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Abstract—The Internet of Things (IoT) is experiencing a
constant expansion, embedding connectivity into everyday objects
for increased efficiency. Despite this, security vulnerabilities pose
a growing concern because IoT devices often lack robust security
measures, leaving room for IoT botnet malware action and
underlining the critical need for increased IoT security. During
the last years, Machine Learning (ML) and Deep Learning (DL)
have offered effective tools against IoT attacks, but these solutions
struggle with identifying novel threats. In fact, the dynamic
nature of IoT ecosystems requires data-driven systems capable of
responding promptly to emerging threats, characterized by the
limited availability of samples for training.

In this context, we exploit Few-Shot Learning (FSL) to effec-
tively identify emerging network attacks within the traffic generated
by IoT devices by performing botnet-traffic classification. In detail,
FSL enables ML and DL models to recognize and adapt to
novel classes of attack traffic with minimal available samples,
tackling class imbalance issues between high-frequency and low-
frequency attacks (which generate high and low network traffic,
respectively). This strategic integration of FSL is crucial in
enhancing overall IoT security, providing a proactive approach
to handle dynamic and imbalanced scenarios, and ensuring the
resilience of interconnected systems. The experimental evaluation
is conducted on the publicly available IoT-23 dataset. The
results highlight that the best FSL approach obtains the highest
performance figures with just 3 shots, scoring 92% F1-score
when discriminating low-frequency botnet malware. Noteworthy,
satisfactory performance (up to 93% F1-score) is achieved also
in misuse detection, proving the capability to distinguish between
legitimate and malicious traffic.

Index Terms—Botnet-Traffic Classification, Intrusion Detec-
tion, Internet of Things, Deep Learning, Few-Shot Learning,
Network Security.

I. INTRODUCTION

The Internet of Things (IoT) represents a technological
paradigm shift, providing everyday objects with Internet con-
nectivity to enhance efficiency and functionality. Its diffusion

is rapidly reshaping industries, from smart homes to health-
care, fostering a seamless exchange of data.1

However, the rapid expansion of the IoT has also brought
increased concerns regarding security vulnerabilities [1]. In
fact, while the proliferation of IoT devices has increased the
amount of generated traffic data that can be capitalized via
Big Data infrastructures for defense purposes [2], it has also
expanded the attack surface—leading to unauthorized access,
data breaches, and even compromise personal privacy. In this
context, malicious actors are encouraged to increasingly target
IoT devices, continuously discovering and exploiting new vul-
nerabilities, and developing either new malware or variants of
existing ones.2 A crucial role in this scenario is played by IoT
botnet malware, where interconnected devices form a network
of compromised units that can be exploited by malicious
actors: attackers remotely control the devices for malicious
purposes, such as launching large-scale cyberattacks. Accord-
ingly, strengthening IoT security is crucial to prevent the
formation and utilization of such botnet malware [3, 4].

During the last decades, Machine Learning (ML) and Deep
Learning (DL) have proven effective in classifying and miti-
gating attacks against IoT devices by analyzing patterns and
anomalies in network traffic. However, their effectiveness is
limited when faced with previously unseen attacks. In fact,
ML and DL models rely heavily on historical data on which
they are trained, thus exhibiting limitation in identifying
novel threats that deviate from established patterns, particu-
larly when they are associated with scarce samples available.
Furthermore, the dynamic nature of IoT ecosystems and the
ever-evolving tactics of cyberattackers pose challenges for
traditional models [5]. Therefore, while ML and DL enhance
IoT security, there is a pressing need for adaptive intrusion
detection systems that can promptly recognize and respond to

1https://bit.ly/idc-future-of-industry-ecosystems
2https://bit.ly/kaspersky-iot-attacks-doubling979-8-3503-2445-7/23/$31.00 ©2023 IEEE
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emerging, underrepresented, and previously unseen threats in
a timely manner.

IoT attacks can be categorized as high-frequency and low-
frequency attacks, with the former that generate a higher
amount of traffic than the latter. For instance, Distributed
Denial-of-Service (DDoS) attacks usually flood the network
with an overwhelming volume of traffic, often resulting in
numerous data samples (viz. high-frequency). On the other
hand, establishing Command and Control (C&C) sessions
or downloading infected payloads generate fewer amount of
traffic (viz. low-frequency), making them harder to detect amid
the noise of normal network activity. This imbalance poses a
challenge for ML models, as they may prioritize the majority
classes and struggle to accurately identify the minority ones,
emphasizing the need for robust techniques that can deal with
this inherent imbalance and enhance the overall IoT-network
security.

Few-Shot Learning (FSL) emerges as a promising solution
to address the challenges posed by the lack of samples in
IoT traffic data. This paradigm enables ML/DL models to
effectively recognize novel attack classes (i.e. unseen during
the training of the models) with only a minimal number
of examples available for the adaptation (as in the case of
low-frequency attacks). This adaptability enhances the overall
robustness of the models, making them more adept at han-
dling the intricacies of dynamic and imbalanced IoT-network
security scenarios.

