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Abstract—The lifestyle change originated from the COVID-19
pandemic has caused a measurable impact on Internet traffic in
terms of volume and application mix, with a sudden increase
in usage of communication-and-collaboration apps. In this work,
we focus on four of these apps (Skype, Teams, Webex, and
Zoom), whose traffic we collect, reliably label at fine (i.e. per-
activity) granularity, and analyze from the viewpoint of traffic
prediction. The outcome of this analysis is informative for a
number of network management tasks, including monitoring,
planning, resource provisioning, and (security) policy enforce-
ment. To this aim, we employ state-of-the-art multitask deep
learning approaches to assess to which degree the traffic gener-
ated by these apps and their different use cases (i.e. activities:
audio-call, video-call, and chat) can be forecast at packet level.
The experimental analysis investigates the performance of the
considered deep learning architectures, in terms of both traffic-
prediction accuracy and complexity, and the related trade-off.
Equally important, our work is a first attempt at interpreting
the results obtained by these predictors via eXplainable Artificial
Intelligence (XAI).

Index Terms—communication apps; collaboration apps;
COVID-19; deep learning; encrypted traffic; multitask ap-
proaches; traffic prediction; XAI.

I. INTRODUCTION

During the COVID-19 pandemic, Internet traffic, especially
from residential users, has witnessed a significant growth
(+15–20% in terms of volume) [1], as in lockdowns and
social distancing periods people engaged in remote work and
education, and online commerce and entertainment activities
as well. This shift has had a measurable impact on network
performance [2]. Such sudden variations do not play well
with planning and management, and pushed for automated and
adaptive management of network resources [3]. A responsive
system should be able to react instantaneously to observed
network traffic, but an even better system would be proactive,
anticipating the incoming future traffic, to have the time to
effectively process the best reaction, and enact it. This need in
the last decade motivated a number of solutions for predicting
network traffic, usually in the form of aggregates (e.g., total
volume, average rate) over a wide span of time intervals.
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By leveraging the latest advancements in Machine Learning
(ML)—i.e. Deep Neural Networks (DNNs)—we consider an
especially hard prediction problem at its finest granularity:
packet-level network-traffic prediction. With a limited memory
of previously observed packets, we propose a model able
to predict the direction (upstream/downstream) of the next
packet, its inter-arrival time, and its (transport-layer) payload
length. This allows for fine-grained and prompt traffic manage-
ment (i.e. at biflow level and short-time scale) toward the de-
sign of next-generation networks. We evaluate our proposal on
traffic generated by communication-and-collaboration mobile
applications (CC apps, in short), a type of network traffic that
is of high practical interest, having contributed to the reshaping
of Internet traffic worldwide during and following the COVID-
19 pandemic.1 Moreover, these apps could significantly benefit
from a dynamic resource management as each of them can
offer a mix of functionalities (viz. activities) including highly-
interactive and relatively high-bandwidth (audio- and video-
call) and little-interactive and low-bandwidth (chat) ones.

Herein, we specifically analyze the performance of different
multitask Deep Learning (DL) models, related to different apps
and different activities and trained with different granularity
levels. We train and evaluate such DL models on traffic from
CC apps that have seen the highest increase in usage during
the COVID-19 pandemic (namely, Skype, Teams, Webex,
and Zoom) [4], with their performance being interpreted at
per-app, per-activity, and per-packet granularity.

Indeed, to contrast one of the main drawbacks of models
based on Artificial Intelligence (particularly DNNs), namely
their black-box nature, we apply eXplainable Artificial Intelli-
gence (XAI) techniques to shed light on observed performance,
and we link it to the properties of the traffic. The derived
insights, on the one hand, provide additional confidence in
the results of the proposed solution, on the other hand, point
to possible improvements. To the best of our knowledge, this
is the first work proposing an XAI-evaluated DL approach to
predict network traffic at per-packet granularity.

