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ABSTRACT
Significant transformations in lifestyle have reshaped the Internet landscape, resulting in notable shifts
in both the magnitude of Internet traffic and the diversity of apps utilized. The increased adoption of
communication-and-collaboration apps, also fueled by lockdowns in the COVID pandemic years, has
heavily impacted the management of network infrastructures and their traffic. A notable characteristic of
these apps is their multi-activity nature, e.g., they can be used for chat and (interactive) audio/video in
the same usage session: predicting and managing the traffic they generate is an important but especially
challenging task.
In this study, we focus on real data from four popular apps belonging to the aforementioned category:
Skype, Teams, Webex, and Zoom. First, we collect traffic data from these apps, reliably label it with
both the app and the specific user activity and analyze it from the perspective of traffic prediction. Second,
we design data-driven models to predict this traffic at the finest granularity (i.e. at packet level) employing
four advanced multitask deep learning architectures and investigating three different training strategies.
The trade-off between performance and complexity is explored as well. We publish the dataset and release
our code as open source to foster the replicability of our analysis. Third, we leverage the packet-level
prediction approach to perform aggregate prediction at different timescales. Fourth, our study pioneers the
trustworthiness analysis of these predictors via the application of eXplainable Artificial Intelligence to (a)
interpret their forecasting results and (b) evaluate their reliability, highlighting the relative importance of
different parts of observed traffic and thus offering insights for future analyses and applications. The insights
gained from the analysis provided with this work have implications for various network management tasks,
including monitoring, planning, resource allocation, and enforcing security policies.

INDEX TERMS communication apps; collaboration apps; COVID; deep learning; encrypted traffic;
multitask approaches; traffic prediction; XAI.

I. Introduction
Network traffic and the underlying infrastructure have a
symbiotic relationship, constantly evolving in tandem. Traf-
fic adapts to leverage the enhanced capabilities offered
by network technologies, such as higher bandwidth, lower
latency, and increased resilience and flexibility. In turn, the
infrastructure evolves to meet the demands generated by
emerging applications. Recent reports from global operators
indicate a significant increase in fixed and mobile broadband
usage over the past two years, with growth rates ranging from

20% to 50% and 15% to 35%, respectively [1]. Moreover,
such needs have dramatically shifted lately, with COVID
accelerating the pace of digitization by several years and
driving changes in how people across the globe utilize
technology. On the one hand, the significant increase in
Internet usage during the COVID pandemic (+15–20% in
terms of volume [2] with a measurable impact on network
performance—e.g., increasing variability of delay and loss
rate [3]) can be attributed to the widespread adoption of
remote work, remote education, online commerce, and en-
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tertainment activities during lockdowns and periods of social
distancing. On the other hand, with COVID becoming more
endemic in many parts of the world, the continuous increase
in Internet traffic is attributed to enduring habits and the
widespread adoption of certain apps that people have become
accustomed to. This phenomenon is not solely driven by
lingering COVID-related behaviors but rather signifies the
establishment of permanent habits and the global familiarity
with these ubiquitous apps. Focusing on the nature of such
apps, trends show that they no longer deal with just one
type of traffic: it is becoming increasingly common to have
video, voice, chat, and gaming content all in the same
app [1]. These characteristics lead to increased complexity in
network traffic management for network operators, as they
encounter notable discrepancies in both inter- and intra-app
behaviors [4, 5].

In this complex scenario, the quality of experience offered
plays a critical role in determining customer satisfaction.
Hence, network performance necessitates the implementa-
tion of automated and adaptive management of network
resources [6]. For a system to be truly responsive, it needs
to react promptly to observed network traffic. However, an
even more effective system would be proactive, capable of
foreseeing future traffic patterns and providing ample time
to plan and execute appropriate actions.

This increasing need in recent years has driven the creation
of diverse solutions for predicting network traffic. These
solutions typically concentrate on aggregated metrics, such
as total volume and average rate, spanning over extended
time intervals.

Differently, in this work, we focus on fine-grained pre-
diction, i.e. with outcomes at packet level, by designing
a novel Deep Learning (DL) solution. Further, we inspect
the effectiveness gains deriving by having prediction models
tailored on specific apps and protocols. The scientific liter-
ature has shown the suitability of DL-powered solutions to
address prediction of aggregate traffic [7, 8]. Nonetheless,
the capitalization of DL for fine-grained prediction is still a
challenge and performance gaps need to be overcome [9].

In line with the concerns related to the adoption of
Artificial Intelligence (AI) for driving critical systems, we
also deepen aspects related to the trustworthiness of the
designed solutions, focusing on technical robustness and
transparency.1

More specifically, the technical contributions provided by
our work are as follows:

• We tackle the challenging task of predicting network
traffic at the finest granularity level, namely the packet
level, by leveraging Deep Neural Networks (DNNs).
Our proposed models utilize a limited memory of pre-
viously observed packets to accurately predict various
characteristics of the next packet, such as its direction,
inter-arrival time, and transport-layer payload length.

1https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-
trustworthy-ai

This fine-grained prediction capability empowers effi-
cient traffic management (i) at the biflow level (thus
allowing different types of aggregation, such as server-
side or client-side), (ii) on flexible (including short)
timescales, and (iii) at different viewpoints (e.g., packet
or volume info), making valuable contributions to the
advancement of next-generation networks (e.g., sup-
porting network slicing functionalities).

• To assess the effectiveness of our proposal, we eval-
uate it using real traffic data from communication-
and-collaboration mobile applications (CC apps). We
selected the ones that experienced a sudden surge in
popularity (Skype, Teams, Webex, and Zoom), col-
lected and reliably labeled their traffic at per-activity
granularity, and used this ground truth to train and
evaluate DL models. The dataset is publicly available,
to foster reproducibility, and we published also our code
as open-source, to allow replicability of the results.

