Tnf with samples belonging to D f (i.e. those from the few-
shot classes not observed before).

2.2. Related Work

The challenge of learning with only few samples available
(thus minimizing the need for extensive data collection) has gar-
nered significant attention from research communities across
various domains. These include networking, where there is a
growing interest in traffic analysis and attack-traffic classifica-
tion. Indeed, recently FSL has gained considerable attention

7Commonly, the operational phase, dealing with samples belonging to few-
shot classes not observed during the training, is also referred to as the testing
phase since, during the latter, the trained model is “tested” in a few-shot sce-
nario.

3

Table 1: Related work dealing with attack-traffic classification via Few-Shot Learning approaches. The papers are ordered by year. The last row
summarizes the present work. Acronyms’ meaning is reported at the bottom of the table.

Paper Approach EF FB Dataset TO Raw Early Input Data

Huang et al. [5], 2020 MN+gates 1D-CNN # NSL-KDD B # # Flow based-statistics

Zheng et al. [6], 2020 RN+DA AE+2D-CNN # ISCX 2012 IDS,
ISCX VPN-nonVPN

B # Raw flow sequence

Xu et al. [10], 2020 RN DNN # ISCX 2012 FS,
CIC-IDS 2017 FS

F M packets per flow
N bytes per packet

Zhou et al. [11], 2021 SN SCNN # UNSW-NB15, self-built B # # Flow based-statistics

Feng et al. [12], 2021 MAML AE+LSTM # CICAndMal 2017,
CIC-IDS 2017

F G# Flow based-statistics
Time-series features

Ouyang et al. [13], 2021 PN 2D-CNN # SCADA dataset B # # Flow based-statistics

Rong et al. [22], 2021 PN 2D-CNN
MCFP, USTC-TFC,
CICInvesAndMal 2019,
BEN-1, self-built

B N bytes of a biflow

Wang et al. [7], 2021 RN+SN SCN, 2D-CNN,
ResNet18, VGG16

 CIC-IDS 2017,
UNSW-NB15

B # # Flow based-statistics

Liang et al. [14], 2021 RN LSTM+VBP # NSL-KDD, CIC-IDS 2017 B # # Flow based-statistics

Guo et al. [23], 2022 MAML 2D-CNN USTC-TFC2016 B Raw flow sequence

Yang et al. [24], 2022 PN AE+2D-CNN # CIC-IDS 2017 B Flow based-statistics
Raw flow sequence

Lu et al. [25], 2023 MAML 1D-CNN self-built combining several
public datasets

B # # Flow based-statistics

Pawlicki et al. [26], 2023 SN 1D-CNN CSE-CIC-IDS 2018 B # # Flow based-statistics

This work
MN, PN, RN,
MON, MAML,
ANIL, FT, FZ

1D-CNN, 2D-CNN,
2D-CNN+LSTM,
Mimetic˚

IoT-23, IoT-NID,

Edge-IIoT, Bot-IoT
B L4/L2 unbiased payload

Per-packet header fields

Approach—Proposed FSL approach; EF—Embedding Function; FB—FSL Baseline; TO—Traffic Object: Biflow (B), Flow (F); Raw—Raw input data; Early—Early attack-traffic classi-
fication. Acronyms: AutoEncoder (AE), Almost No Inner Loop (ANIL), Convolutional Neural Network (CNN), Data Augmentation (DA), Deep Neural Network (DNN), Fine-Tuning (FT),
Freezing (FZ), Long Short-Term Memory (LSTM), Model-Agnostic Meta-Learning (MAML), Matching Networks (MN), MetaOptNet (MON), Prototypical Networks (PN), Relation Network
(RN), Siamese Network (SN), Siamese Capsule Network (SCN), Siamese Convolutional Neural Network (SCNN), Variational Bayesian Process (VBP).
“`” symbol indicates hybrid architectures; present, G# partial, # lacking.

as being nowadays an in-depth explored branch of scientific re-
search, with its first applications in computer vision. Hence,
most networking-related studies focusing on FSL employ solu-
tions originally devised for computer vision, albeit with some
minor adaptations being proposed.

Accordingly, in Tab. 1, we report and categorize the most rel-
evant papers dealing with attack-traffic classification in a few-
shot scenario. We underline the key aspects concerning the cov-
ered subject and any variations brought to the computer vision-
tailored FSL approaches that served as inspiration. Interest-
ingly, all the referenced works were published between 2020–
2023, highlighting the recent interest of the networking com-
munity in FSL. Besides being the latest, we have selected these
papers since they primarily deal with the task of classifying the
traffic of unseen attacks with only few samples available. In-
deed, in addition to the papers reported in Tab. 1, other stud-
ies [27–29] also leverage FSL methods for intrusion detection
purposes; however, we do not consider them in our analysis
since the proposed approaches are evaluated on a testing set
that shares the same label space with the training set (i.e. seen
attacks), namely, the paper cornerstone is simply mitigating the
class imbalance in data.

The second column of Tab. 1 shows the specific FSL ap-

proach that each work utilizes for attack-traffic classification
tasks. Firstly, we underline that the FSL approaches applied
in the related studies fall into two families: model-based and
algorithm-based. Additionally, the majority of them exploit the
meta-learning paradigm for training the models. Moreover, we
highlight that only five works [7, 22, 23, 25, 26] evaluate more
than one FSL approach, as pointed out by the FSL Baseline
(FB) column. This paramount aspect underlines the lack of
a comprehensive comparison between the different FSL fam-
ilies and paradigms in related works. Hereinafter, we focus on
substantial novelties that related studies bring to the computer
vision techniques they utilize.

One of the first meta-learning algorithms tackling FSL is
Matching Networks, firstly proposed in [19]. Matching Net-
works are based on an attention mechanism to extract useful
prior knowledge and embed samples in a lower-dimensional
space; then, they perform a generalized nearest-neighbor clas-
sification. Inspired by the latter, Huang et al. [5] add a gating
technique to the base Matching Networks algorithm to deal with
attack-traffic identification. Additional gates can be considered
soft classifiers providing similarity scores to evaluate the im-
portance of both known and unknown anomalies in classifying
unlabeled samples. Matching Networks have also been used

4

in [22] as a baseline.
Prototypical Networks are the natural successors of Match-

ing Networks and have been originally proposed and evalu-
ated on computer vision data in [20]. Prototypical Networks
classify new instances by computing their distances with class
prototypes (i.e. a centroid representative of a certain class) and
labeling them according to the closest prototype. In the net-
working field, Ouyang et al. [13] aim to recognize cyberattacks
in network SCADA systems through Prototypical Networks.
Similarly, Rong et al. [22] use the original Prototypical Net-
works to detect unseen malware; training is performed in an
episodic fashion using traffic sessions converted to gray-scale
images (i.e. traffic-to-image encoding). More recently, Yang
et al. [24] propose an FSL framework still considering the traffic
as gray-scale images; they apply Prototypical Networks on top
of AutoEncoder-transformed features for malware traffic clas-
sification.

Relation Network is another meta-learning approach, com-
monly applied to address computer vision tasks, which has been
initially described in [21]. Unlike Matching and Prototypical
Networks, embedded training and test samples are concatenated
and fed to a relation module consisting of a Convolutional Neu-
ral Network (CNN) that outputs a similarity score between 0
and 1. As shown in Tab. 1, Relation Network (and its variants)
is the most common FSL approach applied for attack-traffic
classification. Both Xu et al. [10] and Liang et al. [14] lever-
age the original Relation Network as-is for few-shot network
intrusion detection. Differently, Zheng et al. [6] combine the
Relation Network with a data-based method; especially, the au-
thors augment the training set through the implementation of an
“hallucinator”, which creates new samples by adding noise to
the data. Lastly, Wang et al. [7] also integrate a Siamese Net-
work (as an embedding function) with the Relation Network
to improve the detection of network attacks under imbalanced
training data.

Model-Agnostic Meta-Learning (MAML) is a popular FSL
approach [18] that continuously refines the model parameters
via a meta-learning procedure enriched with a fine-tuning phase
for rapid adaptation to new FSL tasks. Regarding our related
literature, Feng et al. [12], Guo et al. [23], and Lu et al. [25]
design an FSL model based on the original MAML to detect
anomalous traffic with only few samples, while MAML is con-
sidered as a baseline in [22].

In addition to the specific FSL approach employed, the
choice of the embedding function (i.e. the feature extractor)
is highly important since the performance attained is closely
related to an embedded space capable of emphasizing similar-
ities/differences among samples in order to generalize. To this
end, single-modal CNNs (both one- and two-dimensional) are
the most popular choice; hybrid architectures (marked with `

in the EF column) obtained via the composition of different lay-
ers are also used (e.g., AE+CNN [6, 24], AE+LSTM [12], and
LSTM+VBP [14]). Notably, Zhou et al. [11] and Wang et al.
[7] employ different embedding functions being variants of a
Siamese Network (i.e. a CNN- and Capsule Neural Network-
based architecture, respectively) to embed in tandem two sam-
ples and output comparable feature vectors. As for the FSL ap-

proaches, we underline that related literature lacks an exhaus-
tive benchmark of embedding functions: only Wang et al. [7]
evaluate multiple architectures.

Regarding the specific datasets leveraged, to the best of
our knowledge, none makes use of the recent IoT-23 (em-
ployed herein) to evaluate FSL for attack-traffic classifica-
tion. On the other hand, CIC-IDS 2017 is the most used
dataset [7, 10, 12, 14, 24]. Notably, four papers [5, 6, 10, 14]
leverage ISCX 2012 or NSL-KDD, being outdated datasets col-
lected one and more than two decades ago, respectively. Un-
fortunately, due to the rapid evolution of networks and related
cyberattacks, these datasets hardly exhibit a current real-world
traffic profile.

As for traffic segmentation, we notice that flows, and partic-
ularly bidirectional flows (biflows), are the most frequent op-
tions as traffic objects. Based on the latter, various input
data are considered to feed FSL models. Firstly, in Tab. 1,
we explicitly flag the works that effectively consider raw in-
put data [6, 10, 12, 22–24]. Conversely, the remaining works
counter-productively adopt ready-to-use features (commonly
obtained from preprocessed datasets) such as flow-based statis-
tics extracted from the sets of packet/payload lengths and inter-
arrival times. Indeed, this shortcoming nullifies a key strength
of DL architectures—widely employed in related works as em-
bedding functions for feature extraction—namely the automatic
extraction of knowledge from raw attack-traffic data. Finally, a
notable advantage for network intrusion detection systems lies
in intercepting attacks as they are still running. Hence, in Tab. 1,
we also highlight the works attaining early attack-traffic clas-
sification [10, 22–24]. These works commonly capitalize on
the first packets/bytes of each traffic object to promptly provide
the classification verdicts, as opposed to the classification ac-
complished only once the malicious activity is completely over
(i.e. “post-mortem” classification).

2.3. Positioning
Starting from the discussion of related work, we position our

work against the state-of-the-art. The aspects detailed here-
inafter are also summarized in the last row of Tab. 1.