The rest of the paper is organized as follows: Sec. II surveys
literature predicting network traffic or analyzing explainability
of DL models, focusing on network traffic analysis; Sec. III

1Sandvine, “The Global Internet Phenomena Report”, 2022.



provides the methodology on multitask DL-based traffic pre-
diction and the adopted XAI tool; Sec. IV describes the dataset
collection, the apps/activities selection rationale, and the eval-
uation metrics; the experimental evaluation is provided in
Sec. V; Sec. VI ends with conclusions and future perspectives.

II. RELATED WORK

Predicting network traffic has attracted the interest of the
scientific community, which has approached distinct practical
network problems by casting them into a variety of forecasting
tasks. Here, we discuss these works in terms of (a) prediction
granularity, (b) application context, and (c) methodology. The
section ends with the positioning of our contribution.

A remarkable amount of works aims at predicting the
evolution of traffic aggregates (e.g., packet rates, volumes)
over time, at different time-resolutions ranging from ≤ 1s, to
few seconds, minutes, or even hours and days [5, 6, 7, 8]. As
predicting aggregated traffic predates fine-grain predictions,
DL approaches have been first applied to this arguably simpler
problem. An early work [6] compares the performance of sim-
ple neural network approaches to deep ones. A more complex
approach (a meta-learning adversarial scheme) is proposed
in [9] for short-term prediction of aggregated traffic volume,
to inform cellular downlink scheduling and sleep scheduling
in user mobile devices. In [10] several deep sequences models
are implemented, including Recurrent Neural Network (RNN),
Long Short-Term Memory (LSTM), and Gated Recurrent
Unit (GRU), to predict real traffic with and without outliers,
investigating the significance of outlier detection in real-world
traffic prediction.

Other research aims to predict the evolution of traffic
features at finer grain. However, fine-grained prediction ap-
proaches primarily involve video traffic and target the forecast
of video frame attributes [11]. Conversely, a smaller body of
work tackles packet-level analysis and addresses prediction
at fine granularity while focusing solely on network-layer
factors [12, 13, 14]. Hidden Markov Models (HMMs) are
adopted in [12] to model Internet traffic sources (i.e. SMTP,
HTTP, online gaming, and messaging) based on inter-packet
time and packet size. More recent works have focused on the
prediction of network traffic generated by mobile apps. Specif-
ically, HMMs and Markov Chains are investigated in [13] to
characterize and predict network traffic generated by mobile
apps. Montieri et al. [14] investigate and specialize a set of
architectures (i.e. Convolutional, Recurrent, and Composite
Neural Networks) to predict mobile-app traffic at packet-level
granularity, also assessing the impact of multi-modality or
varying memory size.
Positioning w.r.t. traffic prediction literature: the latter
paper [14] represents the most related work as it addresses
the same prediction problem (i.e. network-traffic prediction
at packet level) leveraging DL approaches. Prompted by the
popularity gained by CC apps with the COVID-19 pandemic,
in this work we focus on their traffic, investigating the suitabil-
ity of DL solutions to predict their fine-grained characteristics.
Also, in this work, we leverage a more detailed ground truth

that includes the specific activity performed by the users
(beyond the app generating the traffic), thus investigating
its impact on the capability of the DL model to predict
traffic characteristics. Finally, we investigate the suitability of
considering a single model to predict CC-app traffic against
per-app specific models.

Concerning the interpretability and reliability of models
used for traffic analysis, recently a bunch of researches have
applied XAI techniques aiming at improving performance,
robustness, reliability, and feasibility of AI models [15]. The
works [16, 17] use LIME to provide post-hoc explanations
for models predicting QoE in YouTube video streaming and
targeting video bit-rate adaptation, respectively. Conversely,
in [18] post-hoc explanations via the Layerwise Relevance
Propagation approach (exploiting the layered structure of
the neural network to capitalize recursive computation) are
capitalized in a DNN-based anomaly detection framework
whose goal is improving users’ trust in the detected anomalies.