• We investigate the advantage of multitask DL models
designed for specific apps or protocols (TCP/UDP) with
respect to a single-model trained on all the considered
CC apps’ traffic. In a complementary fashion, we assess
how traffic prediction performance varies from multiple
perspectives: (i) different apps, (ii) different activities,
or (iii) different protocols.

• To overcome the limitation of black-box AI models,
particularly DNNs, we employ eXplainable Artificial
Intelligence (XAI) techniques. XAI allows us to gain
insights into the model performance (by assessing how
reliable is each prediction) and establish connections be-
tween performance and traffic characteristics (imputing
importance to different packet parameters). By utilizing
XAI, we strengthen our confidence in the results and
identify areas for improvement. To the best of our
knowledge, this study is the first to propose a DL
approach evaluated using XAI to predict network traffic
at the packet level.

• To demonstrate the timescale flexibility of our pro-
posal, we capitalize on the outcomes of the fine-grained
packet-level multitask predictor and define an approach
that can deal with coarser-grained traffic prediction
tasks (e.g., prediction of traffic volume and number of
packets) with arbitrary aggregation intervals.

The present work significantly extends and improves
our earlier conference paper [10] with new investigations
and results, namely: (i) a traffic characterization of CC
apps’ traffic; (ii) different novel strategies for training the
DL models (e.g., by separating the traffic based on the
transport-layer protocol); (iii) an XAI-based evaluation that
integrates interpretability, reliability, multifaceted error trend
analysis, and in-depth characterization of prediction errors;
(iv) the prediction of arbitrary-granularity traffic aggregates
(e.g., number of packets and traffic volume) by capitalizing
our packet-level prediction proposal.
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The rest of the paper is organized as follows. Section II
surveys the literature predicting network traffic or analyzing
the trustworthiness of DL models that focus on network
traffic analysis. Section III provides the details of our
methodology regarding the packet-level traffic prediction via
multitask DL, the XAI techniques adopted to investigate
the interpretability and reliability of DL models, and the
prediction of traffic aggregates. Section IV describes the
apps/activities selection rationale, the dataset collection, and
the evaluation metrics. Section V presents the experimental
evaluation with related take-home messages. Finally, Sec-
tion VII provides conclusions and future perspectives.

II. Related Work
In this section, we provide an overview of the works that
have addressed network traffic prediction (Sec. II.A) or
exploited XAI techniques in the context of network traffic
analysis (Sec. II.B). Finally, we provide the positioning of the
present paper against the related literature for each reviewed
topic (Sec. II.C).

A. Network Traffic Prediction
The scientific community has shown great interest in pre-
dicting the evolution of network traffic. Researchers have
approached different prediction tasks related to a variety of
distinct practical network problems. Table 1 summarizes the
main aspects of each work surveyed herein. We categorize
each paper based on whether (a) it tackles the prediction of
traffic generated by multiple activities associated with the
considered application and (b) it uses a multitask model, de-
tailing also (c) the specific prediction techniques employed.
Then, we specify (d) if such techniques are designed for
fine-grained or coarse-grained traffic prediction, (e) how they
are evaluated (i.e. the granularity of the prediction task), and
(f) the traffic parameters/quantity predicted. Finally, the last
column flags (g) the works publicly releasing the dataset used
in their experimentations. The present section ends with the
positioning of our work whose main points are recapped in
the last row of Tab. 1.

Firstly, we can notice that none of the previous works per-
forms a per-activity breakdown of the predictions associated
with the considered application.

Regarding the particular techniques exploited for traffic
prediction, Tab. 1 highlights a rising utilization of DL
models, also in a multitask configuration [9, 11, 22]. Par-
ticularly, related works mostly employ CNN of different
dimensions [9, 15], LSTM [9, 15, 17, 18, 19, 21, 23],
GRU [9, 17, 23], SAE [13], GNN [24], and hybrid ar-
chitectures obtained via their combinations [9, 15, 20].
Fewer works leverage Markov models (e.g., MC, HMM, and
MMG) [11, 14, 16, 22], traditional ML models (e.g., LR,
SVR, k-NNR, or RFR) [9, 16, 18, 22], and statistical tech-
niques (e.g., ARIMA or FARIMA) [12, 15, 17, 18], usually
as performance baselines to evaluate DL models, with the
latter commonly showing better prediction performance.

Concerning the design of traffic predictors, several works
propose solutions tailored for forecasting the evolution of
traffic aggregates (CG). On the other hand, fewer proposals
are designed to forecast traffic characteristics at a finer level
(FG).

Regardless of the specific design choice, we also highlight
the granularity of the prediction task faced to evaluate the
proposed solutions.

The works performing coarse-grained evaluation (CG-
eval) forecast various traffic aggregates, such as bit
rates [23], packet distributions [17], and traffic volumes [12,
13, 17, 18, 19, 20, 24] at different time resolutions, ranging
from less than one second to few seconds, minutes, hours,
and even days. Among the latter, some works take into
account also the geographical or topological distribution of
sources and destinations, rather than leveraging the (sole)
temporal information, via traffic matrices [18] or considering
the geographic distribution of data volumes (e.g., aggregated
data calls) as observed at base stations [15, 20, 24].

Differently, the proposals performing fine-grained evalu-
ation (FG-eval) can capitalize on different sources of in-
formation. Some works tackle packet-level traffic prediction
relying entirely on network-layer features available also in
case of encryption ( ), such as packet sizes, directions, and
inter-arrival times [9, 11, 22]. Other prediction approaches
consider video traffic and forecast video frame properties
exploiting application-layer information which is not always
available when encryption strategies are enforced [12, 14,
16]. We underline this shortcoming by partially flagging (G#)
the FG-eval column in Tab. 1.

B. AI Trustworthiness in Traffic Analysis
Recently, researchers have applied XAI techniques to im-
prove the performance, robustness, reliability, and feasibility
of AI models that tackle networking-related tasks [36]. Ta-
ble 2 reports the works tackling various networking problems
by means of different XAI methods, focusing on the aim of
the trustworthiness analysis conducted. Specifically, we flag
the works that aim to (partially) interpret their forecasting
results and/or measure to which extent the confidence asso-
ciated with the latter can be deemed reliable (i.e. high/low
confidence leads to high/low accuracy in prediction). The
last row of Tab. 2 summarizes the present work, whose
positioning w.r.t. related work is discussed at the end of this
section.