• We consider a variety of FSL approaches based on the
meta-learning paradigm, both employed in related studies
(i.e. Matching Networks, Prototypical Networks, Relation
Network, and MAML) and novel to the attack-traffic clas-
sification field (i.e. MetaOptNet [30] and ANIL [31]). In
order to evaluate the effectiveness of other FSL paradigms
for attack-traffic classification, we also enrich the roster
of methods with approaches based on transfer learning
(i.e. Fine-Tuning and Freezing). Furthermore, we take
into account both model-based and algorithm-based fam-
ilies, thus providing a comprehensive comparison of the
effectiveness of various FSL families and paradigms when
dealing with attack-traffic classification tasks.

• We devise a novel meta-training procedure enabled for
early-stopping—based on a meta-validation phase—to
better select the best model and avoid overfitting, thus en-
hancing the approaches’ ability to generalize.

5

Transfer
Learning

Meta
LearningPSQ

NET Algorithm

Model

1D-CNN

HYBRID

2D-CNN

MIMETIC*

FSL
Family

Identification

Embedding
Function
Design

Network
Input

Definition

FSL
Paradigm
Selection

Figure 2: Methodological framework for few-shot IoT attack-traffic
classification with considered options.

• We assess the performance of different embedding func-
tions both single-modal and multimodal. Particularly, we
have selected well-known and promising DL networks
from the traffic classification domain.

• We leverage and unbiased and effective [16] input traffic
data that enable fast (i.e. “early”) classification of attack
traffic, ensuring that the performance is not inflated and
the outcomes are not specific for just one traffic scenario,
but rather generalizable to a variety of these.

• We validate the necessity of using (advanced) few-shot
tailored solutions by comparing their classification perfor-
mance with non-few-shot baselines.

• We employ four publicly available and recent (published
between 2019 and 2022) datasets, namely IoT-23, IoT-
NID, Bot-IoT, and Edge-IIoTset. They provide chal-
lenging IoT attack scenarios, encompassing both common
and rarely observed attacks, for the proposed approaches.

3. Methodological Framework for IoT Attack-Traffic Clas-
sification via Few-Shot Learning

In this section, we introduce the methodological framework
for the exploitation of FSL approaches for IoT attack-traffic
classification. Specifically, when designing an FSL attack-
traffic classifier, the following aspects must be covered: (i) the
traffic object must be defined, together with the related pieces of
information to be fed to the classification architecture as input
(see Sec. 3.1); (ii) the process for extracting relevant features
from the input data must be selected (see Sec. 3.2 that presents
state-of-the-art embedding functions based on DL); (iii) the par-
ticular FSL approach must be chosen, requiring the selection
of both the FSL family it belongs to and the paradigm to be
leveraged (see Sec. 3.3 that deepens model-based and algorith-
m-based families, introducing the designed meta-learning eval-
uation procedure, and presents the specific FSL approaches em-
ployed in our work). Figure 2 summarizes these main aspects to
be considered when exploiting FSL approaches for IoT attack-
traffic classification. Note that these choices are partially inter-
twined, with the network input implying the feature-extraction
process, and the FSL family possibly resorting to a specific
FSL paradigm. Also, note that the downstream steps of the
methodological framework—including the identification of the

FSL family and the selection of the FSL paradigm—are more
general and can be borrowed from domains beyond network
traffic classification. On the other hand, the upstream steps—
concerning the definition of the network input and the design of
the embedding function—are domain-specific.

3.1. Traffic Object and Network Input

In our work, we leverage the bidirectional flow (biflow) as the
traffic object. The choice of the traffic object defines how raw
traffic is segmented into discrete traffic units, with biflow being
the most common traffic object used when dealing with attack-
traffic classification via DL (cf. Tab. 1). In detail, a biflow
aggregates the network packets that share the same quintuple
(i.e. source and destination IP addresses, source and destination
ports, and transport-level protocol), considering the source and
the destination as interchangeable, namely it models both the
directions of communication.

Considering the biflow as the elementary sample of our clas-
sification task, the input data used to feed the FSL methods
exploited herein are organized in two input sets: packet-field
sequences (PSQ) and network-packet bytes (NET). We select
such input data based on previous literature regarding both
encrypted-traffic classification [32–34] and attack-traffic clas-
sification [10, 16, 22, 35, 36], and preliminary experimental
evaluations conducted in both non-few and few-shot scenarios
demonstrating their effectiveness. Both NET and PSQ are (min-
max) normalized within the range r0, 1s.

PSQ Input Type. For each biflow, M informative unbiased
fields are extracted from the first Np packets of the sequence,
resulting in an Np ˆ M matrix. In particular, the selected M “ 4
fields are: (i) the number of bytes in the transport layer payload;
(ii) the packet direction (´1 or 1); (iii) the TCP window size (0
for non-TCP packets); (iv) the time elapsed since the arrival of
the previous packet (i.e. the inter-arrival time8).

NET Input Type. For each biflow, we extract the first Nb bytes
(each arranged as an integer ranging from 0 to 255) of the
network-layer header and payload data (i.e. starting from the
IP header) of the sequence of packets in the biflow. Since the
transport layer and network layer contain biased information
(i.e. IP addresses, transport ports, and IP & transport check-
sums) [16, 32], we obfuscate (viz. we zero) the portion of bytes
related to these fields to avoid inflating classification perfor-
mance (more details on this procedure are given regarding the
occlusion analysis performed in [16]).

We underline that we limit to the first Np (resp. Nb) packets
(resp. bytes) so that the PSQ (resp. NET) input type is suited for
early attack-traffic classification [32], i.e. it can support traffic
classification based on the observation of a limited portion of

8We underline that instead of considering the absolute time/timestamp of
packets in each biflow, we take into account relative temporal information via
the inter-arrival times. Indeed, the latter field carries unbiased information that
does not depend on the specific collection environment/setup (e.g., an attack
whose traffic has been collected only on certain days or periods) and does not
risk wrongly inflating classification performance.

6

the traffic object to classify. This technique improves the re-
sponsiveness of the classifier, which is of particular practical
interest in the case of IoT attack-traffic classification.

Moreover, it is worth mentioning that both Np and Nb should
be selected by striking a balance between classification perfor-
mance and the efficiency of the traffic capture process. Opt-
ing for lower values of Np or Nb reduces the computational
load required for collecting network input data, but excessively
low values can have a detrimental impact on classification re-
sults [16, 32].

3.2. Embedding Functions

FSL approaches extract relevant features via an embedding
function by reducing the input data into a space of lower
dimensions. Specifically, we exploit different state-of-the-
art DL architectures that were proposed and used to perform
(attack-)traffic classification [16, 32, 37]. A graphical represen-
tation of embedding functions considered herein is provided in
Fig. C.16 of Appendix C.

1D-CNN. The first DL network is a single-modal 1D-CNN
originally proposed in [34]. We leverage an architecture with
the same layers and related hyperparameters as in [34]. Such
a network consists of two 1D convolutional layers—each fol-
lowed by a 1D max-pooling layer—and ends with two dense
layers. 1D-CNN is fed with the NET input.

Hybrid. This DL network is a more complex single-modal Hy-
brid architecture, which combines 2D-CNN and Long Short-
Term Memory (LSTM) layers. Such layers are concatenated by
reshaping the output tensor of the 2D-CNN into a matrix that
is provided as input to the LSTM. The specific architecture and
hyperparameters are those proposed in [33]. According to the
2D nature of the convolutional layer, we feed Hybrid with the
PSQ input.

2D-CNN. We also employ a version of Hybrid without the
LSTM layer, namely a single-modal 2D-CNN also being pro-
posed in [33]. We exploit 2D-CNN to evaluate the performance
attained with an architecture simpler than Hybrid.

Mimetic˚. The last leveraged architecture is a multimodal
traffic classifier named Mimetic, originally proposed in [37].
Mimetic is made of two branches, with each branch correspond-
ing to a different modality: one branch is fed with the NET in-
put, the other with the PSQ one. The NET branch consists of two
1D convolutional layers—each followed by a 1D max-pooling
layer—and a final dense layer. The PSQ branch encompasses
a Bidirectional Gated Recurrent Unit and one dense layer. The
features extracted by each branch are then concatenated and fur-
ther elaborated via a shared dense layer. We underline that, dif-
ferently from the original Mimetic classifier [37], herein we do
not train Mimetic via a two-phase procedure but in a monolithic
fashion, so as to assess a variant having a training procedure
analogous to the other embedding functions. Hence, we refer
to it as Mimetic˚.

f c
g

Support set
samples

Embedding
functions Comparator

Query set
sample

Score for
each class

Feature
vectors

Figure 3: Model-based meta-learning general architecture. Both sup-
port and query samples are first compressed leveraging a dedicated
embedding function (f and g, respectively). Then, a comparator com-
ponent c classifies the embeddings of the query set against those of the
support set.

3.3. Few-Shot Learning Approaches
This section introduces the main FSL approaches belong-

ing to the two FSL families we deal with, namely model- and
algorithm-based. We highlight that all the discussed approaches
follow the meta-learning paradigm, except for transfer-learning
ones. The section ends with the meta-learning procedure we
have designed for attack-traffic classification.

Model-based Approaches. Model-based approaches have the
objective of reducing the risk of overfitting by constraining the
hypothesis space9 to a smaller one exploiting the prior knowl-
edge. Figure 3 depicts a general architecture for model-based
meta-learning solutions. Such solutions apply embedding func-
tions (i.e. f and g in Fig. 3) to the samples belonging to a d-
dimensional space Rd to map them in an m-dimensional space
Rm, where m ă d. This process ensures that similar samples are
closer, whereas dissimilar samples become more easily distin-
guishable, thus effectively reducing the hypothesis space. The
embedding functions are trained based on prior knowledge ex-
tracted from the meta-training tasks defined on Dnf (i.e. non-
few classes).

Classification is performed via a comparator by measuring
the similarity of gpxqq with f pxsq, where gp¨q and f p¨q are the
embedding functions applied to query and support instances,
respectively, being xq, xs P D˚. In the present work, we set
gp¨q “ f p¨q, and we use as embedding functions state-of-the-
art DL networks widely employed and suited for attack-traffic
classification (cf. Sec. 3.2).

The main difference among model-based approaches is the
comparator (the c block in Fig. 3), namely the similarity mea-
sure/mechanism employed. In the present work, we use the
following model-based approaches: (i) Matching Networks
(MatchingNet) [19] are based on a one-nearest-neighbor clas-
sifier that leverages the Euclidean distance; (ii) Prototypical
Networks (ProtoNet) [20] perform the classification by com-
puting the Euclidean distance between the embedding of a sam-
ple and each per-class centroid—named prototype; (iii) Rela-

9Hypothesis space encompasses all potential solutions available for a given
learning problem. Within this space, the learning algorithm seeks to discover
the optimal model, essentially identifying the most suitable parameters/weights
that effectively fit the data and exhibit strong generalization to new, unseen
samples.

7

tion Network (RelationNet) [21] trains a relation module—
based on a CNN—that computes a similarity score between the
embeddings of query and support samples of every class; (iv)
MetaOptNet [30] uses a linear Support Vector Machine trained
on the samples of the support set, as a comparator, and classi-
fies the samples of the query set by capitalizing on the resultant
linear space separation.

Algorithm-based Approaches. The models of the algorithm-
based family explore the hypothesis space to find the set of pa-
rameters that corresponds to the best hypothesis in this space.
However, the scarce number of samples available for training
in a few-shot scenario hinders the proper updating of the pa-
rameter set, leading to suboptimal performance. To address
this issue, algorithm-based methods leverage prior knowledge
to guide the search for the best parameter set.

