
Contextual Counters and Multimodal Deep Learning for Activity-Level Traffic
Classification of Mobile Communication Apps during COVID-19 Pandemic

Idio Guarinoa, Giuseppe Acetoa, Domenico Ciuonzoa, Antonio Montieria, Valerio Persicoa, Antonio Pescapèa

aUniversity of Napoli “Federico II”, Italy

Abstract

The COVID-19 pandemic has reshaped Internet traffic due to the huge modifications imposed to lifestyle of people resorting more
and more to collaboration and communication apps to accomplish daily tasks. Accordingly, these dramatic changes call for novel
traffic management solutions to adequately countermeasure such unexpected and massive changes in traffic characteristics.

In this paper, we focus on communication and collaboration apps whose traffic experienced a sudden growth during the last
two years. Specifically, we consider nine apps whose traffic we collect, reliably label, and publicly release as a new dataset
(MIRAGE-COVID-CCMA-2022) to the scientific community. First, we investigate the capability of state-of-art single-modal and
multimodal Deep Learning-based classifiers in telling the specific app, the activity performed by the user, or both. While we
highlight that state-of-art solutions reports a more-than-satisfactory performance in addressing app classification (96%–98% F-
measure), evident shortcomings stem out when tackling activity classification (56%–65% F-measure) when using approaches that
leverage the transport-layer payload and/or per-packet information attainable from the initial part of the biflows. In line with these
limitations, we design a novel set of inputs (namely Context Inputs) providing clues about the nature of a biflow by observing the
biflows coexisting simultaneously.

Based on these considerations, we propose Mimetic-All a novel early traffic classification multimodal solution that leverages
Context Inputs as an additional modality, achieving ≥ 82% F-measure in activity classification. Also, capitalizing the multimodal
nature of Mimetic-All, we evaluate different combinations of the inputs. Interestingly, experimental results witness that Mimetic-
ConSeq—a variant that uses the Context Inputs but does not rely on payload information (thus gaining greater robustness to more
opaque encryption sub-layers possibly going to be adopted in the future)—experiences only ≈ 1% F-measure drop in performance
w.r.t. Mimetic-All and results in a shorter training time.

Keywords: communication apps, collaboration apps, COVID-19, Deep Learning, encrypted traffic, multimodal techniques,
contextual counters, traffic classification.

1. Introduction

The outbreak of the Covid-19 pandemic has induced govern-
ments worldwide to impose lockdown periods during last two
years. These events have forced millions of citizens to stay at
home, and also study, work, and socialize from there if possi-
ble. As a consequence, Internet traffic from residential users has
witnessed a significant growth (e.g., +20% EU Internet traffic
volume) [1], also with implications on the mobility pattern of
users in cellular networks—e.g., an increase in voice traffic and
uplink traffic in suburbs (+10%) [2].

Focusing on pandemic-related change of traffic composition,
Affinito et al. [3] highlighted the changes in the usage of differ-
ent categories of applications for smart working and distance
learning (i.e. Video, SocialMedia, Messaging, and Collabora-
tion Tools) based on the investigation of websites and domains

Email addresses: idio.guarino@unina.it (Idio Guarino),
giuseppe.aceto@unina.it (Giuseppe Aceto),
domenico.ciuonzo@unina.it (Domenico Ciuonzo),
antonio.montieri@unina.it (Antonio Montieri),
valerio.persico@unina.it (Valerio Persico), pescape@unina.it
(Antonio Pescapè)

during the enforcement of social distancing measures. Analo-
gous changes in usage and volume (increased use of collabora-
tion platforms, VPNs, and remote desktop services) have been
found analyzing traffic in campus networks [4, 5, 6, 7].

The sudden change in the spatial distribution, timing, and us-
age mix of online presence has had a measurable impact on
network performance in terms of increased variability of de-
lay, loss rate, and latency [8], and degradation of over-the-top
services [9], to the point that these measurements have been
effectively used for global-scale inference of work-from-home
and lockdown events and maps [10]. Indeed, unexpected and
massive changes in traffic characteristics pose a challenge to
efficient network resource management, that in turn calls for
enhanced network monitoring capabilities. More specifically,
the possibility to infer the application or the type of application
that generated the observed traffic (viz. the process of Traffic
Classification [11], TC in the following) becomes paramount to
most management, planning, and policy enforcement actions.

While TC has been a hard problem and an active field of re-
search for decades, its application is further challenged by spe-
cific characteristics of communication and collaboration apps:

Preprint submitted to Computer Networks February 22, 2023

consistent use of encryption; shared application-level protocols
as transport sublayers (namely, TLS and HTTP); different func-
tioning modes (activities) for a single application; execution
from mobile devices (platforms characterized by frequent and
automated software updates). These challenges are now push-
ing toward the adoption of advanced Deep Learning (DL) ap-
proaches, able to cope with frequently changing input nature,
and offering promising performance when dealing with com-
plex and hard-to-model problems [12]. Thus, on the one hand,
a better understanding is required of the traffic of applications
that have seen a surge in utilization after the Covid-19 pan-
demic. On the other hand, an assessment (and improvement)
of modern TC approaches is needed, applied to this specific
scenario. This is the more the case with the mentioned pecu-
liarity of multiple activities that the user can access from within
the same application. This specific characteristic poses several
problems: as we show in our experimental evaluation, different
activities in the same app present different traffic patterns, while
being similar to the same activity within other apps—this can
likely confuse the classifiers and lead to poor performance (as
we prove experimentally); different activities have different re-
quirements in terms of Quality of Service, policy enforcement,
and monitoring—managing traffic at app level overly extends
the network management actions to be performed; analyses of
users behaviors, to identify needs, and plan infrastructure and
service deployments, are impacted by the coarseness of sur-
veyed information.

Following these considerations, the objective of our work is
to tackle the activity-level early classification of network traf-
fic generated by the most popular communication and collab-
oration mobile apps, whose utilization has increased with the
COVID-19 pandemic—and keeps shaping the nature of Inter-
net traffic. Specifically, we target nine communication and col-
laboration apps (Discord, GotoMeeting, Meet, Messenger,
Skype, Slack, Teams, Webex, and Zoom) that have seen dra-
matic increase in usage in correspondence of lockdowns. We
analyze their traffic and assess the performance of the state-of-
art DL approaches for classifying the specific app and/or the
kind of activity (Audio-call, Chat, Video-call). As we the find
results much wanting, informed by traffic characterization of
mobile apps [13] we propose and evaluate a novel set of inputs
observed from contextual traffic from the same app, and de-
sign a novel architecture exploiting these data as well, showing
much improved activity-classification performance. Exploiting
such novel inputs, we also design a novel DL architecture which
does not rely on application-layer payload, with minimal loss
of accuracy, but better training time and increased robustness
to more opaque encrypted protocols. We remark that, although
the present work is focused on internet traffic data generated by
some of the apps whose use has grown significantly in conjunc-
tion with the Covid-19 pandemic, the proposed methodology is
general. Indeed, it can be applied in all contexts in which it is
crucial to classify the app and the activity performed by the user
(e.g., QoS/QoE management and user profiling).

Accordingly, the main contributions of this work are summa-
rized in the following:
• We collect and publicly release a novel dataset, named

MIRAGE-COVID-CCMA-2022 (where CCMA stands
for Communication-and-Collaboration Mobile Apps), en-
compassing the traffic of nine communication-and-
collaboration mobile apps run by users executing three dif-
ferent activities (Audio-call, Video-call, and Chat). The
collected dataset is human-generated, recent, and reliably
labeled with both the mobile app that generated the traf-
fic and the activity that was performed by the user. The
considered apps have experienced a sudden change in vol-
ume and spatial/temporal patterns during the pandemic,
thus are of specific interest for network operators, network
managers, academia, and society at large.
• We experimentally evaluate the capability of state-of-art

DL approaches in classifying the traffic generated by
communication-and-collaboration apps at different granu-
larity levels (i.e. application and activity), highlighting the
shortcomings deriving from the feature leveraged by these
solutions. Specifically, we apply state-of-art (and input-
size-optimized) DL architectures (an 1D-CNN [14], a hy-
brid 2D-CNN+LSTM [15], and the multimodal Mimetic-
Enhanced architecture [16]) to the collected dataset, to
classify the traffic at app, activity, and app×activity gran-
ularity. For each activity, we analyze the traffic in terms of
(payload-carrying) packet direction, payload length, pay-
load content, TCP window size, and inter-arrival time, for
the initial part of the biflow1 (early behavior analysis) and
point at the limitations of this choice in activity recogni-
tion.
• Prompted by the limitations in classifying user activities

deriving by the inputs commonly adopted in related liter-
ature [12], we investigate the traffic patterns generated by
a traffic source and design a novel set of inputs (namely
Context Inputs) able to provide hints about a biflow by
observing its context (i.e. the set of co-existing biflows
which run in parallel). Hence, we perform a characteri-
zation analysis suggesting that Context Inputs are able to
support user-activity classification.
• Capitalizing on the appeal of Context Inputs, we de-

sign a novel classification solution starting from Mimetic-
Enhanced, named Mimetic-All, which leverages them as
an additional modality. Our Mimetic-All effectively ex-
ploits the Context Inputs obtaining always the best perfor-
mance when compared with both ML- and DL-based TC
solutions fed with the same input, while being also suitable
for early traffic classification.
• Exploiting the multimodal nature of the architecture, we

provide also a second novel classification solution—we
name Mimetic-ConSeq—that trades the inputs based on
payload for the new Context Inputs, paying a negligible
performance cost (less than 1% F-measure drop for activ-
ity classification w.r.t. Mimetic-Enhanced) to gain both a
smaller training time and greater robustness to future more
opaque encryption sublayers (e.g., TLS with Encrypted

1A biflow (or bidirectional flow) is defined as an aggregation of packets
sharing the common 5-tuple (transport-layer protocol and destination/source IP
address and transport-layer port) regardless of their direction.

2

Server Name Indication or Encrypted Client Hello exten-
sions [17]).
• In addition to TC performance, we evaluate the reliability

of the proposed novel classification solutions and consid-
ered variants via a calibration analysis proving the ben-
eficial effect of Context Inputs in reducing the expected
calibration error.

We remark that the present paper constitutes the expansion
and continuation of the work described in the conference pa-
per [18], which only analyzed existing solutions applied to the
problem of app and activity classification (also evaluated on a
smaller dataset).

The remainder of the manuscript is organized as follows.
Section 2 surveys related studied analyzing changes of Internet
traffic during Covid-19 pandemic, ML/DL approaches for app
or app-user-activity identification, positioning our work against
related literature. Section 3 describes the considered experi-
mental setup, including the collected dataset used for analy-
sis and validation. In Sec. 4, we highlight the shortcomings
of current state-of-art (multimodal) DL-based approaches used
for TC. Then, in Sec. 5, we introduce the Context Inputs and
describe our novel proposals based on such inputs. The exper-
imental analysis is provided in Sec. 6. Finally, Sec. 7 provides
conclusions and future prospects. In Appendix A, we report the
acronyms and abbreviations used in the manuscript.

2. Related Work

In this section, we discuss the recent studies focusing on the
impact of Covid-19 pandemic (Sec. 2.1) and position our study
by detailing the latest advancements in TC via DL (Sec. 2.2)
and user activity recognition (Sec. 2.3).

2.1. Impact of Covid-19 on the Nature of Internet Traffic

Several studies have investigated the changes that the spread
of the Covid-19 pandemic on a global scale has caused to Inter-
net traffic as a result of lockdown periods and the consequent
shift in daily habits. Regarding the increasing use of tools use-
ful for smart working and distance learning, Affinito et al. [3]
provide insights on the usage of different categories of Inter-
net applications for collaboration and entertainment, by analyz-
ing websites and domains visited during the enforcement of the
lockdown to contain the spread of the virus. As shown, during
the reference period, the most used applications were Youtube,
Netflix, Facebook, Whatsapp, Skype, and Zoom. Other
works investigate the variation in traffic volumes and network
performance [1, 2, 4, 8, 9]. Specifically, Feldmann et al. [1]
analyze the effect of the lockdowns on traffic shifts during the
period Mar-Jun 2020, by using network flow data from multi-
ple vantage points (i.e. an ISP, three IXPs, and a large academic
network). They point out that during the period considered, the
volume of European Internet traffic increased by up to +20%,
mainly due to residential traffic generated by applications for
work and distance education, whose volume increased by up to
200%. Lutu et al. [2] analyze the changes in mobility and their
impact on cellular network traffic, showing an overall increase

in voice traffic, with a decrease in download traffic (−20%) and
an increase in uplink traffic (+10%). Additional degradations of
network services are highlighted by Böttger et al. [9], who ana-
lyze the traffic growth in different regions of the world and how
the network responded to an increased demand from the the
perspective of edge network of Facebook during the beginning
of the Covid-19 pandemic. Authors observed a world-wide in-
crease in traffic throughput between March and July 2020 and
also a correlation between the phase of traffic growth and the
spread of Covid-19 for each region. Similar network traffic
shifts are also investigated by Candela et al. [8] which highlight
an higher variability in latency and loss rates in Italy during
the first weeks of the 2020 lockdown w.r.t. the pre-pandemic
period. Finally, Favale et al. [4] analyze the impact of lock-
down measures and the switch to online collaboration and e-
learning solutions on a university campus during the months of
March/April 2020, showing a peak of 1.5Gbit/s in the univer-
sity network traffic due to the increased use of digital tools for
collaboration and remote working.

2.2. Deep Learning-based (Mobile) Traffic Classification

In recent years, several works have faced TC via DL ap-
proaches. Wang [19] has first used a Stacked AutoEncoder
(SAE) for unencrypted traffic identification, achieving supe-
rior performance w.r.t. standard neural networks (≥ 90% pre-
cision and recall). Encrypted TC is targeted by Wang et al.
[14], who propose a method based on 1D Convolutional Neural
Network (1D-CNN)—outperforming the 2D variant—to tackle
four different TC tasks: (i) VPN/nonVPN, (ii) 6 encrypted
traffic classes, (iii) 6 VPN-tunneled traffic classes, and (iv)
12 encrypted applications. Similar tasks are tackled by Lot-
follahi et al. [20] proposing Deep Packet (based on 1D-CNN
and SAE), able to outperform ML-based classifiers for en-
crypted TC at packet granularity. This proposal outperforms
ML-based classifiers in both application identification and traf-
fic characterization. Recurrent Neural Networks have been con-
sidered by Lopez-Martin et al. [15], proposing different hy-
brid DL architectures that combine Long Short-Term Mem-
ory (LSTM) and 2D-convolutional layers. Zeng et al. [21]
propose a framework for encrypted TC and intrusion detec-
tion—named Deep-Full-Range—based on three different DL
architectures (i.e. CNN, LSTM and SAE) using raw traffic as
input data. The framework was evaluated on both classification
tasks by comparing performance with state-of-the-art methods
on two public datasets obtaining better performance on both
tasks.

Focusing on the classification of mobile-app traffic, Rezaei
et al. [22] leverage a CNN fed with the header and the pay-
load of the first six packets of a biflow. Similarly, Liu et al.
[23] devise FS-Net, an encoder-decoder architecture based on
Bidirectional Gated Recurrent Units (BiGRU) taking as input
IP-packet sizes of flow sequences. In this context, in our pre-
vious work [12], we define a systematic framework to dissect
the encrypted mobile TC using DL, and compare a number
of the aforementioned techniques for a comprehensive evalua-
tion. Common usage of biased inputs (e.g., local-network meta-

3

data [14], or source and destination ports [15]) inflating TC per-
formance is also discussed (and discouraged).