Referring to the networking problems addressed in the
light of AI trustworthiness, several papers face anomaly
detection [25] or traffic classification [28, 29, 30, 31, 32, 33,
34, 35]. Networking-related prediction tasks with different
facets are also tackled: video bit-rate adaptation based on
reinforcement learning [26], video quality prediction via
clustering [27], and packet-level traffic prediction (i.e. the
same problem tackled in the present work) via Markovian
and DL approaches [9, 22].
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Table 1: Related work tackling various network traffic prediction tasks using different approaches. Reported papers are listed in chronological order. The
last row summarizes the current proposal. *The solution is not designed for a specific prediction task and is evaluated on video-traffic datasets with
different aggregations (from single frame to seconds).
MT: Multitask. FG: Fine-Grained. CG: Coarse-Grained. Data: Publicly Available Dataset.  present, G# partially present, # lacking.

Reference Per-activity MT Techniques Design CG-eval FG-eval Prediction Data

Dainotti et al. [11] #  HMM FG #  PS, IAT  

Katris and Daskalaki [12] # #
FARIMA,
RBF, MLP FG *  G#

Frame Size,
Traffic Volume  

Oliveira et al. [13] # # MLP, JNN, SAE CG  # Traffic Volume  
Tanwir et al. [14] # # HMM, MMG FG # G# Frame Size  

Huang et al. [15] # #
3D-CNN, 3D-CNN+LSTM,

ARIMA, LSTM, MLP CG  # Data CDR Count  

Kalampogia and Koutsakis [16] # # LR, MC FG # G# B-Frame Size  

Ramakrishnan and Soni [17] # #
ARIMA, CV, GRU,
LSTM, MA, RNN CG  #

Packet Distribution
Traffic Volume G#

Hua et al. [18] # #
ARIMA, LSTM, MLP

RCLSTM, SVR CG  # Traffic Volume  

Huo et al. [19] # # STL+Seq2Seq-LSTM CG  # Traffic Volume  
Zhang et al. [20] # # Seq2Seq+ConvLSTM CG  # Traffic Volume  

He et al. [21] # #
AVP, DQN, LSTM

PMF, ZP CG  # Dw Bytes #

Aceto et al. [22] #  
HMM, MC,

LR, k-NNR, RFR FG #  PL, IAT, DIR  

Montieri et al. [9] #  
CNN, LSTM, GRU,
SeriesNet, DSANet,

MC, LR, k-NNR, RFR
FG #  PL, IAT, DIR  

Saha et al. [23] # # RNN, LSTM, GRU CG  # Bit-rate #
Fang et al. [24] # # GNN CG  # Traffic Volume #

This Work   
CNN, LSTM, GRU,

SeriesNet FG   
PL, IAT, DIR,

Number of Packets,
Traffic Volume

 

We can notice that most of the works applies inter-
pretability techniques to provide explanations of the deci-
sions taken. More specifically, commonly used XAI meth-
ods provide various forms of post-hoc explanations [33]:
(a) layer-wise relevance propagation [25] which supplies
explanations in an iterative fashion exploiting the layered
structure of the neural network; (b) interpretable local
surrogates via LIME [26, 27] which replaces the deci-
sion function with a self-explanatory local surrogate model;
(c) different types of perturbation analyses, such as occlu-
sion analysis [28, 32] or universal perturbation attacks [34];
(d) importance attribution based on Shapley values, either
local [37] or global [33]. Other XAI methods based on
visual representations (e.g., t-SNE and Feature Maps) [29]
inspect the activation of intermediate neurons to highlight
the most important features that led to the decision. More-
over, Markovian Distillation is applied to interpret traffic-
prediction results by comparing Markov Chains’ transition
probabilities and DL predictions [9, 22]. Going further,
solutions aiming at explainability-by-design compare parts
of input data with per-class prototypes [35].

Finally, the reliability of DL models is investigated via
a calibration analysis [31, 33] of their probabilistic outputs

that aims to determine whether the confidence associated
with the final decision reflects its reliability and possibly
improve it.

C. Positioning w.r.t. Related Literature
This work aims to predict the traffic generated by some of the
most popular and used CC apps at the packet level (i.e., our
proposal is designed to fulfill fine-grained traffic prediction),
specifically focusing on the lack of trustworthiness possibly
characterizing DL solutions for network traffic analysis.

Compared to other works addressing network traffic
prediction (ref. Tab. 1), we exploit fine-grained predictions
to forecast also traffic aggregates in terms of the number of
packets and volume. Thus, we perform both fine-grained and
coarse-grained traffic prediction exploiting only network-
layer features differently than all the reported works. Indeed,
all of them exclusively focus on one of these tasks, namely
either CG-eval or FG-eval. The sole exception is the work
of [12], which is, however, specifically tailored for the
prediction of video-frame sizes and leverages application-
layer information unavailable in case of encryption.

Considering the related works exploiting multitask mod-
els, in [11] the focus is on the preliminary aspects of
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Table 2: Related work employing XAI when facing various networking problems. Reported papers are listed in chronological order. The last row summarizes
the current proposal.