In this work, we consider MAML [18] and ANIL [31], whose
objective is to refine meta-learned parameters by learning
an initial set of parameters through meta-learning and subse-
quently enhancing it via data from D f (i.e. few-shot classes).
They also use an embedding function as a feature extractor.
MAML (Model-Agnostic Meta-Learning) iteratively adjusts the
initial meta-learned parameter set on the basis of the perfor-
mance achieved on episodic tasks (i.e. the so-called inner-loop
adaptation). The aim is to find a set of parameters that is
highly adaptable to different tasks. ANIL (Almost No Inner
Loop) is a simpler variant of MAML that remains effective while
reducing computational demands. ANIL avoids inner-loop up-
dates for the embedding function during both meta-training and
meta-testing and adopts these updates exclusively to the model
head.10

Moreover, we utilize two transfer-learning approaches, out-
lined as follows. Fine-Tuning (TLFT) entails two main steps:
(i) it initially learns the model parameters by solving the task
Tnf (i.e. training on Dnf) and then (ii) refines such parameters
by learning the task T f (i.e. leveraging only the samples in D f).
Despite this leads to significantly faster execution, TLFT is prone
to the problem of forgetting, i.e. it may lose knowledge about
old non-few classes. To deal with this issue, Freezing (TLFZ)
fixes the weights of the embedding function when a new task is
introduced, allowing only the update of the weights associated
with the model head (in contrast to TLFT, where both the em-
bedding function and the model head undergo updates). This
results in preserving previously acquired knowledge while also
adapting to few-shot classes if the model has proper generaliza-
tion capability.

Meta-Learning Procedure. Algorithm 1 shows the meta-
learning procedure we have defined for attack-traffic classi-
fication, which is followed by all model-based approaches
along with MAML and ANIL. In addition to the common meta-
training on Dnf1 (lines 1–6) and meta-testing on D f (lines
14–17) described in Sec. 2.1, we perform a further meta-
validation phase on Dnf2 (lines 7–13), which has a disjoint la-
bel space from the other two datasets, namely Dnf “ Dnf1 Y Dnf2 |

10The term “model head” is commonly used to refer to a dense layer with
softmax activation connected to the last layer of the embedding function.

Algorithm 1 Few-Shot Meta Learning
Require: Dnf1 , Dnf2 , D f , K, and N

1: for i Ð 1 to epochs do
2: for j Ð 1 to episodes do Ź Meta-training
3: support, query Ð getEpisode(Dnf1 , K, N)
4: trainPreds Ð metaLearningAlgorithm(support, query)
5: trainLossr js Ð computeLoss(trainPreds)
6: backpropagate(trainLoss)
7: for j Ð 1 to episodes do Ź Meta-validation
8: support, query Ð getEpisode(Dnf2 , K, N)
9: valPreds Ð metaLearningAlgorithm(support, query)

10: valAccuracyr js Ð computeAccuracy(valPreds)
11: valAccuraciesris Ð average(valAccuracy)
12: if earlyStopping(valAccuracies) then break
13: restoreBestModel(valAccuracies)
14: for i Ð 1 to episodes do Ź Meta-testing
15: support, query Ð getEpisode(D f , K, N)
16: testPreds Ð metaLearningAlgorithm(support, query)
17: testAccuracyris Ð computeAccuracy(valPreds)

return average(testAccuracy)

Dnf1 X Dnf2 “ H. More precisely, meta-training is conducted
for a given number of epochs in an episodic fashion, as de-
scribed before. On the other hand, Dnf2 is utilized to imple-
ment an early-stopping procedure based on the achieved ac-
curacy (lines 7–12) and to choose the model that obtains the
highest performance after the completion of the training process
(restoreBestModel(valAccuracies) in line 13 selects the
best-performing model across all the epochs).11 Finally, meta-
testing—which emulates the operational phase—is performed
on this best-performing model. It should be noted that during
meta-testing the performance obtained by the chosen model is
properly assessed using D f .12

Finally, Fig. 4 depicts the overall workflow obtained for
IoT attack-traffic classification via FSL, which results from the
methodological and design aspects described in the present sec-
tion.

4. Experimental Setup

In this section, we describe the setup utilized for the exper-
imental campaigns conducted in this study. In detail, we first
outline the dataset leveraged for the experimentation in Sec. 4.1.
Then, in Sec. 4.2, we describe the FSL setup in terms of meta-
and transfer-learning setups, and hyperparameters configura-
tion. Finally, we discuss the metrics employed to evaluate the
performance of considered models in Sec. 4.3.

4.1. Dataset Description
The IoT-23 dataset [4] has been collected at the Stratosphere

Laboratory of the Czech Technical University between 2018

11The validation accuracy is calculated for each episode, then the per-episode
accuracy values are averaged to derive an average measure for each epoch. Fi-
nally, the model that exhibits the best performance based on this measure is
selected.

12The performance could be evaluated also on Dnf1 and Dnf2 . However, the
evaluation on D f is the most interesting result, since the meta-testing is per-
formed on previously unseen data, thus emulating an actual operational sce-
nario of attack-traffic classification.

8

Traffic Object
Segmentation

Input-data
Extraction

Feature
EmbeddingBiflows PSQ/NET Traffic

Classification
Feature
Vectors

FSL Approach Classification
Result

IoT Devices

Figure 4: Workflow for IoT attack-traffic classification via Few-Shot Learning.

100 101 102 103 104 105

Number of biflows [log] in IoT-23

C&C-HeartBeat-FileDownload
FileDownload

C&C-Torii
C&C-FileDownload

C&C-HeartBeat-Attack
C&C-PartOfAHorizontalPortScan

Attack
C&C

C&C-HeartBeat
DDoS

Benign
Okiru

PartOfAHorizontalPortScan

Dnf1 Dnf2 Df

Figure 5: Number of per-class biflows (in log scale) in IoT-23 after
preprocessing and dataset partitioning. For details on label meaning,
please refer to the description in [4].

and 2019. It has been released as 23 PCAP traces along with
ground-truth files obtained via Zeek.13 A number of scientific
and practical motivations led us to select it. First, as intro-
duced in Sec. 1, IoT-23 dataset represents an actual attack-
traffic classification scenario where the adoption of FSL is of
practical interest, being characterized by scarcity of samples for
training the classification models. Nevertheless, the dataset is
rich enough (870.6k biflows and 13 classes after preprocessing)
to constitute a representative evaluation test bench. Moreover,
IoT-23 is a public and well-known dataset, which has been al-
ready used in a number of previous works [16, 38]. Thus, its
adoption also favors the reproducibility of the experiments by
the scientific community.

Going into detail, IoT-23 has been collected in a controlled
IoT environment with an unrestrained network connection, with
no defense solutions being enforced. A Raspberry Pi infected
with specific malware is manipulated to produce malicious net-
work traffic, while three actual IoT devices (i.e. a Somfy Smart
Doorlock, a Philips HUE Smart LED Lamp, and an Amazon
Echo Home) generate benign network traffic. The dataset is
manually labeled at the biflow level, detailing the relationship
between malicious flows and the corresponding malicious ac-
tivities carried out. Conversely, traffic originating from non-
malicious sources is simply labeled as “benign”.
IoT-23 exhibits a severe class imbalance problem: the

four most highly-populated classes present more than 15M bi-
flows, the three least-populated ones have less than 10 biflows,
whereas all the other classes present no more than 40k biflows.

13https://www.stratosphereips.org/datasets-iot23

Hence, we randomly down-sampled (without replacement) the
former majority classes to the 0.25% of the original dataset and
removed the latter minority ones. After these pre-processing
operations, the employed dataset encompasses 870.6k biflows
distributed among 13 classes as depicted in Fig. 5: 12 attack-
traffic classes (in red) and 1 benign class (in green). Overall,
IoT-23 encompasses 99.85% TCP biflows, with the remaining
UDP biflows mainly (« 80%) belonging to the benign class.

It is worth noting that attack-traffic classes have labels re-
porting one or more malicious activities. As explained in [4],
each malicious activity should be considered as a detail of the
overall attack performed. For example, in C&C-FileDownload,
“C&C” is the first activity conducted (i.e. Command & Control
the infected victim), and “FileDownload” is what is done in that
C&C. Table 2 describes the meaning of each malicious activity
in IoT-23. We refer to the IoT-23 website [4] for further spe-
cific details.

The attacks in IoT-23 are also very diverse, covering all the
classic phases of the life cycle of common botnets (e.g., Mirai,
Reaper, BrickerBot, Okiru, and Hajime). In the following, we
describe the relationship between each phase of a botnet life
cycle and the malicious activities in IoT-23 (reported in paren-
theses):

i. Infection (Okiru and Torii), the devices get infected with
malware, turning them into bots;

ii. Propagation (PartOfAHorizontalPortScan), the botnet
spreads, infecting more devices;

iii. Command and Control Setup (C&C), the botmaster estab-
lishes a control infrastructure;

iv. Exploitation (DDoS, Attack, FileDownload), the botnet
carries out attacks or malicious activities;

v. Maintenance (HeartBeat), the botnet is managed and up-
dated by the botmaster.

It should be noted that our methodology is general and adapts
to various types of IoT-network attacks, namely it is not neces-
sarily bound to botnet traffic. In fact, while the IoT-23 dataset
includes malicious activities associated with phases explicitly
related to botnets’ life cycle (e.g., Infection, Command and
Control Setup, and Maintenance), it also covers more general
phases like Propagation (viz. reconnaissance) and Exploita-
tion. To further prove the generalizability of our methodol-
ogy, we also consider a wider set of attack scenarios by select-
ing three additional datasets related to the IoT-security context,
namely IoT-NID, Bot-IoT, and Edge-IIoTset (cf. Sec. 5.2).

9

https://www.stratosphereips.org/datasets-iot23

0 50 100 150 200 250
arrival time [s]

50

0

50

di
re

ct
io

n
do

wn

 u

p

pa

ck
et

 si
ze

 [B
]

benign
ddos

Figure 6: Example of benign and malicious (DDoS) biflows in terms
of PSQ features (specifically, direction, packet size, and inter-arrival
time). Packet direction is denoted via the sign associated with the
packet size: positive (Ò) for upstream and negative (Ó) for downstream
packets. The zoomed-in view (top right) reveals two closely-spaced,
equally-sized consecutive upstream packets, which is characteristic of
the DDoS instance. This pattern repeats for each DDoS marker in the
figure.

Network Input Size. Regarding the network input data de-
scribed in Sec. 3.1, we use Np “ 20 packets and Nb “ 576
bytes for PSQ and NET, respectively. This choice is justi-
fied by the sensitivity analysis on the IoT-23 dataset we con-
ducted in [16] with the same embedding functions considered
herein (see Sec. 3.2). To further substantiate our choice, in Ap-
pendix A, we also report a dataset characterization showing the
value distribution of PSQ and NET for the different classes of
IoT-23.

In the case of IoT-23, we underline that the first 576 bytes of
a biflow (i.e. the NET input) can be collected from the first few
packets (at most 3 for 95% of the biflows). Therefore, the time
required to collect the network input is dominated by the size
of PSQ, i.e. 20 packets.

The network input collection for the biflows having 20 pack-
ets or more requires less than « 16 seconds in 95% of the cases.
Biflows shorter than 20 packets conclude within « 1 second.
Refining the data collection with a threshold set to 5 seconds
to interrupt it in case of silence, the time required to collect
network input data falls within 6–16 seconds for 95% of the
biflows.