Multimodal DL solutions have been recently proposed
to face the challenges of mobile-app TC. We propose
Mimetic [24], a general framework for capitalizing the hetero-
geneous views associated with a traffic object, along with a
novel training procedure based on pre-training and fine-tuning.
Experimental results show that the Mimetic classifier outper-
forms single-modal, ML-based, as well as late-combination of
traffic classifiers both in terms of TC performance and train-
ing complexity. Following along the same research direction,
Wang et al. [25] propose App-Net, consisting of two modal-
ities: a (bidirectional) LSTM and a 1D-CNN. Experimental
results show that App-Net outperforms ML-based and single-
modal DL-based traffic classifiers, while performing almost on
par w.r.t. Mimetic. In the same research direction, we pro-
pose Distiller [26], a multimodal multitask DL approach for
traffic classification to capitalize on the heterogeneity of traf-
fic data and solving multiple traffic categorization problems
simultaneously. A specific instance of the proposed frame-
work was experimentally compared with state-of-the-art mul-
titask DL traffic classifiers [27, 28] on the public dataset ISCX
VPN-nonVPN, showing Distiller achieves gains over all the
TC tasks considered, also exhibiting very manageable training
complexity and lower computational burden than the overall-
best-performing multitask baseline. Recently, Akbari et al. [29]
have proposed a tripartite multimodal DL architecture based on
convolutional and LSTM layers for encrypted-traffic classifica-
tion at service (HTTPS traffic) and application (QUIC traffic)
level. Each modality is fed with different input data, namely
(i) raw TLS handshake bytes, (ii) flow time-series of IAT, size,
and direction, and (iii) handcrafted (post-mortem) flow statis-
tics. Unfortunately, the authors (i) do not compare their pro-
posal with other multimodal solutions, (ii) include the adoption
of both handcrafted and post-mortem flow statistics, and (iii) do
not consider Context Inputs in the design of the proposal.

Capitalizing on the latest advancements on TC solutions via
DL, we investigate the performance of a state-of-art multimodal
architecture and compare its performance against some other
recent but simpler proposals.

2.3. User Activity Recognition
While app-level classification of mobile app traffic is just a—

especially harder—case of network-traffic classification, mod-
ern apps characterized by multiple usage modes (activities) of-
fer on the one hand an even harder problem, on the other hand
the possibility of obtaining more actionable information w.r.t.
just the sole indication of the app. Therefore, recent academic
studies have investigated and demonstrated the ability to infer
user actions performed in mobile apps by analyzing encrypted
network traffic. To this aim, in our previous work [30] we have
addressed the characterization and modeling (by means of
multimodal Markov Chains) of network traffic (at trace, ac-
tivity, and flow level) generated by apps that have experienced
a traffic surge due to Covid-19 pandemic spread. Our results
highlight interesting traffic peculiarities related to both the apps
and the specific activities they are used for.

Conti et al. [31] propose a framework to infer which specific
actions the users perform while running a certain mobile app,
based on packet direction/size information. This is achieved
by using both supervised (Random Forest, RF) and unsuper-
vised learning (agglomerative clustering with a distance based
on dynamic time warping) approaches for service burst classi-
fication. It is shown that by knowing the app generating the
traffic, it is possible to identify a user action with ≥ 95% accu-
racy for most of the actions considered within a set of 7 Android
apps. Saltaformaggio et al. [32] tackle a similar task via their
Netscope proposal: the evaluation is carried out considering a
set of 35 popular activities (for both Android and iOS devices),
based on statistics originated from IP headers. For elementary-
behavior discovery, K-means clustering is used, and then a
Support Vector Classifier (SVC) is trained/tested on activity-
behaviors binary mapping, resulting in performance that varies
depending on the device being tested, but averages 78.04%
precision and 76.04% recall. Grolman et al. [33] extend the
feature-extraction method proposed in [31] and employ trans-
fer learning (based on a modified co-training method requir-
ing only few samples in the source domain) to transfer patterns
that allow identifying specific in-app activities (i.e. tweets and
posts) across different configurations (i.e. device- or version-
wise) to improve the process of recognizing user actions utiliz-
ing existing unlabeled encrypted data. The classification of user
actions in target configuration is made by using two co-training
learners based on RF and AdaBoost algorithms.

Aiolli et al. [34] focus on identifying user activities on
smartphone-based Bitcoin wallet apps, leveraging the earlier
methodology proposed in [35]. The fingerprints are collected
by running apps automatically on Android and iOS devices
and simulating user actions using scripted commands. Network
traces are pre-processed (to remove background traffic and ex-
tract features) to train an SVC and an RF. Statistical features
are collected on sets of packets defined through timing criteria
and IP address/port pairs. The authors deal with the classifica-
tion problem in a multi-stage hierarchical fashion to infer the
app category (Bitcoin vs. other), the OS (Android vs. iOS), the
app, and finally the specific action performed by the user. The
results, evaluated on 29 apps (9 Bitcoin) and 7 user actions, re-
port 95% accuracy.

Li et al. [36] address the problem of inferring activities
from a targeted set of mobile apps via analyzing the contin-
uous encrypted user traffic stream. The authors propose a
DL-based framework in which, focusing on activities having
duration > 15 s, they proceed by dividing each traffic stream
into segments using a sliding-window approach, where each
segment corresponds to an activity of a targeted app. Sub-
sequently, the segments are normalized and represented by a
time-space matrix and a traffic spectrum vector that are used
to feed 2D-CNN and 1D-CNN branches of a multimodal DL
architecture, respectively. The proposed solution is compared
with state-of-art classifiers on a semi-synthetic traffic dataset
and attains > 95% accuracy regarding app, activity, and both
classification tasks.

Finally, Li et al. [37] propose a two step strategy method
for mobile-service TC. In detail, in the first step, a joint DL

4

010002000300040005000
#Biflows

Zoom
Webex
Teams
Slack

Skype
Messenger

Meet
GotoMeeting

Discord

105 106 107

Packets

Chat ACall VCall

Figure 1: Communication and collaboration apps in MIRAGE-
COVID-CCMA-2022 (alphabetic order). Performed activities, num-
ber of biflows (left-bar) and number of packets (right-bar) are reported
for each app. Note that the log scale is used to report the packets num-
ber.

Disco
rd

GotoMeeting
Meet

Messenger
Skype

Slack
Teams

Webex
Zoom

0

20

40

60

80

100

Bi
flo

ws
 [%

]

TCP:SSL
TCP:TLS

TCP:HTTP
UDP:STUN

TCP:UNK
UDP:UNK

OTHER:UNK

Figure 2: Protocol distribution in terms of biflows. UNK stands for
unknown, SSL stands for undetected version of SSL/TLS.

model is exploited as a basic classifier to observe the mobile
service traffic from multiple timescale (i.e. micro-time inter-
val, short-time interval, and long-time interval). Specifically,
based on the time scale, the basic classifier leverages a differ-
ent architecture—including Logistic Regression (LR), Recur-
rent Neural Network (RNN) and Convolutional Neural Network
(CNN)—to extract information from the features used to feed
the model. In the second step, an attention mechanism is used
to aggregate the basic predictions made by the first step in order
to observe the mobile service traffic in an extra-long-time scale.
Experimental results show that the two step strategy outperform
pure DL strategies when used in the classification of 7 different
services (e.g., video on demand, video call, live stream, chat),
both in terms of accuracy and time delay.

Starting from the aforementioned literature on app and ac-
tivity recognition, we investigate their identifiability via a real
dataset targeting apps that were massively used due to the
pandemic events, by avoiding handcrafted features and post-
mortem identification.

3. Experimental Setup

In the following, we first provide the details about
the MIRAGE-COVID-CCMA-2022 dataset we collected
(Sec. 3.1), also explaining the rationale behind the selection of
the apps (Sec. 3.2). Then, we introduce the considered classi-
fiers in the experimental analysis (Sec. 3.3).

3.1. Dataset Collection and Ground Truth Generation
The MIRAGE-COVID-CCMA-2022 dataset was collected

by students and researchers during Apr.–Dec. 2021 leveraging
the Mirage architecture [38] (conveniently optimized to cap-
ture the traffic of communication and collaboration apps) in the
ARCLAB laboratory at the University of Napoli “Federico II”.2

Experimenters used three different mobile devices (all equipped
with Android 10): a Google Nexus 6 and two Samsung Galaxy
A5. In each capture session the experimenters performed a spe-
cific activity on a given communication and collaboration app
(details are given in the later Sec. 3.2), so as to obtain a traffic
dataset that reflects the common usage of the considered apps.3

The session duration spanned from 15 to 80 minutes based on
the specific activity being carried out. Accordingly, each ses-
sion resulted in a PCAP traffic trace with associated ground-
truth information obtained via additional system log-files.

Based on the latter, each biflow4 was reliably labeled with
the corresponding Android package-name by considering estab-
lished network-connections (via the standard Linux command
netstat5). This information was further enriched with a cus-
tom label referring to the specific activity performed by the user
operating the device.

To foster replicability and reproducibility we publicly release
the MIRAGE-COVID-CCMA-2022 dataset6.

3.2. Apps’ and Activities’ Selection Rationale
Communication and collaboration apps—used for business

meetings, classes, and social interaction—have experienced a
huge utilization increment when “stay-at-home” orders were
issued worldwide and are still widely used due to the change
of life- and work-style of people around the globe. The wide
adoption of these apps exposing complex network behaviors
has prompted recent research from academics and practitioners
focusing on different facets, ranging from reaction to varying
network conditions [39] to the different usages of RTP/RTCP
protocols [40] for the multimedia transfers.

Based on both popularity and utilization boost, herein we fo-
cus on nine communication and collaboration apps: Discord,
GotoMeeting, Meet, Messenger, Skype, Slack, Teams,
Webex, and Zoom. Indeed, Zoom has obtained the steepest incre-
ment with its traffic scaling by orders of magnitude, followed by
Webex, GotoMeeting, Teams, BlueJeans (whose traffic we
are currently collecting), and Skype [41]. Also, during 15th–
21st March 2020, Zoom was downloaded 14×, 20×, and 55×

2We highlight that the captures were carried out by adhering to the
distancing/mask-wearing rules prescribed by regional/national decrees in force
at the moment of the collection.

3Each traffic capture session has been performed with the up-to-date version
of the app. Also, to limit background traffic, network access has been disabled
for all the apps but the one under test.

4A bidirectional flow (biflow) encompasses all the packets sharing the same
5-tuple (i.e. source and destination IP address, source and destination port, and
transport-level protocol) in both upstream and downstream directions [12].

5https://linux.die.net/man/8/netstat
6http://traffic.comics.unina.it/mirage/mirage-covid-2022.

In detail, we release the dataset in two formats, making available both the raw
traffic data captured (in JSON format) and a pre-processed version providing
the set of inputs leveraged in this specific work (in pickle format).

5

https://linux.die.net/man/8/netstat
http://traffic.comics.unina.it/mirage/mirage-covid-2022

more than the weekly average during Q4 2019 in the US, UK,
and Italy, respectively [42]. Similarly, Teams also experienced
significant growth in Italy (resp. France) with 30× (resp. 16×)
more downloads. The considered apps have been extensively
exploited for remote (and blended) teaching in Italian7 and Eu-
ropean8 institutions and universities. As also highlighted by
Sandvine [43], in 2021 video traffic has proven to be even more
significant compared to the previous year, both as a standalone
and as an embedded component of app mashups. Indeed, social
and communication applications have gained further popular-
ity, with WhatsApp, Zoom, Teams, and Messenger being the
most used for messaging, and Zoom, Webex, and Teams for en-
terprise conferencing.

Figure 1 depicts the mobile apps collected in MIRAGE-
COVID-CCMA-2022 and used in this study, highlighting also
the activities carried out with each, and the amount of traffic
collected in terms of number of biflows and packets. Specif-
ically, according to the observed app usage, the experimenta-
tion covered the following activities (all related to live events):
Chat (“Chat”)—involves just two participants exchanging tex-
tual messages and/or multimedia content (e.g., images or GIFs);
Audio-call (“ACall”)—involves just two participants transmit-
ting only audio; Video-call (“VCall”)—involves many atten-
dees which can transmit both video and audio (e.g., live events
such as video calls between two or more attendees or webinars).

Furthermore, Fig. 2 reports the characterization of MIRAGE-
COVID-CCMA-2022 traffic in terms of the adopted protocols
for each app. Specifically, for all the apps a significant per-
centage of SSL/TLS biflows is observed (ranging from 30% for
Discord to 90% for Slack). Moreover, all apps generate a
relevant portion of UDP biflows. Remarkably, in the case of
Discord (unlike the other apps) the UDP traffic is predomi-
nant compared to TCP counterpart (i.e. 65% vs. 30%). Finally,
for Meet, Messenger, Skype, and Teams there is also a sig-
nificant presence of STUN9 biflows (between 10% and 30%),
commonly used for multimedia communications in the preva-
lent case of presence of a Network Address Translator (NAT).
These findings are consistent with the outcomes of traffic anal-
ysis performed in other studies [40, 39].

3.3. Baselines Considered and Learning Setup

In the following, we consider state-of-the-art classi-
fiers selected among the best single-modal and multimodal
alternatives—based on extensive performance evaluation car-
ried out in our previous works [12, 24, 16]—in terms of both
DL architecture and unbiased input data.

Specifically, we consider an 1D-CNN fed with the first Nb

bytes of transport-layer payload (PAY) of each biflow [14].
Also, we evaluate a hybrid composition of 2D-CNN+LSTM
(named Hybrid hereinafter) as proposed in [15], having as in-
put the following informative fields (SEQ) of the first Np packets

7Fondazione CRUI – COVID-19 | Strumenti per la didattica digitale.
8European University Institute – Software available at the EUI.
9Session Traversal Utilities for NAT (STUN) protocol allows an end-point

to determine the IP address and port assigned to it by a NAT [44]

of each biflow: (i) the number of bytes in transport-layer pay-
load (PL), (ii) TCP window size (TCPWIN, set to zero for UDP
packets), (iii) inter-arrival time (IAT), and (iv) packet direction
(DIR) ∈ {−1, 1}.

Finally, we also consider the multimodal Mimetic-Enhanced
classifier [16], being an enhanced version of the generic
Mimetic framework originally proposed in [24]. Mimetic-
Enhanced consists of two modalities fed each with one of the
two input types (namely PAY and SEQ) used for the baseline
single-modal classifiers described above. First, to augment
the information carried by input data, Mimetic-Enhanced im-
proves the original Mimetic by introducing a trainable embed-
ding layer for both modalities. From the architectural view-
point, the modality fed with the PAY input type consists of two
1D convolutional layers—each followed by a 1D max-pooling
layer—and a final dense layer. On the other hand, the modal-
ity fed with the SEQ input type consists of a BiGRU and one
dense layer. Finally, the intermediate features extracted by each
modality are concatenated and fed to a shared dense layer and
then to the last softmax classifier. Mimetic-Enhanced is trained
via a two-phase procedure consisting of the pre-training of indi-
vidual modalities plus the fine-tuning of the whole architecture,
and adopts an adaptive learning-rate scheduler. We refer to [16]
for further details on the Mimetic-Enhanced architecture and
related hyperparameters.

