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Abstract—The proliferation of Internet of Things (IoT) devices
has significantly intensified cybersecurity concerns, highlighting
the need for robust, adaptable, and privacy-preserving Network
Intrusion Detection Systems (NIDS). A major challenge lies
in the heterogeneity of IoT environments, which complicates
the generalization of detection models across different network
contexts. In this work, we propose a network-agnostic NIDS
enhanced through Class Incremental Learning (CIL), allowing
the integration of legitimate traffic from different networks
without requiring retraining from scratch or exposing sensitive
data. Our approach ensures efficient, continuous adaptation to
new environments while maintaining strong detection capabilities.
To assess the effectiveness of the proposed solution, we evaluate
several CIL techniques in two deployment scenarios: within the
same network and across different networks. Results show that
the best-performing CIL methods perform comparably to an
upper-bound model trained from scratch, with minimal knowl-
edge degradation when adapting to previously unseen benign
traffic. These findings demonstrate the practicality of CIL-based
NIDS for real-world, heterogeneous IoT environments.

Index Terms—Class Incremental Learning, Network Intrusion
Detection System, Misuse Detection, Internet of Things

I. INTRODUCTION

In recent years, the widespread adoption of Internet of
Things (IoT) devices has significantly transformed Internet
communication, with autonomous systems now capable of
collecting and exchanging data [1]. This expanded techno-
logical landscape, however, has also amplified cybersecurity
challenges, as adversaries can rapidly exploit newly discovered
vulnerabilities. As a result, the demand for robust and adapt-
able security measures in the IoT domain is more critical than
ever. The heterogeneity of IoT deployments, characterized by
diverse devices, communication protocols, and traffic patterns,
further complicates this scenario.

Within this context, Network Intrusion Detection Systems
(NIDS) are essential for safeguarding network security, as they
monitor traffic for malicious activity, enabling early detection
and response to potential threats [2]. To this aim, recent NIDS
increasingly rely on data-driven approaches, namely Machine
Learning (ML) and Deep Learning (DL), which require large
volumes of network-specific traffic to be trained effectively to
distinguish between benign and malicious behaviors [3].
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In this work, we propose a network-agnostic NIDS trained
on known attack patterns, while supporting personalization
to benign, network-specific traffic without compromising data
privacy, namely without exchanging sensitive data. To address
this, we leverage Class Incremental Learning (CIL), which
allows the continuous enhancement of a pre-trained model
with novel knowledge, without requiring full retraining. This
approach not only reduces computational costs and training
time but also ensures that the NIDS remains up to date with
evolving traffic patterns and threats.

The main contributions of this paper are the following:
(i) we propose a network-agnostic NIDS capable of inte-
grating knowledge of legitimate, environment-specific IoT
traffic, supporting continuous adaptation while preserving data
privacy; (ii) we conduct a thorough evaluation of our NIDS,
investigating the effectiveness of established CIL techniques
for binary and multiclass misuse detection (bMD and mMD)
in the same network as the attack traffic (intra-dataset) and
across different networks (cross-dataset).

The rest of the manuscript is organized as follows. Section II
surveys related work on applying CIL for the design of
NIDS, highlighting current limitations. Section III details the
proposed methodology and the CIL techniques employed in
this study. Section IV describes the experimental setup, while
Section V presents and discusses the corresponding results.
Finally, Section VI concludes the paper and outlines directions
for future research.

II. RELATED WORK

This section provides an overview of the literature on CIL
in the context of NIDS, with a focus on approaches that allow
detection systems to adapt to evolving threats—such as novel
attack types, behavioral shifts, and emerging anomalies—
without retraining from scratch. Notably, CIL is particularly
well-suited to dynamic cybersecurity scenarios, as it enables
the incremental integration of new knowledge while retaining
previously acquired information, thus mitigating the risk of
catastrophic forgetting.