Figure 6 presents an example of benign and malicious
(i.e. DDoS) biflows from the IoT-23 dataset, focusing on 3 rep-
resentative fields from the PSQ input. From this example, a clear
request/response periodic pattern emerges (green ` markers in
Fig. 6), characteristic of IoT device (benign) traffic. Conversely,
the DDoS attack instance is characterized by pairs of equally
sized consecutive packets sent in the upstream direction (red
ˆ markers in Fig. 6). Note that the figure is meant to report
exemplificative patterns for the inputs, but it is not intended to
capture all the intricacies of the data-driven model trained for
feature embedding.

Dataset Partitioning. We split the classes of IoT-23 into three
disjoint sets to be exploited for evaluating FSL attack-traffic
classification approaches: Cnf1 , Cnf2 , and C f corresponding to
the classes considered to build Dnf1 , Dnf2 , and D f , respectively.
Figure 5 depicts the three sets of classes defined. More specifi-
cally, Cnf1 includes the 5 most populous classes of IoT-23; Cnf2
consists of 4 classes, the most populous besides those in Cnf1 ;
the last set C f includes the 4 remaining less populated classes.

Table 2: Description of malicious activities in IoT-23.

Malicious Activity Description

Attack
There is an attack from an infected device
to another host (e.g., brute force, command
injection).

C&C
The infected device has been connected to a
Command and Control server.

DDoS
The infected device is the source of a dis-
tributed denial of service attack.

FileDownload
A file has been downloaded from the in-
fected device.

HeartBeat
The packets sent on that connection are
used to keep track of hosts infected by a
C&C server.

Okiru
The connection has the characteristics of an
Okiru botnet.

PartOfAHorizontal
PortScan

The connections are used to do a horizontal
port scan to obtain information for future
attacks.

Torii
The connection has the characteristics of a
Torii botnet.

To emulate an actual few-shot operational scenario, the classes
in C f have less than 100 samples, with the least populated class
having just 11 samples.

4.2. Few-Shot Learning Setup
In the following, we describe the setup for both meta-

learning and transfer-learning paradigms and the configuration
of hyperparameters set for FSL approaches.

Meta-Learning Setup. To outline the meta-learning config-
uration, we provide details on the definition of meta-learning
episodes, which involves the selection of the parameters N
(ways) and K (shots) (see Sec. 2.1). During the meta-training,
we set the values of N and K based on the specific objective
of our analysis. Specifically, N is set to 4 (i.e. the number of
classes in Cnf2 and C f) in both meta-validation and meta-testing
phases: we aim at solving a classification problem where the
samples of 4 classes are available during the operational phase
(i.e. at inference time). In order to mimic the latter phase, N is
also set to 4 during meta-training, unless we evaluate the impact
of performing meta-training with a varying number of classes.
To select K, we are constrained by Umin, i.e. the minimum num-
ber of samples available in a class: Kq ` Ks ď Umin. Indeed, if
we set Kq “ Ks “ K, then K ď t

Umin
2 u. For IoT-23, Umin “ 11

(and K ď 5) for meta-testing, namely the number of samples in
D f of the least-populated C&C-HeartBeat-FileDownload class
of C f .

Transfer-Learning Setup. To implement the transfer-learning
approaches, we use the cross-evaluation procedure as follows.
We further split both Dnf and D f into a train set and a test set
that play roles analogous to the support set and the query set
of meta-learning, respectively. In detail, we perform 10 dif-
ferent hold-outs as a cross-validation strategy (with 70%{30%
train/test ratio). From each hold-out, we randomly generate 10

10

additional training runs, each one characterized by the selection
of a uniquely drawn set of K samples per class (i.e. having the
same cardinality as the support set used for meta-learning), for
a total of 100 evaluation points.

Hyperparameters Configuration. We have tuned the hyper-
parameters characterizing the considered FSL approaches via
a preliminary experimental campaign on Dnf2 . The optimal
configuration obtained is characterized by 100 training epochs
(each consisting of 120 episodes in the case of meta-learning)
and utilizes the Adam optimizer with a learning rate of 10´4.
Moreover, we apply an early-stopping mechanism that moni-
tors the validation accuracy to mitigate overfitting (with a pa-
tience of 20 epochs and a minimum delta of 0.01). Other
approach-specific hyperparameters have been configured via
similar preliminary experimentations. For completeness, we
report them in the Appendix D, along with additional imple-
mentation details.

4.3. Performance Metrics

To assess the performance of FSL approaches, we employ the
macro F1-score and the Davies-Bouldin index. For each metric,
we show both its average value and the 95th confidence interval
(attained on D f) over different runs, i.e. 120 and 100 for meta-
and transfer-learning approaches, respectively.

The macro F1-score is harmonic mean of per-class preci-
sion (precl) and recall (recl), which are averaged over the L
classes: F1 “ 1

L

řL
l“1

2˚precl˚recl
precl`recl

. We utilize the F1-score in
FSL approaches based on both meta-learning (where episodes
are inherently balanced) and transfer-learning, as well as for
non-few-shot baselines (the latter two are subject to data imbal-
ance). In fact, the F1-score proves to be more robust than the
conventional accuracy when dealing with skewed datasets.

The Davies-Bouldin index (DB index, in brief) is used to
measure the embedding function effectiveness since it quan-
tifies how similar an object is to its own cluster compared to
the other ones. DB index ranges from 0 (best) to `8 (worst).
This aspect holds great importance, as most meta-models op-
erate akin to a nearest-neighbor classifier within the embed-
ded space. Hence, a key point of good performance is to
define a clearly circumscribed space (viz. cluster) for each
class. Formally, the DB index is defined as the average of per-
cluster indexes psl ` skq{dlk over all the clusters (viz. classes):
DB “ 1

L

řL
l“1 maxk‰l

sl`sk
dlk

, where sl is the average distance be-
tween each point of cluster l and the centroid of that cluster, dlk

is the distance between the cluster centroids l and k, and L is
the number of clusters.

5. Experimental Evaluation

In Sec. 5.1, we perform a comprehensive comparison of em-
bedding functions aiming to select the best feature extractor. In
Sec. 5.2, we analyze the applicability of the FSL approaches on
different datasets, with the goal to validate their generalizabil-
ity. Then, in Sec. 5.3, we conduct multiple sensitivity analyses
to assess the impact of various parameters (e.g., the number of
ways and shots) on performance. To validate the effectiveness

2D-CNN 1D-CNN Hybrid Mimetic*
Embedding Functions

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

F1
-S

co
re

MetaOptNet
MatchingNet
RelationNet
ProtoNet
ANIL
MAML

2D-CNN 1D-CNN Hybrid Mimetic*
Embedding Functions

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6

DB
 In

de
x

MetaOptNet
MatchingNet
RelationNet
ProtoNet
ANIL
MAML

Figure 7: Performance according to F1-score (top) and DB index (bot-
tom) when using different embedding functions.

of FSL approaches, in Sec. 5.4, we show the performance of
non-few-shot solutions. Finally, in Sec. 5.5, we evaluate the
impact of using a larger training dataset.

5.1. Embedding Function Selection
This analysis assesses the performance of FSL approaches

with varying embedding functions. We employ the DL archi-
tectures described in Sec. 3.2: 2D-CNN, Hybrid, 1D-CNN,
and Mimetic˚.14 We set the number of ways (N) and shots
(K “ Kq “ Ks) to 4 and 5, respectively (i.e. 4-way 5-shot).

Figure 7 (top) illustrates the F1-score achieved on D f by
the six FSL approaches with different embedding functions.
We can notice that FSL approaches (mostly) show the same
relative performance when varying the embedding function:
MatchingNet, MetaOptNet, and ProtoNet are the best per-
forming, whereas RelationNet and ANIL are the worst ones,
regardless of the embedding function. MetaOptNet reaches the
overall best F1-score (up to 0.80) using the 2D-CNN. Focusing
on the specific embedding functions, those fed with PSQ input
data (i.e. 2D-CNN and Hybrid) exhibit better performance. In-
terestingly, single-modal embedding functions result in a bet-
ter F1-score w.r.t. Mimetic˚ for all FSL approaches but ANIL.
This outcome highlights the need to design optimized multi-
modal DL solutions (e.g., in terms of architecture and learning
procedure) to deal with attack-traffic classification in an FSL
scenario.

The outcomes that can be drawn when looking at the DB in-
dex (Fig. 7, bottom) are in line with those provided by the F1-
score, with 2D-CNN significantly outperforming other embed-
ding functions. However, in this case, MAML shows slightly bet-
ter results than other FSL approaches, although it never reaches
a DB index lower than 1.5. This denotes that the common
training procedure minimizing categorical cross-entropy loss is
struggling in obtaining a generalizable and separable embed-
ding space. This call for a more informative loss function with

14When employing the 1D-CNN, we opt for First-Order MAML to reduce the
computational load. This variant, although simpler, achieves nearly compara-
ble performance to MAML by exclusively utilizing first-order gradients during
parameter optimization [18].

11

100 50 0 50 100

100

50

0

50

100

C&C-Torii
FileDownload

C&C-FileDownload
C&C-HeartBeat-FileDownload

Figure 8: Kernel Density Estimate (KDE) plot obtained projecting the
feature vectors produced by MetaOptNet with 2D-CNN as embedding
function via t-SNE.

the objective of improving the separability of classes in the la-
tent space (e.g., by including an optimization term based on the
DB index).

Also, we estimate the complexity of the embedding functions
via the number of Trainable Parameters (TP) of each DL archi-
tecture. The best-performing 2D-CNN (145k TP) shows sig-
nificantly lower (viz. better) computational complexity w.r.t.
Mimetic˚ (1.2M TP) and 1D-CNN (4.0M TP) and similar to
Hybrid (119k TP). Therefore, in the following analyses, we
leverage the 2D-CNN as embedding function.

To provide an example of the effectiveness of 2D-CNN,
Fig. 8 depicts the projection in a two-dimensional space of
the embedded biflows obtained using the best-performing ap-
proach, i.e. MetaOptNet. This projection is achieved using
t-Distributed Stochastic Neighbor Embedding (t-SNE), which
aims to preserve the local structure of the embedded space.
From this figure, it is evident that sufficiently separable clus-
ters can be identified. In fact, the cluster that tends to overlap
more with others in certain regions is the C&C-FileDownload,
highlighting a similarity with the other classes in C f .

5.2. Generalization Performance
In this section, we delve into the generalization capability

of the chosen FSL approaches considering a wider set of at-
tack scenarios. To this aim, we have selected three additional
datasets related to the IoT-security context: IoT-NID [39], Bot-
IoT [40], and Edge-IIoTset [41].15 To confirm the broad ap-
plicability of the considered FSL approaches for classifying at-
tack traffic in IoT environments, we exploit the best embedding
function based on the previous analysis (i.e. 2D-CNN) and eval-
uate its performance on these three datasets. Note that although
such datasets all contain attack traffic involving IoT devices,
their nature and composition are different. Thus, the result-
ing classification problems may be characterized by a different
complexity.

15Further details regarding these datasets are reported in Appendix B.