In all the following analyses, the performance evaluation is
based on a stratified ten-fold cross-validation. Indeed, the latter
represents a solid assessment setup since it keeps the sample
ratio among classes for each fold. Also, to foster a fair com-
parison, all the classifiers (both novel proposals and baselines,
cf. Sec. 5.3 for details on our proposals) are trained for a to-
tal of 100 epochs (for Mimetic-Enhanced and the novel mul-
timodal proposals, we consider 30 epochs for pre-training of
each modality and 40 epochs for fine-tuning) for minimizing
the categorical cross-entropy loss, and exploit the Adam opti-
mizer (with a batch size of 50) and a validation-based early-
stopping technique to prevent overfitting. In detail, for each
fold, we consider 80% of the whole training data as the actual
training set, while the remaining and 20% is assigned to the
validation set.

Finally, hereinafter we take advantage of the ground-truth in-
formation associated to each biflow (labeled with both the app
generating the traffic and the activity performed) to instruct
and evaluate different supervised strategies corresponding to
three TC tasks: (i) classifying the app (App-TC), (ii) classify-
ing the activity (Act-TC), and (iii) classifying both the app and
the activity (Joint-TC). Accordingly, we train the above models
with: (a) app-related ground truth only (App), (b) activity-re-
lated ground truth only (Act), and (c) the joint app-and-activity
ground truth (App×Act). Note that App and Act produce clas-
sifiers able to address only the specific task they are trained for
(i.e., classifying either apps or activities), whereas when train-
ing the DL architectures based on App×Act, all three TC tasks
above-described can be addressed.

6

https://www.fondazionecrui.it/primo-piano/corona-virus-strumenti-per-la-didattica-digitale/
https://www.eui.eu/ServicesAndAdmin/AcademicService/Digital-Education/Software-available-at-the-EUI

256 576 784 1024 2048
#bytes

40

60

80

%

Accuracy F-measure # TP

0
4000
8000
12000
16000

#T
P

[k
]

(a) 1D-CNN.

4 6 8 12 20 28 36
#packets

40

60

80

%

Accuracy F-measure # TP

0
250
500
750
1000

#T
P

[k
]

(b) Hybrid.

Figure 3: Accuracy [%], F-measure [%], and number of trainable pa-
rameters of 1D-CNN (a) when varying the input dimensions Nb and
Hybrid (b) when varying the input dimensions Np. Results refer to the
Joint-TC task. The best trade-off value is highlighted via a ? marker.

4. Empirical Evaluation of State-of-the-Art Shortcomings
in Activity Classification

After tuning the size of their inputs (Sec. 4.1), we assess
the capability of state-of-art solutions in tackling classification
at both app and activity granularity (Sec. 4.2). Then, we look
at traffic patterns to understand the causes of the poor perfor-
mance attained for activity TC (Sec. 4.3) and investigate alter-
native paths viable to highlight peculiarities in the traffic gen-
erated by different activities, considering its temporal evolution
(Sec. 4.4), and aggregate behavior (Sec. 4.5).

4.1. Sensitivity Analysis

First, we perform a sensitivity analysis to tune the dimension
of the above types of input employed, i.e. the number of bytes
Nb and number of packets Np. For brevity, we refer to the Joint-
TC task, i.e. the hardest in its nature.

Figure 3 shows the accuracy and F-measure10 attained by
the 1D-CNN and Hybrid architectures, when varying Nb ∈

[256, 2048] B and Np ∈ [4, 36] packets, respectively.11 We also
report how the number of trainable parameters (TP) varies with
the size of the considered input data to highlight the (neces-
sary) input size-complexity trade-off. As reported in Fig. 3a,
although the best performance in terms of accuracy and F-
measure is obtained with Nb = 784 B, when passing from
Nb = 576 B to Nb = 784 B, both the accuracy and F-measure
remain stable despite the larger input size. Additionally, the
same variation of Nb causes a non-negligible increase in the
number of trainable parameters (+1.5M), resulting in a much

10accuracy is the share of correctly-classified samples, while F-measure is
the harmonic mean of precision (the proportion of classifier decisions for a
given class which are actually correct) and recall (the per-class accuracy).

11We did not perform the same analysis also for the multimodal Mimetic-
Enhanced due to the combinatorial complexity resulting from considering all
the possible combinations of Nb and Np and the time needed to train/test each
resulting configuration.

more complex architecture with a limited improvement (i.e.
≤ 0.5% in terms of F-measure).

On the other hand, regarding Fig. 3b, we can notice that Hy-
brid reaches the best performance in terms of both accuracy and
F-measure by using Np = 20 packets. In this specific case, con-
sidering 20 packets instead of 12 still provides a small improve-
ment of performance in terms of F-measure, at the cost of a
slight increase (and thus manageable) of complexity (+200k in
terms of number of trainable parameters).12 Regarding the lat-
ter, it is useful to underline that the number of trainable parame-
ters corresponding to Np ∈ [4, 6] is comparable to that obtained
by using Np = 12 packets. The reason for this can be traced
to the fact that such a small input implies the use of differ-
ent padding, which causes additional complexity to implement
the Hybrid architecture. Hence, in the following we employ
Nb = 576 B and Np = 20 packets in order to keep the trade-
off between classification performance (in terms of F-measure)
and complexity of the obtained classifiers. Additionally, it is
apparent that there is an upper bound on the achievable TC
performance even optimizing the input size, whose causes are
deepened in the next.

4.2. App and Activity Classification via State-of-the-art Ap-
proaches

Hereinafter, we evaluate the performance achieved by state-
of-the-art classifiers (i.e., 1D-CNN, Hybrid, and Mimetic-
Enhanced), when adopting different training strategies (i.e.,
App, Act, and App×Act). We recall that App (resp. Act) is
able to solve only the App-TC (resp. Act-TC) task, whereas
App×Act allows to solve both each separate task and the Joint-
TC problem.

As a result, Tab. 1 reports the performance of the classifiers
in terms of accuracy and F-measure attained for each TC task
(column-wise). The table is also complemented by a compu-
tational complexity assessment (via the “TP” and the training
“Time” columns).13 By comparing the general performance
achieved on the three TC problems, Joint-TC clearly confirms
to be the most difficult task to tackle (with 58%−67% accuracy
and 53%−62% F-measure ranges) due to the greater number of
classes (i.e. the 24 combinations of apps and activities). In con-
trast, the (easier) App-TC task (consisting of 9 classes) can be
effectively solved by all the architectures (94%− 99% accuracy
and 95% − 99% F-measure). Finally, the performance obtained
on the Act-TC task highlights the actual difficulty in activity
recognition. Indeed, despite the smallest number of classes (i.e.
the 3 activities) considered in our study, very low performance
(60% − 68% accuracy and 56% − 65% F-measure) are attained
with the all state-of-art approaches.

12Moreover, we underline that the number of trainable parameters of Hybrid
is dominated by that of 1D-CNN, being the former more than one order of mag-
nitude smaller than the latter. This consideration also applies to all architectures
and single-modality branches fed with SEQ compared to those fed with PAY.

13In the case of Mimetic-Enhanced, since the training methodology adopted
allows to parallelize the pre-training of the two modalities, we have calculated
the resulting training time by adding the time needed to perform the pre-training
of the “slower” modality and the time needed to perform the successive fine-
tuning of the whole architecture.

7

Table 1: Comparison of accuracy, F-measure, number of Trainable Parameters (#TP), and Training Time (Time) for the three state-of-art DL
architectures (1D-CNN, Hybrid, and Mimetic-Enhanced) when trained on different class-labels (i.e. related to App×Act, App, and Act) for
different classification tasks. #TP slightly varies with the classification task (with variations being smaller than reported precision). Results are in
the format avg. (±std.) obtained over 10-folds. Training time was computed by pre-training the individual modalities in parallel. The best result
per metric (column) is highlighted in boldface. MM denotes a multi-modal architecture.

Classifier MM Training Strategy
Joint-TC App-TC Act-TC

#TP [k] Time [min]Accuracy [%] F-measure [%] Accuracy [%] F-measure [%] Accuracy [%] F-measure [%]

1D-CNN #
App×Act 57.94(±0.82) 52.84(±0.86) 96.12(±0.30) 96.66(±0.25) 59.95(±0.77) 56.12(±0.80) 4272 47(±5)

App - - 97.48(±0.21) 98.05(±0.23) - - 4256 45(±4)
Act - - - - 60.18(±1.04) 56.45(±1.17) 4250 47(±3)

Hybrid #
App×Act 61.62(±0.93) 57.12(±1.04) 94.36(±0.41) 95.11(±0.36) 64.77(±0.96) 63.13(±0.86) 428 12(±4)

App - - 94.85(±0.51) 95.62(±0.42) - - 426 15(±4)
Act - - - - 63.99(±0.90) 62.06(±1.05) 426 12(±4)

Mimetic-Enhanced
App×Act 67.12(±1.14) 62.29(±1.21) 98.54(±0.21) 98.75(±0.18) 67.94(±1.13) 65.33(±1.15) 1235 57(±6)

App - - 98.73(±0.18) 98.95(±0.16) - - 1225 42(±3)
Act - - - - 65.37(±0.74) 62.60(±1.05) 1221 49(±4)

1-
a

1-
b

1-
c

2-
a

2-
c

3-
a

3-
c

4-
a

4-
b

4-
c

5-
a

5-
b

5-
c

6-
a

6-
b

6-
c

7-
a

7-
b

7-
c

8-
a

8-
c

9-
a

9-
b

9-
c

Predicted App-Activity Class

1-a
1-b
1-c
2-a
2-c
3-a
3-c
4-a
4-b
4-c
5-a
5-b
5-c
6-a
6-b
6-c
7-a
7-b
7-c
8-a
8-c
9-a
9-b
9-c

Ac
tu

al
 A

pp
-A

ct
iv

ity
 C

la
ss

1 : Discord
2 : GotoMeeting
3 : Meet
4 : Messenger
5 : Skype
6 : Slack
7 : Teams
8 : Webex
9 : Zoom
a : audiocall
b : chat
c : videocall

0.010.01

0.1

1

10

100

(a) 1D-CNN.

1-
a

1-
b

1-
c

2-
a

2-
c

3-
a

3-
c

4-
a

4-
b

4-
c

5-
a

5-
b

5-
c

6-
a

6-
b

6-
c

7-
a

7-
b

7-
c

8-
a

8-
c

9-
a

9-
b

9-
c

Predicted App-Activity Class

1-a
1-b
1-c
2-a
2-c
3-a
3-c
4-a
4-b
4-c
5-a
5-b
5-c
6-a
6-b
6-c
7-a
7-b
7-c
8-a
8-c
9-a
9-b
9-c

Ac
tu

al
 A

pp
-A

ct
iv

ity
 C

la
ss

1 : Discord
2 : GotoMeeting
3 : Meet
4 : Messenger
5 : Skype
6 : Slack
7 : Teams
8 : Webex
9 : Zoom
a : audiocall
b : chat
c : videocall

0.010.01

0.1

1

10

100

(b) Hybrid.

1-
a

1-
b

1-
c

2-
a

2-
c

3-
a

3-
c

4-
a

4-
b

4-
c

5-
a

5-
b

5-
c

6-
a

6-
b

6-
c

7-
a

7-
b

7-
c

8-
a

8-
c

9-
a

9-
b

9-
c

Predicted App-Activity Class

1-a
1-b
1-c
2-a
2-c
3-a
3-c
4-a
4-b
4-c
5-a
5-b
5-c
6-a
6-b
6-c
7-a
7-b
7-c
8-a
8-c
9-a
9-b
9-c

Ac
tu

al
 A

pp
-A

ct
iv

ity
 C

la
ss

1 : Discord
2 : GotoMeeting
3 : Meet
4 : Messenger
5 : Skype
6 : Slack
7 : Teams
8 : Webex
9 : Zoom
a : audiocall
b : chat
c : videocall

0.010.01

0.1

1

10

100

(c) Mimetic-Enhanced.

1-
a

1-
b

1-
c

2-
a

2-
c

3-
a

3-
c

4-
a

4-
b

4-
c

5-
a

5-
b

5-
c

6-
a

6-
b

6-
c

7-
a

7-
b

7-
c

8-
a

8-
c

9-
a

9-
b

9-
c

Predicted App-Activity Class

1-a
1-b
1-c
2-a
2-c
3-a
3-c
4-a
4-b
4-c
5-a
5-b
5-c
6-a
6-b
6-c
7-a
7-b
7-c
8-a
8-c
9-a
9-b
9-c

Ac
tu

al
 A

pp
-A

ct
iv

ity
 C

la
ss

1 : Discord
2 : GotoMeeting
3 : Meet
4 : Messenger
5 : Skype
6 : Slack
7 : Teams
8 : Webex
9 : Zoom
a : audiocall
b : chat
c : videocall

0.010.01

0.1

1

10

100

Figure 4: Confusion matrices of 1D-CNN (a), Hybrid (b), and Mimetic-Enhanced (c) considering the App×Act and related to the Joint-TC. Note
that the log-scale is used to evidence small errors.

By looking at classifier standpoint, Mimetic-Enhanced out-
performs the two competing approaches on all the three con-
sidered TC tasks. For instance, Mimetic-Enhanced roughly
achieves +5% (resp. +10%) F-measure than Hybrid (resp. 1D-
CNN) on Joint-TC. Interestingly, Tab. 1 also highlights that the
training strategy adopted may impact the performance achieved
by the models. Indeed, while for App-TC all the architectures
achieve better performance when relying on App training strat-
egy, for Act-TC the training App×Act results in better perfor-
mance for Mimetic-Enhanced and Hybrid. Hence, this high-
lights that app classification may be conducive to activity recog-
nition, while the opposite does not necessarily hold.

Furthermore, looking at the complexity of the considered ar-
chitectures, the analysis provides other interesting pieces of
evidence (last two columns of Tab. 1). In fact, the complex-
ity highly varies with considered architecture: 1D-CNN and
Mimetic-Enhanced are ≈ 10× and ≈ 4× more complex than
Hybrid, respectively, in terms of trainable parameters (which
are roughly proportional to both the training time and the mem-
ory occupation). Hence, Mimetic-Enhanced provides the best
trade-off between TC performance and complexity.

To provide details on the performance at a finer grain, Fig. 4

reports the confusion matrix of each architecture on the Joint-
TC task. Delving into these matrices, we can notice that
Mimetic-Enhanced can substantially reduce the misclassifica-
tion patterns w.r.t. both 1D-CNN and Hybrid, confining the
errors within the activities of the same app, illustrated by the
more evident block diagonal pattern in Fig. 4c. Still, the block-
diagonal pattern of all the confusion matrices confirms the gen-
eral difficulty in discriminating adequately among the activities
with the given set of inputs.14

4.3. Understanding the Causes: Biflow-level Characterization
of Early Behavior

In the previous analysis, we have shown that state-of-art clas-
sifiers achieve unsatisfactory performance when used to solve
the activity classification problem. Consequently, in this section
we analyze the typical behavior of biflows in the initial part of
the communication, in order to collect clues about whether ac-
tivities related to specific apps can be discriminated by observ-

14This is also confirmed by the confusion matrices on the Act-TC task, not
shown for brevity.

8

1 4 8 12 16 20 24 28 32 36
Packet index

ACall
Chat
VCall

All
500
1000
1500

(a) Average PL [B] of the first 36 packets for Skype.