In this work, our contributions are:
1) the design, implementation, and validation of FSL so-

lutions for botnet-traffic classification, with the achieved
objective of effectively recognizing the traffic generated
by IoT botnet malware that are underrepresented, i.e.
characterized by low-frequency attacks;

2) the thorough evaluation of design choices concerning the
selected network input (i.e. traffic features and number of
packets) and FSL hyperparameters, such as the number
of shots (i.e. samples) used for training;

3) the extension of the best FSL solution to misuse detection
tasks (both multi-class and binary), demonstrating its
capability to achieve satisfactory detection performance
even in presence of benign (viz. non-attack) traffic.

Following this introduction, Section II details the adopted
methodology, covering FSL paradigms, specific FSL ap-
proaches, and related input data. In Section III, we report the
experimental setup including dataset characteristics, learning
hyperparameters, metrics, and implementation details; then,
we show the results of four experimental analyses, address-
ing feature combination, hyperparameter variation, sensitivity
analysis, and misuse detection. Section IV outlines relevant
studies, comparing them to the investigation conducted in the
present work. Finally, Section V concludes by summarizing
results and discussing potential future developments.

II. CLASSIFYING BOTNET TRAFFIC WITH FSL
In this section, we provide a brief description of method-

ological aspects pertaining to the integration of FSL into

the task of classifying botnet traffic. The design choices
encompass establishing the traffic object to be classified and
the associated input data fed to the embedding function, which
is responsible for extracting relevant features. Subsequently,
the particular FSL approach must be determined by discerning
its underlying learning paradigm, i.e. meta-learning or transfer-
learning. Finally, the FSL approaches we adopt are described
within the framework of their respective paradigms.

A. Input Data and Embedding Function

In our analysis, we consider the bidirectional flow (biflow)
as traffic object. A biflow aggregates all those packets that
share the same 5-tuple, which is defined by source and
destination IP addresses, source and destination port numbers,
and the transport-level protocol, regardless of the direction of
the communication, meaning that source and destination are
interchangeable.

Following as proposed in [6, 7], the FSL approaches
exploited herein are fed with a set of M = 6 features
extracted from the first Np packets of each biflow [8]. These
features are: (i) the byte count in the network packet, (ii) the
packet direction (either −1 or 1, representing downstream and
upstream, respectively), (iii) the TCP window size (0 for UDP
packets), (iv) the inter-arrival time (i.e. the time elapsed since
the arrival of the previous packet), (v) the Time-to-Live (TTL),
and (vi) the TCP flags (encoding the 8-bit representation
in its base-10 form). The input data undergo a Min-Max
normalization, resulting in a range of values between 0 and 1.

Each FSL approach leverages an embedding function
needed to output a feature vector in the embedded space.
Herein, we use a well-known DL architecture proposed for
IoT-traffic classification in [6]. The embedding function con-
sists of two bidimensional convolutional layers interleaved
with max-pooling and batch normalization. For detailed hy-
perparameters and architecture specifics, refer to [6].

B. Few-Shot Learning Paradigms

1) Meta-Learning: In the context of FSL, meta-learning
is employed in conjunction with episode learning, which
involves training the model using numerous tasks (or
episodes) comprised of few samples. In order to do that, let
D = {(xi, yi)}Ii=1 be a dataset, where xi represents the input
data and yi ∈ Y denotes the corresponding label (e.g., the
attack class). Here, I is the number of samples in the dataset,
and Y is the set of possible classes.

The first step consists in splitting the dataset into three
subsets, namely, D : {Dnf1 ,Dnf2 ,Df}.3 This division is done
in such a way that each subset has a different label space from
the others—namely Ynf1∩Ynf2 = Ynf1∩Yf = Ynf2∩Yf = ∅,
where Ynf1 , Ynf2 , and Yf represent the classes of their
respective datasets: Dnf1 , Dnf2 , and Df .

The subsequent step entails the actual task sampling from
one of the three subsets (depending on the specific learning
phase as detailed below). This is achieved by considering

3In this case, If ≪ Inf1 and If ≪ Inf2 , where If , Inf1 , and Inf2 are
the number of samples in Df , Dnf1 , and Dnf2 , respectively.



the triplet of values ⟨N,Ks,Kq⟩, where: (i) N (N-way) is
the number of classes to be sampled; (ii) Ks (K-shot) is the
number of samples per class (i.e. the support set) allocated
for model training; and (iii) Kq is the number of samples per
class (i.e. the query set) designated for measuring the model
error. The outcome of this process is referred to as an N -
way K-shot classification task. Notably, each so-made episode
encompasses limited training data—namely, N ·Ks—to mimic
the operational (viz. inference) scenario.