CIL methods are commonly categorized into three major
families based on how they expand models to integrate new
knowledge [4]: (i) fine-tuning, which expands the model head
and retrains the entire network using new data; (ii) fixed-
representation, which extends the output layer while freezing
parts of the backbone or earlier heads, updating only the
non-frozen parts; (iii) model-growth, which introduces new



models or layers to learn additional knowledge. Most reviewed
approaches adopt strategies from the fine-tuning family. No-
table exceptions include I2RNN [5] and SPCIL [6], which
follow model-growth paradigms. On the other hand, fixed-
representation techniques remain underexplored in the context
of NIDS, while model-growth methods are discarded in this
study due to scalability concerns.

CIL is inherently challenged by two key issues: catastrophic
forgetting, namely the tendency of models to lose previously
learned knowledge when adapting to new classes, and intran-
sigence, that is the reduced ability to effectively incorporate
novel information. To address these limitations, various miti-
gation strategies have been proposed: (i) rehearsal techniques
preserve a small subset of old representative samples from
past classes to reinforce prior knowledge during adaptation;
(ii) regularization methods—both implicit, e.g., Knowledge
Distillation (KD), and explicit (e.g., constraints on parameter
updates)—aim to preserve previously acquired representations;
(iii) bias correction compensates for the bias towards newly
learned classes at inference time.

The most widely adopted baseline for CIL are FT [7] and
FT-Mem [8], both employed in several recent works [6, 9, 10,
11, 12]. Other rehearsal-based approaches include GSS, ER,
ASER, AGEM, SSR, NCM, and SLDA [13], as well as BFS-NIDS [9].
Regularization-based approaches encompass LwF [14], adopted
in [10, 12, 13], EWC [6, 13], and SimpleCIL [6]. Hybrid meth-
ods that combine rehearsal and distillation include iCaRL [15]
and its network traffic adaptation iCaRL+ [16], employed
in [6, 9, 12, 13]. Similarly, the two-stage EEIL is used
for network intrusion detection in [10]. BiC [17] incorpo-
rates all three strategies—rehearsal, regularization, and bias
correction—and is exploited by Cerasuolo et al. [11, 12].

Regarding the application domain, most existing studies
focus on mMD, where the aim is to distinguish between benign
traffic and multiple attack categories. Other works (e.g., [11])
tackle bMD, in which traffic is classified as either benign or
malicious. A more refined approach is proposed in [12], where
detection is performed in two stages: an initial bMD phase,
followed by an attack classification stage that categorizes the
identified malicious traffic into specific attack types.

Concerning model architectures, some studies use tradi-
tional ML techniques—such as decision trees, support vec-
tor machines [18], multi-layer perceptrons [10], or ensemble
methods [18]—yet the majority of recent work favors DL ar-
chitectures [5, 6, 9, 11, 12, 13]. These DL-based architectures
include Convolutional Neural Networks (CNNs) [11, 12, 13],
Long Short-Term Memory (LSTM) [5], transformers [9], and
Residual Networks (ResNet) [6].

Finally, most of the reviewed approaches rely on post-
mortem analysis, utilizing features extracted from the complete
traffic flow. However, a subset of studies focuses on early
detection, employing raw packet-level features derived solely
from the first Np packets [8]. These early detection strategies
hold promise for real-time threat mitigation, as they can reduce
both detection latency and computational overhead.

In this work, we take an in-depth look at the adaptation

of NIDS to different network environments. Unlike prior
studies that focus on incremental updates using classes from
the same dataset, we explore adaptation using benign traffic
from a different network. In contrast to Cerasuolo et al.
[11], our emphasis is specifically on benign traffic, leveraging
two distinct network domains to evaluate generalization and
adaptability.