1 4 8 12 16 20 24 28 32 36
Packet index

ACall
Chat
VCall

All
500
1000
1500

(b) Average PL [B] of the first 36 packets for Teams.

1 4 8 12 16 20 24 28 32 36
Packet index

ACall
Chat
VCall

All - 1.0
 - 0.5
 0
+0.5
+1.0

(c) Average DIR of the first 36 packets for Skype.

1 4 8 12 16 20 24 28 32 36
Packet index

ACall
Chat
VCall

All - 1.0
 - 0.5
 0
+0.5
+1.0

(d) Average DIR of the first 36 packets for Teams.

1 4 8 12 16 20 24 28 32 36
Packet index

ACall
Chat
VCall

All 0
100
101
102

(e) Average IAT [ms] of the first 36 packets for Skype.

1 4 8 12 16 20 24 28 32 36
Packet index

ACall
Chat
VCall

All 0
100
101
102

(f) Average IAT [ms] of the first 36 packets for Teams.

1 4 8 12 16 20 24 28 32 36
Packet index

ACall
Chat
VCall

All 0100101102103104

(g) Average TCPWIN of the first 36 packets for Skype.

1 4 8 12 16 20 24 28 32 36
Packet index

ACall
Chat
VCall

All 0100101102103104

(h) Average TCPWIN of the first 36 packets for Teams.

1 256 512 768 1024 1280 1536 1792 2048
Packet index

ACall
Chat
VCall

All

255

(i) Average PAY of the first 2048 Bytes for Skype.

1 256 512 768 1024 1280 1536 1792 2048
Packet index

ACall
Chat
VCall

All

255

(j) Average PAY of the first 2048 Bytes for Teams.

Figure 5: Properties of biflows’ time-series with respect to PL, DIR, IAT, TCPWIN, and PAY for Skype (a, c, e, g, i), Teams (b, d, f, h, j), and Webex
(k, l, m, n, o) based on the activity-type and in summary (All) form. The downstream and upstream DIR is mapped on +1 and −1, respectively.
For each input type, the vertical dashed line marks the size of the input fed to classifiers, based on the sensitivity analysis in Sec. 4.1.

ing the inputs used to feed the considered DL architectures. Ac-
cordingly, we analyze the PL/DIR/IAT/TCPWIN sequences of the
first 36 packets15 (i.e. the fields considered in the SEQ input) and
the first 2048 B (i.e. the PAY input). For each packet/byte index,
we report the average value across all biflows for a given app.
The analysis presented in Fig. 5 focuses on Skype16, Teams17,
and Webex18. For these apps, the above information is broken
down into the considered activities (ACall, Chat, and VCall)
and also reported in summary form (All).

Considering the generic behavior of the specific app (All),
in all cases there are significant differences between the initial
part—which extends at most up to the 15th packet—and the re-
maining part of the sequence, when considering PL/DIR/IAT.
This does not occur in the case of TCPWIN, for which the behav-
ior is slightly less evident. Specifically, in the cases of Skype
and Teams, the main patterns are located on the first 5 packets,
while for Webex the trend extends up to the 15th packet.

15Packets with no payload are discarded since they reflect transport-layer
signaling neither depending on the nature of the app nor the performed activity.

16A similar behavior as Skype has been observed for Messenger, Slack
and Zoom.

17A similar behavior as Teams has been observed for Discord.
18A similar behavior as Webex has been observed for GotoMeeting and

Meet.

Moreover, when focusing on the specific app, similarities can
be seen between the patterns associated with the different activ-
ities. For Skype and Teams we observe characteristic patterns
associated with ACall and VCall on the first 5 packets while
for Chat we observe a trend that extends over all 36 packets.
Specifically, focusing on VCall and ACall, if we consider PL
and DIR, in the case of Skype we observe identical behavior
between the two activities (excluding the 5th packet) while in
the case of Teams the pattern associated with VCall is slightly
more pronounced (i.e. packets with higher payload in the down-
stream direction). On the contrary, this does not hold when
looking at the IAT for which we observe longer times in the
case of ACall. It is also interesting to note that in the case of
Webex, ACall and VCall present an identical behavior and this
is probably due to the fact that Webex19, unlike the other two
shown, is an app designed to allow users to make video calls
and this function has been adapted to make simple audio calls,
since it does not have a native function to perform this type of
activity. Finally, referring to PAY, similar observations can be
made about the indistinguishability between the activities asso-
ciated with Skype, Teams, and Webex, especially regarding the

19The same reasoning applies to Meet and GotoMeeting.

9

1 4 8 12 16 20 24 28 32 36
Packet index

ACall
VCall

All
500
1000
1500

(k) Average PL [B] of the first 36 packets for Webex.

1 4 8 12 16 20 24 28 32 36
Packet index

ACall
VCall

All
 - 1.0
 - 0.5
 0
+0.5
+1.0

(l) Average DIR of the first 36 packets for Webex.

1 4 8 12 16 20 24 28 32 36
Packet index

ACall
VCall

All
0
100
101
102

(m) Average IAT [ms] of the first 36 packets for Webex.

1 4 8 12 16 20 24 28 32 36
Packet index

ACall
VCall

All
0100101102103104

(n) Average TCPWIN of the first 36 packets for Webex.

1 256 512 768 1024 1280 1536 1792 2048
Packet index

ACall
VCall

All

255

(o) Average PAY of the first 2048 Bytes for Webex.

Figure 5: Properties of biflows’ time-series with respect to PL, DIR,
IAT, TCPWIN, and PAY for Skype (a, c, e, g, i), Teams (b, d, f, h, j),
and Webex (k, l, m, n, o) based on the activity-type and in summary
(All) form. The downstream and upstream DIR is mapped on +1 and
−1, respectively. For each input type, the vertical dashed line marks
the size of the input fed to classifiers, based on the sensitivity analysis
in Sec. 4.1.

ACall and VCall.
Different activities performed by the user using a specific app

exhibit very similar behaviors when considering the features
that are typically used as input to feed the classifiers.

4.4. Highlighting Activity Peculiarities via an Alternative
View: Time Evolution of App Connections

The previous analysis suggests that the shortcomings en-
countered in TC performance are related to the nature of the
considered inputs, which are not able to capture the peculiar-
ities of the activities performed. Hence, here we investigate
whether alternate paths are viable based on the observation of
“simultaneous” (viz. concurrent) biflows.

Indeed, the behavior of an app on the network is the result
of the mixture of multiple concurrent traffic biflows between
the client—running a certain (communication and collabora-
tion) app—and a variety of servers [13], whose number and
characteristics may depend both on the app and the activity. To
validate this hypothesis, we analyze the overall traffic generated
or received by the app during a traffic capture in order to quan-

tify the number of concurrent biflows over time, by considering
(non-overlapping) windows.

Formally, for a capture starting at time t0 and having du-
ration D, the ith aggregation interval gathers all biflows that
transmit at least one packet within [t0 + (i − 1)∆, t0 + i∆), with
i ∈ {1, 2, · · · dD

∆
e}, where ∆ is the duration of the samplig win-

dow. Considering three exemplifying apps (i.e. Skype, Teams,
and Webex), Fig. 6 shows the amount of concurrent biflows
considering a (non-overlapping) window size ∆ = 5 s. We
can observe a limited time frame at the very beginning of the
communication during which the client generates several bi-
flows whose number depends on the type of action conducted
by the user (this is particularly evident for instance in Fig. 6b).
These concurrent interactions might be connected to authoriza-
tion/accounting, telemetry, and advertising services, each ex-
pected to be located on dedicated servers.20

The number of generated biflows then settles to a lower value
(which varies with both the app and the activity, and ranges
from 5 to 13 biflows). Interestingly, for some apps such as
Teams, this plateau value appears to be more stable for both
Acall and Vcall, whereas the Chat exhibits more pronounced
variations across multiple captures. Generally, if we compare
the number of biflows associated to ACall and VCall before
reaching the plateau, we can observe that in the case of Teams,
the VCall is characterized by a higher number of biflows than
ACall, while the opposite scenario occurs in the case of Webex.

Observing the steady-state behavior, VCall tends to main-
tain a higher number of active biflows than ACall in the case
of Teams, while the two activities tend to maintain the same
number of active biflows for Webex. Interestingly, the behavior
of the two activities is very different for Teams—with VCall al-
ways being associated with a higher number of active biflows.
This does not hold for Skype where the behavior is very similar
in both phases. Finally, for both Skype and Teams, the traffic
related to Chat is always carried by a lower number of biflows
compared to the other two activities.

We also evaluated the number of different server sockets con-
tacted by the client, which characterize the packets belonging
to the same service burst [45]. The definition of service burst
starts from that of burst [46], defined as a sequence of pack-
ets (regardless of the biflow they belong to) having an inter-
packet time smaller than a given threshold. Hence, a service
burst is defined as the subset of packets of a burst belonging to
biflows that share the same transport protocol, and destination
IP:port pair The service burst ideally groups packets related
to the same server application and strictly-related information
(due to the timing), and has been used previously for the pur-
pose of TC [31, 47, 45], implying also that the client device is
set (as in our analysis). At any time, a service burst can refer to
a single server socket, not including traffic related to other si-
multaneous communications from the same client (see Fig. 8).

Performing an analysis of concurrent server sockets (strictly
analogous to what we have done with biflows) we can observe
trends similar to those shown in Fig. 6 for biflows but with a

20An experimental analysis of 500 popular mobile apps conducted in [13]
has found an average of 4.5 different cloud services accessed per mobile app.

10

0 5 10 15
Capture Time [min]

0

5

10

15

20

Bi

flo
ws

ACall Chat VCall

(a) Skype.

0 5 10 15
Capture Time [min]

0

5

10

15

20

Bi

flo
ws

ACall Chat VCall

(b) Teams.

0 5 10 15
Capture Time [min]

0

5

10

15

20

Bi

flo
ws

ACall VCall

(c) Webex.

Figure 6: Amount of concurrent biflows (mean ± std across different captures) in each 5-second slot for Skype (a) and Teams (b), and Webex (c)
across the different activities performed. Values are calculated considering the first 15 min of each capture.

notable offset. Specifically, we found that the number of server
sockets are at most 50% of the overall number of active bi-
flows. This clearly implies that multiple biflows concurrently
reach the same service. Hence, the presence of a significant
number of concurrent biflows and multiple concurrent service
bursts imply that a single service burst (not to say a single bi-
flow) cannot account for most traffic exchanged by a given app
at a give time interval. Therefore, contextual information is
missed when using biflow-based or service-burst-based inputs.
This (expected) experimental finding will inform the definition
of novel inputs in the following Sec. 5, and motivates the ag-
gregated characterization of app traffic in the following.

4.5. Highlighting Activity Peculiarities via an Alternative
View: Characterization of Simultaneous Biflows

Informed by the analysis on time evolution of app commu-
nications, in this section we characterize the traffic carried by
concurrent biflows in terms of aggregate metrics, namely bit-
and packet-rates, computed considering a (non-overlapping)
window of size ∆ = 5 s according to the aforementioned
methodology. Results are shown in Figs. 7a and 7b, depicting
the downstream and upstream bit-rate, respectively. Similarly,
Figs. 7c and 7d report the downstream and upstream packet-
rate, respectively. In addition, for each app, the distribution is
broken down across the specific activities highlighted with dif-
ferent colors.

Observing the downstream bit- and packet-rates (in
Figs. 7a and 7c), we can notice that the different activities are
characterized by significantly-different patterns in terms of me-
dian rate which, however, do not seem strictly related to a spe-
cific app. In fact, for all apps VCall always corresponds to the
highest bit-rate (resp. packet-rate) which varies in the range
[651, 821] Kbps (resp. [115, 182] pps). This is expected given
the simultaneous transmission of both audio and video traf-
fic. On the contrary, in the case of ACall and Chat, the bit-
rate (resp. packet-rate) varies in the ranges [46, 61] Kbps (resp.
[33, 55] pps) and [2, 3] Kbps (resp. [0.6, 0.8] pps), respectively.

In contrast, when upstream bit- and packet-rates (in
Figs. 7b and 7d) are considered, there is no clear separation
as in the downstream case. In fact, the different activities tend
to have closer median values, varying in the range [3, 68] Kbps

(resp. [1, 54] pps) for the bit-rate (resp. packet-rate) and de-
pending more on the type of app. Indeed, for both Skype and
Teams we observe differences between ACall and VCall. On
the contrary, focusing on Webex, the same two activities are
characterized by very similar bit- and packet-rates, i.e. 26 vs.
29 Kbps and 20 vs. 21 pps, respectively. Moreover, referring
to Chat, the activity pattern seems quite distinguishable from
ACall and VCall for both rate metrics (cf. Figs. 7b and 7d) in
the case of Teams. Conversely, this does not hold for Skype, for
which the Chat bit-rate is much more similar to that of VCall.

5. Context-Based Multimodal Deep Learning Traffic Clas-
sification

Hereinafter, we introduce the definition of context behavior
and related Context Inputs in Sec. 5.1; the traffic characteri-
zation of Context Inputs is then provided in Sec. 5.2. Finally,
Sec. 5.3 describes the novel Mimetic-All architecture proposed
herein.

5.1. Definition of Context Behavior
Based on above considerations, in addressing the TC prob-

lem at activity level we intend to exploit both the (a) intrinsic
characteristics of the biflow to be classified and (b) the informa-
tion related to its context, namely taking into account the traffic
related to the biflows that are contextually created by the same
app when the user performs a specific activity. To be able to
do this in a practically meaningful and useful manner, we need
to clarify the concepts of classification object and contextual
information.

A classification object represents the (aggregated) unit of
traffic that will receive the classification label—and thus will
be subject to the management actions that motivated the clas-
sification, e.g., it will be throttled, or blocked, or given higher
priority, or will trigger a special logging rule, etc. Typically,
the classification object is also the source of input data for the
classifier. This is the case for the biflow, whose information is
used to extract classification features, and is the typical unit of
traffic for network management.

Considering the service burst, defined in Sec. 4.4, and re-
cently used in the context of TC as classification object [47, 31,
45], we notice that this aggregate of traffic presents however

11

(a) Downstream bitrate.

(b) Upstream bitrate.

(c) Downstream packet-rate.

(d) Upstream packet-rate.

Figure 7: Downstream bitrate (a), upstream bitrate (b), downstream
packet-rate (c), and upstream packet-rate (d). Values are evaluated over
time intervals of ∆ = 5 s. Boxes report the 1st and 3rd quartiles (1Q and
3Q, respectively), while whiskers mark 1Q−1.5 IQR and 3Q+1.5 IQR,
where IQR=3Q−1Q. Black diamonds highlight outliers.

18.205.93.144

52.202.62.236

443

443

134.224.5.182

8801

192.168.20.100

44203

48071

45036

45189

BFr

Service
Burst

Context
Biflows
of BFr

Service
Burst

45532

Service
Burst

Figure 8: Comparison between context biflows of a reference biflow
BFr and service bursts. All packets are generated or received by the
same mobile app.

some significant limitations, discussed hereafter. First, the (ser-
vice) burst definition is highly-sensitive w.r.t. the choice of the
inter-packet-time threshold: this value can critically depend on
the network conditions, and on the presence (or lack thereof)
of multiple clients accessing the same service. Secondly, using
a service burst as the TC object poses a practical problem on
the usage of the classification result: from both network man-
agement and network security standpoints the biflow is a well-
known and widely-used granularity to apply relevant actions
such as filtering, throttling, priority queuing, accounting. Con-
versely, it is not straightforward (or necessarily meaningful) to
apply the same actions on varying sets of packets separated by
the aforementioned transmission gaps. Finally, service bursts
are unlikely to reflect (and allow to exploit) the heterogeneous
nature of modern-application traffic. Indeed, a single applica-
tion to perform its functions can at the same time communicate
with different network services [13], and a mix of services is
likely to be more indicative of a specific activity of the same
application. In Secs. 4.4 and 4.5 we experimentally validated
the presence of multiple simultaneous biflows, and several ser-
vice bursts, that differently characterize the time evolution and
volume of traffic of each app and activity.