Reference Networking Problem Interpretability Reliability XAI Method

Amarasinghe et al. [25] Anomaly Detection  # LRP

Dethise et al. [26]
Video bit-rate

Prediction  # LIME

Morichetta et al. [27]
Video Quality

Prediction  # LIME

Rezaei et al. [28] Traffic Classification  # Occlusion Analysis

Beliard et al. [29] Traffic Classification  #
t-SNE

Feature Map Visualization
Wang et al. [30] Traffic Classification  # DEEP SHAP
Aceto et al. [31] Traffic Classification #  Calibration Analysis

Aceto et al. [22]
Packet-level

Traffic Prediction G# # Markovian-Distillation

Akbari et al. [32] Traffic Classification  # Occlusion Analysis

Montieri et al. [9]
Packet-level

Traffic Prediction G# # Markovian-Distillation

Nascita et al. [33] Traffic Classification   
DEEP SHAP,

Calibration Analysis
Sadeghzadeh et al. [34] Traffic Classification  # Perturbation Analysis

Fauvel et al. [35] Traffic Classification  #
Explainable-by-Design

DL Architecture

This Work
Packet-level

Traffic Prediction   
DEEP SHAP,

Calibration Analysis

 present, G# partially present, # lacking.

traffic modeling of unidirectional flows—thus neglecting the
advantage of considering request-response interaction—of
non-mobile-app traffic by means of HMM. On the other
hand, HMM and MC models are investigated to characterize
and predict network traffic generated by mobile apps in [22]
without exploiting the advantages of multitask DL models.

The closest work to ours is [9], since it addresses the same
prediction problem (i.e., network-traffic prediction at packet
level via DL approaches) investigated herein. However, com-
pared to the aforementioned reference, this paper provides
the following major contributions: (a) We focus on the traffic
generated by CC apps. First, this choice reflects a practical
interest of network operators, as these apps have become
extremely popular with the COVID pandemic. In addition,
CC apps are peculiar due to their multi-activity nature. In
fact, it is increasingly common to have video, voice, chat,
and game content within the same app rather than dealing
with only one type of traffic. This multi-activity nature
makes network management more complex as different types
of traffic require different network management techniques
due to their unique characteristics and requirements [4].
Therefore, we investigate the suitability of DL solutions to
predict their fine-grained characteristics. (b) According to
such goals, we rely on a more detailed ground truth, which
includes the specific activity performed by the users (beyond
the app generating the traffic), to investigate the impact of
multiple activities on the capability of the DL model to
predict traffic characteristics. (c) We assess the suitability of

considering a single model for all apps or a specific model
for each transport-level protocol to predict CC-app traffic
against per-app models.

Focusing on AI trustworthiness in traffic analysis, we
address the inherent lack of trustworthiness of DL models
in packet-level traffic prediction (ref. Tab. 2). Firstly, we
offer interpretability through XAI techniques. Our approach
involves conducting a comprehensive analysis of DL models
using DEEP SHAP to provide interpretable results. To the
best of our knowledge, no other research has utilized these
XAI techniques to investigate the interpretability of DL mod-
els for network traffic prediction, irrespective of the granular-
ity of prediction or the specific DL model employed. Indeed,
our methodology overcomes the limitations of preliminary
interpretability solutions exploited in previous works facing
packet-level traffic prediction [9, 22] based on Markovian
distillation, which is constrained by memory limitations.
Moreover, we investigate the reliability of DL models via a
calibration analysis. To the best of our knowledge, no other
work dealing with network traffic prediction has investigated
such an aspect.

III. Methodology
In this section, we present an exhaustive account of the
methodology devised for predicting network traffic at the
packet level using multitask DL and explaining/assessing the
forecasting outcomes. The workflow we employ to address
this prediction problem is depicted in Fig. 1.
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Figure 1: Workflow of the methodology defined for predicting the traffic of communication-and-collaboration mobile apps via multitask DL approaches
and explaining/assessing the forecasting outcomes via XAI techniques.

First, in Sec. III.A, we provide a formal statement of
the prediction task we have tackled and the corresponding
solution we have devised. Hence, the section includes: (a) the
description of the traffic parameters of interest (Sec. III.A.1);
(b) the specification of the multitask DL architectures used to
predict them (Sec. III.A.2); (c) the details about the adopted
procedures for training these architectures (Sec. III.A.3).

Then, Sec. III.B details the XAI techniques used for
inspecting the prediction outcomes. Accordingly, the section
describes: (a) how interpret these models using post-hoc
techniques (Sec. III.B.1); (b) how to analyze their reliability
through calibration analysis (Sec. III.B.2).

We conclude in Sec. III.C with a description of the devised
procedure to forecast traffic at a coarser (but arbitrary)
granularity by exploiting packet-level predictions.

A. Multitask Deep Learning for Packet-Level Traffic
Prediction
Our goal is to utilize DL approaches to predict network
traffic generated by CC-apps at the finest granularity, i.e. at
the packet level. To achieve this, we employ the widely-used
bidirectional flow (biflow) as traffic object for our prediction
task. A biflow embodies all the packets that share the
same 5-tuple (IP src, IP dst, port src, port
dst, protocol) in both upstream and downstream di-
rections [9].

Specifically, given a biflow up to its nth packet, we aim
to predict P traffic parameters associated to the (n+1)th

packet. In this case, the desired output of our DL architecture
is represented by the vector xn+1. These predictions are
based on the previous values of the same traffic parameters,
which are stored in a memory window of size W . Then, the
observations xn, . . . ,xn−(W−1) are used as input to the DL
architecture.
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It is important to note that we construct the input using
an incremental windowing approach that utilizes a sliding
memory window with a unit stride. This allows us to
incrementally add samples to the window until it reaches the
maximum size of W . In cases where the prediction task has
accumulated memory that is less than or equal to W , we
apply left zero-padding to reach the desired window size.
This enables predictions to be made on the initial part of the
biflow (see later Sec. 1) and/or on biflows that are shorter
than W .

Furthermore, we leverage multitask architectures that si-
multaneously address multiple prediction tasks, with each
task focusing on one of the P parameters under considera-
tion2. Therefore, we are targeting the design of a single DL
model in the form:

x̂n+1 = P(xn,xn−1, . . . ,xn−(W−1)) (1)

where x̂n+1 denotes the prediction vector associated to
xn+1.