Recent research efforts have also applied various XAI
approaches to interpret, refine, and improve solutions tackling
network-traffic classification. A lightweight and explainable-
by-design Convolutional Neural Network (CNN) is devised
in [19] via comparison of parts of input data with per-
class prototypes. Post-hoc analysis built upon Shapley values
is employed by [20], presenting a sample-dependent (viz.
local-interpretation) method based on DEEP SHAP [21] to
assess the importance contribution of classifiers’ inputs on
the outcomes obtained through an 1D-CNN for mobile-app
traffic classification. In a recent work [22], we investigate
interpretability and reliability to improve the behavior of
state-of-the-art multimodal DL traffic classifiers by applying
global-interpretation XAI techniques based on DEEP SHAP,
and methods to both assess and improve the reliability of
classifiers. Finally, specifically focusing on network-traffic
prediction, in our previous works [13, 14] we have applied
Markovian Distillation for interpreting prediction results pro-
vided by ML/DL solutions.
Positioning w.r.t. traffic analysis via XAI: in this work,
we tackle the black-box nature of traffic prediction solu-
tions, providing interpretation of opaque DL models via XAI
tools. Specifically, we inspect them in depth by providing
interpretability results based on DEEP SHAP. The above
solution overcomes the interpretability limitations incurred
by Markovian solutions due to limited memory [13, 14].
Equally important, to the best of our knowledge, no other
work leverages XAI to investigate the interpretability of DL
solutions aiming at predicting network traffic, regardless of
both the aggregation granularity and the specific DL solution
implemented.

III. METHODOLOGY

A. Multitask Deep Learning Traffic Prediction

We aim to predict network traffic generated by CC apps via
a DL approach at the finest granularity, i.e. at packet-level.
Indeed, we choose the widely-used bidirectional flow (biflow)
as the traffic object constituting the (multivariate) time series



associated to the prediction task. A biflow encompasses all
the packets sharing the same 5-tuple (IP src, IP dst,
port src, port dst, protocol) in both upstream
and downstream directions [14].

Given a biflow up to its nth packet, our goal is to predict
P traffic parameters associated to the (n+1)th packet: the
vector xn+1 is the desired output of DL architecture. Such
predictions are based on observations of previous values of the
same traffic parameters, gathered by the predictor in a memory
window of size W : these observations xn, . . . ,xn−(W−1) are
the input of the DL architecture. We stress that we construct
the input via an incremental windowing approach based on
a sliding memory window with a unit stride: we exploit
incrementally-sized sets of samples until reaching the max-
imum size W . When the prediction task has an accumulated
memory ≤ W , we apply a (left) zero-padding up to W
samples. This allows the prediction to be performed on the
initial part of the biflow and/or for biflows shorter than W . We
take advantage of multitask architectures that jointly address
multiple prediction tasks, one for each of the P parameters
considered.2 Accordingly, we are targeting the design of a
single DL model in the form:

x̂n+1 = P(xn,xn−1, . . . ,xn−(W−1)) (1)

where x̂n+1 denotes the prediction vector associated to xn+1.
Traffic Parameters. We aim at predicting P = 3 traffic
parameters of the packets belonging to the same biflow: (i) the
direction (DIR) as a binary value indicating if the packet is
downstream or upstream; (ii) the payload length (PL), that
is the size (in bytes) of the transport-layer payload; (iii) the
inter-arrival time (IAT), namely the time between the arrival
of two consecutive packets. Before extracting these parameters
from raw packet sequences, we remove zero-payload packets
and recalculate the IATs (with a minimum granularity of 1µs)
by saturating to the 99th-percentile value (197.90 ms) of their
distributions to remove the effect of outliers. Finally, we use
a min-max scaler to constrain the PL and IAT within [0, 1],
a common procedure when exploiting DL models [14].
DL Architectures. We employ three categories of DL models:
convolutional, recurrent and the composition of both, whose
hyperparameters are set based on state-of-the-art works [14,
23, 24]. All the architectures are terminated by one dense
layer (with sigmoid activation) for each traffic parameter to
predict. Regarding the former, we consider a 1D-CNN made
of a cascade of two convolutional layers (with 32 and 64 filters,
respectively, and kernel size of 5) each followed by a max-
pooling layer (with a pool size of 3), and one dense layer
with 128 neurons. All these layers have a ReLU activation.
On the other hand, the two recurrent architectures are a
GRU and an LSTM, both unidirectional with 200 units and
sigmoid activation. Finally, as a composite architecture, we