Following these considerations, we keep the biflow as the
TC object, and we will use the information from simultaneous
same-app communications as contextual information that will
help discerning the activities of a given application. Specifi-
cally, in what follows we refer to the TC object as the refer-
ence biflow or BFr. We consider the traffic generated by the
same device, identified by its IP address21 hereafter referred
to as device IP, and the same app generating BFr: a filter on
the device IP address and a pre-classification stage detecting
the app22 allow to select all biflows potentially related to BFr.

21If NAT is performed, the original IP is easily available if the traffic cap-
ture happens on the gateway performing NAT, or if the log of NAT mapping is
provided: both cases are common in enterprise scenarios. If this information is
not explicitly available, different approaches to cluster traffic originating from
a single device can be applied to passively monitored NATted traffic [48].

22For app-level classification, an F-measure greater than 92% can be
achieved also just using the single-modality bSEQ classifier fed with infor-
mative fields of the first 20 packets (see Tab. 3). On the basis of the results
depicted in Fig. 3b, this can be considered a design choice depending on de-
ployment constraints.

12

CONTEXT

time

r

a

b

d
c

q-tuple label Start Bu Bd Pu Pd
qa ta

start Bu,a Bd,a Pu,a Pd,a

qc tc
start Bu,c Bd,c Pu,c

tr
start Bu,r Bd,r Pu,r

qb tb
start Bu,b Bd,b Pu,b

Pd,c

Pd,r

Pd,b

qrPre-Classifier

SEQ

PAY

CONTEXT
Generator

Biflow
Segmentation

Human
generated

PCAP Traces

BF
Np1 2 3

trstart trNp

Figure 9: For each biflow are highlighted: the arrival time of the first packet (4) (i.e. the SYN packet for TCP biflows), the arrival time of the last
packet (O), and the arrival time of first packet with non-zero payload (N). Additionally, for the current biflow BFr, in addition to the arrival time of
the first packet (♦), the arrival time of the Pth packet with non-zero payload is also highlighted (�). PAY denotes the first Nb byte of transport-level
payload. SEQ denotes header fields extracted from the sequence of the first Np packets. CONTEXT denotes Context Inputs computed at the
arrival of the Np-th packet of the reference biflow BFr (i.e., the biflow to be classified). tstart

i refers to the starting time of the generic biflow Bi

identified by the quintuple qi. Bu,i/Bd,i and Pu,i/Pd,i denote the total amount of byte and packets, respectively, transmitted/received by the biflow
Bi, up to time tNp

r .

#CF

Vu

BRu
Pu

PRu

PRd

Pd
BRd

Vd

5 10 15 20

3575

7150

10725

14300

75

150

225

300

5775

11550

17325

23100

15
30

45
60

15
30

45
60

5775

11550

17325

23100

75

150

225

300

3575

7150

10725

14300

ACall
Chat
VCall

(a) All.

#CF

Vu

BRu
Pu

PRu

PRd

Pd
BRd

Vd

5 10 15 20

2600

5200

7800

10400

75

150

225

300

4125

8250

12375

16500

12
25

37
50

12
25

37
50

4125

8250

12375

16500

75

150

225

300

2600

5200

7800

10400

ACall
Chat
VCall

(b) Skype.

#CF

Vu

BRu
Pu

PRu

PRd

Pd
BRd

Vd

7 15 22 30

6750

13500

20250

27000

125

250

375

500

11450

22900

34350

45800

22
45

67
90

22
45

67
90

11450

22900

34350

45800

125

250

375

500

6750

13500

20250

27000

ACall
Chat
VCall

(c) Teams.

#CF

Vu

BRu
Pu

PRu

PRd

Pd
BRd

Vd

2 5 7 10

1650

3300

4950

6600

75

150

225

300

2525

5050

7575

10100

10
20

30
40

10
20

30
40

2525

5050

7575

10100

75

150

225

300

1650

3300

4950

6600

ACall
VCall

(d) Webex.

#CF

Vu

BRu
Pu

PRu

PRd

Pd
BRd

Vd

5 10 15 20

2600

5200

7800

10400

75

150

225

300

4125

8250

12375

16500

12
25

37
50

12
25

37
50

4125

8250

12375

16500

75

150

225

300

2600

5200

7800

10400

ACall
Chat
VCall

Figure 10: Properties of biflows’ with respect to the nine Context Inputs (i.e., Vu, Vd, BRu, BRd, Pu, Pd, PRu, PRd, #CF, arranged symmetrically in the
upper half for upstream, lower half for downstream) for All apps (a), Skype (b), Teams (c), and Webex (d) based on the activity-type (ACall, Chat,
and VCall). Values are calculated at the arrival of the 20th packet for each current biflow and averaged over all biflows. Vu and Vd are reported in
KB. BRu and BRd are reported in Kbps. PRu and PRd are reported in Pps. Pu, Pd, and #CF are reported in unit.

To restrict the contextual information to only communications
simultaneous to BFr, and to impose causality (thus enabling
online classification), we further restrict considered packets to
biflows that were open during the transmission of the first Np

payload-carrying packets of BFr. In summary, naming tstart
r the

arrival time of the SYN packet of BFr, and tNp
r the arrival time

of its Np-th payload-carrying packet, the set of packets defining
contextual biflows satisfy all the following four conditions:
• same device IP of BFr;
• same app label of BFr;
• biflow did not end before tstart

r ;
• arrival time of the packet precedes tNp

r .
The overall mechanism is illustrated in Fig. 9 and described

hereafter. For each biflow, the starting time and the current
number of bytes/packets transmitted (in both the upstream and
downstream directions) are saved. Then, for each reference
biflow BFr, at time tNp

r (arrival of its Np-th payload-carrying

packet), the packets belonging to its contextual biflows are used
to compute nine aggregate metrics to be used as Context Inputs
(Context in short). Specifically, these metrics correspond to:
(a) the number of contextual biflows (#CF), (b) the amount of
transmitted byte/packets (V∗/P∗) and (c) the bit-/packet- rate23

(BR∗/PR∗) in both directions (we use ∗ = u and ∗ = d to denote
the upstream and downstream directions, respectively).

Regarding the practical feasibility of the definition above, we
highlight that the Context Inputs are time-sliced analogous to
flow counters kept by routing devices and traffic monitoring
middleboxes (NetFlow and IPFIX standard [49]), and can be
directly derived from their values sampled at two instants de-
termined by each reference biflow (the start and the arrival of
Np-th packet).

23Rates are computed by considering the time interval between the starting
of the oldest contextual flow and tNp

r .

13

bSEQ bPAY

Concatenate

rate=0.2
Dropout

units=128
activation=ReLu

Dense

units=24
activation=softmax

Dense

CONTEXT

units=200
activation=LeakyReLu

Dense

rate=0.2
Dropout

units=200
activation=LeakyReLu

Dense

rate=0.2
Dropout

units=256
activation=ReLu

Dense

filters/strides=16/1
kernel_size=25
activation=ReLu

Conv1D

output_dim=10
Embedding

PAY

filters/strides=16/1
kernel_size=25
activation=ReLu

Conv1D

pool_size/strides=3/3
MaxPooling

Flatten

rate=0.2
Dropout

units=256
activation=ReLu

Dense

pool_size/strides=3/3
MaxPooling

bCONTEXT

rate=0.2
Dropout

Concatenate

Flatten

rate=0.2
Dropout

units=256
activation=ReLu

Dense

output_dim=10
Embedding

SEQ
DIR
IAT
TCPWIN

PL

units=64
activation=ReLu

BiGRU

Figure 11: Proposed Mimetic-All classifier. The macro-blocks shared
with the original Mimetic-Enhanced architecture are highlighted in
blue. The green macro-block denotes the new branch (i.e., bContext)
dedicated to the novel set of Context Inputs. For each single block
the color filling indicates the type of layer. The Ä symbol character-
izes the layers that are not part of the architecture when considering
the single-modality (bPAY, bSEQ, or bContext) alone. The Ö symbol
marks layers frozen during the fine-tuning phase.

5.2. Analysis of the Context Inputs
In this section, we use the Context Inputs previously defined

above to characterize the traffic generated when the user per-
forms one of the considered activities (i.e. ACall, Chat, and
VCall), taking into account also the specific app. To this end,
in Fig. 10, for each activity, we report the average value of
each feature calculated in correspondence of the 20th packet of
the reference biflow as a radar chart. In detail, Fig. 10a fo-
cuses on activities without taking into account the generating
app whereas Figs. 10b- 10d provide a drill-down for Skype,
Teams, and Webex, respectively.

As shown in Fig. 10a, despite the (average) number of con-
textual biflows is similar (#CF), the different activities show
very different behaviors w.r.t. the other Context Inputs. In fact,
as expected, VCall represents the activity originating the high-
est contextual traffic for both directions, in terms of packets
and bytes. This is mainly due to the simultaneous transmis-

sion of audio and video traffic streams. Also, comparing Chat
and ACall, we notice that the former presents a predominance
of downstream traffic (in terms of both volume and byte-rate)
whereas the latter presents a more balanced traffic that stands
out especially for the quantity and rate of packets transmitted in
the upstream direction.

Focusing on the downstream direction, we notice that for
both Skype and Teams (cf. Figs. 10b and 10c) VCall still con-
tinues to have the highest amount of traffic both in terms of
bytes and packets. Furthermore, for Webex (cf. Fig. 10d), we
notice a similar behavior between VCall and ACall in terms of
packet- and byte-rate, whereas this does not occur when consid-
ering the number of packets and byte volume received, which
are higher in the case of VCall. Moreover, when comparing
ACall and Chat in the case of Skype and Teams, the two activ-
ities differ mostly in terms of packets, whereas if we consider
the byte volume, the difference becomes less evident, especially
for Teams.

On the other hand, by considering the upstream direction, we
notice a clear pattern for Chat that results in a smaller amount
of traffic w.r.t. all the Context Inputs. Conversely, this does
not apply to ACall and VCall. In fact, for Skype and Teams
(cf. Figs. 10b and 10c), there is a similarity between the two
activities in terms of number of packets transmitted and packet-
rate. However, this is not true when looking at the byte volume
and the byte-rate. Finally, in the case of Webex (cf. Fig. 10d), a
clear distinction between ACall and VCall w.r.t. all the Context
Inputs is evident.

5.3. Leveraging Context Inputs: the Mimetic-All Architecture
In Sec. 4.2, we have shown that the state-of-art Mimetic-

Enhanced [16] is able to outperform the considered single-
modality classifiers, especially when addressing classification
tasks that take into account the activities performed by the
users. In this section, taking advantage of the modularity of-
fered by the general Mimetic framework [24], we describe the
design of Mimetic-All to exploit the Context Inputs discussed
in Sec. 5.1.

As shown in Fig. 11, the proposed Mimetic-All architecture
consists in three per-modality (viz. input-specific) branches,
henceforth named simply bPAY, bSEQ, and bContext (where
the initial “b” stands for “branch”). As in the original pro-
posal [16], bPAY and bSEQ branches take as input the first Nb

bytes of the transport layer payload (PAY) and the informative
fields extracted from the sequence of the first Np packets (SEQ),
respectively (cf. Sec. 3.3 for details on such input types). Addi-
tionally, both branches exploit a trainable embedding layer to
embed each input element into a vector of dimension e = 10,
resulting in an overall embedding matrix E ∈ RN×e—with N
denoting the input dimensionality (i.e. Nb and Np for the PAY-
and SEQ-modality, respectively). The motivation for applying
an embedding to these inputs is due to the categorical nature
of PAY and SEQ and for providing a better representation (i.e.
more informative) of the inputs.

Specifically, in the bPAY branch, the corresponding embed-
ding matrix is fed to a sequence of single-modality layers, con-
sisting of two 1D convolutional layers—with a kernel size of

14

25, unit stride, and 16 and 32 filters, respectively—each fol-
lowed by a 1D max-pooling layer—with spatial extent of 3
and unit stride—and finally, one dense layer with 256 neurons.
On the other hand, the layers of the bSEQ branch are a bidi-
rectional GRU (BiGRU)—with 64 units and return-sequences
behavior—and one dense layer with 256 neurons. All the layers
are set with the Rectified Linear Unit (ReLU) activation func-
tion. Besides the above branches, the newly-added bContext
branch takes as input the contextual (aggregated) inputs as-
sociated with the Np-th packet of each reference biflow Br

(Context). Indeed, as opposed to PAY and SEQ, these aggre-
gated inputs do not have a natural ordering or sequentiality. In
detail, inspired by the proposal of Akbari et al. [29], we have
used a Multi-Layer Perceptron (MLP) network to ingest (viz.
distill information from) them. This choice is driven by the
fact that, unlike PAY and SEQ, the Context Inputs are calcu-
lated in an aggregate form and, having no natural ordering or
sequentiality, there is no spatial/time evolution dependence that
could be exploited by convolutional/recurrent layers. Specif-
ically, bContext consists of two dense layers—characterized
by 200 neurons and a LeakyReLU activation function. Simi-
lar to the other two branches, we also use a final dense layer
with 256 units and a ReLU activation function. Finally, the
features extracted by the single-modality branches are joined
via a concatenation layer and fed to a (dense) shared represen-
tation layer—with 256 neurons and ReLU activation—before
performing the classification through a softmax.

As in the original proposal, Mimetic-All is trained via a two-
phase procedure consisting of an independent pre-training of
each single-modality branch followed by a fine-tuning of the en-
tire architecture after freezing the lower single-modality layers
(i.e., the dense, 1D convolutional, and BiGRU layers, as high-
lighted in Fig. 11 via the Ö symbol). In more detail, we per-
formed the pre-training of each branch and the fine-tuning for
30 and 40 epochs, respectively, to minimize respective categor-
ical cross-entropy loss functions via the ADAM optimizer (with
a batch size of 50).24 Additionally, as opposed to the Mimetic-
Enhanced proposal [16], preliminary investigation showed that
using a fixed learning-rate (i.e. equal to 0.001) instead of an
adaptive one results in a performance improvement for Joint-
TC.25 Finally, to improve regularization and mitigate the pos-
sible overfitting, we added a dropout of 0.2 at the end of each
single-modality branch and after every dense layer, and adopted
an early-stopping technique measured on the validation accu-
racy with the same setup described in Sec. 3.3 (i.e. 20% of
training data are used for validation).
Remarks on hyperparameter choice: during the design pro-
cess of the bContext branch, we evaluated several combina-
tions regarding the tuning of the activation functions and the
number of neurons of the dense layers. Specifically, regarding

24The single-modality branches, when considered alone (i.e. not in a multi-
modal configuration), are trained for 100 epochs without dividing the training
process into pre-training and fine-tuning.