1) Traffic Parameters
Our objective is to predict three traffic parameters (P = 3),
for the packets within a biflow. These parameters are: (i) the
direction (DIR), which is a binary value indicating whether
the packet is in the downstream or upstream direction; (ii) the
payload length (PL), representing the size of the trans-
port-layer payload measured in bytes; (iii) the inter-arrival
time (IAT), which refers to the time interval between the
arrival of two consecutive packets.

In this paper, we focus on predicting such P = 3 param-
eters since, generally, most network performance problems
(e.g., loss, delay, jitter) occur at the packet level. Therefore,
predicting the size, direction, and arrival time of the next
packet can improve resource allocation within buffers and
bandwidth [11]. These aspects are crucial for ensuring the
quality of service and a seamless communication experience,
particularly when dealing with CC apps [38].

2) DL Architectures
The DL architectures employed are depicted in Fig. 1. We
underline that all DL architectures end with a number of
dense layers (aka heads) equal to the number of parameters

2In a previous study [9], we conducted experiments that demonstrated
the advantages of multitask architectures in terms of prediction performance
and complexity, as compared to single-task solutions. The results showed
that multitask architectures outperformed single-task solutions in both
aspects. Specifically, the multitask architectures exhibited better prediction
performance, yielding more accurate results, while also reducing the overall
training time. This finding suggests that employing a single deep learning
architecture to predict each traffic parameter individually is less effective
and more computationally expensive compared to utilizing multitask archi-
tectures.

to be predicted (i.e., P , with P = 3 in Fig. 1), each using a
Sigmoid activation function.

More in detail, for the convolutional model, we adopt a
1D-CNN architecture (see Fig. 1a). It consists of two sequen-
tial convolutional layers with 32 and 64 filters, respectively,
and a kernel size of 5. Each convolutional layer is followed
by a max-pooling layer with a pool size of 3. The architecture
further includes a dense layer with 128 neurons. All these
layers employ the Rectified Linear Unit (ReLU) activation
function.

On the other hand, we also consider two recurrent archi-
tectures: a Gated Recurrent Unit (GRU) and a Long Short-
Term Memory (LSTM) network (see Fig. 1b). Both recurrent
models are unidirectional and consist of 200 units, where the
activation function employed is the Sigmoid.

In addition to the individual convolutional and recurrent
architectures, we also employ a composite architecture,
namely an extended version of the SeriesNet (see Fig. 1c).
This DL model is based on Dilated Causal Convolution
(DCC). More in detail, the overall architecture comprises
7 DCC layers. Each DCC has 32 filters, a dilation size of 2,
and applies the Scaled Exponential Linear Unit (SELU) acti-
vation function. Furthermore, each DCC includes a residual
connection that connects the input to the output. The last 2
DCC layers incorporate a dropout rate of 0.8. The sum of
the parameterized skip connections from each DCC is passed
through a ReLU activation function and used as input to a
1 × 1 convolutional layer. Finally, the output of this layer
is concatenated with the stacking of two LSTM layers, each
containing 200 units, and a dense layer with 128 neurons.

Although we restrict our analysis to the aforementioned
DL models, we remark that the methodology devised in this
paper (i.e. multitask packet-level prediction, interpretabil-
ity and trustworthiness of predictors, and tunable coarser-
grained traffic prediction) is quite general and can be
straightforwardly extended to other more sophisticated pre-
diction models.

3) Loss Specification and Training Details
Our main objective is to predict P traffic parameters for
the next packet, which are stored in the vector xn+1.
Consequently, the DL architecture is trained to minimize a
weighted sum of the losses associated with the P prediction
tasks considered, namely:

L
(
θshared, {θp}Pp=1

)
≜

P∑
p=1

λp Lp (θshared,θp) (2)

where the weight λp indicates the importance level of the
pth task in the overall multitask objective function3. The
shared parameters θshared are associated with the layers

3On the basis of preliminary results, not reported for brevity, herein, we
set λ1 = λ2 = 0.45 and λ3 = 0.10, where p = 1, p = 2, and p = 3 are
associated to the DIR, PL, and IAT prediction task, respectively.
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that are common to all tasks, while the parameters θp are
specific to the pth task. Moreover, due to the multitask nature
of these architectures, the specific loss function Lp(·) to
optimize depends on the prediction task being addressed.
Specifically, we train the DL architectures to minimize the
binary cross-entropy loss function for the prediction of the
binary DIR. For the prediction of non-binary parameters,
such as PL and IAT, we minimize the Mean Squared Error
(MSE) between the predicted values and the actual traffic
parameters associated with the (n+1)th packet of a given
biflow.

In this study, we employ different training strategies that
vary based on how traffic information is grouped. These
strategies allow the models to capture traffic characteristics
beyond those specific to an individual app, enabling a more
comprehensive understanding of the traffic patterns. Notably,
such strategies directly affect the number and complexity of
DL models a network operator needs to develop, train, and
deploy in the network. As a consequence, we examine the
following three training strategies corresponding to different
aggregation levels:

• per-app models (APP): a separate model is created for
each app. This means that there is a specific predictor
P(·) associated with each individual app. The models
are trained using traffic data labeled with the corre-
sponding app information (e.g., the Android package
name).

• per-proto models (PROTO): the models are designed to
consider traffic based on the protocols used. However,
the models do not differentiate between individual apps
within each protocol.

• overall-model (ALL): a single model is created to en-
compass all the apps. In other words, a single predictor
P(·) is utilized for all the apps. The model is trained
using the entire traffic dataset, without taking into
account the specific information about the individual
app (or protocol) that generated the traffic.

We remark that the training strategies described do not
pose any constraint on the model used for traffic prediction.
Hence, each of them can be applied to all the DL traffic
predictors considered in this work. However, note that to be
practically deployed, per-app models require the presence of
an upstream traffic classifier to properly route network traffic
to the proper prediction model, namely a more complex
network setup compared to the other training strategies.

B. XAI-tools for Traffic Prediction
The black-box nature of DL models makes it difficult for
network operators to trust them, especially when the results
of their decisions could have a significant impact on the
network. In this scenario, XAI can assist network operators
in making improved decisions regarding the integration of
AI into their networks by offering transparency, building
trust, identifying problems, and ensuring compliance with
regulations [36].