2In our previous work [14], we experimentally showed that multitask
architectures are appealing from both prediction performance and complex-
ity (in terms of overall training time) viewpoints, outperforming single-
task solutions—needing a specific DL architecture to predict each traffic
parameter—in both aspects.

employ an extended version of the SeriesNet, a DL model
based on dilated causal convolutions. The overall architecture
consists of 7 dilated causal convolutional layers (DCC in the
following)—with 32 filters and dilation and size of 2—with
SeLU activation. Each DCC has a residual connection between
the input and output, while the last two having a dropout of
0.8. The sum of the parameterized skip connections of each
DCC is passed through a ReLU activation and then used as the
input of a 1× 1 convolutional layer. Finally, the output of the
latter is concatenated with the stacking of two LSTM layers
(with 200 units each) and a dense layer (with 128 nodes).
Loss Specification and Training Details. We are concerned
with the prediction of P traffic parameters of the next packet,
collected in the vector xn+1. Accordingly, the DL architecture
is trained to minimize a weighted sum of the losses of the P
prediction tasks considered, namely:

L
(
θshared, {θp}Pp=1

)
≜

P∑
p=1

λp Lp (θshared,θp) (2)

with the weight λp representing the preference level of the pth

task3 in the multitask objective function, θshared the parame-
ters associated to the layers shared by the different tasks, while
θp collects the parameters associated exclusively to the pth

task. Given the multitask nature of these architectures, the loss
function to optimize depends on the specific prediction task to
address. In detail, we train the DL architectures to minimize
the binary cross-entropy loss function for the prediction of
binary DIR, whereas for the prediction of the non-binary PL
and IAT, to minimize the Mean Squared Error (MSE) between
the actual traffic parameter associated to the (n+1)th time
instant of a given biflow and the corresponding prediction.4 In
this work, we adopt two training strategies that differ based
on how traffic information is grouped, leading to models able
to capture traffic characteristics not limited to the single app.
Hence, we consider the following granularity levels:

• per-app level (APP): a separate model is obtained for
each application (i.e. one P(·) matched to each app);
the model is trained with traffic labeled with a specific
application label (i.e. package information);

• all apps (ALL): a single model is obtained for all apps
(i.e. a single predictor P(·) is used for all apps); the model
is trained on whole traffic without taking into account the
information about the app that generated it.

B. Interpretability of DIR Prediction via DEEP SHAP

Herein, we describe the methodology defined to investigate
the interpretability of the outcomes of the probabilistic-level

3Based on the optimization of the weights carried out in [14], herein we
set λ1 = λ2 = 0.45 and λ3 = 0.10, where p = 1, p = 2, and p = 3 are
associated to the DIR, PL, and IAT prediction tasks, respectively.

4We perform the optimization by employing the Adam optimizer with a
batch size of 32, a learning rate of 10−3, and exponential decay rates for the
estimates of the first-order and second-order moments equal to 0.9 and 0.999
(Keras default values), respectively. Overall, each DL architecture is trained
for 100 epochs and early-stopping is used to prevent overfitting (patience of
4 epochs and a minimum delta of 10−4 measured on validation loss).



(binary) classification task (i.e. the prediction of DIR values)
tackled via the considered DL architectures. Specifically, our
interpretability analysis leverages DEEP SHAP [21].