25In addition, we have also tried a hybrid configuration—i.e. consisting of
an adaptive learning rate during the pre-training of PAY and SEQ and the fine-
tuning, and a fixed on bContext—obtaining a lower performance compared to
the fixed setting.

Table 2: Variants of classifiers used in this work with respective input
data used to feed them.

Variant PAY SEQ Context

bPAY X — —
bSEQ — X —
bContext — — X
Mimetic-Enhanced X X —
Mimetic-ConPay X — X
Mimetic-ConSeq — X X
Mimetic-All X X X

PAY: First Nb bytes of transport-layer payload;
SEQ: Informative header fields extracted from

the sequence of the first Np packets;
Context: Context Inputs computed at the ar-

rival of the Np-th packet.

the former, we obtained slightly better performance by using a
LeakyReLU on the first two layers and a ReLU on the last one.
Specifically, the LeakyReLU allows for a small, non-zero gra-
dient when the unit is saturated and not active compared with
the ReLU, alleviating potential problems caused by the hard ac-
tivation of the latter [50]. Conversely, trying different configu-
rations26 we obtained the best trade-off—between performance
and complexity—by setting 200 neurons on the first two dense
layers. Moreover, we noticed better performance when consid-
ering the same number of neurons (i.e., 256) in the final dense
layers of the single modalities before concatenation.

6. Experimental Evaluation

As shown in Sec. 4.2, the sole combination of biflow
transport-layer payload (PAY) and packet-level (SEQ) inputs
within Mimetic-Enhanced classifier is not sufficient to guaran-
tee adequate performance when dealing with Joint-TC and Act-
TC tasks. Thus, in Sec. 5 we identified a new set of inputs—
which we named Context Inputs—suitable to distinguish traf-
fic associated with different activities performed with the same
app and proposed the Mimetic-All classifier leveraging them
(Sec. 5.3).

In this section, we evaluate the impact of this context-based
modality on TC performance when adopting the App×Act train-
ing strategy. The latter strategy indeed allows tackling all
the considered classification tasks (i.e. App-TC, Act-TC, and
Joint-TC).

For the sake of a complete evaluation and aiming at perform-
ing a reasoned ablation study, other than Mimetic-Enhanced
and Mimetic-All, in the following analysis we investigate the
performance of classifiers obtained by selecting a subset of the
three modalities available. For readers’ convenience, in Tab. 2
we report the different instances drawn from the Mimetic frame-
work according to the considered type of input (i.e. PAY, SEQ,
and Context).

26We tested 32, 64, 128, 200, and 256 neurons.

15

Table 3: Accuracy, F-measure, number of Trainable Parameters (#TP), and Training Time (Time) comparison of DL-based traffic classifiers when
combining different mixes of modalities. Models are trained using App×Act class labels. Results are in the format avg. (±std.) obtained over
10-folds. The best result per metric (column) is highlighted in boldface. Training time is calculated by pre-training the individual modalities in
parallel. The input types fed to each classifier are shown in Tab. 2.

Classifier
Joint-TC App-TC Activity-TC

#TP [k] Time [min]Accuracy [%] F-measure [%] Accuracy [%] F-measure [%] Accuracy [%] F-measure [%]

bPAY 42.34 (±1.12) 35.80 (±1.25) 76.27 (±0.84) 77.22 (±0.82) 53.57 (±0.70) 46.83 (±1.46) 460 22 (±3)
bSEQ 57.56 (±0.80) 51.37 (±1.12) 91.03 (±0.59) 92.36 (±0.53) 62.13 (±0.96) 59.12 (±0.91) 706 26 (±7)
bContext 66.44 (±1.58) 64.68 (±2.05) 81.12 (±1.53) 80.64 (±1.67) 78.91 (±0.91) 77.75 (±0.97) 99 2 (±0)
Mimetic-Enhanced 67.12 (±1.14) 62.29 (±1.21) 98.54 (±0.21) 98.75 (±0.18) 67.94 (±1.13) 65.33 (±1.15) 1235 57 (±6)
Mimetic-ConPay 78.09 (±0.99) 76.94 (±0.98) 95.15 (±0.48) 95.01 (±0.52) 81.17 (±0.97) 80.36 (±0.92) 628 30 (±4)
Mimetic-ConSeq 81.15 (±0.84) 80.32 (±0.85) 97.39 (±0.42) 97.61 (±0.35) 83.02 (±0.74) 82.39 (±0.73) 875 33 (±4)
Mimetic-All 82.53 (±0.90) 81.04 (±1.02) 99.05 (±0.26) 99.17 (±0.22) 83.13 (±0.85) 82.51 (±0.81) 1368 56 (±7)

Table 4: ECE comparison of DL-based traffic classifiers when com-
bining different mixes of modalities for Joint-TC. The input types fed
to each classifier are shown in Tab. 2.

Classifier ECE [%]

bPAY 9.43 (±1.18)
bSEQ 3.33 (±0.96)
bContext 3.68 (±0.76)
Mimetic-Enhanced 13.59 (±2.94)
Mimetic-ConPay 4.29 (±0.68)
Mimetic-ConSeq 2.40 (±0.52)
Mimetic-All 9.20 (±1.67)

6.1. Overall Performance Comparison

In Tab. 3, we report the performance of DL-based traffic
classifiers combining different mixes of modalities, namely
when considering both single-modality branches alone—each
fed with one of the three different input types PAY, SEQ, and
Context—and their combinations. The following results are
obtained considering the best-performing Nb = 576 B and
Np = 20 packets. As shown, performance varies depending
on the considered type of input and TC task.

In detail, the suitability of Context inputs discussed in
Sec. 5.2, is demonstrated by the fact that considering only
the bContext branch results in a significant performance im-
provement on the Act-TC task compared to Mimetic-Enhanced
(+12% F-measure). With the ability of Mimetic-Enhanced to
discriminate apps and the modularity the multimodal archi-
tecture being given, these results suggest that the addition of
Context inputs can lead to a classifier that is able to simulta-
neously achieve good performance for all the considered tasks.

Therefore, the impact on performance when combining
Context with PAY and SEQ is evaluated. Considering the clas-
sification performance of Mimetic-Enhanced as a reference,
combining Context and PAY (Mimetic-ConPay) results in an
increase of +15% in terms of F-measure for both Joint- and
Act-TC tasks (+11% and +13% of accuracy, respectively). Un-
fortunately, the same combination results in a non-negligible
decrease of −4% of F-measure (and −3% of accuracy) for the
App-TC.

In contrast, combining SEQ and Context (Mimetic-ConSeq)
we obtain a performance increase for both Joint- and Act-TC—

i.e. +18% (resp. +14%) and +17% (resp. +15%) in terms
of F-measure (resp. accuracy)—w.r.t. Mimetic-Enhanced. It
is noteworthy that, by using the latter input combination, it
is possible to ignore the payload content (i.e. PAY): this pe-
culiarity makes this solution suitable also for future scenarios
where more opaque encryption sublayers are deployed (e.g., ex-
tensions for Encrypted Server Name Indication and Encrypted
Client Hello in TLS 1.3 [17]), likely hindering classification
solutions leveraging payload (see [16] for an analysis of DL
usage of payload-based inputs). Finally, combining the three
input types (Mimetic-All), this model is able to outperform the
other configurations for all the considered TC tasks.

Overall, in agreement with the results already discussed in
Sec. 4.2, leveraging the bPAY and bSEQ branches individually
leads to a performance degradation for all TC tasks, compared
to Mimetic-Enhanced. In fact, when considering the PAY input
only (i.e. the bPAY branch), we incur the worst performance,
which corresponds to a loss between −18% (resp. −14%) and
−26% (resp. −25%) in terms of F-measure (resp. accuracy).
On the contrary, when we consider only the SEQ input (i.e. the
bSEQ branch) we obtain a significant loss regarding the Joint-
TC task (−11% F-measure) while for App- and Act-TC tasks
the loss is more contained (−6% F-measure).

More in detail, Fig. 12a depicts the Act-TC performance of
Mimetic-Enhanced (i.e. the state-of-art baseline), conditioned
on each application. To further investigate the results obtained
by combining Context with the other inputs, in Figs. 12b–12d
we report the gain/loss w.r.t. Mimetic-Enhanced at the activity
granularity (conditioned on each app).

As depicted in Fig. 12a, for most applications (6 out of 9),
VCall shows to the best classification performance (≈ 80%).
This does not hold for Messenger, Slack, and Teams, which
result in the range 40%–60%. On the contrary, in the case of
Chat ≈ 65% F-measure is achieved, regardless of the consid-
ered app (except for Slack). Finally, for ACall the performance
varies strongly depending on the app between 38% (for Zoom)
and 77% (for Discord). Interestingly, for Slack, the perfor-
mance (always in the range of 60–65% F-measure) does not
significantly vary with the activity.

The addition of Context results in a gain in terms of F-
measure that depends on the specific combination of inputs
used and varies with the app and the activity (Figs. 12b–12d).

16

Table 5: Accuracy and F-measure comparison of DL-based Mimetic-All against ML-based traffic classifiers when using all input types (i.e. PAY,
SEQ, and Context). Models are trained using App×Act class labels. Results are in the format avg. (±std.) obtained over 10-folds. The best result
per metric (column) is highlighted in boldface.

Classifier DL
Joint-TC App-TC Act-TC

Accuracy [%] F-measure [%] Accuracy [%] F-measure [%] Accuracy [%] F-measure [%]

DT # 67.96 (±1.15) 66.05 (±1.36) 95.91 (±0.62) 96.35 (±0.56) 70.12 (±1.15) 68.89 (±1.34)
RF # 80.57 (±0.74) 77.94 (±0.86) 98.92 (±0.14) 99.14 (±0.12) 81.33 (±0.79) 80.41 (±0.82)

Mimetic-All 82.53 (±0.90) 81.04 (±1.02) 99.05 (±0.26) 99.17 (±0.22) 83.13 (±0.85) 82.51 (±0.81)

Moreover, while Mimetic-ConSeq and Mimetic-All exhibit ap-
proximately the same average performance, Figs. 12c and 12d
witness that the gains obtained strongly depend on the specific
app. Indeed, Mimetic-All results in higher gains than Mimetic-
ConSeq on the activities of Skype, Teams, and Webex, but
lower performance improvements are observed for the remain-
ing apps (i.e. Discord, GotoMeeting, Meet, Messenger,
Slack, and Zoom). Also, for these apps we see that the main
differences are related to ACall for which the former obtains a
lower gain of about 3%–4% compared to the latter. Finally, the
worst performance of Mimetic-ConPay compared to Mimetic-
ConSeq and Mimetic-All is mainly due to a general lower gain
for the activities of all the apps, especially regarding VCall for
Teams and ACall for Meet, Teams, and Webex. In this regard,
it is worth noting that for Teams, Mimetic-ConPay brings no
improvement w.r.t. Mimetic-Enhanced for the ACall activity.

The novel set of Context Inputs is thus useful when dealing
with the classification of both the app and the specific activity
performed by the user. Also, results prove that the combination
with the traffic inputs commonly used in the literature at biflow
level (e.g., the first Nb byte of the transport level payload and/or
features extracted from the first Np packets) is fruitful.

6.2. Calibration Analysis
In this section, after demonstrating the effectiveness of

Mimetic-Enhanced when tackling the Joint-TC task through
the inclusion of Context Inputs, we evaluate its reliability [51]
by means of a metric to quantify its calibration. To this end,
we consider both the whole confidence vector—i.e. p(x) =

p1(x), · · · , pL(x)—and the confidence associated to the inferred
class—i.e. p̂(x) = maxi=1,···,L pi(x).

In general, a calibrated classifier is such that for each sam-
ple, the confidence of the predicted class p̂ equals P{ ˆ̀ = ` | p̂},
where ` and ˆ̀ are the true and predicted labels, respectively.
To quantify the degree of this (mis)alignment, we partition the
predictions into M equally-spaced bins and compute both the
(expected) accuracy and confidence for each of these.

Specifically, let Bm be the set of tested TC objects for which
the confidence associated with the predicted label falls within
Im , (m−1

M ; m
M), the accuracy and confidence associated with

the bin are:

acc(Bm) = |Bm|
−1
∑
n∈Bm

1(ˆ̀(n) = `(n)) (1)

conf(Bm) = |Bm|
−1
∑
n∈Bm

p̂(n) (2)

where `(n), ˆ̀(n) , arg max1,···,L pi(n), and p̂(n) , max1,···,L pi(n)
are the true label, the predicted label, and the predicted con-
fidence of the nth sample, respectively. Since the confidence
values vary in [1/L, 1], we consider the starting point of the
confidence interval to be 1/L. Accordingly, to obtain a sum-
mary metric of the deviation from the perfect calibration, we
consider the Expected Calibration Error (ECE), defined as
E p̂{|P{ ˆ̀ = ` | p̂} − p̂|}, which represents the expected ab-
solute deviation between the confidence and the confidence-
conditional accuracy. The above metric can be approximated
as:

ECE ≈
M∑

m=1

|Bm|

N
|acc(Bm) − conf(Bm)| (3)

where N is the overall number of tested samples. In Tab. 4,
we report the ECE values (in percentage form) obtained con-
sidering each single-modality branch (i.e. bPAY, bSEQ, and
bContext) and their multimodal combinations (i.e. Mimetic-
Enhanced, Mimetic-ConPay, Mimetic-ConSeq, and Mimetic-
All). First of all, the calibration of each classifier varies greatly
depending on the considered branches (viz. input types). In
fact, when considering the SEQ and Context inputs individu-
ally or their combination, we obtain a well-calibrated model—
with an ECE ∈ [2.4, 3.68]%—as compared to the other setups.
In contrast, considering (a) the sole PAY input or (b) combined
with SEQ, results in a model with an ECE ∈ [9.43, 13.59]%,
representing classifiers with lower calibration (viz. reliability).
Finally, it is interesting to note the benefit on model calibration
due to the use of Context Inputs. In fact, in all the cases these
are included, we obtain a calibration gain corresponding to a
reduced ECE of up to −5%.

Then, to visualize in detail how P{ ˆ̀ = ` | p̂} varies with p̂, in
Fig. 13 we show the accuracy as a function of the confidence
by means of the so-called reliability diagrams. Therein, each
diagram is compared with the ideal P{ ˆ̀ = ` | p̂} = p̂ iden-
tity line: a perfectly-calibrated classifier entails a reliability di-
agram corresponding to the identity function. From inspection
of the results, when considering the PAY and SEQ individually
or in combination (see Figs. 13b–13d), the samples tend to be
more evenly distributed within the bins. In contrast, when these
inputs are combined with Context Inputs (see Figs. 13e–13g),
we see that the samples tend to converge in the last bin (i.e.
[90%, 100%]). This in turn means that the confidence of these
classifiers increases systematically. Nonetheless, since the ad-
dition of Context Inputs also implies a lower ECE for all the
classifiers, such increasingly-optimistic behavior is not paid at

17

Disco
rd

GotoMeeting
Meet

Messenger
Skype

Slack
Teams

Webex
Zoom

0

20

40

60

80

100

F-
m

ea
su

re

Chat ACall VCall

(a) Mimetic-Enhanced.

Disco
rd

GotoMeeting
Meet

Messenger
Skype

Slack
Teams

Webex
Zoom

-10

0

+10

+20

+30

+40

+50

F-
m

ea
su

re
 v

ar
ia

tio
n

Chat ACall VCall

(b) Mimetic-ConPay.