Dataset Partitioning. As for IoT-23, we have applied two cri-
teria to define the partitioning of the dataset: (i) C f includes all
underrepresented classes (i.e. the minority ones in their respec-
tive datasets); (ii) Dnf1 and Dnf2 have a number of classes equal
to C f , at least. This choice influences the number of ways, since
N is set equal to C f . On the other hand, Kp“ Ksq is kept fixed
for all the datasets to keep the analysis consistent in terms of
shots. Below, we deepen the partitioning and the configuration
of the episodes for each dataset:

• IoT-NID consists of 10 highly imbalanced classes. The
3 least frequent classes (i.e. OS Detection, Man-in-the-
Middle (MITM) ARP Spoofing, and Mirai Host Bruteforce)
have less than 500 biflows each, while the most frequent
class (i.e. Benign) has over 80k biflows. These minor-
ity classes are included in C f . Consequently, for meta-
training, meta-validation, and meta-testing, we define 3-
way 5-shot tasks (K “ Ks “ 5, Kq “ 50).16

• Bot-IoT gathers traffic from 10 different attacks along
with benign traffic, for a total of 11 classes. As for IoT-
NID, C f includes the 3 minority classes (i.e. DDoS HTTP,
Keylogging, and Data Exfiltration) having under 2k sam-
ples, against a majority class (i.e. OS Fingerprint) with
more than 50k samples. The episode setup is the same as
IoT-NID.

• Unlike the other datasets, Edge-IIoTset contains a larger
number of 24 classes, enabling an evaluation scenario that
considers a larger number of ways. Therefore, we choose
the classes with less than 2k samples for C f (i.e. Wa-
ter Level, Vulnerability Scanner, XSS, Mobdus, Backdoor,
Ransomware, OS Fingerprint, and MITM). On the other
hand, the majority class (i.e. Sound Sensor) has « 95k
samples. In this case, we set episodes with N “ 8, Ks “ 5,
and Kq “ 50.

Generalization Results. Overall, the experimental results sug-
gest that FSL has a wide range of applications in the domain
of attack-traffic classification. With the exception of Edge-
IIoTset—which results in a unique setup and a harder classi-
fication problem when applying the aforementioned criteria—
the observed effectiveness of FSL methods is comparable (IoT-
NID) or better (Bot-IoT) when compared to that achieved on
IoT-23. Table 3 presents the F1-score and the DB index for
the 6 meta-learning approaches on the different datasets con-
sidered. Starting with IoT-NID, we observe F1-score and DB
index values relatively similar to those obtained on IoT-23, ex-
cept for RelationNet and MatchingNet, which tend to im-
prove (`46% F1-score) and deteriorate (´14% F1-score), re-
spectively. The performance is good both in terms of F1-score
and DB index when the approaches are tested on Bot-IoT. Par-
ticularly, the best approach, MetaOptNet, achieves an F1-score
of 83%. On the other hand, classification results on Edge-
IIoTset are worse, likely due to a more complex classification

16Unlike IoT-23, the minority class has enough biflows to consider a larger
value for Kq.

12

2 3 4 5
Ways

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

F1
-S

co
re

MetaOptNet
MatchingNet
RelationNet
ProtoNet
ANIL
MAML
TLFT
TLFZ

2 3 4 5
Ways

1.5

1.8

2.1

2.4

DB
 In

de
x

MetaOptNet
MatchingNet
RelationNet
ProtoNet
ANIL
MAML
TLFT
TLFZ

Figure 9: Sensitivity analysis to train ways (N) in terms of F1-score
(top) and DB index (bottom).

5 10 15 20 25
Shots

0.2
0.3
0.4
0.5
0.6
0.7
0.8

F1
-S

co
re

MetaOptNet
MatchingNet
RelationNet
ProtoNet
ANIL
MAML
TLFT
TLFZ

5 10 15 20 25
Shots

1.5

1.8

2.1

2.4

DB
 In

de
x

MetaOptNet
MatchingNet
RelationNet
ProtoNet
ANIL
MAML
TLFT
TLFZ

Figure 10: Sensitivity analysis to train shots (K) in terms of F1-score
(top) and DB index (bottom).

task given the higher number of ways (N “ 8). This high-
lights the need for a larger number of shots, as results show that
having 5 samples for 8 classes is insufficient. Notably, some ap-
proaches (i.e. MetaOptNet, MatchingNet, and ProtoNet) re-
port slight variability across different datasets. Conversely, the
remaining (i.e. RelationNet, ANIL, and MAML) exhibit greater
sensitivity to different data, thus suggesting that an additional
hyperparameter tuning phase for the specific scenario would be
beneficial, as also stated in [42].

5.3. Sensitivity Analyses

This section presents sensitivity analyses to the number of
ways (N) and shots (K) and concludes by relating the embed-
ding function effectiveness with classification performance.

Sensitivity to the Number of Ways (N). This analysis aims to
investigate the impact of the number of meta-training ways N
looking at the trend of the F1-score and DB index. More specif-
ically, N ranges from 2 to 5 for meta-training tasks, while it is

set to 4 for meta-testing and meta-validation ones. The number
of shots remains constant at K “ 5. Likewise, in the case of
TLFT and TLFZ, we present the outcomes obtained on C f classes
employing K “ 5 samples for each class. Conversely, MAML
and ANIL require the same value of N for meta-training, meta-
validation, and meta-testing, precluding this specific analysis.
However, to provide an additional benchmark, we show the per-
formance of MAML and ANIL with 4-way 5-shot tasks for each
meta-learning phase. Figure 9 shows an almost constant trend
with only minor oscillations for both metrics when changing N.
MetaOptNet reaches the highest F1-score of « 0.80 and DB in-
dex of « 1.61 with 5 ways, although the scores of ProtoNet
and MatchingNet are very close. Conversely, RelationNet
is the worst-performing approach. Regarding transfer-learning-
based approaches, F1-score and (mostly) DB index show poor
performance for both TLFT (ă 0.70 F1-score and 2.09 DB in-
dex) and TLFZ (ă 0.50 F1-score and 2.35 DB index).

Sensitivity to the Number of Shots (K). In this analysis, we
simultaneously vary the number of shots of query and support
sets (Kq “ Ks “ K) used during meta-training from 5 to 25
with a step of 5, while for meta-validation and meta-testing
K “ 5. The number of ways is N “ 4. Again, for TLFT
and TLFZ, we report the results on C f using K “ 5 samples
per class (i.e. equal to K used in the operational phase of meta-
learning approaches). The F1-score in Fig. 10 (top) reports that
the best-performing approaches (MetaOptNet, MatchingNet,
ProtoNet, and MAML) do not show a significant increment
for larger values of K. On the other hand, the approaches
with lower performance (ANIL and RelationNet) improve
in a more significant way with K, still not providing perfor-
mance comparable to the others (« 0.50 F1-score at most).
MetaOptNet achieves the best F1-score (0.80) when K “ 25,
although the improvement is limited (« `0.01 with respect to
K “ 5), especially considering that the computational effort
when K “ 25 is much higher. DB index is depicted in Fig. 10
(bottom) and highlights patterns similar to the F1-score. In this
case, MAML has the best results with a DB index equal to 1.47
when K “ 25, whereas RelationNet is the worst approach
(1.86 when K “ 5).

In addition, we wonder if using a higher number of support
samples in the operational phase (i.e. meta-testing) may result
in performance improvement. Therefore, hereinafter we con-
sider the best-performing approach, namely MetaOptNet, and
jointly vary K “ Ks “ Kq in t5, 10, 15, 20, 25u in all the meta-
learning phases. Because the maximum number of samples for
classes in C f may be lower than the required K, we set the num-
ber of support samples to the highest possible for each class in
the meta-testing phase, namely we use K “ mintK,Ul ´ 1u,
where Ul is the total number of samples of the class l. Re-
sults are shown in Fig. 11 as confusion matrices, one for each
tested value of K. From the F1-score values on top of each ma-
trix, a clear trend emerges: the performance degrades for higher
K, i.e. F1-score passes from 0.79 with K “ 5 to 0.56 with
K “ 25. Nevertheless, confusion matrices exhibit diverse fine-
grained behaviors. The main finding is that the more populous
classes obtain a performance boost when passing from K “ 5

13

Table 3: F1-score and DB index achieved by the FSL approaches on IoT-NID, Bot-IoT, Edge-IIoTset, and IoT-23.

FSL Approaches

Dataset Metric MetaOptNet MatchingNet RelationNet ProtoNet ANIL MAML

F1-Score [%] 72.89 63.53 67.50 74.44 44.83 77.23
IoT-NID

DB Index 1.54 1.39 1.25 1.88 1.61 1.37
F1-Score [%] 83.80 80.11 65.43 81.27 75.50 83.02

Bot-IoT
DB Index 1.34 1.43 1.27 1.58 1.43 1.22
F1-Score [%] 64.57 67.86 31.03 66.70 19.88 19.21

Edge-IIoTset
DB Index 2.97 1.79 2.15 2.11 2.06 1.99
F1-Score [%] 78.80 77.27 21.06 73.60 41.90 77.51

IoT-23
DB Index 1.67 1.65 1.86 1.72 1.68 1.50

K=5, 0.79 F1-score.

a b c d
Predicted Label

a
b

c
d

Tr
ue

 L
ab

el

0.67 0.00 0.15 0.18

0.04 0.88 0.06 0.02

0.08 0.00 0.92 0.00

0.21 0.00 0.08 0.71
0.0

0.2

0.4

0.6

0.8

1.0
K=10, 0.71 F1-score.

a b c d
Predicted Label

a
b

c
d

Tr
ue

 L
ab

el

0.64 0.00 0.14 0.22

0.03 0.89 0.06 0.02

0.04 0.00 0.96 0.00

0.21 0.00 0.04 0.75
0.0

0.2

0.4

0.6

0.8

1.0
K=15, 0.65 F1-score.

a b c d
Predicted Label

a
b

c
d

Tr
ue

 L
ab

el

0.69 0.01 0.10 0.20

0.03 0.92 0.05 0.01

0.23 0.00 0.78 0.00

0.29 0.00 0.00 0.71
0.0

0.2

0.4

0.6

0.8

1.0
K=20, 0.60 F1-score.

a b c d
Predicted Label

a
b

c
d

Tr
ue

 L
ab

el

0.73 0.01 0.06 0.20

0.02 0.95 0.02 0.01

0.30 0.00 0.70 0.00

0.35 0.00 0.00 0.65
0.0

0.2

0.4

0.6

0.8

1.0
K=25, 0.56 F1-score.

a b c d
Predicted Label

a
b

c
d

Tr
ue

 L
ab

el

0.73 0.01 0.05 0.20

0.03 0.96 0.02 0.00

0.44 0.00 0.56 0.00

0.37 0.00 0.00 0.63
0.0

0.2

0.4

0.6

0.8

1.0

Figure 11: Confusion matrices for best performing FSL approach MetaOptNet when varying the number of both support-set and query-set sizes
K P t5, 10, 15, 20, 25u in all meta-learning phases.
Label encoding: a = C&C-FileDownload, b = C&C-Torii, c = FileDownload, and d = C&C-HeartBeat-FileDownload.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
F1-Score

1.4
1.6
1.8
2.0
2.2
2.4

DB
 In

de
x

MetaOptNet
MatchingNet
RelationNet
ProtoNet
ANIL
MAML
TLFT
TLFZ

Figure 12: F1-score against DB index of FSL approaches. Results for
all the N-way K-shot considered are reported.

to K “ 25: the recall score passes from 0.67 (0.88) to 0.73
(0.96) for the C&C-FileDownload (C&C-Torii). On the other
hand, less populated classes experience performance degrada-
tion, likely due to the higher imbalance of the support-set size
result of the higher number of shots.