III. METHODOLOGY

CIL is a paradigm designed to extend pre-trained models
with new classes while preserving previously acquired knowl-
edge, eliminating the need for retraining from scratch [8].
The main objective of CIL is to update a model trained on
an initial set of classes Cold and their corresponding data
Dold, by introducing new classes Cnew and their data Dnew.
The goal is to build a unified model capable of classifying
across the entire label space Call = Cold ∪ Cnew. Rather
than using the full dataset (i.e. Dold ⊕ Dnew), CIL typically
relies on a subset of stored past samples Dmem and uses
D = Dnew ⊕Dmem during training. In our specific scenario,
we aim to incrementally improve a NIDS originally trained on
a specific network (attack plus benign classes) to be deployed
on a network with different legitimate devices, namely with
different benign traffic.

Hereinafter, we introduce the CIL approaches evaluated
in this work. All the selected methods fall within the fine-
tuning family [4]. First, we leverage two baseline methods—
FT and FT-Mem—which represent the most straightforward
strategies for incremental learning. Then, we consider more
advanced techniques incorporating one or more mitigation
strategies to address forgetting challenges. In addition, we
include a model trained from scratch on the full dataset,
denoted as Scratch, which serves as an upper bound reference
for performance comparison. Detailed descriptions of each
approach are provided below.

Fine-Tuning (FT) [7]. FT is the simplest and most naive ap-
proach to update a model incrementally. It involves retraining
the entire model using only samples from newly observed
attacks, without retaining any previous data.

Fine-Tuning with Memory (FT-Mem) [8]. FT-Mem extends the
FT method by introducing a small memory buffer that stores a
subset of previously seen samples from both attack and benign
traffic. During training, these stored examples are replayed to
reinforce prior knowledge and mitigate forgetting.

Learning Without Forgetting (LwF) [14]. LwF is a memory-
free approach (i.e. D = Dnew) that pioneered the use of
KD in incremental learning settings [19]. Knowledge from
a previously trained model (the teacher) is distilled into the
updated model (the student) to retain old information while
learning new classes. The loss function comprises three com-
ponents: a classification loss (Lclass) for new classes, and two
auxiliary terms—distillation Ldist) and regularization (Lreg)



TABLE I
DESCRIPTION OF IOT-23 ATTACK CLASSES.

Attack Description

Attack Connection used by the infected device to launch an attack on another host
Benign No suspicious or malicious activity detected in the connection
C&C Infected device is communicating with a Command and Control (C&C) server
HeartBeat Connection used by the C&C server to monitor the infected device
DDoS Infected device is performing a Distributed Denial of Service (DDoS) attack
Okiru Connection exhibits behavior typical of an Okiru botnet
Portscan Connection is a horizontal port scan, gathering information for potential attacks
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Fig. 1. Distribution of per-class samples of the IoT-23 dataset (without
hatches) and benign class for Kitsune dataset (with hatches). Green bars
represent benign classes across the two datasets.

losses—for preserving prior knowledge. These components are
balanced using the hyperparameters λdist and λreg .1

Incremental Classifier and Representation Learning
(iCaRL+) [16]. iCaRL+ is an adaptation of the original
iCaRL [15] tailored for traffic classification tasks. It employs a
rehearsal-based strategy using herding selection, dynamically
expands the output layer (using a softmax classifier instead
of the original nearest mean classifier), and uses a composite
loss function combining classification and distillation terms
equally weighted (i.e. λclass = λdist = 1).

Bias Correction (BiC) [17]. BiC addresses the common issue
of bias toward newly learned classes in incremental learning
scenarios. To mitigate this, it appends a small correction
layer to the model head, parameterized by scaling (α) and
shifting (β) factors. These parameters are applied exclusively
to the logits of new classes, following the transformation:
ō(x) = α · onew(x) + β, while the logits corresponding
to previously learned classes (oold) remain unchanged. The
training process is divided into three stages: (i) the whole
model is trained using a composite loss function combining
classification and KD, with class-proportional weighting terms
(λclass = |Knew|/|Kall|, λdist = 1−λclass); (ii) the backbone
and classification head are frozen; and (iii) the correction
layer is fine-tuned using a small calibration set to estimate
the optimal values of α and β.