The model is then trained over several epochs. In each of
them, it learns from a wide range of tasks sampled from Dnf1 .
This phase is referred to as meta-training. At the end of each
epoch, meta-validation is conducted using Dnf2 in the same
episodic fashion. Finally, during the meta-testing phase, the
performance of the trained model is evaluated and averaged
over multiple tasks obtained from Df . It is worth noting that
the model is tested on instances belonging to classes different
from those used in the training set to evaluate its generalization
ability.

2) Transfer Learning: Transfer learning aims to initially
train the model on a large dataset and subsequently adapt it to a
set of data belonging to a label space different from that of the
training data. Therefore, we split the dataset D : {Dnf ,Df},
where Dnf (= Dnf1∪Dnf2) encompasses different classes from
the ones in Df , namely Ynf ∩Yf = ∅, with Ynf and Yf being
the classes of Dnf and Df , respectively. The first learning
task (pre-training) utilizes a portion of data extracted from
Dnf (e.g., via hold-out) to train the model, and two additional
splits for validation and testing. The knowledge acquired in
this manner is then transferred and fine-tuned in a second
adaptation task (fine-tuning) using Df .

Specifically, to align the evaluation of both meta-learning
and transfer-learning approaches, the fine-tuning is conducted
episodically. This means the model is adapted by leveraging
the support set and is evaluated on the query set, repeatedly
across numerous episodes.

C. Few-Shot Learning Approaches

Hereinafter, we present the FSL approaches we leverage to
perform botnet-traffic classification. In particular, we adopt 3
approaches belonging to the meta-learning paradigm and 5 to
the transfer-learning one, covering a wide range of techniques
some of which—i.e. Baseline++, RFS (Rethinking Few-
Shot), and Negative Margin—have never been employed
for (attack-)traffic classification tasks (to the best of our
knowledge, cf. Sec IV).

The approaches that leverage the meta-learning paradigm
put in place a common strategy to narrow down the hypothesis
space4 through the knowledge gained from abundant data, thus
mitigating the risk of overfitting. They exploit a comparator
that measures the similarity between the embeddings of the

4The hypothesis space encompasses all potential solutions for a given
learning problem. The learning algorithm navigates through this space in
search of the optimal model, which translates to finding the most suitable
parameters/weights that effectively capture the data and exhibit strong gener-
alization to unseen samples.
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Figure 1: Number of per-class biflows (in log scale) of pre-processed
IoT-23 dataset.

support set and those of the query set to perform the classifi-
cation. The approaches we consider mainly differ on the partic-
ular implementation of the comparator. In detail: (i) Matching
Networks (MatchingNet) [9] employ a generalized version
of nearest-neighbor with Euclidean distance as metric. (ii) Pro-
totypical Networks (ProtoNet) [10] categorize a sample by
computing the Euclidean distance between its embedding and
each class centroid—obtained from the support set—known
as the prototype. (iii) MetaOptNet [11] leverages a linear
Support Vector Machine (SVM) as the comparator trained on
the support set.

Regarding the transfer-learning paradigm, we consider 2
simple and well-known approaches (Fine-Tuning and Freez-
ing) and 3 that have been proposed in the field of computer vi-
sion (Baseline++, RFS, and Negative Margin). Fine-
Tuning (FT) and Freezing (FZ) share the same pre-training
phase on Dnf , but they differ in the second task (i.e. the
adaptation task involving Df ). Specifically, FT adjusts the
weights of the entire model, whereas FZ freezes the weights
of the embedding function, allowing the adaptation only in
the last fully-connected layer. Baseline++ [12] operates
similarly to FZ, but unlike the latter, it employs a layer that
computes the cosine similarity between its weights and feature
vectors as a classifier. RFS [13] uses sequential knowledge
distillation5 to build an effective model during the pre-training
phase. In the second phase, the model weights are frozen. It
employs either logistic regression or a nearest-neighbor as a
classifier. Lastly, Negative Margin [14] replaces the last
fully-connected layer with one that computes the cosine simi-
larity, such as Baseline++. However, Negative Margin
differs by subtracting a margin from the cosine similarity. This
operation has been proven to improve the generalization ability
on the unseen classes.

III. EXPERIMENTAL SETUP AND EVALUATION

A. Experimental Setup

Hereinafter, we describe the experimental setup in terms
of (i) dataset, (ii) FSL setup, (iii) evaluation metrics, and
(iv) implementation details.

5In the ith learning cycle, sequential knowledge distillation involves using
the knowledge of a teacher, where the teacher is the same model from the
previous (i− 1)th cycle.



1) Dataset: In this study, we evaluate the FSL approaches
for botnet-traffic classification using the IoT-23 dataset [15].
This dataset was collected at the Stratosphere Laboratory of
the Czech Technical University over the period 2018–2019. It
encompasses 23 PCAP traces along with ground-truth files
obtained via Zeek. These traces depict heterogeneous IoT
network traffic conducted within a controlled IoT setting,
utilizing an unrestricted network connection and without the
implementation of any defensive measures. Specifically, 20
of these captures originate from a compromised Raspberry
Pi hosting a specific botnet malware, while the remaining
3 captures represent benign network traffic from real IoT
devices (i.e. a Philips HUE Smart Led Lamp, an Amazon
Echo Home, and a Somfy Smart Doorlock). The dataset
undergoes manual labeling at the biflow level, establishing
the connection between malicious flows and the corresponding
malicious activities of a botnet malware. Non-malicious traffic
is straightforwardly labeled as “benign”.