1) Interpretability of DIR Prediction via DEEP SHAP
In this section, we present the methodology employed to
investigate the interpretability of the results obtained from
a probabilistic binary classification task, specifically the
prediction of DIR values, using DL architectures. We recall
that such an interpretability analysis provides a means to
explain the model, determining whether the predictions are
more influenced by specific parts of the input traffic, also un-
covering potential biases. It can also enable the improvement
of model performance and the assessment of robustness and
vulnerabilities (e.g., how much the model is susceptible to
adversarial attacks). Additionally, from a transparency view-
point, interpretability techniques can facilitate the validation
of the prediction outcome by providing insights into the
internal mechanisms of DL architectures, thus making the
resulting decisions more trustworthy.

To start interpreting DL architectures, we adopt a simpler
explanation model, denoted as g(·), which is designed to
closely approximate the original model f(·). To explain the
predictive behavior of a DL-based traffic predictor, we use
the model f(·) as the soft output associated with the generic
direction (i.e. pup/pdw). This allows us to determine which
inputs contribute the most to the confidence probability value
that is associated with a given direction. In the following, our
focus lies on local methods, which explain the model f(x)
within the neighborhood of a specific instance x, referred to
as an explanation of the input packet sequence in this case.
These local explanations utilize simplified inputs x′, which
are mapped to the original inputs x through the mapping
x = hx(x

′).
Herein, we adopt the Additive Feature Attribution (AFA)

functional form as the explanation model g(·) for our anal-
ysis. The AFA model is defined as:

g(z
′
) = ϕ0 +

M∑
m=1

ϕm z
′

m (3)

where z
′ ∈ {0, 1}M , M represents the number of simplified

inputs, and ϕm ∈ R. This specific class of explanation
models assigns an “effect” ϕm to each input, indicating its
contribution. Consequently, the output of the original model
f(x) can be approximated by summing the effects of all
input attributions.

A widely used method for computing AFA solutions is
through the application of Shapley values, which have their
origins in cooperative game theory. These values quantify
the contribution of a particular player, denoted as m, to the
overall payoff achieved by the entire coalition C, denoted
as v(C). Specifically, the overall payoff is obtained by first
evaluating the payoff of all possible subsets S ⊂ C of
cooperating players which include m. Secondly, the effect of
excluding player m from each S on the payoff is evaluated,
namely v(S)−v(S\m). The final mth Shapley value is then
obtained by taking the (weighted) average of such differences
over all the S. When applying this method to explain a DL-
based model, the input data is mapped to the players of the
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cooperative game, while the output of the DL architecture,
represented by f(x), corresponds to the payoff function.

However, the exact computation of Shapley values be-
comes exponentially complex as the size of the input,
denoted as M , increases. To address this challenge, we em-
ploy an approximation method known as SHapley Additive
exPlanation (SHAP), which efficiently calculates the Shapley
values. This approximation eliminates the need to retrain the
models by approximating the Shapley values through the
conditional expectation f(hx(z

′
)) ≈ E {f(z)|zS}, where S

represents the set of non-zero indices within z
′
.

Specifically, in our study, we utilize DEEP SHAP [39], an
adaptation of the DeepLIFT algorithm designed for evaluat-
ing SHAP values on neural architectures. DeepLIFT employs
a compositional approximation of SHAP values by using
the output expectation as the reference value. It also utilizes
explicit Shapley equations for consistent linearization. The
reference value is a user-defined parameter that is chosen to
be an uninformative background value for the mth input.

To be more specific, we use DEEP SHAP to explain
the soft-output associated with the predicted DIR, denoted
as p̂(x), for each input sequence represented by x =
(xn,xn−1, . . . ,xn−(W−1)). For a given input sequence x,
we interpret the SHAP value ϕm as the importance value
of the mth traffic parameter composing x in forming the
confidence pi associated with the ith direction for the next
packet. It is worth noting that since ϕm ∈ R, which
means that values can be negative, we should interpret the
importance values as follows: positive values increase the
confidence in the ith direction compared to its average value,
while negative values decrease it. Additionally, the sum of
the SHAP values equals the soft-output value (pi(x)) minus
the base output. The base output represents the average
of the same soft-output value obtained from the samples
associated with the background set, i.e. E{pi}.

Finally, because the absolute importance range of the mth

traffic parameter may significantly fluctuate over different
input packet sequences due to the variability of soft outputs,
we use global explanations obtained by combining per-
packet-sequence and normalized explanations obtained from
DEEP SHAP. Specifically, our global explanation approach
involves the initial computation of normalized SHAP values:

ϕ̃m ≜ ϕm /

M∑
m=1

ϕm (4)

By using ϕ̃m instead of ϕm, we can focus on the relative
importance of each input and derive importance measures
that are independent of the specific confidence levels of
the architecture. This normalization ensures consistent ag-
gregation over the test samples x1, . . . ,xN and removes
dependence on the architecture’s peculiar confidence levels,
which can be generally higher or lower. Additionally, we
specifically concentrate on aggregating correctly classified
DIR samples [33]. This selection allows us to focus on the

accurate behavior of a DL-based traffic predictor and inter-
pret its counter-intuitive (while right) decisions a posteriori.

2) Assessing the Reliability of DIR Prediction
Other than the performance of the considered DL-based
traffic predictors, it is of great importance to evaluate the
reliability to soft-estimates associated with the prediction
of discrete-valued parameters, such as DIR in our case.
Reliability evaluation is fundamental in many critical sce-
narios and constitutes a building block of XAI since it
assesses the degree of trustworthiness in providing prediction
outputs with high confidence. In other words, it evaluates
if DL-based traffic predictors are calibrated (or not) and
consequently, if the provided predictions are reliable (or not).