Disco
rd

GotoMeeting
Meet

Messenger
Skype

Slack
Teams

Webex
Zoom

-10

0

+10

+20

+30

+40

+50

F-
m

ea
su

re
 v

ar
ia

tio
n

Chat ACall VCall

(c) Mimetic-ConSeq.

Disco
rd

GotoMeeting
Meet

Messenger
Skype

Slack
Teams

Webex
Zoom

-10

0

+10

+20

+30

+40

+50

F-
m

ea
su

re
 v

ar
ia

tio
n

Chat ACall VCall

(d) Mimetic-All.

Figure 12: Per-activity performance for each app achieved by Mimetic-
Enhanced (i.e., the basic configuration) (a). Gain/loss w.r.t. Mimetic-
Enhanced obtained by considering the Context Inputs and related to
Mimetic-ConPay (b), Mimetic-ConSeq (c), and Mimetic-All (d).

the expenses of a decreased calibration. This clearly highlights
a structural improvement of the classifiers’ performance due to
information originating from context biflows.

6.3. Comparison of Mimetic-All with Traffic Classifiers based
on Machine Learning

In this section, to show the effectiveness of our proposal, we
compare Mimetic-Allwith two ML algorithms commonly used
in the state of the art (see Sec. 2), namely the Decision Tree
(DT) and the Random Forest (RF). Specifically, ML algorithms
have been trained and evaluated using scikit-learn Python
Framework, adopting predefined hyper-parameters and using
100 estimators for the RF classifier. The aim of the analysis
is also to assess separately the benefit of (a) the Context In-
puts and (b) the proposed multimodal architecture (being able
to process them wisely and thus achieve satisfactory TC per-
formance). Indeed, unlike Mimetic-All, for ML-classifiers the
absence of multi-modality implies that the different inputs can-
not be handled separately. Therefore, the three inputs have been
treated as a single (monolithic) input obtained from their con-
catenation.

Table 5 reports the overall performance of models, trained
using App×Act class labels and using all input types (i.e. PAY,
SEQ, and Context). As shown, DT results in the worst per-
formance w.r.t. all classification tasks. Specifically, the high-
est gap against Mimetic-All concerns Joint- and Act-TC tasks,
which corresponds to a worsening of approximately −15%
(resp. −15%) and −14% (resp. −13%) in terms of F-measure
(resp. Accuracy), respectively. Furthermore, the gap is reduced
to roughly −3% in terms of both F-measure and Accuracy w.r.t.
App-TC task. Finally, comparing RF with Mimetic-All, while
the performance related to App-TC is quite similar, there is a
loss of up to 3% regarding Joint-TC and Act-TC in terms of
both F-measure and Accuracy.

Hence, Mimetic-All is able to outperform both ML and DL
algorithms when addressing the problem of joint traffic classi-
fication of the app and activity performed by the user.

7. Conclusions and Future Directions

The Covid-19 pandemic has caused a sudden (while long-
lasting) surge of the usage of Communication and Collabora-
tion Apps. The latter have impacted the nature of Internet traf-
fic, calling for novel improved tools for network monitoring
and management. In this work, we focused on fine-grained TC
of the most popular Communication and Collaboration apps
and corresponding activities via DL approaches. Specifically,
we considered three TC tasks (Joint-TC, App-TC, and Act-
TC) and different training strategies based on the ground truth.
Mimetic-Enhanced (a state-of-art multimodal TC approach) has
been compared against recent DL single-modal solutions (1D-
CNN and Hybrid), showing the limitations of current archi-
tectures in recognizing activities, due to inputs based only on
the traffic object (biflow) under consideration. Indeed, while
all the considered architectures achieve good performance (96–
98% F-measure) when tackling App-TC, for Joint-TC and Act-
TC these incur severe TC performance limitations (62% and

18

0 20 40 60 80 100
Confidence [%]

0

20

40

60

80

100

Ac
cu

ra
cy

 [%
]

0.0 3.11 4.75 10.98 15.23 15.91 13.15 10.38 8.67 17.83

Ideal Actual Over Under

(a) bContext.

0 20 40 60 80 100
Confidence [%]

0

20

40

60

80

100

Ac
cu

ra
cy

 [%
]

0.0 10.77 5.19 14.87 19.12 15.84 12.67 9.83 5.23 6.47

Ideal Actual Over Under

(b) bPAY.

0 20 40 60 80 100
Confidence [%]

0

20

40

60

80

100
Ac

cu
ra

cy
 [%

]

0.0 0.2 3.08 11.22 19.14 20.96 16.59 10.88 6.75 11.19

Ideal Actual Over Under

(c) bSEQ.

0 20 40 60 80 100
Confidence [%]

0

20

40

60

80

100

Ac
cu

ra
cy

 [%
]

0.0 0.0 0.12 1.75 6.74 12.54 11.04 10.0 10.75 47.06

Ideal Actual Over Under

(d) Mimetic-Enhanced.

0 20 40 60 80 100
Confidence [%]

0

20

40

60

80

100

Ac
cu

ra
cy

 [%
]

0.0 0.13 0.65 2.34 6.03 10.24 9.49 8.93 9.79 52.4

Ideal Actual Over Under

(e) Mimetic-ConPay.

0 20 40 60 80 100
Confidence [%]

0

20

40

60

80

100

Ac
cu

ra
cy

 [%
]

0.0 0.02 0.2 2.06 5.45 10.43 9.24 8.2 9.26 55.13

Ideal Actual Over Under

(f) Mimetic-ConSeq.

0 20 40 60 80 100
Confidence [%]

0

20

40

60

80

100

Ac
cu

ra
cy

 [%
]

0.0 0.01 0.04 0.44 1.82 4.94 5.23 5.33 7.11 75.07

Ideal Actual Over Under

(g) Mimetic-All.

Figure 13: Impact of Context Inputs on calibration: reliability diagrams for App×Act-TC for classifiers characterized by different combinations
of modalities (the input types fed to each classifier are shown in Tab. 2). Graphs in column allow to compare calibration without (upper row) and
with (lower row) the Context Inputs. Confidence is divided in 10 bins, and it is ≥ 1

L (vertical dashed line), with L being the number of classes.
Over and under gap represent an over-confident (optimistic) and under-confident (pessimistic) miscalibration pattern, respectively. The number at
the bottom of each bar reports the percentage of samples within the corresponding bin.

65% F-measure, respectively). To this end, we devised a novel
set of Context Inputs that are conducive to effective classifica-
tion of activities in an early fashion. We show that these in-
puts can exploit the side-information arising from concurrent
biflows opened by the same app when performing a given ac-
tivity, so we capitalize them to design a novel multimodal DL-
based TC architecture, named Mimetic-All. The latter classi-
fier outperformed previous (multimodal) proposals and state-
of-art ML classifiers (DT and RF) fed with the novel set of in-
puts proposed in this paper, reaching 81% and 82% F-measure
for Joint-TC and Act-TC.

Still, when considering the complexity aspects, Mimetic-All
proves to be the best trade-off, exposing a complexity ≈ 4×
lower than 1D-CNN. The additional use of Context Inputs
was also shown to be beneficial to improve the general cal-
ibration of the proposal (as well as the considered variants),
thus providing a structural improvement of the classification
model. Finally, Context Inputs were also proven as excellent
substitutes for payload-based inputs in former state-of-the-art
Mimetic-Enhanced, trading a small loss (−1% F-measure) in
App-TC for the substantially improved performance in tasks
involving activities (+18% and +17% for Joint- and Act-TC,
respectively) and also the significant reduction of memory foot-

print and training time (i.e., −29% and −42%, respectively),
besides the intrinsic greater robustness to future more opaque
encryption sublayers. The experimental results were based on
a newly collected dataset covering nine Android mobile apps
(Discord, GotoMeeting, Meet, Messenger, Skype, Slack,
Teams, Webex, and Zoom) and three user activities (Chat, ACall,
and VCall), which is publicly released to the community.

Future directions of research will account for (i) valida-
tion of the proposed methodology—based on Context Inputs—
on other benchmarking datasets; (ii) use of advanced learning
strategies encompassing multi-task and hierarchical traffic clas-
sifiers (e.g. coupling a App-TC classifier with Joint-TC second
stage, completely avoiding payload-based inputs); (iii) inves-
tigation of complementary traffic analysis tasks as fine-grain
modeling and prediction; (iv) the use of XAI techniques to in-
terpret and improve the behavior of Mimetic-All, including de-
ployment on resource-constrained devices.

Acknowledgements

This work was carried out by Dr. Idio Guarino under the
grant “O. Carlini” funded by Consortium GARR, the Ital-
ian national network of University and Research. This work

19

Table A.6: List of acronyms and abbreviations (reported in alphabeti-
cal order).

Acronym Definition

ACall Audio-Call activity
ACT Activity-related ground truth

Act-TC Activity Traffic Classification task
APP App-related ground truth

APPxACT Joint App-and-Activity ground truth
App-TC App Traffic Classification task

bCONTEXT Branch of Mimetic-All taking as input CONTEXT
bPAY Branch of Mimetic-All taking as input PAY
bSEQ Branch of Mimetic-All taking as input SEQ

BiGRU Bidirectional Gated Recurrent Unit
Chat Chat activity
CNN Convolutional Neural Network

CONTEXT Context Inputs computed at the arrival of the Np-th packet
DIR Packet Direction
DL Deep Learning
DT Decision Tree

ECE Expected Calibration Error
GRU Gated Recurrent Unit
IAT Inter-Arrival Time

Joint-TC Joint App-and-Activity Traffic Classification task
LR Logistic Regressor

LSTM Long Short-Term Memory
ML Machine Learning

MLP Multi-Layer Perceptron
MM Multi-Modal architecture

PAY First Nb bytes of transport-layer payload
PL Transport-layer Payload Length
RF Random Forest

RNN Recurrent Neural Network
SAE Stacked AutoEncoder
SEQ Informative fields extracted from the sequence of the first Np packets
SVM Support Vector Classifier
TC Traffic Classification

TCPWIN TCP Window Size
VCall Video-Call activity

XAI eXplainable Artificial Intelligence
#CF Number of Contextual Biflows
#TP Number of Trainable Parameters

is partially funded by “Centro Nazionale HPC, Big Data e
Quantum Computing – Italian Center for Super Computing
(ICSC)” – Codice progetto MUR: CN_00000013 – CUP Un-
ina: E63C22000980007, and by the Italian Research Program
“PON Ricerca e Innovazione 2014-2020 (PON R&I) – Asse IV:
Istruzione e ricerca per il recupero – REACT-EU – Azione IV.4:
Dottorati e contratti di ricerca su tematiche dell’innovazione” –
CUP Unina: E65F21002920003.

Appendix A. Acronyms and Abbreviations

The present Appendix provides the list of acronyms and
abbreviations used in the manuscript and their definitions in
Tab. A.6.

References

[1] A. Feldmann, O. Gasser, F. Lichtblau, E. Pujol, I. Poese, C. Diet-
zel, D. Wagner, M. Wichtlhuber, J. Tapiador, N. Vallina-Rodriguez,
O. Hohlfeld, G. Smaragdakis, The lockdown effect: Implications of the
COVID-19 pandemic on Internet traffic, in: ACM Internet Measurement
Conference (IMC), 2020, p. 1–18. doi:10.1145/3419394.3423658.

[2] A. Lutu, D. Perino, M. Bagnulo, E. Frias-Martinez, J. Khangosstar, A
characterization of the COVID-19 pandemic impact on a mobile network
operator traffic, in: ACM Internet Measurement Conference (IMC), 2020,
p. 19–33. doi:10.1145/3419394.3423655.

[3] A. Affinito, A. Botta, G. Ventre, The impact of COVID on network
utilization: an analysis on domain popularity, in: IEEE 25th Interna-
tional Workshop on Computer Aided Modeling and Design of Commu-
nication Links and Networks (CAMAD), 2020, pp. 1–6. doi:10.1109/
CAMAD50429.2020.9209302.

[4] T. Favale, F. Soro, M. Trevisan, I. Drago, M. Mellia, Campus traffic and
e-Learning during COVID-19 pandemic, Computer Networks 176 (2020)
107290. doi:10.1016/j.comnet.2020.107290.

[5] A. Ukani, A. Mirian, A. C. Snoeren, Locked-in during lock-down, in:
21st ACM Internet Measurement Conference (IMC), 2021, pp. 480–486.
doi:10.1145/3487552.3487828.

[6] M. Karamollahi, C. Williamson, M. Arlitt, Zoomiversity: A case
study of pandemic effects on post-secondary teaching and learning, in:
O. Hohlfeld, G. Moura, C. Pelsser (Eds.), Passive and Active Mea-
surement, Springer International Publishing, Cham, 2022, pp. 573–599.
doi:10.1007/978-3-030-98785-5_26.

[7] A. Choi, M. Karamollahi, C. Williamson, M. Arlitt, Zoom session
quality: A network-level view, in: O. Hohlfeld, G. Moura, C. Pelsser
(Eds.), Passive and Active Measurement, Springer International Pub-
lishing, Cham, 2022, pp. 555–572. doi:10.1007/978-3-030-98785-
5_25.

[8] M. Candela, V. Luconi, A. Vecchio, Impact of the COVID-19 pandemic
on the Internet latency: A large-scale study, Computer Networks 182
(2020) 107495. doi:10.1016/j.comnet.2020.107495.

[9] T. Böttger, G. Ibrahim, B. Vallis, How the Internet reacted to COVID-19:
A perspective from Facebook’s edge network, in: ACM Internet Mea-
surement Conference (IMC), 2020, p. 34–41. doi:10.1145/3419394.
3423621.

[10] E. Stutz, Y. Pradkin, X. Song, J. Heidemann, Visualizing Internet mea-
surements of Covid-19 work-from-home, in: IEEE International Con-
ference on Big Data (Big Data), 2021, pp. 5633–5638. doi:10.1109/
BigData52589.2021.9671311.

[11] A. Dainotti, A. Pescapè, K. C. Claffy, Issues and future directions in
traffic classification, IEEE Network 26 (2012) 35–40.

[12] G. Aceto, D. Ciuonzo, A. Montieri, A. Pescapé, Mobile encrypted traf-
fic classification using Deep Learning: Experimental evaluation, lessons
learned, and challenges, IEEE Trans. Netw. Service Manag. 16 (2019)
445–458. doi:10.1109/TNSM.2019.2899085.

[13] M. Henze, J. Pennekamp, D. Hellmanns, E. Mühmer, J. H. Ziegeldorf,
A. Drichel, K. Wehrle, Cloudanalyzer: Uncovering the cloud usage of
mobile apps, in: Proceedings of the 14th EAI International Conference on
Mobile and Ubiquitous Systems: Computing, Networking and Services,
2017, pp. 262–271. doi:10.1145/3144457.3144471.

[14] W. Wang, M. Zhu, J. Wang, X. Zeng, Z. Yang, End-to-end encrypted traf-
fic classification with one-dimensional convolution neural networks, in:
IEEE International Conference on Intelligence and Security Informatics
(ISI), 2017, pp. 43–48. doi:10.1109/ISI.2017.8004872.

[15] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, J. Lloret, Network
traffic classifier with convolutional and recurrent neural networks for In-
ternet of Things, IEEE Access 5 (2017) 18042–18050. doi:10.1109/
ACCESS.2017.2747560.