A series of scientific and practical motivations led us to
select IoT-23. Firstly, IoT-23 showcases a wide array of
botnet traffic with their specific activities. This is of particular
interest as it provides a real-world scenario to evaluate the
applicability of FSL for botnet-traffic classification. Secondly,
this dataset has already been extensively employed in various
works [8, 16] within the scientific literature, which promotes
the reproducibility of the obtained results.

In contrast to our previous work [8], we have shifted our
focus to classifying malicious traffic based on the botnet
malware that generated it. Specifically, the available labels in
IoT-23 pertain to the activities conducted by botnet malware
(e.g., DDoS, port scanning, file downloading, etc.) [15]. How-
ever, in this work, we are interested in identifying patterns
of malicious traffic at a higher level—the one of the bot-
net malware—regardless of the specific action they may be
undertaking. This enables the implementation of more fine-
grained countermeasures. For instance, defensive action can
be taken as soon as a botnet malware is identified, followed
by a secondary action based on the particular attack that is
underway. Furthermore, it enables the usage of hierarchical
architectures that are demonstrated to be particularly effective
in the IoT context [17].

Considering the botnet malware as labels, IoT-23 is char-
acterized by a strong class imbalance problem. In fact, Mirai
has more than 72M biflows, whereas Trojan, which is the
least-populated class, has only 5 biflows. For this reason,
the dataset was downsampled in the following way: (i) we
group samples of attacks based on the botnet malware that
generated it (e.g., Mirai-DDoS, Okiru-DDoS, Trojan-C&C,
encompassing all existing botnet-attack combinations); (ii) we
selected the 70th percentile of the frequency for the various
botnet-attack combinations; (iii) combinations exceeding this
value are downsampled by capping at this threshold—the same
is done for the Benign class. In other words, we maintain
a representative sample of attacks conducted by botnet mal-
ware, ensuring good coverage of attack variety without over-
representing the most frequent ones. The final result of this

pre-processing yields a dataset with 1.2M biflows. Figure 1
shows the distribution of the 13 final classes.

2) Few-Shot Learning Setup: The FSL setup is described
by detailing the learning setup (in terms of dataset splitting and
episode generation) and the configuration of FSL approaches.6

FSL Paradigm Setup. As outlined in Section II-B, the IoT-
23 dataset is divided into 3 distinct sets: Dnf1 , Dnf2 , and
Df . Detailing, Dnf1 comprises the 7 most frequent botnet
malware (viz. classes). Dnf2 is composed of the following 3
botnet malware in terms of number of generated biflows. It
is worth noting that these 10 botnet malware predominantly
involve high-frequency attacks7, such as DDoS and horizontal
port scans. Conversely, the least-populated botnet malware (i.e.
Hakai, Torii, and Trojan) are encompassed within Df . Notably,
these malware primarily execute low-frequency attacks like
C&C and file downloads. This setup assesses whether FSL
approaches successfully generalize to previously-unseen botnet
malware that generate few biflows of completely different
attacks compared to those employed in training.

Once the dataset is split, it is necessary to select the
triplet ⟨N,Ks,Kq⟩ to generate the episodes (see Sec. II-B).
Regarding the meta-learning approaches, we use ⟨N =
3,Ks = 2,Kq = 25⟩ for meta-training episodes, while we
use ⟨N = 3,Ks = 2,Kq = 3⟩ for meta-validation and meta-
testing8. For transfer-learning approaches, Dnf is split into
two sets using stratified hold-out: 30% is used for testing,
while the remaining 70% is further divided for training (90%)
and validation (10%). The fine-tuning phase is conducted in
the same way as meta-testing, with episodes characterized by
⟨N = 3,Ks = 2,Kq = 3⟩. The approaches belonging to both
learning paradigms are evaluated over 1000 episodes.

FSL Approaches Setup. The setup of FSL approaches is
defined in relation to hyperparameters that are specific to each
solution as well as those that are shared among them. As for
the approach-specific hyperparameters, both ProtoNet
and MatchingNet utilize the Euclidean distance metric.
MetaOptNet is fine-tuned with a regularization parameter
set to 0.1 and a maximum of 15 SVM iterations. RFS is
characterized by α = β = 0.5, it employs a nearest-neighbor
classifier and one self-distillation cycle. Lastly, Negative
Margin is calibrated with a margin of −0.1, and with outer
and inner temperatures set to 30 and 5, respectively.