IV. EXPERIMENTAL SETUP

This section provides details on the dataset and pre-
processing operations performed (Sec. IV-A), the model ar-

1LwF sets λreg to a fixed value of 5 · 10−4.
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Fig. 2. Comparison of the benign traffic of IoT23 and Kitsune using the
first 10 packets for each feature.

chitecture (Sec. IV-B), the experimental scenarios (Sec. IV-C),
and the evaluation metrics (Sec. IV-D).

A. Dataset and Pre-processing Operations

In this work, we leverage the IoT-23 dataset [20].
IoT-23 was collected during 2018–19 at the Stratosphere
Laboratory of the Czech Technical University. It comprises 23
traffic traces captured in a controlled IoT network environment
with unrestricted Internet access. Of these 23 traces, 20 cor-
respond to malicious traffic, while the remaining 3 represent
benign network activity.

The malicious traffic originated from a Raspberry Pi delib-
erately infected with specific malware. In contrast, the benign
traffic was generated by three real-world IoT devices operating
under normal conditions: (i) a Philips Hue Smart LED Lamp,
(ii) an Amazon Echo smart speaker, and (iii) a Somfy Smart
Door Lock. Table I briefly describes the attack classes present
in IoT-23. Further details about the labeling are available on
the IoT-23 website [20].

Additionally, we employ the benign traffic from the
Kitsune dataset [21], which contains traffic captured from
an IP-based commercial surveillance system and IoT devices
encompassing 4 HD surveillance cameras, 9 IoT devices, and
3 PCs. For more details, see [21].

As a traffic object, we consider biflows2 and, to guarantee
earliness, we extract 4 informative fields from the header of
the first 10 packets of each biflow: packet length (PL), inter-
arrival time (IAT), packet direction (DIR), and TCP Window
Size (WIN). Given the severe class imbalance present in the
IoT-23 dataset, we first discard all classes containing fewer
than 500 biflows. To further address imbalance among the

2A biflow (i.e. bidirectional flow) groups together packets sharing the same
quintuple—source/destination IP address, source/destination port number, and
transport-layer protocol—in both directions.



remaining classes, we apply random downsampling to the
majority classes—namely, portscan, okiru, ddos, attack, c&c,
c&c-heartbeat, and benign—retaining, for each, a number of
biflows equal to the per-class median within this group. Fi-
nally, we merge the highly overlapping classes c&c-heartbeat
and c&c-heartbeat-attack into a single class, simply labeled
as c&c-heartbeat. Figure 1 shows the distribution of biflows
for each attack class of IoT-23 and for the benign one of
both IoT-23 and Kitsune.

As shown in Fig. 2, the benign traffic exhibits substan-
tial differences between the two datasets. This divergence
is particularly evident in the first four packets, where the
feature distributions display distinct median values and higher
skewness. From the 4th packet onward, however, the two
datasets show more aligned behavior, with comparable median
values across all considered features.

B. Model Architecture

For the experiments, we rely on a 2D-CNN classifier. No-
tably, CNN-based architectures are widely used for both traffic
classification and intrusion detection tasks [8, 22, 23, 24].
The architecture is composed of 2 convolutional layers, fol-
lowed by pooling and batch normalization, with a final fully-
connected layer providing the model outputs.

At each incremental step, the network backbone remains
unchanged, while the head is expanded with neurons for the
new classes. Training starts from the previous phase’s weights,
using the base model weights for the first incremental episode.
It is worth noting that the methodology described in this work
is independent of the DL architecture used and is therefore
applicable to alternative architectures.

C. Evaluation Scenarios

We consider a scenario involving the addition of a single
new class. Specifically, the benign class is added as the new
class, while the remaining attack classes are treated as old
ones. We evaluate two configurations using different benign
classes from the IoT-23 and Kitsune datasets. In the
first configuration, the benign class is taken from IoT-23,
resulting in IoT-23[B+M] (also referred to as intra-dataset
scenario); in the second configuration, the benign class is
taken from Kitsune, yielding IoT-23[M]+Kitsune[B]
(also called cross-dataset scenario).