The starting point for interpreting DL architectures is to
consider a simpler explanation model g(·), which is designed
to closely-approximate the original model f(·). Hereafter we
focus on local methods, which explain the model f(x) in the
neighborhood of each particular instance x—i.e. a per-biflow
explanation in our case—using the so-called simplified inputs
x′ that map to the original ones via the mapping x = hx(x

′).
Herein, we consider the Additive Feature Attribution (AFA)

functional form for the explanation model g(·):

g(z
′
) = ϕ0 +

M∑
m=1

ϕm z
′

m (3)

where z
′ ∈ {0, 1}M , M denotes the number of simplified

inputs, and ϕm ∈ R. This class of explanation models asso-
ciates an “effect” ϕm to each input. Hence, the original model
output f(x) can be approximated by summing the effects of all
input attributions. A well-known approach to compute AFA
solutions is via the so-called Shapley values, originating from
cooperative game theory and specifying the contribution of
player m to the payoff v(P) achieved by the whole coalition
P . Unfortunately, since the exact computation of Shapley
values grows exponentially with the input size M , we resort
to the SHapley Additive exPlanation (SHAP). This approx-
imation computes the Shapley values in a computationally-
efficient way and eliminates the need to re-train the models
by approximating these values via the conditional expectation
f(hx(z

′
)) ≈ E {f(z)|zS}, where S denotes the set of non-

zero indices within z
′
. Further, we use DEEP SHAP [21],

an adaptation of the DeepLIFT algorithm for the evaluation
of SHAP values. Specifically, DeepLIFT computes a compo-
sitional approximation of SHAP values: it uses the output
expectation as the reference value, and it resorts to explicit
Shapley equations for consistent linearization. The reference
value is a user-defined parameter set to be an uninformative
background value for the mth input.

Per-sample explanation outcomes based on local methods
are then aggregated to obtain global explanations. Since a soft-
output can assume a range of different values, the absolute
importance range of the mth input may differ from sample to
sample. Hence, our global explanation approach assumes the
preliminary calculation of range-normalized SHAP values:

ϕ̃m ≜ ϕm /

M∑
m=1

ϕm (4)

Considering ϕ̃m (as opposed to ϕm), allows focusing on the
relative importance of each input and then draw out impor-
tance measures that do not depend on the peculiar architecture
confidence (generally higher or lower) and consistently aggre-
gate over the test samples x1, . . . ,xN . Last, we solely focus
on the aggregation of correctly-classified DIR samples [22]:
this choice allows focusing on the correct behavior of a given

DL-based traffic predictor, allowing to interpret its counter-
intuitive (while right) decisions a posteriori.

IV. EXPERIMENTAL SETUP

In this section, we detail the experimental setup, providing
information about the dataset and the evaluation metrics we
refer to for the assessment of the prediction models.
Dataset Collection. In this work, we exploit the MIRAGE-
COVID-CCMA-2022 public dataset5 collected by students
and researchers of the University of Napoli “Federico II”
during Apr–Dec 2021 via the MIRAGE architecture [25] op-
timized to cope with the generation and capture of the traffic
of CC apps. The experimenters used three mobile devices: a
Google Nexus 6 and two Samsung Galaxy A5 with Android
10. In each capture session, the experimenters performed a
specific activity using a certain CC app, aiming at generating
traffic that reflects its common usage.6 Each session resulted
in a PCAP traffic trace and additional netstat7 log-files
reporting information on established network-connections. The
latter were used to generate the ground-truth, namely to
reliably label each biflow with (i) the Android package-name
of the app and (ii) the specific activity performed by the
user operating the device8. Overall, after the application of
the incremental windowing approach—described in Sec. III—
to construct the input of the DL architectures, the employed
dataset encompasses 806k samples for Skype, 1.9M for
Teams, 2.5M for Webex, and 1.2M for Zoom.
Apps’ and Activities’ Selection Rationale. The mobile apps
used for business meetings, classes, and social interaction—in
short, CC apps—have experienced a huge increment in utiliza-
tion when “stay-at-home” orders were first issued worldwide
and are still widely used. Accordingly, we have selected a
subset of four apps from MIRAGE-COVID-CCMA-2022
based on popularity and utilization boost due to the COVID-
19 pandemic [4]: Skype, Teams, Webex, and Zoom. As
aforementioned, according to the app usage, the experimen-
tation included the following live activities: Chat (Chat)—
involves just two participants exchanging textual messages
and/or multimedia content (e.g., images or GIFs); Audio-
call (ACall)—involves just two participants transmitting only
audio; Video-call (VCall)—involves many attendees which
can transmit both video and audio (e.g., live events such as
video calls between two or more attendees or webinars).
Evaluation Metrics. The performance evaluation of traffic
prediction strategies is based on a solid stratified five-fold
cross-validation setup: given an app-activity pair, 80% of the
biflows constitute the training/validation set (80% is the actual