Regarding the common hyperparameters, we use 200
epochs and Adam optimizer set with 10−4 learning rate.
Transfer-learning approaches, with the exception of RFS,
employ 50 inner epochs and 10−3 as inner learning rate. To
mitigate the overfitting, we exploit a custom early-stopping

6Setup choices are based on both state-of-the-art results and a preliminary
experimental campaign on the validation set, which is not reported here for
brevity.

7Further detail on the attacks launched by botnet malware can be found
here: https://www.stratosphereips.org/datasets-iot23.

8Note that for meta-testing, it is not possible to sample more than 5 biflows
per episode since 5 is the overall number of samples belonging to the Trojan
class.

https://www.stratosphereips.org/datasets-iot23
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(d) TCP Receive Window (WIN)
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Figure 2: Characteristics of the biflow contained in IoT-23 according to the 6 considered informative features (cf Sec. II-A). Values are
averaged and transformed with the natural logarithm (log(1 + x)), with the exception of DIR.

Label encoding: a = Benign b = Mirai c = Kenjiro d = Linux.Mirai e = Okiru f = Muhstik g = IRCBot h = Hide&Seek i = Linux.Hajime j = Gagfyt
k = Hakai l = Torii m = Trojan

mechanism that monitors both accuracy and loss on validation
set, it has minimum delta of 10−3 and patience of 20 epochs.

Finally, regarding input data (see Sec. II-A), we use Np =
20 packets, if not stated otherwise. Nevertheless, we will also
show the results of experiments aimed to assess the sensitivity
to the number of packets (Np) and features (M ) in order to
identify the best input size for botnet-traffic classification.

3) Performance Metrics: To assess the effectiveness of FSL
approaches, we employ the macro F1-score and the silhouette
score. The macro F1-score is the harmonic mean of precision
and recall for each class, which is then averaged across all
classes. On the other hand, the silhouette score measures how
closely a sample aligns with its own cluster in comparison to
others. Its values range from −1 (indicating poor similarity) to
+1 (indicating high similarity). This evaluation is particularly
relevant for metric-based approaches (e.g., MatchingNet,
ProtoNet, RFS). For both metrics, we show the average per-
episode score along with the associated confidence interval,
calculated at 95% confidence level, obtained on Df .

4) Implementation Details: All the analyses are executed
on a machine with 12 Intel(R) Xeon(R) CPU E5-2430 v2
@ 2.50GHz and 62GB of memory. We tailored the PyTorch
implementations of ProtoNet and MetaOptNet from
learn2learn framework [18], MatchingNet from the code
provided in [9], while Baseline++, RFS, and Negative
Margin from the LibFewShot framework [19]. FT and FZ
are self-built.

B. Experimental Evaluation

In this section, we present the results of our experimental
campaign, along with the key take-home messages. Detailing,
we (i) explore the impact of selecting diverse features to con-
struct the input fed to models; (ii) perform a sensitivity analysis
assessing the number of packets from which informative
features are extracted; (iii) analyze the impact of leveraging a
different number of shots to classify botnet-malware classes;
(iv) evaluate the effectiveness of FSL approaches in solving a
misuse-detection task, specifically including the benign class.

1) Input Features Analysis: This section delves into an
examination of input characteristics, focusing on selected
features, within the domain of botnet-traffic classification. To
this end, this initial analysis involves identifying the features
that contribute most significantly to the performance of the
approaches, while keeping Np = 20, i.e. the first 20 packets
of each biflow. We consider the following three combinations
of features: (i) the full set of features (M = 6), as reported
in Sec. II-A; (ii) a set of M = 4 features, namely, direction
(DIR), inter-arrival time (IAT), packet length (PL), and win-
dow size (WIN) utilized for the classification of mobile-app
encrypted traffic in [20]; and (iii) a set of M = 3 features,
obtained by removing IAT from the latter set to further reduce
computational overhead. This choice is motivated by the
analysis shown in Fig. 2, where the IAT (depicted in Fig. 2c)
seems to be less informative compared to the other features.
Additionally, the IAT tends to be too sensitive to the specific
collection scenario, potentially introducing generalization is-
sues.
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Figure 3: Performance according to F1-score (top) and silhouette
score (bottom) for different input features.

Input features encoding: 3 = DIR, PL, WIN 4 = DIR, IAT, PL, WIN
6 = DIR, FLG, IAT, PL, TTL, WIN

Figure 3 (top) shows the F1-score achieved by the 8 FSL ap-
proaches for the 3 sets of input features. Specifically, RFS ex-
hibits the best F1-score (87%) when M = 3; MatchingNet
and Negative Margin follow close behind. On the other
hand, ProtoNet stops at 73% F1-score. Overall, the per-
formance for the 3 sets of input are particularly close; this
holds true notably for RFS, MatchingNet, ProtoNet,
Negative Margin, and Baseline++, which report small
fluctuations. FT and FZ have degrading performance from
M = 4 to M = 6, unlike MetaOptNet that tends to improve.