Classification Performance vs. Embedding Function Ef-
fectiveness. Figure 12 further deepens the relation be-
tween the F1-score and DB index. In detail, a correlating
trend can be identified—particularly shown by MetaOptNet,
MatchingNet, MAML, ProtoNet, TLFT, and TLFZ—where the
higher (resp. the lower) the classification accuracy the better
(resp. the worse) the separation effectiveness of the embed-
ding function. The remaining approaches show peculiar behav-
iors: RelationNet results in a slightly worse embed space for
higher F1-scores, thus proving its poor adaptability to attack-
traffic classification; differently, ANIL obtains a good embed-

ding separation, but it suffers in terms of F1-scores, highlight-
ing the chance to improve its performance, e.g., by devising a
loss function explicitly optimizing the DB index.

5.4. Performance of Non-Few-Shot Approaches

This section aims to validate the necessity of applying few-
shot tailored solutions for performing attack-traffic classifica-
tion. With this goal in mind, we leverage the Random For-
est (RF), the eXtreme Gradient Boosting (XGB), and the best-
performing 2D-CNN (hereinafter, referred to as Scratch) as
non-few-shot approaches, being these models successfully used
in the traffic-classification domain [3, 32]. As input data, we
selected the PSQ input type defined in Sec. 3.1 properly flat-
tened to feed RF and XGB. To perform this analysis we em-
ploy (i) a non-few-shot-based masking procedure and (ii) tra-
ditional class-imbalance techniques (namely, random oversam-
pling and SMOTE), both detailed in Appendix E. We evaluate
the classification performance of such solutions via the same
cross-validation procedure used for transfer-learning.

Regarding the non-few-shot-based masking procedure, RF,
XGB, and Scratch obtain an average F1-score of 0.74, 0.71,
and 0.69, respectively (see the central dashed-delimited block
in Fig. 13). Accordingly, all non-few-shot approaches featur-
ing the masking inference procedure present poorer classifi-
cation performance than the best FSL ones (i.e. MetaOptNet,
MatchingNet, and MAML), which show a relative improvement
of 8%–16% F1-score.

Moreover, regarding the application of traditional class-
imbalance techniques, namely random oversampling and

14

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
F1-Score

RF-RandOvers
RF-SMOTE

XGB
Scratch

RF
TLFZ

TLFT

MAML
ANIL

ProtoNet
RelationNet

MatchingNet
MetaOptNet

5 Classes (Dnf1) 9 Classes (Dnf1 Dnf2)

Figure 13: Comparison of F1-score attained by both few-shot and
non-few-shot approaches when using training datasets with a differ-
ent number of classes.

SMOTE, we incorporate them into the training of RF, which is
the best non-few-shot model compared to XGB and Scratch

(see Fig. 13). Specifically, RF-RandOvers uses random over-
sampling, while RF-SMOTE leverages synthetic instances gener-
ated by SMOTE. Both are used to augment the K “ 5 samples
of few-shot classes, resulting in 5000 training samples for each
class in C f (cf. Appendix E).

Looking at the bottom dashed-delimited block in Fig. 13,
RF-RandOvers and RF-SMOTE yield lower F1-scores (0.63 and
0.62, respectively) than those of RF trained with the former
masking technique for overfitting mitigation (0.74 F1-score).
This highlights the limitations of these methods for extremely
imbalanced scenarios. In fact, despite one can argue that 5000
augmented samples might be not enough because the 2-order-
of-magnitude gap with the majority class (« 105 samples, as
depicted in Fig. 5), creating a higher number of samples from
a limited starting pool (i.e. K “ 5 samples) may result in very
low variability for minority classes, inevitably leading to over-
fitting in real-world scenarios. Therefore, this investigation is
impractical.

In the next section, we further deepen the comparison be-
tween FSL approaches and non-few-shot baselines when vary-
ing the training requirements.

5.5. Performance when Augmenting Prior Knowledge
This experimental campaign is aimed at evaluating the

performance obtained when taking advantage of augmented
knowledge during the initial training phase, that is using a
larger set of non-few classes. Formally, we employ the training
dataset Dnf1 Y Dnf2 counting 9 classes (Cnf1 Y Cnf2) and com-
pare the corresponding performance with that obtained with
Dnf1 counting 5 classes (Cnf1). Notably, for meta-learning ap-
proaches, this analysis is a proxy to evaluate the effectiveness
of the proposed meta-learning procedure (see Sec. 3.3) because
merging Dnf1 and Dnf2 prevents the enforcement of early stop-
ping: the meta-training phase is carried out for all the 100

epochs. For both meta-training and meta-testing, we set N “ 4
and K “ 5 (i.e. 4-ways 5-shots tasks), an analogous configu-
ration is adopted for transfer-learning-based and non-few-shot
approaches.

Figure 13 reports the classification performance in terms
of F1-score when using a different number of classes dur-
ing meta-training. Results show a performance boost (up to
`0.30 F1-score) when leveraging 9 training classes mainly
for those algorithms underperforming in previous analyses
(i.e. RelationNet, ANIL, TLFZ, and TLFT). On the other
hand, typically well-performing methods (i.e. MetaOptNet,
MatchingNet, ProtoNet, and MAML) show a slight perfor-
mance degradation, i.e. up to ´0.09 F1-score by MAML.

However, because increasing the number of training classes
is expected to lead to performance improvement, the worsening
experienced by such approaches is likely related to overfitting,
due to the absence of the early-stopping mechanism. Interest-
ingly, non-few-shot approaches (i.e. RF, XGB, and Scratch)
obtain similar performance regardless of the number of train-
ing classes. Differently, RF-SMOTE and RF-RandOvers ex-
hibit lower F1-score values when trained with the wider class
pool. This is likely attributable to overfitting phenomena. Note-
worthy, these models struggle to obtain performance figures
comparable to the three best FSL approaches, namely MAML,
MatchingNet, and MetaOptNet, underlying the necessity of
few-shot-tailored attack-traffic classification solutions.

6. Conclusions and Future Perspectives

In this work, we adopted FSL approaches for IoT attack-
traffic classification. We used FSL as a means to cope with
the problem of scarcity of training data for certain classes when
dealing with the classification of traffic generated by cyberat-
tacks. Accordingly, the evaluation relied on a recent and pub-
licly available attack-traffic dataset collected in an IoT environ-
ment (IoT-23).

The analyses assessed (i) the impact of using different em-
bedding functions for extracting features in the latent space,
(ii) the generalization ability of FSL approaches to wider IoT
attack scenarios, (iii) the sensitivity to the number of classes
and the number of samples for each class, and (iv) the perfor-
mance attained when augmenting the prior knowledge acquired
from related non-few tasks. Both single-modal and multimodal
state-of-the-art embedding functions based on DL have been
considered, and results show that the 2D-CNN fed with packet-
sequence input data performs the best in learning new tasks,
on average. The experimentation covered the main families of
approaches and paradigms to tackle the FSL problem, includ-
ing meta-learning FSL approaches (ProtoNet, MatchingNet,
RelationNet, MetaOptNet, MAML, and ANIL) and transfer-
learning ones (Fine-Tuning and Freezing). In addition, various
non-few-shot baselines are also evaluated.

Overall, the analysis of sensitivity against K (viz. the num-
ber of shots/instances per class) and N (viz. the number of sam-
pled ways/classes) witnesses that no major impact on perfor-
mance is observed. MatchingNet, MetaOptNet, and MAML

15

attain the best performance in terms of F1-score, which set-
tles to 0.75–0.8. On the other hand, RelationNet provides
the worst performance (always lower than 0.4 F1-score, at
best). These performance figures generally improve when us-
ing a larger set of non-few classes, which positively impacts
the worst-performing approaches (RelationNet and ANIL).
Transfer-learning approaches show F1-scores lower than 0.7
at best, failing to achieve performance figures as good as the
meta-learning ones. We also proved the effectiveness of few-
shot-tailored attack-traffic classification solutions by showing
that the best FSL approach (i.e. MetaOptNet) obtains a relative
gain of F1-score in the range 8%–27% when compared with
non-few-shot baselines.

Based on the outcomes of the experimental evaluation con-
ducted herein, in future work, we plan to explore: (i) the opti-
mization of the embedding function, e.g., by considering more
advanced architectures; (ii) the improvement of the learning
objective, e.g., by employing more advanced loss functions to
enhance the quality of embeddings; (iii) the expansion of the
current methodology to address multi-stage attacks that involve
multiple phases for completion, e.g., by identifying and corre-
lating botnet activities in specific stages; (iv) the comparison of
algorithm- and model-based FSL approaches with data-based
ones exploiting generative models, e.g., generative adversarial
networks and variational autoencoders. Finally, (v) we plan to
evaluate the generalizability of the proposed framework in ap-
plication domains beyond IoT attack-traffic classification.

Acknowledgments

This work is partially supported by the Italian Research
Program “PON Ricerca e Innovazione 2014-2020 (PON R&I)
REACT-EU – Asse IV – Azione IV.4”, and by the “PNRR
ICSC National Research Centre for High Performance Com-
puting, Big Data and Quantum Computing (CN00000013)”,
under the NRRP MUR program funded by the NextGen-
erationEU. Also, this work is partially carried out within
the “xInternet” Project supported by the MUR PRIN 2022
program (D.D.104—02/02/2022) funded by the NextGenera-
tionEU. This manuscript reflects only the authors’ views and
opinions and the Ministry cannot be considered responsible for
them.

References

[1] N. Neshenko, E. Bou-Harb, J. Crichigno, G. Kaddoum, and N. Ghani. De-
mystifying IoT security: An exhaustive survey on IoT vulnerabilities and
a first empirical look on Internet-scale IoT exploitations. IEEE Commun.
Surveys Tuts., 21(3), 2019.

[2] G. Aceto, D. Ciuonzo, A. Montieri, V. Persico, and A. Pescapé. MIRAGE:
Mobile-app Traffic Capture and Ground-truth Creation. In IEEE ICCCS,
2019.

[3] C. Wang, A. Finamore, L. Yang, K. Fauvel, and D. Rossi. AppClassNet:
A commercial-grade dataset for application identification research. ACM
SIGCOMM CRR, 52(3), 2022.

[4] S. Garcia, A. Parmisano, and M. J. Erquiaga. IoT-23: A labeled dataset
with malicious and benign IoT network traffic, 2020.

[5] S. Huang, Y. Liu, C. Fung, W. An, R. He, Y. Zhao, H. Yang, and Z. Luan. A
Gated Few-shot Learning Model For Anomaly Detection. In IEEE ICOIN,
2020.

[6] W. Zheng, C. Gou, L. Yan, and S. Mo. Learning to Classify: A Flow-
Based Relation Network for Encrypted Traffic Classification. In ACM Web
Conference, 2020.

[7] Z.-M. Wang, J.-Y. Tian, J. Qin, H. Fang, and L.-M. Chen. A Few-Shot
Learning-Based Siamese Capsule Network for Intrusion Detection with
Imbalanced Training Data. Hindawi Computat. Intell. Neurosci., 2021,
Sep 2021.