5To foster replicability and reproducibility we have publicly released
the MIRAGE-COVID-CCMA-2022 dataset: https://traffic.comics.unina.it/
mirage/mirage-covid-ccma-2022.html.

6Each traffic capture session spanned 15 ∼ 80 mins based on the activity
and has been performed with the up-to-date version of the app. Also, to limit
background traffic, network access has been disabled for all the apps but the
one under test.

7https://linux.die.net/man/8/netstat.
8Activity labels were manually assigned based on the knowledge of the

individual activity performed by the user during the specific capture.



training set, while 20% is assigned to the validation set)9, and
the remaining 20% the test set (used for evaluation purposes).
Thus, for each evaluation metric, we provide its average value
and standard deviation over the five folds. We use the G-
mean to evaluate the prediction performance of the binary DIR
traffic parameter:

G-mean ≜
√
ρdwdir ρ

up
dir (5)

with ρdwdir ≜ Pr(x̂dir = DW | xdir = DW) and ρupdir ≜
Pr(x̂dir = UP | xdir = UP). In this case, xdir is associated
to the sequence of actual DIRs and x̂dir to those predicted,
whereas DW and UP indicate downstream and upstream direc-
tion, respectively. The probability of correctly predicting the
DIR of downstream/upstream packets (ρdwdir/ρupdir) is estimated
as the ratio of correct predictions on a given direction by
the overall number of samples associated to the same (true)
direction. Conversely, to assess the prediction of PL and IAT,
we adopt the Root Mean Squared Error (RMSE):

RMSEp ≜

√√√√√ 1

N̄

N̄B∑
j=1

N̄j−1∑
n=1

[
x̂n+1
p (B̄j)− xn+1

p (B̄j)
]2

(6)

where N̄ is the total number of predictions, xn+1
p (B̄j) the

value of the pth traffic parameter (with p ∈ {PL,IAT})
observed for packet n+1 from the jth biflow B̄j (of length
N̄j), and x̂n+1

p (B̄j) the corresponding value provided by the
prediction model.

V. EXPERIMENTAL EVALUATION

In the following, we first investigate traffic prediction per-
formance for all apps and activities, attained by different
multitask DL models, trained with different granularity-levels
(Sec. V-A). Then, we explain the model behavior when pre-
dicting the next packet direction via DEEP SHAP (Sec. V-B).

A. Overview of Traffic Prediction Performance

Herein, we provide an overview of the performance of
multitask DL models used for predicting DIR, PL, and IAT
by adopting10 a memory window size of W = 10. To this
end, Figs. 1a, 1c, and 1e summarize the performance of all
models—trained with different granularity levels (i.e. ALL
and APP)—w.r.t. each of the apps considered. Specifically,
focusing on training strategies (viz. granularity levels), we
observe that models trained at the ALL level perform as well as
or even outperform those at the APP level. Moreover, looking
at the prediction of the specific traffic parameter, for DIR all
the considered strategies attain a G-mean of ≈ 80%, with the
only exception of Zoom showing ≈ 65% G-mean. A similar
outcome is also observed when looking at PL prediction: on
Zoom the RMSE attained is ≈ +50B w.r.t. the other apps. A

9The validation set is exploited to properly capitalize the early-stopping
technique employed during training to prevent overfitting.