The silhouette score is shown in Figure 3 (bottom). No-
tably, we can identify two distinct behaviors: (i) high sil-
houette score, up to 0.45), exemplified by the meta-learning
approaches and RFS, and (ii) low silhouette score, up to
0.10, shown by the other transfer-learning approaches. Such
results highlight how metric-based techniques, employed by
all approaches in (i), positively influence the quality of the
embedding space.
Take-home message. The performance remains relatively
consistent across different inputs. This is an interesting result,
especially considering that the set with M = 3 (i.e. DIR, PL,
and WIN) is lighter—requiring no timing mechanisms and
extra computations to obtain the IAT—and less dependent on
features associated with specific network conditions.

2) Sensitivity to the Number of Packets: This analysis,
complementing that shown in Sec. III-B1, aims to test the
impact of the number of packets (Np) per biflow. We consider
the full set of features (M = 6) as an illustrative example
since, as shown before, this choice has no major impact on
performance. The goal is to find a good trade-off between effi-
ciency and performance—as the number of packets decreases,
the model prediction becomes more timely.

In Fig. 4 (top), we observe that the F1-score exhibits a steep
rise (≈ +20%) across all approaches when Np varies from 5
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Figure 4: Performance according to F1-score (top) and silhouette
score (bottom) when varying the number of packets.

to 6 packets. Such a trend is corroborated by the heatmaps
depicted in Fig. 2, where there is high information density in
this region (i.e. Np ∈ [1, 6]). Despite some fluctuations, the
rapid increase slows down beyond Np = 6, and the perfor-
mance figures show a more gradual improvement. Remarkably,
at Np = 20, RFS is the best-performing, achieving 87%
F1-score; RFS is closely followed by Negative Margin
and MatchingNet. This result highlights that to achieve
the highest performance on low-frequency attacks, it may be
necessary to inspect a higher number of packets. Neverthe-
less, Np = 7 can be selected as a noteworthy compromise
between computational efficiency and performance. In fact,
the best-performing approach with 7 packets (i.e. Negative
Margin) shows only a somewhat slight drop (−7.69% F1-
score) compared to RFS with 20 packets.

Regarding the silhouette score, as shown in Fig. 4 (bot-
tom), similar trends to those observed on the F1-score are
highlighted. Specifically, when Np = 6, RFS achieves a peak
silhouette score of 0.5, indicating an increasing quality of the
embedding space. Beyond Np = 6, a plateau is reached, and
no significant increases are recorded. Finally, akin to what was
observed in the previous analysis (cf. Sec. III-B1), the FSL
approaches can be divided into the same two groups—those
with high and those with low silhouette scores.
Take-home message. Optimal performance in detecting
low-frequency botnet malware can be achieved by inspecting
20 packets per biflow. However, a notable compromise
between computational efficiency and performance can be
found with 7 packets, with a slight 7.69% reduction compared
to using 20 packets.

3) Sensitivity to the Number of Shots: In the following,
we investigate the performance when considering a variable
number of shots for the meta-testing/fine-tuning phase. In
particular, given that the maximum number of usable biflows
per class is 5 (cf. Sec. III-A2 for details), we have defined
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Figure 5: Sensitivity analysis to the number of shots on Df in terms
of F1-score (top) and silhouette score (bottom).

the following three possible values for Ks : {1, 2, 3}. The
remaining biflows per class, namely Kq : {4, 3, 2}, are used
to form the query set. The input size is fixed and characterized
by M = 6 and Np = 20.

The experimental results showcase significant improvements
in F1-score (see Fig. 5 (top)) across all approaches when
passing from Ks = 1 to Ks = 3, except for ProtoNet. In
the one-shot task scenario—i.e. ⟨N = 3,Ks = 1,Kq = 4⟩—
Baseline++ demonstrates a remarkable F1-score of 78%,
followed by Negative Margin reaching 76%. For Ks = 3,
RFS significantly outperforms the others with the highest F1-
score of 92%; closely behind there are MatchingNet and
FT, both achieving 89% F1-score.

As depicted in Fig. 5 (bottom), the division of approaches
into the two groups based on the silhouette score remains con-
sistent with the previous analyses. However, it is worth noting
that the gap between the groups is narrower with Ks = 1
and tends to broaden as Ks increases to 3. This suggests a
degradation in the performance of the embedding function for
the approaches utilizing a fully-connected classifier.
Take-home message. From the sensitivity analysis to the
number of shots, it emerges that using only 3 new samples
for classifying low-frequency botnet malware leads to high
results. In particular, the best-performing approach (i.e. RFS)
achieves an F1-score of 92%.