[8] Z. Zhao, Y. Lai, Y. Wang, W. Jia, and H. He. A Few-Shot Learning Based
Approach to IoT Traffic Classification. IEEE Commun. Lett., 26(3), 2022.

[9] G. Bovenzi, D. Di Monda, A. Montieri, V. Persico, and A. Pescapé. Few
shot learning approaches for classifying rare mobile-app encrypted traffic
samples. In IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), 2023.

[10] C. Xu, J. Shen, and X. Du. A Method of Few-Shot Network Intrusion
Detection Based on Meta-Learning Framework. IEEE Trans. Inf. Forensics
Security, 15, 2020.

[11] X. Zhou, W. Liang, S. Shimizu, J. Ma, and Q. Jin. Siamese Neural
Network Based Few-Shot Learning for Anomaly Detection in Industrial
Cyber-Physical Systems. IEEE Trans. Ind. Informat., 17(8), 2021.

[12] T. Feng, Q. Qi, J. Wang, and J. Liao. Few-Shot Class-Adaptive Anomaly
Detection with Model-Agnostic Meta-Learning. In IFIP Networking,
2021.

[13] Y. Ouyang, B. Li, Q. Kong, H. Song, and T. Li. FS-IDS: A Novel Few-
Shot Learning Based Intrusion Detection System for SCADA Networks.
In IEEE ICC, 2021.

[14] W. Liang, Y. Hu, X. Zhou, Y. Pan, and K. I-Kai Wang. Variational
Few-Shot Learning for Microservice-Oriented Intrusion Detection in Dis-
tributed Industrial IoT. IEEE Trans. Ind. Informat., 2021.

[15] W.-Y. Chen, Y.-C. Liu, Z. Kira, Y.-C. F. Wang, and J.-B. Huang. A closer
look at few-shot classification. In ICLR, 2019.

[16] A. Nascita, F. Cerasuolo, D. Di Monda, J. Garcia, A. Montieri, and
A. Pescapè. Machine and Deep Learning Approaches for IoT Attack Clas-
sification. In IEEE INFOCOM, 05 2022.

[17] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni. Generalizing from a few
examples: A survey on few-shot learning. ACM Comput. Surv., 53(3),
2020.

[18] C. Finn, P. Abbeel, and S. Levine. Model-Agnostic Meta-Learning for
Fast Adaptation of Deep Networks. In PMLR ICML, volume 70, 2017.

[19] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al. Matching net-
works for one shot learning. NIPS, 29, 2016.

[20] J. Snell, K. Swersky, and R. Zemel. Prototypical networks for few-shot
learning. NIPS, 30, 2017.

[21] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales.
Learning to compare: Relation network for few-shot learning. In IEEE
CVPR, 2018.

[22] C. Rong, G. Gou, C. Hou, Z. Li, G. Xiong, and L. Guo. UMVD-FSL:
Unseen Malware Variants Detection Using Few-Shot Learning. In IEEE
IJCNN, 2021.

[23] H. Guo, X. Zhang, Y. Wang, B. Adebisi, H. Gacanin, and G. Gui. Few-
shot malware traffic classification method using network traffic and meta
transfer learning. In 2022 IEEE 96th Vehicular Technology Conference
(VTC2022-Fall). IEEE, 2022.

[24] J. Yang, H. Li, S. Shao, F. Zou, and Y. Wu. Fs-ids: A framework for
intrusion detection based on few-shot learning. Computers & Security,
122, 2022.

[25] C. Lu, X. Wang, A. Yang, Y. Liu, and Z. Dong. A few-shot based model-
agnostic meta-learning for intrusion detection in security of internet of
things. IEEE Internet of Things Journal, 2023.

[26] M. Pawlicki, R. Kozik, and M. Choraś. Improving siamese neural net-
works with border extraction sampling for the use in real-time network
intrusion detection. In 2023 International Joint Conference on Neural Net-
works (IJCNN). IEEE, 2023.

[27] M. M. U. Chowdhury, F. Hammond, G. Konowicz, C. Xin, H. Wu, and
J. Li. A few-shot deep learning approach for improved intrusion detection.
In IEEE UEMCON, 2017.

[28] Y. Yu and N. Bian. An Intrusion Detection Method Using Few-Shot
Learning. IEEE Access, 8, 2020.

[29] L. Yu, J. Dong, L. Chen, M. Li, B. Xu, Z. Li, L. Qiao, L. Liu, B. Zhao, and
C. Zhang. PBCNN: Packet Bytes-based Convolutional Neural Network for
Network Intrusion Detection. Elsevier Comput. Netw., 194, 2021.

16

[30] K. Lee, S. Maji, A. Ravichandran, and S. Soatto. Meta-learning with
differentiable convex optimization. In IEEE/CVF CVPR, 2019.

[31] A. Raghu, M. Raghu, S. Bengio, and O. Vinyals. Rapid Learning or
Feature Reuse? Towards Understanding the Effectiveness of MAML. In
ICLR, 2019.

[32] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé. Mobile encrypted
traffic classification using deep learning: Experimental evaluation, lessons
learned, and challenges. IEEE Trans. Netw. Service Manag., 16(2), 2019.

[33] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret. Net-
work traffic classifier with convolutional and recurrent neural networks for
Internet of Things. IEEE Access, 5, 2017.

[34] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang. End-to-end encrypted
Traffic Classification with one-dimensional convolution neural networks.
In IEEE ISI, 2017.

[35] W. Wang, Y. Sheng, J. Wang, X. Zeng, X. Ye, Y. Huang, and M. Zhu.
Hast-ids: Learning hierarchical spatial-temporal features using deep neural
networks to improve intrusion detection. IEEE access, 6, 2017.

[36] Z. Song, Z. Zhao, F. Zhang, G. Xiong, G. Cheng, X. Zhao, S. Guo, and
B. Chen. I 2 rnn: An incremental and interpretable recurrent neural network
for encrypted traffic classification. IEEE Transactions on Dependable and

Secure Computing, 2023.
[37] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapè. MIMETIC: Mobile

encrypted traffic classification using multimodal deep learning. Elsevier
Comput. Netw., 165, 2019.

[38] T. M. Booij, I. Chiscop, E. Meeuwissen, N. Moustafa, and F. T. den Har-
tog. ToN IoT: The role of heterogeneity and the need for standardization of
features and attack types in IoT network intrusion data sets. IEEE Internet
Things J., 9(1), 2021.

[39] K. Hyunjae, D. H. Ahn, G. M. Lee, J. D. Yoo, K. H. Park, and H. Kim.
Iot network intrusion dataset. IEEE Dataport, 2019.

[40] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull. Towards the
development of realistic botnet dataset in the internet of things for network
forensic analytics: Bot-iot dataset. Future Generation Computer Systems,
100, 2019.

[41] M. A. Ferrag, O. Friha, D. Hamouda, L. Maglaras, and H. Janicke. Edge-
iiotset: A new comprehensive realistic cyber security dataset of iot and iiot
applications for centralized and federated learning. IEEE Access, 10, 2022.

[42] A. Antoniou, H. Edwards, and A. Storkey. How to train your maml. arXiv
preprint arXiv:1810.09502, 2018.

17

Appendix A. IoT-23 Dataset Characterization

In this section, we delve into the choice of the PSQ and NET

inputs (cf. Sec. 3.1) through a characterization of IoT-23 in
the light of these two types of input. Specifically, this analy-
sis witnesses how the two inputs represent a good choice for
characterizing the peculiarity of the (IoT attack-traffic) classes
composing the datasets. For a given class, we report the aver-
age value on all biflows for each packet/byte index (i.e. Np and
Nb, respectively) in Fig. A.14.

Interestingly, the packet length (PL) (see Fig. A.14(a))
proves to be particularly useful in distinguishing minority
classes (i.e. C&C-FileDownload, C&C-Torii, FileDownload,
and C&C-HeartBeat-FileDownload). The differences between
“high frequency” attacks (e.g., DDoS and PartOfAHorizontal-
PortScan) are less relevant, as the PL remains at similar and low
values.

The packet direction (DIR) exhibits interesting patterns for
several classes (see Fig. A.14(b)). For example, DDoS is
mainly composed of outgoing packets. Also, we note that
this class encompasses various types of DDoS attacks from
UDP-based to TCP Null attacks (i.e. having packets with
all 6 TCP flags unset, as can be seen from Np “ 11 in
Fig. A.14(e)). Other attacks (e.g., C&C-HeartBeat-Attack
and C&C-HeartBeat-FileDownload) present several incoming
packets from the C&C server (e.g., to keep track of the infected
device).

The inter-arrival time (IAT) also presents diverse values for
different classes (see Fig. A.14(c)). For instance, it tends to be
higher for Benign and attacks like C&C-HeartBeat and DDoS,
while it shows lower values for attacks with fewer samples.

The TCP window size (WIN) provides helpful information,
especially in the first packets, up to Np “ 5 (see Fig. A.14(d)).
The pattern exhibited by certain DDoS and PartOfAHorizon-
talPortScan biflows is interesting, with an average value of
« 2000 Bytes.

In addition to the 4 previously introduced fields, we include 2
more fields for this characterization introduced in [1], namely,
the base-10 representation of the flag field in the TCP header
(FLG) and the Time-to-Live (TTL).

FLG is particularly relevant for all those attacks exploiting
TCP header malformations. In fact, as already mentioned, TCP
Null Attack DDoS sets all flags to 0, whereas other DDoS at-
tacks set various flags to 1 (see Fig. A.14(e), from Np “ 3 to
Np “ 6).

Finally, there is a variance in TTL values (see Fig. A.14(f))
between DDoS, PartOfAHorizontalPortScan, and minority
classes. However, compared to the other 4 features, FLG and
TTL contribute less significantly. Hence, we have chosen to
utilize PL, DIR, IAT, and WIN.

Regarding the NET input (see Fig. A.14(g) and Fig. A.14(i)),
there is a clear difference between “high frequency” and “low
frequency” attacks, where the latter, characterized by file down-
load phases, have on average a longer payload in terms of
bytes. Additionally, the effect of obfuscation conducted on bi-
ased fields [1] (e.g., IP addresses and L4 ports) can also be ob-
served in the figure.

From Figs. A.14(h) and A.14(i) it also emerges that, in the
case of IoT-23, there are no “late-starting” attacks, namely at-
tacks that start after Np packets or Nb bytes. Nonetheless, we
remark that in the event of needing to address these attacks, it
is sufficient to appropriately set Np and Nb.

Appendix B. Details of IoT-NID, Bot-IoT, and Edge-
IIoTset Datasets

Herein, we provide more details regarding the three addi-
tional datasets introduced in Sec. 5.2. Figure B.15 depicts the
class population in terms of biflows for IoT-NID, Bot-IoT, and
Edge-IIoTset. Additionally, we illustrate the partitioning of
classes for Dnf1 , Dnf2 , and D f (according to the criteria detailed
in Sec. 5.2) using distinct hatch patterns. Normal and malicious
classes are differentiated by coloring, the former in green and
the latter in red. Notably, these datasets encompass both TCP
and UDP traffic (e.g., DDoS UDP and Mirai UDP are attacks
generating exclusively UDP traffic).