10Preliminary results—not shown for brevity—showed that W = 10
constitutes the best trade-off between the complexity of the model (growing
with W ) and the effectiveness of the prediction.

slightly different—although more stable—performance picture
is evident for IAT prediction, for which Skype exhibits
the worst RMSE (≈ 5ms higher than the other apps), also
presenting the highest variability. This is mainly associated
with the higher variability of IATs related to ACall and
VCall activities (not shown for brevity). From a practical
viewpoint, since the DIR error has a higher impact on the
use of (packet-level) prediction results, in Figs. 1b, 1d, and 1f
we focus on Zoom traffic prediction (i.e. the most problematic
app on DIR prediction) dissected based on the specific activity
performed by the user. Therein, the worst performance for
DIR and PL prediction corresponds to the VCall activity,
achieving the lowest G-mean (≈ 62%) and the highest RMSE
(≈ 280B), respectively. Notably, IAT prediction shows an
opposite trend, as VCall has an RMSE less than half of that
of Chat and 2.5× lower than that of ACall.

Finally, when looking at the impact of the specific DL
architecture employed, it appears to have a negligible impact
on prediction performance, both considering all the traffic gen-
erated by a given app and dissecting the traffic per activity.11

Still, while performance is comparable, the complexity of the
architectures considered—measured via the number of train-
able parameters—varies significantly. In fact, comparing GRU,
LSTM, and SeriesNet with CNN (i.e. the least complex with
27.5K parameters), there is a significant increase in complexity
ranging from +96.1K (GRU) to +502.3K (SeriesNet).12

Take-Away Messages. The reported analysis shows that a
single model trained on the whole traffic of CC apps is
enough, as there seems to be no appreciable gain in training
a specialized model for each app. This result has a significant
practical impact, allowing to spare the training, deployment,
and management of multiple models. Secondly, looking at
the app-related performance, Zoom results the most problem-
atic app to predict, especially for PL and DIR, while the
others exhibit better and more stable performance. For the
same features, VCall is the hardest to be predicted among
Zoom-related activities. Finally, though the DL architectures
considered provide similar performance, they differ greatly in
computational complexity, with CNN being the least complex.
Accordingly, in what follows we focus on the CNN trained on
the whole traffic (namely, the ALL variant), constituting the
best trade-off between complexity and prediction performance.

B. Interpreting DIR Prediction via DEEP SHAP
In this section, we analyze the relative importance of

inputs—i.e. the three traffic parameters extracted from the last
W observed packets of each biflow, namely transport-layer
payload length (PL), direction (DIR), and inter-arrival time
(IAT)—on the prediction of DIR, based on DEEP SHAP.

To this end, in Fig. 2, for each field, we report the median
importance values across the last 10 packets (since W = 10)

11Similar considerations can be drawn also for Skype, Teams, and Webex
whose per-activity performance figures are not shown for the sake of brevity.

12As discussed in Sec. III, for a fair comparison of the different architec-
tures, we set identical tunable parameters concerning all controllable aspects
of models’ training procedure, namely: total number of epochs, optimizer,
batch size, learning rate, and early-stopping.
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Fig. 1. Prediction performance of CNN, LSTM, GRU, and SeriesNet on DIR (a, b), PL (c, d), and IAT (e, f). Results refer to the prediction
of traffic generated by each app regardless of the specific activity (a, c, e) and Zoom when performing a specific activity (b, d, f)—i.e. Chat,
ACall, and VCall. Memory size is set to W = 10 and both APP and ALL granularity levels are considered. The arrow close to y-axis
shows the desired trend.

of each biflow used to feed the model to obtain the prediction
related to the following packet. In detail, by focusing on
the prediction results provided by the ALL CNN model, the
figure reports for each packet direction (i.e. upstream ↑ and
downstream ↓) the breakdown on Skype and Zoom.13 For a
given direction, the importance of the observed packets varies
according to the input type. Furthermore, for a given type of
input, we note that the importance associated with the packets
in the sequence varies according to the predicted direction.