4) Misuse Detection Study: In this section, we conduct a
detailed analysis of the results obtained by the best-performing
approach, namely RFS, configured with the setup Np = 20,
M = 6, and Ks = 3. The primary objective is to validate its
effectiveness in performing misuse detection tasks, specifically
in distinguishing between low-frequency botnet and legitimate
(viz. benign) traffic. To this end, we include the biflows from
the benign-traffic class into Df . Accordingly, the following
results are averaged over episodes characterized by a number
of ways (N ) equal to 4. More specifically, we consider the
following traffic classes: Benign, Hakai, Torii, and Trojan (the
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Figure 6: Confusion matrix of RFS when tested on benign and high-
frequency botnet traffic (i.e. on Dnf ) (top), benign and low-frequency
botnet traffic (i.e. on Df ) (middle), and benign vs. malicious traffic
(i.e. on the aggregated binary Df ) (bottom).

Label encoding: x = Benign a = Gagfyt b = Hide&Seek c = IRCBot
d = Kenjiro e = L.Hajime* f = L.Mirai* g = Mirai h = Muhstik
i = Okiru j = Hakai k = Torii l = Trojan
* L stands for Linux

latter three being the classes originally belonging to Df , see
Fig. 1).

To provide a comprehensive evaluation of RFS also on high-
frequency botnet and benign traffic, in Fig. 6 (top), we first
present the results obtained on Dnf . The confusion matrix re-
veals remarkably high performance, with a 97% F1-score. This
confirms the RFS ability to effectively differentiate between
benign and high-frequency botnet traffic. The only instance
of a minor error occurs with Okiru, which is occasionally
confused with Muhstik.

Figure 6 (middle) displays the results of the fine-tuning on
Df . Overall, the performance remains high, recording an F1-
score of 89%. Among the four traffic classes, Torii tends to
be the most frequently confused, particularly with Hakai and
Benign. On the other hand, Hakai is the class that is most



accurately classified (99.95%).
Finally, in Figure 6 (bottom), we present the performance

in the binary task (i.e. 2-ways 3-shots) obtained by aggre-
gating the low-frequency botnet-malware classes into a single
Malicious class. The highest error arises from the confusion
between the Benign (actual) and the Malicious (predicted)
class (7.25%). The confusion between Malicious (actual) and
Benign (predicted) is lower (5.20%). Overall, RFS achieves a
notable F1-score of 93% in effectively distinguishing between
Malicious (i.e. generated by low-frequency botnet) and Benign
traffic.
Take-home message. RFS demonstrates strong performance
in classifying botnet-generated traffic, achieving a remarkable
97% F1-score in distinguishing benign biflows from those
generated by high-frequency botnet malware. Although
a minor confusion occurs between low-frequency botnet
malware and benign biflows, the overall F1-score remains
high at 89%. Additionally, RFS offers high performance in a
binary classification task (benign vs. malicious), reaching a
93% F1-score. These findings underline the effectiveness and
robustness of RFS in botnet-traffic classification.

IV. RELATED WORK

In recent years, the application of FSL in the broad domain
of network security has garnered significant attention. This is
primarily due to its unique ability to classify traffic associated
with previously unseen network attacks (i.e. whose traffic
samples are not available when training the ML/DL model), a
critical ability in the realm of malware-traffic classification.

Table I summarizes the key aspects of related literature,
disclosing a surge in publications utilizing FSL for malware-
traffic classification from 2020 onwards. However, we can
observe that the prevailing literature mostly employs “classic”
FSL approaches (e.g., MatchingNet [9], ProtoNet [10],
RelationNet [30], and MAML [31]), originally introduced
in the field of computer vision around 2017–2018. Indeed,
the current state-of-the-art landscape has yet to adopt the
more promising and recent approaches that have emerged
within other research fields. In particular, to the best of our
knowledge, none of the existing works leverage the transfer-
learning paradigm (column Transfer-Learning in Tab. I), with
all studies exclusively focusing on meta-learning strategies
(column Meta-Learning in Tab. I). In fact, it is necessary to
expand the scope to legitimate-traffic classification (i.e. outside
the network security domain) to find recent works dealing with
FSL approaches based on transfer-learning [20, 32]. Moreover,
the related work lacks comprehensive comparisons between
various FSL approaches (i.e. the comparison is commonly
performed only against non-FSL baselines), except for the
work in [26].

Detailing on the proposed approaches exploited in the
literature (column FSL Approach in Tab. I), MatchingNet
serves as inspiration for Huang et al. [21], who introduces
an FSL method based on a gating mechanism. Gates—akin
to soft-classifiers—facilitate the evaluation of the significance

of both known and unknown anomalies in relation to a test
instance.
RelationNet is another meta-learning approach orig-

inally proposed for computer vision tasks, first described
in [30]. It works by concatenating embedded training and
test samples and feeding them to a relation module, which
is a Convolutional Neural Network (CNN) that outputs a
similarity score between 0 and 1. Xu et al. [23] also employ
RelationNet for anomaly detection. Additionally, Zheng
et al. [22] utilizes RelationNet in conjunction with an
hallucinator that generates new instances by adding noise to
the data.
ProtoNet is used by Ouyang et al. [25] for their intrusion

detection system designed to counteract malicious attacks
against SCADA systems. Similarly, Rong et al. [26] employ
a CNN as a feature extractor fed with anonymized traffic data
and compare the proposed architecture (based on ProtoNet)
with MAML and MatchingNet. Recently, Yang et al. [28]
introduce a novel intrusion detection framework called FS-
IDS. Their embedding function is fed with input obtained
by merging the raw bytes of a network flow (organized as
a gray-scale image) and the flow-based statistics processed
by an autoencoder. The authors then utilize ProtoNet and
RelationNet as FSL approaches.