Appendix C. Embedding Functions Details

We provide additional details on Deep Learning architectures
used as embedding functions described in Sec. 3 of the main
manuscript. Figure C.16 depicts the connections between the
layers of considered architectures, reporting also the references
of their original proposals in the field of (attack-)traffic clas-
sification. We recall that 1D-CNN, Hybrid, and 2D-CNN are
single-modal, whereas Mimetic˚ is multimodal.

Appendix D. Configuration of FSL Approaches

Hereinafter, the particular configuration of each FSL ap-
proach is provided in terms of approach-specific hyperparam-
eters. Furthermore, for the sake of completeness and repro-
ducibility, we give their implementation details.

Approach-Specific Hyperparameters. Different hyperparam-
eters can be configured for the FSL approaches being inves-
tigated. We recall that the choices made herein are based
on both state-of-the-art results and preliminary analyses per-
formed. Both ProtoNet and MatchingNet employ the Eu-
clidean distance, MatchingNet uses the fully conditional em-
beddings with one layer for the bidirectional Long Short-Term
Memory and 2 unrolling steps for the attention Long Short-
Term Memory. RelationNet uses the default relation module
proposed in [5]. MetaOptNet is set with 15 maximum Sup-
port Vector Machine iterations and a regularization parameter
c equal to 0.1. MAML and ANIL are calibrated with 8 inner loop
iterations and an inner/adaptation learning rate equal to 0.01.
The Cross Entropy Loss measures the error in all the models,
except for MatchingNet and RelationNet, which utilize the
Negative Log Likelihood Loss and the Mean Squared Error, re-
spectively.

Implementation Details. We have adapted the implementa-
tion of FSL approaches initially designed to work with image

18

1 5 10 15 20
Np

a
b
c
d
e
f
g
h
i
j
k
l

m

500

1000

1500

(a) Packet Length (PL) [B]

1 5 10 15 20
Np

a
b
c
d
e
f
g
h
i
j
k
l

m 1.0

0.5

0.0

0.5

1.0

(b) Packet Direction (DIR)

1 5 10 15 20
Np

a
b
c
d
e
f
g
h
i
j
k
l

m 0
100
101
102
103
104
105

(c) Inter-arrival Time (IAT) [ms]

1 5 10 15 20
Np

a
b
c
d
e
f
g
h
i
j
k
l

m

10000

20000

30000

40000

(d) TCP Receive Window (WIN) [B]

1 5 10 15 20
Np

a
b
c
d
e
f
g
h
i
j
k
l

m 0

50

100

150

(e) TCP Flags (FLG) [B]

1 5 10 15 20
Np

a
b
c
d
e
f
g
h
i
j
k
l

m 50

100

150

200

(f) Time To Live (TTL) [# of hops]

1 33 65 97 129 161 193 225 257 289 321 353 385 417 449 481 513 545
Nb

a
b
c
d
e
f
g
h
i
j
k
l

m 0

50

100

150

200

250

(g) NET [B]

1 5 10 15 20
Np

a
b
c
d
e
f
g
h
i
j
k
l

m 0.0

0.2

0.4

0.6

0.8

1.0

(h) Padding ratio for PSQ input

1 33 65 97 129 161 193 225 257 289 321 353 385 417 449 481 513 545
Nb

a
b
c
d
e
f
g
h
i
j
k
l

m 0.0

0.2

0.4

0.6

0.8

1.0

(i) Padding/obfuscation ratio for NET input

Figure A.14: Characterization of the biflows in IoT-23 according to the 4 considered informative features of PSQ with the addition of FLG and
TTL, and to the bytes in NET (from (a) to (g)). Values are averaged ignoring padding values and, in the case of IAT, transformed with the natural
logarithm (logp1 ` xq). Figures (h) and (i) provide information regarding the average amount of padding (and obfuscation for NET) for each class
(in this case, “0” indicates no padding, while “1” indicates its presence).

Label encoding:
a = PartOfAHorizontalPortScan b = Okiru c = Benign d = DDoS e = C&C-HeartBeat
f = C&C g = Attack h = C&C-PartOfAHorizontalPortScan i = C&C-HeartBeat-Attack j = C&C-FileDownload
k = C&C-Torii l = FileDownload m = C&C-HeartBeat-FileDownload

19

100 101 102 103 104 105

Number of biflows [log] in IoT-NID

Mirai Host Brutef.

MITM ARP Spoof.

OS Detection

Mirai UDP

Host Discovery

Mirai HTTP

Port Scanning

Mirai ACK

DoS SYN

Benign

100 101 102 103 104 105

Number of biflows [log] in Bot-IoT

Data Exfiltration

Keylogging

DDoS HTTP

DoS HTTP

Benign

DoS TCP

Service Scan

DDoS UDP

DDoS TCP

DoS UDP

OS Fingerprint

Dnf1 Dnf2 Df

100 101 102 103 104 105

Number of biflows [log] in Edge-IIoTset

MITM
OS Fingerprint

Ransomware
Backdoor

Modbus
XSS

Vuln. Scan.
Water Level

SQL Injection
Uploading

Heart Rate
Port Scanning

DDoS TCP SYN
DDoS HTTP
DDoS ICMP
DDoS UDP

phValue
Flame Sensor
Soil Moisture

Distance
IR Receiver

Temp. & Humid.
Password

Sound Sensor

Figure B.15: Number of per-class biflows (in log scale) in IoT-NID (left), Bot-IoT (middle), and Edge-IIoTset (right). Bars are colored in green
for benign/legitimate traffic, whereas bars in red for malicious traffic.

(a) 1D-CNN. (b) Hybrid
2D-CNN+LSTM.

(c) 2D-CNN.

(d) Mimetic˚.

Conv
Dense

Recurrent
Pooling

Dropout
NormFlatten
Input

Figure C.16: Embedding functions used to extract features by reducing
input traffic data into lower-dimensional space: (a) 1D-CNN [2], (b)
Hybrid [3], (c) 2D-CNN [3], and (d) Mimetic˚ [4]. Each embedding
function uses a specific group of input data according to their internal
structure: (a) NET, (b and c) PSQ, and (d) NET̀ PSQ.

data, whose code is freely available. Most of the approaches are
included in the learn2learn framework [6] while missing ones
(i.e. MatchingNet and RelationNet) are derived from estab-
lished GitHub repositories [5, 7]. Scratch, Fine-Tuning, and
Freezing are self-built. All the implementations are based on
PyTorch/PyTorch Lightning and have been significantly adapted
and harmonized to work together within a common umbrella
framework for attack-traffic classification.

Appendix E. Non-Few-Shot Training Procedures

With the goal of defining non-few-shot baselines to vali-
date the necessity for FSL solutions, this appendix aims at
deepening how we adopt non-few-shot classifiers when having
only few samples available. Firstly, we recall the (preliminary
experimentally-validated) assumption that Machine Learning
and Deep Learning models built by exploiting few-available
data for training are very prone to introduce overfitting. To mit-
igate this issue, FSL approaches propose to augment the avail-
able knowledge by exploiting non-few classes, thus obtaining a
model that has a better generalization capability.

Following this direction, a naı̈ve way to reduce the overfitting
is adopting a training procedure consisting of feeding Ma-
chine/Deep Learning models by mixing samples of non-few and
few-shot classes. More specifically, we leverage all the samples
of non-few classes and K samples of each few-shot class. This
procedure allows us to train a model capable of classifying both
non-few and few-shot classes; however, it clearly suffers from
a huge class-imbalance issue.

Because we do not aim at classifying non-few classes, a miti-
gation strategy to reduce the induced class imbalance is leverag-
ing an inference procedure based on masking the scores asso-
ciated with non-few classes and taking only the scores for sam-
ples of few-shot ones. In this way, the magnitude imbalance in
weights that exists between non-few and few-shot classes is re-
moved. The adoption of these procedures results in a model that
(i) is capable of classifying few-shot classes, (ii) is less prone
to overfitting, and (iii) significantly reduces the interference of
non-few classes exploited during training.

A second approach to tackle the class imbalance problem in-
volves applying oversampling (via re-sampling or synthetic in-
stance generation techniques) to the dataset [8, 9]. In addition
to the masking technique mentioned earlier, we train a Machine
Learning baseline with a training set encompassing: (i) the
samples of the non-few classes, (ii) the K samples of the few
classes augmented up to obtain K ˆ G (synthetic) samples—
i.e. N ˆ K ˆ G, with G “ 1000. The model trained in this way

20

is then evaluated solely on C f . We chose two well-known tech-
niques to perform augmentation: Random Oversampling and
Synthetic Minority Over-sampling Technique (SMOTE) [10].

We underline that classifiers trained on synthetic data may
face challenges when applied in real-world contexts. This is
exacerbated with severely limited data available (e.g., K “ 5),
where samples generated from such a small set may not effec-
tively represent the diversity of a real-world population. On
the other hand, FSL approaches do not rely solely on those few
samples, but aim to exploit prior knowledge to build sufficiently
general knowledge to classify new classes with few samples.

Appendix References

[1] A. Nascita, F. Cerasuolo, D. Di Monda, J. Garcia, A. Montieri, and
A. Pescapè. Machine and Deep Learning Approaches for IoT Attack
Classification. In IEEE INFOCOM, 05 2022.

[2] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang. End-to-end encrypted
Traffic Classification with one-dimensional convolution neural networks.
In IEEE ISI’17, 2017.

[3] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret. Net-
work traffic classifier with convolutional and recurrent neural networks
for Internet of Things. IEEE Access, 5, 2017.

[4] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapè. MIMETIC: Mobile
encrypted traffic classification using multimodal deep learning. Elsevier
Computer Networks, 165, 2019.

[5] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales.
Learning to compare: Relation network for few-shot learning. In Pro-
ceedings of the IEEE conference on computer vision and pattern recogni-
tion, 2018.

[6] S. M. Arnold, P. Mahajan, D. Datta, I. Bunner, and K. S. Zarkias.
learn2learn: A library for meta-learning research. arXiv preprint
arXiv:2008.12284, 2020.

[7] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al. Matching net-
works for one shot learning. Advances in neural information processing
systems, 29, 2016.

[8] A. Tesfahun and D. L. Bhaskari. Intrusion detection using random forests
classifier with smote and feature reduction. In 2013 International confer-
ence on cloud & ubiquitous computing & emerging technologies. IEEE,
2013.

[9] T. Al-Shehari and R. A. Alsowail. Random resampling algorithms for
addressing the imbalanced dataset classes in insider threat detection. In-
ternational Journal of Information Security, 22(3), 2023.

[10] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote:
synthetic minority over-sampling technique. Journal of artificial intelli-
gence research, 16, 2002.

21

	Introduction
	Few-Shot Learning Background and Related Work
	Background on Few-Shot Learning
	Related Work
	Positioning

	 Methodological Framework for IoT Attack-Traffic Classification via Few-Shot Learning
	Traffic Object and Network Input
	Embedding Functions
	Few-Shot Learning Approaches

	Experimental Setup
	Dataset Description
	Few-Shot Learning Setup
	Performance Metrics

	Experimental Evaluation
	Embedding Function Selection
	Generalization Performance
	Sensitivity Analyses
	Performance of Non-Few-Shot Approaches
	Performance when Augmenting Prior Knowledge

	Conclusions and Future Perspectives
	IoT-23 Dataset Characterization
	Details of IoT-NID, Bot-IoT, and Edge-IIoTset Datasets
	Embedding Functions Details
	Configuration of FSL Approaches
	Non-Few-Shot Training Procedures