Formally speaking, given an input sample x to the DL-
based traffic predictor under analysis, we will analyze the
reliability of the confidence vector p(x) = [pup(x) pdw(x)]
and of the confidence associated to the predicted DIR
p̂(x) = max {pup(x), pdw(x)}.

In what follows, we introduce a graphical visualiza-
tion and two metrics to assess calibration [40]. Indeed, a
confidence-calibrated classifier is such that for each sam-
ple, the confidence p̂ in the predicted direction equals
Pr

{
x̂n+1
dir = xn+1

dir | p̂
}

, where xn+1
dir (resp. x̂n+1

dir ) is the true
(resp. predicted) direction. That is, when reporting a con-
fidence of e.g. 80% the predictor actually reaches 80%
accuracy (i.e. the confidence value was neither excessively
optimistic nor pessimistic).

To visualize the above property for varying p̂, we use
the reliability diagrams, which show the accuracy as a
function of the confidence (i.e. Pr

{
x̂n+1
dir = xn+1

dir | p̂
}

vs. p̂)
and compare it with the ideal Pr

{
x̂n+1
dir = xn+1

dir | p̂
}

= p̂
line, corresponding to a perfectly-calibrated classifier. These
diagrams are evaluated by partitioning the predictions into
M equally-spaced bins and computing the accuracy for each
of them. Let Bm be the set of evaluated samples such that
the confidence associated to the predicted app falls within
the interval Im ≜ (m−1

M ; m
M ], the corresponding bin accuracy

equals acc(Bm) = |Bm|−1 ∑
n∈Bm

1(x̂n+1
dir (s) = xn+1

dir (s)),
where xn+1

dir (s) and x̂n+1
dir (s) ≜ argmaxi={dw,up} pi(s) are

the true and predicted labels for the sth sample, respectively.
Confidence values range in [1/2 , 1], since DIR prediction
maps into a binary classification task.

To obtain concise metrics of the deviation from a per-
fect calibration, we integrate the above diagrams with the
Expected Calibration Error (ECE), defined as

ECE ≜ Ep̂

{∣∣Pr{x̂n+1
dir = xn+1

dir | p̂
}
− p̂

∣∣} (5)

and the Maximum Calibration Error (MCE), defined as

MCE ≜ max
p̂

∣∣Pr{x̂n+1
dir = xn+1

dir | p̂
}
− p̂

∣∣ . (6)

The former metric represents the expected absolute deviation
between the confidence and the confidence-conditional accu-
racy, whereas the latter is the maximum absolute deviation
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from the identity line [40]. They can be approximately
calculated as

ECE ≈
M∑

m=1

(|Bm| /N) |acc(Bm)− conf(Bm)| (7)

and
MCE ≈ max

m=1,...,M
|acc(Bm)− conf(Bm)| (8)

respectively. The above expressions are based on the over-
all number of tested samples S and the averaged confi-
dence within the bin Bm. The latter equals conf(Bm) =
|Bm|−1 ∑

s∈Bm
p̂(s), where p̂(s) ≜ max{pdw(s), pup(s)}

denotes the predicted confidence of the sth sample.
The ECE and MCE metrics only consider the confidence

in the predicted app, while ignoring the other scores in
the softmax distribution. A stronger definition of calibration
requires the probabilities of all the classes in the softmax
distribution to be calibrated, namely to have pi equal to
Pr {ℓ = i| pi} for i = 1, . . . , L, i.e. having 80% confidence
for the ith app leads to 80% probability of observing that
app. A concise metric that relies on the above stronger
calibration definition is the Class-Wise Expected Calibration
Error (CW-ECE) [41], defined as

CW-ECE ≜
1

L

L∑
i=1

Epi {|Pr {ℓ = i| pi} − pi|} . (9)

Such a metric is evaluated as the class-wise sum

CW-ECE =
1

L

L∑
i=1

CW-ECEi (10)

where

CW-ECEi ≈
M∑

m=1

|Bm,i|
N

|ϱ(Bm,i)− conf(Bm,i)| . (11)

In the latter definition, Bm,i denotes the set of samples
whose prediction for the ith app pi falls within the mth

bin, and conf(Bm,i) (resp. ϱ(Bm,i)) the corresponding bin-
averaged confidence probability (resp. the proportion of
samples labeled as the ith app).

C. From Fine-Grained To Aggregate Traffic Prediction
In this section, we define a first approach that can capitalize
on the benefits of having a multitask packet-level predictor.

Specifically, our goal is to exploit the packet-level pre-
dictions to forecast aggregates of traffic within a future time
interval (∆), also known as the time horizon. To achieve this,
we employ the recursive methodology depicted in Fig. 2,
which iteratively utilizes the packet-level predictions (i.e.
related to DIR, PL, and IAT) to predict the traffic to a
coarser granularity (i.e. the number of packets and data
volume in both upstream and downstream directions) for the
next ∆. This is obtained by repeatedly using the fine-grained
predictor P(·). It is worth noting that the main strength of
this approach lies in its flexibility which makes it possible
to tune the ∆ parameter at the operational stage (i.e. at

time

Aggregation

(a) Base Procedure.

time

(b) Correction on fine-grained prediction.

time

Aggregation

(c) Correction on coarse-grained prediction.

Figure 2: Proposed recursive approach we used to predict aggregates of
traffic (i.e., number of packets and traffic volume in both upstream and
downstream directions) over a time horizon ∆: we exploit a fine-grained
(i.e. at the packet level) predictor P(·) with a memory window of size
W (= 3 in the figure) (a).
Correction on fine-grained prediction (b): the process ensures that all
predicted packets fall within the prediction interval ∆.
Correction on coarse-grained prediction (c): the process assumes that the
traffic in the next ∆i is the same as that in the previous ∆i−1 when the
memory (of size W ) consists of only predicted packets.

run-time). This avoids the burden of learning a DL traffic
predictor for each ∆ of interest.