For the experiments, we leverage the FACIL framework [4],
adapted for intrusion detection tasks. We start from the same
base model by adding a different benign class each time (from
IoT23 or Kitsune). Each experiment is carried out with
200 epochs, an initial learning rate of 0.1, a decay of 3.0, a
patience of 20 epochs, and a batch size of 64. For the memory-
based approaches, we employ 1k old samples (i.e. 1000/|Kold|
samples from each old class).

D. Evaluation Metrics

To evaluate the performance of CIL approaches, we use
the F1 score (briefly, F1), which is the harmonic mean of
precision and recall. For a multi-class problem, it is computed

as: F1(θ, C) = 1
|C|

∑
i∈C

2·Precisioni·Recalli
Precisioni+Recalli

, where C represents
a generic set of classes and θ a generic model (learned from-
scratch or in an incremental way).

To evaluate the deviation of the incremental model from
the Scratch upper-bound, we compute the drop in terms
of F1. Additionally, we break down this metric into 3 sub-
metrics, according to the 3 set of classes—viz. All, Old,
and New—to better understand all the forgetting phenomena.
Hence, we obtain DropOld, DropNew, and DropAll. Notably,
DropOld measures the model’s ability to retain knowledge
from the base classes, while DropNew reflects its effectiveness
in learning newly introduced classes. Lastly, DropAll captures
the overall performance gap between the incremental model
and the ideal scenario of Scratch. Lower values indicate
better performance (i.e., a more effective CIL approach).

Additionally, we leverage the accuracy and Area Under
ROC Curve (AUC). Accuracy measures the proportion of cor-
rect predictions among all predictions made. AUC assesses the
model’s ability to distinguish between classes across different
classification thresholds. Therefore, while accuracy provides
a general sense of correctness, AUC offers a more nuanced
view of a model’s discriminative power, particularly under
imbalanced conditions or when the cost of false positives and
false negatives differs.

V. EVALUATION

In this section, we first analyze model performance on the
multi-class misuse detection task (Sec. V-A). We then turn to
a binary classification setting, distinguishing between benign
and malicious traffic to evaluate performance on a simpler yet
practically relevant problem (Sec. V-B).

A. Multi-class Misuse Detection

Hereinafter, we assess the mMD considering the
whole set of classes—viz. benign and attack classes—
in the two considered scenarios (i.e. IoT-23[B+M] and
IoT-23[M]+Kitsune[B]). Figure 3 shows the performance
in terms of DropOld and DropNew for both scenarios.

As expected, FT significantly suffers from catastrophic
forgetting, showing a ≈ 85% (resp. ≈ 89%) DropOld in
IoT-23[B+M] (resp. IoT-23[M]+Kitsune[B]) scenario
and a ≈60% (resp. ≈74%) DropNew. Adding memory to FT

(i.e. FT-Mem), DropOld becomes lower but is still significant
(≈ 70% and ≈ 38%). Moreover, FT-Mem reaches low F1 on
Knew as well, with ≈ 58% and ≈ 25% DropNew. On the
other hand, LwF suffers significantly from intransigence as it
exhibits ≥98% DropNew in both scenarios.

Lastly, each of the two scenarios yields the best performance
with a different approach. In the intra-dataset scenario, BiC
turns out to be the top-performer with a ≈5% DropOld, ≈28%
DropNew, and ≈ 8% DropAll. Conversely, in cross-dataset,
the best performing approach is iCaRL+ that exhibits ≈ 5%
DropOld but achieves a slight improvement (+0.5%) w.r.t.
Scratch on the Knew, obtaining a ≈4% DropAll.
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Fig. 3. Performance in terms of DropOld and DropNew for the two scenarios: (a) IoT-23[B+M] and (b) IoT-23[M]+Kitsune[B].
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B. Binary Misuse Detection

Then, we evaluate the performance of the incremental ap-
proaches in solving a bMD—namely, distinguishing between
benign and malicious traffic. To address this simpler task, we
aggregate the soft outputs of the attack classes by summing
them. This yields a single probability representing malicious
traffic, which is then contrasted with the probability of benign
traffic. Figures 4 and 5 show the confusion matrices of the two
best approaches (i.e. iCaRL+ and BiC) in two different sce-
narios. For brevity, the confusion matrices for the FT, FT-Mem,
and LwF are omitted since the first two approaches suffer
from catastrophic forgetting, resulting in a strong prediction

bias toward the benign class, while LwF exhibits intransigence,
leading to a bias toward the malicious class.