Specifically, when the model correctly predicts the upstream
direction (↑, see Figs. 2a-2b), for both apps almost all the
observed sequences of inputs contribute positively to the pre-
diction, for which a higher importance is generally attributed
to more recent packets. Nevertheless, looking at DIR and
PL of the last observed packet we observe that these have
a negligible impact or are even detrimental (negative score) to
a correct prediction of the direction. This is especially true for
Zoom, for which the last observed packet has a non-negligible
negative importance—which also corresponds to the highest
values in magnitude—indicating that this generally leads the
model to predict the downstream direction. Conversely, mov-
ing to downstream prediction, we notice an inverse trend:
DIR and PL of the last packet have a positive impact on the
prediction. Also, their importance (in terms of magnitude) is
significantly greater than that of the other packets. Based on

13Related PL and IAT inputs, Webex and Teams showed similar behaviors
to Zoom, while for DIR their behavior is similar to Skype.

this observation we can infer that DIR and PL of the last
packet lead the model to correctly predict the downstream
direction.
Take-Away Messages. The prediction of the direction of the
next packet, based on a memory made of the last 10 packets, is
mostly influenced by the 3 ∼ 4 more recent packets observed.
Moreover, the direction and transport-layer payload length
of the last observed packet can be either highly beneficial
(downstream case) or detrimental (upstream case) to correctly
predict the direction of the next packet.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We tackled packet-level traffic prediction via Deep Learning
architectures (a CNN, a GRU, an LSTM, and a SeriesNet)
based on a publicly released dataset. The latter contains traffic
traces of the four mobile apps whose usage has increased
the most since the beginning of COVID-19 pandemic. We
employed XAI approaches (i.e. DEEP SHAP) to contrast the
black-box nature of these models and obtain actionable in-
sights on the importance of specific subsets of input data. The
analysis allowed to select a single model, a 1D-CNN trained
on the whole traffic of all apps, representing the best trade-off
between prediction performance and complexity. This solution
has a substantial practical impact since it eliminates the need
for multiple model training, deployment, and administration.
The results show a variety of behaviors for the different
apps, with Zoom being the hardest to predict, especially
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(b) Skype upstream.
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(c) Zoom downstream.
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(d) Skype downstream.

Fig. 2. Median importance (in log-scale) of each packet parameter (i.e., DIR, PL, and IAT) on the prediction of DIR for Zoom and Skype.
The x-axis reports the packet index in chronological order, with 0 for the last observed packet, −1 the previous one, and so forth. Each app
is separately analyzed according to the (true) direction of packets, as upstream ((a) and (b)) and downstream ((c) and (d)).

regarding the direction (65% G-mean) and the payload length
(260B RMSE) of the next packet. Regarding the activities that
can be performed by those apps, VCall results the hardest
(resp. easiest) for predicting the direction and the payload
length (resp. the timing). The fine-grained interpretation of
the performance highlighted that using a limited memory of
previously observed packets, model predictions are mainly
influenced by the most recent packets. Also, in most cases,
the last observed packet can be either very informative (for
Skype and Zoom downstream) or confounding for the model
(for Zoom upstream). Future directions will include: (i)
interpretability analysis for payload length and inter-arrival
time, (ii) reliability analysis of the model, (iii) use of XAI
toward the improvement of multitask predictors, and (iv)
lifelong learning to cope with concept drift due to app aging.
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