[16] A. Nascita, A. Montieri, G. Aceto, D. Ciuonzo, V. Persico, A. Pescapé,
XAI meets mobile traffic classification: Understanding and improving
multimodal deep learning architectures, IEEE Transactions on Network
and Service Management 18 (2021) 4225–4246. doi:10.1109/TNSM.
2021.3098157.

[17] E. Rescorla, K. Oku, N. Sullivan, C. A. Wood, TLS Encrypted Client
Hello, Internet-Draft draft-ietf-tls-esni-14, Internet Engineering Task
Force, 2022. URL: https://datatracker.ietf.org/doc/html/
draft-ietf-tls-esni-14, work in Progress.

[18] I. Guarino, G. Aceto, D. Ciuonzo, A. Montieri, V. Persico, A. Pescapé,
Classification of communication and collaboration apps via advanced
deep-learning approaches, in: IEEE 26th International Workshop on
Computer Aided Modeling and Design of Communication Links and
Networks (CAMAD), 2021, pp. 1–6. doi:10.1109/CAMAD52502.2021.
9617789.

[19] Z. Wang, The Applications of Deep Learning on Traffic Identification.,

20

http://dx.doi.org/10.1145/3419394.3423658
http://dx.doi.org/10.1145/3419394.3423655
http://dx.doi.org/10.1109/CAMAD50429.2020.9209302
http://dx.doi.org/10.1109/CAMAD50429.2020.9209302
http://dx.doi.org/10.1016/j.comnet.2020.107290
http://dx.doi.org/10.1145/3487552.3487828
http://dx.doi.org/10.1007/978-3-030-98785-5_26
http://dx.doi.org/10.1007/978-3-030-98785-5_25
http://dx.doi.org/10.1007/978-3-030-98785-5_25
http://dx.doi.org/10.1016/j.comnet.2020.107495
http://dx.doi.org/10.1145/3419394.3423621
http://dx.doi.org/10.1145/3419394.3423621
http://dx.doi.org/10.1109/BigData52589.2021.9671311
http://dx.doi.org/10.1109/BigData52589.2021.9671311
http://dx.doi.org/10.1109/TNSM.2019.2899085
http://dx.doi.org/10.1145/3144457.3144471
http://dx.doi.org/10.1109/ISI.2017.8004872
http://dx.doi.org/10.1109/ACCESS.2017.2747560
http://dx.doi.org/10.1109/ACCESS.2017.2747560
http://dx.doi.org/10.1109/TNSM.2021.3098157
http://dx.doi.org/10.1109/TNSM.2021.3098157
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-14
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-14
http://dx.doi.org/10.1109/CAMAD52502.2021.9617789
http://dx.doi.org/10.1109/CAMAD52502.2021.9617789
https://www.blackhat.com/docs/us-15/materials/us-15-Wang-The-Applications-Of-Deep-Learning-On-Traffic-Identification-wp.pdf

2015.
[20] M. Lotfollahi, M. J. Siavoshani, R. S. H. Zade, M. Saberian, Deep packet:

A novel approach for encrypted traffic classification using deep learn-
ing, Soft Computing 24 (2020) 1999–2012. doi:10.1007/s00500-019-
04030-2.

[21] Y. Zeng, H. Gu, W. Wei, Y. Guo, Deep-Full-Range: A deep learn-
ing based network encrypted traffic classification and intrusion detec-
tion framework, IEEE Access 7 (2019) 45182–45190. doi:10.1109/
ACCESS.2019.2908225.

[22] S. Rezaei, B. Kroencke, X. Liu, Large-scale mobile app identification
using deep learning, IEEE Access 8 (2020) 348–362. doi:10.1109/
ACCESS.2019.2962018.

[23] C. Liu, L. He, G. Xiong, Z. Cao, Z. Li, FS-Net: A flow sequence
network for encrypted traffic classification, in: IEEE Conference on
Computer Communications (INFOCOM), 2019, pp. 1171–1179. doi:10.
1109/INFOCOM.2019.8737507.

[24] G. Aceto, D. Ciuonzo, A. Montieri, A. Pescapè, MIMETIC: mobile
encrypted traffic classification using multimodal deep learning, Else-
vier Computer Networks 165 (2019) 106944. doi:10.1016/j.comnet.
2019.106944.

[25] X. Wang, S. Chen, J. Su, Automatic mobile app identification from
encrypted traffic with hybrid neural networks, IEEE Access 8 (2020)
182065–182077. doi:10.1109/ACCESS.2020.3029190.

[26] G. Aceto, D. Ciuonzo, A. Montieri, A. Pescapé, DISTILLER: Encrypted
traffic classification via multimodal multitask deep learning, Journal of
Network and Computer Applications (2021) 102985. doi:10.1016/j.
jnca.2021.102985.

[27] H. Huang, H. Deng, J. Chen, L. Han, W. Wang, Automatic multi-
task learning system for abnormal network traffic detection, Int. Journal
of Emerging Technologies in Learning 13 (2018) 4–20. doi:10.3991/
ijet.v13i04.8466.

[28] Y. Zhao, J. Chen, D. Wu, J. Teng, S. Yu, Multi-task network anomaly
detection using federated learning, in: ACM 10th International Sympo-
sium on Information and Communication Technology (SoICT), 2019, pp.
273–279. doi:10.1145/3368926.3369705.

[29] I. Akbari, M. A. Salahuddin, L. Ven, N. Limam, R. Boutaba, B. Mathieu,
S. Moteau, S. Tuffin, A look behind the curtain: Traffic classification in
an increasingly encrypted web, Proc. ACM Meas. Anal. Comput. Syst. 5
(2021). doi:10.1145/3447382.

[30] I. Guarino, G. Aceto, D. Ciuonzo, A. Montieri, V. Persico, A. Pescapè,
Characterizing and modeling traffic of communication and collaboration
apps bloomed with COVID-19 outbreak, in: IEEE 6th International Fo-
rum on Research and Technology for Society and Industry (RTSI), 2021,
pp. 400–405. doi:10.1109/RTSI50628.2021.9597263.

[31] M. Conti, L. V. Mancini, R. Spolaor, N. V. Verde, Analyzing android en-
crypted network traffic to identify user actions, IEEE Trans. Inf. Forensics
Security 11 (2016) 114–125. doi:10.1109/TIFS.2015.2478741.

[32] B. Saltaformaggio, H. Choi, K. Johnson, Y. Kwon, Q. Zhang, X. Zhang,
D. Xu, J. Qian, Eavesdropping on fine-grained user activities within
smartphone apps over encrypted network traffic, in: USENIX Workshop
on Offensive Technologies (WOOT), 2016, pp. 69–78.

[33] E. Grolman, A. Finkelshtein, R. Puzis, A. Shabtai, G. Celniker, Z. Katzir,
L. Rosenfeld, Transfer learning for user action identication in mobile
apps via encrypted traffic analysis, IEEE Intelligent Systems 33 (2018)
40–53. doi:10.1109/MIS.2018.111145120.

[34] F. Aiolli, M. Conti, A. Gangwal, M. Polato, Mind your wallet’s privacy:
identifying bitcoin wallet apps and user’s actions through network traffic
analysis, in: 34th ACM/SIGAPP Symposium on Applied Computing
(SAC), 2019, pp. 1484–1491. doi:10.1145/3297280.3297430.

[35] V. F. Taylor, R. Spolaor, M. Conti, I. Martinovic, Robust smartphone app
identification via encrypted network traffic analysis, IEEE Transactions
on Information Forensics and Security 13 (2018) 63–78. doi:10.1109/
TIFS.2017.2737970.

[36] D. Li, W. Li, X. Wang, C.-T. Nguyen, S. Lu, App trajectory recognition
over encrypted internet traffic based on deep neural network, Computer
Networks 179 (2020) 107372. doi:10.1016/j.comnet.2020.107372.

[37] C. Li, C. Dong, K. Niu, Z. Zhang, Mobile service traffic classification
based on joint deep learning with attention mechanism, IEEE Access 9
(2021) 74729–74738. doi:10.1109/ACCESS.2021.3081504.

[38] G. Aceto, D. Ciuonzo, A. Montieri, V. Persico, A. Pescapé, MIRAGE:
Mobile-app traffic capture and ground-truth creation, in: 4th Interna-

tional Conference on Computing, Communications and Security (IC-
CCS), 2019, pp. 1–8. doi:10.1109/CCCS.2019.8888137.

[39] K. MacMillan, T. Mangla, J. Saxon, N. Feamster, Measuring the per-
formance and network utilization of popular video conferencing applica-
tions, in: 21st ACM Internet Measurement Conference (IMC), New York,
NY, USA, 2021, p. 229–244. doi:10.1145/3487552.3487842.

[40] A. Nistico, D. Markudova, M. Trevisan, M. Meo, G. Carofiglio, A
comparative study of RTC applications, in: 2020 IEEE Interna-
tional Symposium on Multimedia (ISM), IEEE, Naples, Italy, 2020, pp.
1–8. URL: https://ieeexplore.ieee.org/document/9327919/.
doi:10.1109/ISM.2020.00007, zSCC: 0000009.

[41] Sandvine, The Global Internet Phenomena Report COVID-19 Spotlight.,
2020.

[42] Lexi Sydow - App Annie, Video Conferencing Apps Surge from Coron-
avirus Impact., 2020.

[43] Sandvine, The Global Internet Phenomena Report., 2022.
[44] M. Petit-Huguenin, G. Salgueiro, J. Rosenberg, D. Wing, R. Mahy,

P. Matthews, Session Traversal Utilities for NAT (STUN), RFC
8489, 2020. URL: https://www.rfc-editor.org/info/rfc8489.
doi:10.17487/RFC8489.

[45] G. Aceto, D. Ciuonzo, A. Montieri, A. Pescapé, Multi-classification ap-
proaches for classifying mobile app traffic, Journal of Network and Com-
puter Applications 103 (2018) 131–145. doi:10.1016/j.jnca.2017.
11.007.

[46] T. Stöber, M. Frank, J. Schmitt, I. Martinovic, Who do you sync you are?
smartphone fingerprinting via application behaviour, in: ACM 6th confer-
ence on Security and privacy in wireless and mobile networks (WISEC),
2013, pp. 7–12. doi:10.1145/2462096.2462099.

[47] V. F. Taylor, R. Spolaor, M. Conti, I. Martinovic, Appscanner: Automatic
fingerprinting of smartphone apps from encrypted network traffic, in:
IEEE European Symposium on Security and Privacy (EuroS&P), 2016,
pp. 439–454. doi:10.1109/EuroSP.2016.40.

[48] E. Vanrykel, G. Acar, M. Herrmann, C. Diaz, Leaky birds: Exploiting
mobile application traffic for surveillance, in: International Conference
on Financial Cryptography and Data Security, Springer, 2016, pp. 367–
384. doi:10.1007/978-3-662-54970-4_22.

[49] B. Claise, B. Trammell, Specification of the IP Flow Information Ex-
port (IPFIX) Protocol for the Exchange of Flow Information, RFC 7011,
2013. URL: https://rfc-editor.org/rfc/rfc7011.txt. doi:10.
17487/rfc7011.

[50] A. L. Maas, A. Y. Hannun, A. Y. Ng, et al., Rectifier nonlinearities im-
prove neural network acoustic models, in: Proc. icml, volume 30, Cite-
seer, 2013, p. 3.

[51] C. Guo, G. Pleiss, Y. Sun, K. Q. Weinberger, On calibration of modern
neural networks, in: 34th International Conference on Machine Learning
(ICML), 2017, p. 1321–1330.

21

http://dx.doi.org/10.1007/s00500-019-04030-2
http://dx.doi.org/10.1007/s00500-019-04030-2
http://dx.doi.org/10.1109/ACCESS.2019.2908225
http://dx.doi.org/10.1109/ACCESS.2019.2908225
http://dx.doi.org/10.1109/ACCESS.2019.2962018
http://dx.doi.org/10.1109/ACCESS.2019.2962018
http://dx.doi.org/10.1109/INFOCOM.2019.8737507
http://dx.doi.org/10.1109/INFOCOM.2019.8737507
http://dx.doi.org/10.1016/j.comnet.2019.106944
http://dx.doi.org/10.1016/j.comnet.2019.106944
http://dx.doi.org/10.1109/ACCESS.2020.3029190
http://dx.doi.org/10.1016/j.jnca.2021.102985
http://dx.doi.org/10.1016/j.jnca.2021.102985
http://dx.doi.org/10.3991/ijet.v13i04.8466
http://dx.doi.org/10.3991/ijet.v13i04.8466
http://dx.doi.org/10.1145/3368926.3369705
http://dx.doi.org/10.1145/3447382
http://dx.doi.org/10.1109/RTSI50628.2021.9597263
http://dx.doi.org/10.1109/TIFS.2015.2478741
http://dx.doi.org/10.1109/MIS.2018.111145120
http://dx.doi.org/10.1145/3297280.3297430
http://dx.doi.org/10.1109/TIFS.2017.2737970
http://dx.doi.org/10.1109/TIFS.2017.2737970
http://dx.doi.org/10.1016/j.comnet.2020.107372
http://dx.doi.org/10.1109/ACCESS.2021.3081504
http://dx.doi.org/10.1109/CCCS.2019.8888137
http://dx.doi.org/10.1145/3487552.3487842
https://ieeexplore.ieee.org/document/9327919/
http://dx.doi.org/10.1109/ISM.2020.00007
https://www.sandvine.com/hubfs/Sandvine_Redesign_2019/Downloads/2020/Phenomena/COVID Internet Phenomena Report 20200507.pdf
https://www.appannie.com/en/insights/market-data/video-conferencing-apps-surge-coronavirus
https://www.appannie.com/en/insights/market-data/video-conferencing-apps-surge-coronavirus
https://www.sandvine.com/global-internet-phenomena-report-2022
https://www.rfc-editor.org/info/rfc8489
http://dx.doi.org/10.17487/RFC8489
http://dx.doi.org/10.1016/j.jnca.2017.11.007
http://dx.doi.org/10.1016/j.jnca.2017.11.007
http://dx.doi.org/10.1145/2462096.2462099
http://dx.doi.org/10.1109/EuroSP.2016.40
http://dx.doi.org/10.1007/978-3-662-54970-4_22
https://rfc-editor.org/rfc/rfc7011.txt
http://dx.doi.org/10.17487/rfc7011
http://dx.doi.org/10.17487/rfc7011

	Introduction
	Related Work
	Impact of Covid-19 on the Nature of Internet Traffic
	Deep Learning-based (Mobile) Traffic Classification
	User Activity Recognition

	Experimental Setup
	Dataset Collection and Ground Truth Generation
	Apps' and Activities' Selection Rationale
	Baselines Considered and Learning Setup

	Empirical Evaluation of State-of-the-Art Shortcomings in Activity Classification
	Sensitivity Analysis
	App and Activity Classification via State-of-the-art Approaches
	Understanding the Causes: Biflow-level Characterization of Early Behavior
	Highlighting Activity Peculiarities via an Alternative View: Time Evolution of App Connections
	Highlighting Activity Peculiarities via an Alternative View: Characterization of Simultaneous Biflows

	Context-Based Multimodal Deep Learning Traffic Classification
	Definition of Context Behavior
	Analysis of the Context Inputs
	Leveraging Context Inputs: the Mimetic-All Architecture

	Experimental Evaluation
	Overall Performance Comparison
	Calibration Analysis
	Comparison of Mimetic-All with Traffic Classifiers based on Machine Learning

	Conclusions and Future Directions
	Acronyms and Abbreviations