Differently, Feng et al. [24], Guo et al. [27], and Lu
et al. [29] propose FSL solutions based on Model-Agnostic
Meta-Learning (MAML) [31] to detect anomalous traffic with
only few samples. MAML is a popular FSL approach that
continuously updates the model parameters through a meta-
learning process and a fine-tuning phase to quickly adapt to
new FSL tasks.

Finally, the employed Datasets summarized in the last
column of Tab. I, characterize the specific attack-traffic clas-
sification task to be faced. To the best of our knowledge,
this work is the first that addresses botnet-traffic classification
exploiting the capabilities of FSL via both meta-learning
and transfer-learning approaches. Moreover, we deepen their
performance by investigating different practical configurations
(e.g., variable number of biflows, number of packets, and
traffic features) and by extending them to misuse-detection
tasks.

V. CONCLUSIONS AND FUTURE PERSPECTIVES

In this paper, we aimed to develop a network intrusion
detection system capable of effectively classifying malicious
traffic generated by botnet malware executing low-frequency
and previously unseen (zero-day) attacks. To achieve this
objective, we adopted Few-Shot Learning (FSL) and utilized 8
different approaches, including MatchingNet, ProtoNet,
MetaOptNet, FT, FZ, Baseline++, RFS, and Negative
Margin, which belong to two distinct FSL paradigms: meta-
learning and transfer-learning. The broad prior knowledge base
required by such approaches has been obtained from botnet
traffic associated with high-frequency attacks, which provided
abundant data for training.



Table I: Related studies focusing on attack-traffic classification using Few-Shot Learning approaches. Papers are arranged chronologically by
publication year. The final row provides an overview of the present work. The meaning of acronyms is provided at the bottom of the table.

Paper FSL Approach Meta-Learning Transfer-Learning Datasets

Huang et al. [21], 2020 MN ✓ NSL-KDD
Zheng et al. [22], 2020 RN ✓ ISCX 2012 IDS, ISCX VPN-nonVPN
Xu et al. [23], 2020 RN ✓ ISCX 2012 FS, CIC-IDS2017 FS
Feng et al. [24], 2021 MAML ✓ CICAndMal2017, CIC-IDS2017
Ouyang et al. [25], 2021 PN ✓ SCADA

Rong et al. [26], 2021 PN ✓
MCFP, USTC-TFC, CICInvesAndMal2019,
BEN-1, Self-built

Guo et al. [27], 2022 MAML ✓ USTC-TFC2016
Yang et al. [28], 2022 PN, RN ✓ CIC-IDS2017
Lu et al. [29], 2023 MAML ✓ Self-built combining public datasets

This work MN, PN, MON, FT,
FZ, BL++, RFS, NM

✓ ✓ IoT-23

Acronyms: MatchingNet (MN), ProtoNet (PN), RelationNet (RN), MetaOptNet (MON), Model-Agnostic Meta-Learning (MAML), Fine-Tuning
(FT), Freezing (FZ), Baseline++ (BL++), Rethinking Few-Shot (RFS), Negative Margin (NM). ✓ present.

The results highlight several key findings: (i) using of a lim-
ited set of features (only 3) did not lead to a discernible deteri-
oration of performance; (ii) 20 packets per biflow were deemed
necessary to achieve optimal performance, but with just 7
packets a good trade-off was achieved, i.e. 7.69% F1-score
drop at most; (iii) RFS attained a satisfactory F1-score of
92% leveraging only 3 new biflows per low-frequency botnet
malware, demonstrating its effectiveness in scenarios with
extremely limited samples available; (iv) RFS exhibited high
performance in classifying biflows generated by low-frequency
(resp. high-frequency) botnet malware and benign traffic,
scoring 89% (resp. 97%) F1-score; (v) RFS demonstrated high
proficiency also in binary misuse detection (i.e. benign vs.
malicious traffic, with the latter encompassing traffic from
different low-frequency botnet malware), attaining an F1-score
of 93%.

Moving forward, there are several promising directions for
further research: (a) conducting a comprehensive deployability
study to assess the practical realization of the proposed in-
trusion detection approach on real hardware; (b) investigating
novel FSL approaches inspired by the success of RFS, e.g., by
leveraging knowledge distillation and cluster-based losses to
build solid and robust base models; (c) developing a hierar-
chical FSL approach that first classifies the botnet-malware
type/family and subsequently identifies the specific attack
within this botnet-malware family.
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