From the confusion matrices of the intra-dataset scenario
(Fig. 4), it is evident that BiC obtains better performance than
iCaRL+. This is due to more severe catastrophic forgetting
in iCaRL+, where ≈ 38% of attacks are misclassified as
legitimate traffic, while this confusion is reduced to ≈ 24%
in BiC. Conversely, on the Knew, iCaRL+ achieves higher
accuracy (+3%), but at the cost of lower precision, resulting
in a reduced F1. In detail, BiC predicts attacks with a ≈76%
accuracy and benign with a ≈ 96% accuracy and an overall
F1 ≈71%, confirming the best also in the binary task.

Similarly, in the cross-dataset scenario (Fig. 5), iCaRL+
confirms its superiority also in bMD, providing a ≈ 100%
accuracy and a ≈ 99% F1. While BiC performs well overall, it
suffers from higher forgetting, misclassifying 8% of attacks as
benign, while iCaRL+ eliminates this confusion almost totally.

To provide a more nuanced evaluation, we analyze the
performance of bMD from a different perspective by com-
puting the ROC curves and the corresponding AUC values,
as illustrated in Fig. 6. For reference, a “Chance” curve is
included to represent the random guessing.

In the IoT-23[B+M] scenario, BiC confirms to be the best
approach, providing a higher AUC (≈86%) than all the others.
Notably, FT and LwF show poor performance comparable to
random guessing (i.e. ≈ 50% AUC) while FT-Mem delivers
only slightly higher AUC (≈54%).

Similarly, in the cross-dataset scenario, both FT and LwF

continue to perform poorly. In contrast, FT-Mem surprisingly
achieves strong results, reaching a 94% AUC—close to the top
performers. Notably, iCaRL+ is the best-performing method
with a perfect 100% AUC, followed by BiC with a solid 96%.

VI. CONCLUSION

The increasing adoption of IoT devices has raised cyberse-
curity challenges, highlighting the urgent need for adaptable
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Fig. 6. ROC curve showing performance in binary misuse detection task.
Values in brackets indicate the AUC of each CIL approach.

and privacy-preserving NIDS to guarantee security in increas-
ingly heterogeneous and dynamic IoT environments.

This work presented a network-agnostic NIDS capable of
generalizing across heterogeneous environments by leverag-
ing known attack patterns, while enabling the integration of
network-specific benign traffic in a privacy-preserving manner,
without the need to exchange sensitive data. By incorporating
CIL, the proposed NIDS updates its knowledge efficiently
without requiring full retraining, thus reducing resource con-
sumption and enabling continuous adaptation. Evaluations
in both intra-dataset and cross-dataset scenarios show the
robustness and practicality of the CIL solution, making it well-
suited for real-world IoT deployments.

Our findings identified BiC as the most effective method
in the intra-dataset scenario, exhibiting only 8% drop from
the upperbound in multi-class misuse detection and 71% F1
in the binary task. Conversely, in the more challenging cross-
dataset scenario, iCaRL+ delivered the best performance, with
a minimal 4% gap from the upperbound in multi-class misuse
detection and an outstanding 99% F1 in the binary task.

As future directions, we plan to: (i) explore more advanced
CIL techniques to improve NIDS adaptability and multi-
increment scenarios; (ii) deploy NIDS in a federated learning
framework to better handle the heterogeneity of IoT devices
and traffic patterns across various networks; (iii) evaluating
the robustness of NIDS, particularly its resilience against
adversarial attacks, such as poisoning.
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