More in detail, in our procedure (depicted in Fig. 2a),
after each ∆, we take the sequence of the most recent W
packets {xn,xn−1, ...,xn−(W−1)}, and recursively obtain a
series of predictions by means of P(·), denoted as x̂j , such
that:

∑
j x̂

j
IAT ≤ ∆. To do this, due to the fixed memory

of P(·), at step j > 1, the prediction x̂j is obtained by
removing the oldest packet from the memory and adding
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Figure 3: Transport-level protocol distribution in terms of share of packets
(a) and biflows (b).

the prediction obtained at the previous step x̂j−1 as the last
observed packet.

In addition, to handle any critical situations that might
occur, we apply two corrections to both fine- and coarse-
grained predictions. The correction on the fine-grained pre-
dictions (depicted in Fig. 2b) ensures that all predicted
packets fall within the next ∆. To this end, we enforce that
the first predicted packet (x̂n+1) arrives at the beginning of
the next ∆ interval if the corresponding predicted IAT would
erroneously place such packet before the beginning of the
interval. On the other hand, with the correction on the coarse-
grained predictions (depicted in Fig. 2c), we avoid the error
accumulation of the recursive procedure when leveraging a
memory encompassing only predicted packets. Accordingly,
in such cases, the predicted aggregate traffic is taken as that
observed in the previous ∆i−1 interval.

At the end of the above procedure, the set of PLs and DIRs
of the predicted packets are used to compute the volume
and number of packets in both upstream and downstream
directions (shown as Aggregation in Fig. 2). In the following,
we refer to these predicted traffic aggregates as VOLup, VOLdw,
PKTsup, and PKTsdw.

IV. Experimental Setup
In this section, we provide a comprehensive overview of
the experimental setup, including details about the apps’
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(b) UDP.

Figure 4: Biflow-length distribution (in terms of the number of packets)
for each app with respect to TCP (a) and UDP (b) protocols. Values on the
x-axis are reported in log scale.

and related activities’ selection rationale (Sec. IV.A), the
collected dataset (Sec. IV.B), and the evaluation metrics
(Sec. IV.C) employed for assessing the performance of the
prediction models.

A. Apps’ and Activities’ Selection Rationale
Nowadays CC apps, such as those used for business
meetings, classes, and social interaction, are massively
exploited in everyday life after their adoption was fu-
eled due to the pandemic years [1]. Therefore, we have
specifically selected a subset of four CC apps from the
MIRAGE-COVID-CCMA-2022 dataset based on their
popularity [42]: Skype, Teams, Webex, and Zoom.

As previously mentioned, our experimentation focused on
specific activities associated with these apps that include:

• Audio-call (ACall): a two-way audio transmission be-
tween two participants, without any video component.

• Chat (Chat): a conversation between two participants,
where they exchange textual messages and/or multime-
dia content such as images or GIFs.

• Video-call (VCall): multiple attendees who can trans-
mit both video and audio; this category encompasses
various scenarios, including video calls between two
or more attendees and webinars or live events with
multiple participants.
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By selecting these CC apps and their corresponding ac-
tivities, we aim to capture and analyze the usage patterns
and network traffic characteristics associated with different
modes of communication.

B. Dataset Description, Processing and Characterization
In this study, we utilize our MIRAGE-COVID-CCMA-
2022 public dataset that we have publicly released to foster
replicability and reproducibility.4 In detail, the dataset was
collected by students and researchers of the University of
Napoli “Federico II” between April and December 2021. The
dataset was obtained using the MIRAGE architecture [43],
which was specifically optimized for capturing and generat-
ing traffic from CC apps.

The experimenters employed three mobile devices: a
Google Nexus 6 and two Samsung Galaxy A5, all running
Android 10. During each capture session, the experimenters
engaged in specific activities using various CC apps, aiming
to generate traffic that represents common usage scenarios5.
Each session produced a PCAP traffic trace and additional
netstat6 log files containing information about estab-
lished network connections. These log files were used to
create the ground truth, which involved labeling each biflow
with (i) the Android package-name of the app and (ii) the
specific activity performed by the user operating the device7.

Then, to obtain the P packet parameters from the raw
packet sequences, we perform some preprocessing steps.
Firstly, we eliminate packets with zero payloads. Next,
we recalculate the IATs, ensuring a minimum precision
of 1µs. To remove the influence of outliers, we saturate
the recalculated IATs to the 99th-percentile value, which
is determined as 197.90 ms based on their distributions.
Finally, we apply a min-max scaler to normalize PL and
IAT within the range of [0, 1]. This scaling procedure is a
common practice when utilizing DL models, as described
in [9].

Fig. 3 depicts the percentage of packets and biflows related
to the TCP and UDP protocols for the traffic used in this
study. In particular, we can observe that all the apps tend
to generate significantly more TCP biflows: from ≈ 65%
(Teams) to ≈90% (Webex) of the total number of biflows.
Moreover, although the share of UDP biflows is significantly
lower than the TCP ones, UDP packets correspond to 90%
of the packets of each app, at least. The above results are
likely due to the fact that CC apps combine both protocols
to ensure a balance between reliable data delivery and low
latency transmission (e.g., to implement control- and data-

4http://traffic.comics.unina.it/mirage/mirage-covid-2022
5Each traffic capture session spanned 15 ∼ 80 mins based on the activity

and has been performed with the up-to-date version of the app. Also, to limit
background traffic, network access has been disabled for all the apps but
the one under test.

6https://linux.die.net/man/8/netstat.
7Activity labels were manually assigned based on the knowledge of the

individual activity performed by the user during the specific capture.

plane functionalities, respectively), meeting the requirements
of communication-and-collaboration scenarios.

To deepen the above characterization, Fig. 4 reports for
each app the distribution of the number of packets per
biflow, according to the transport-layer protocol. Specifically,
regarding the TCP protocol (Fig. 4a), we observe that ≈90%
of the biflows of each app have at most 100 packets. Also,
with the only exception of Teams, 20% of biflows have less
than ≈ 10 packets. Conversely, when looking at the UDP
protocol (Fig. 4b), the observed behavior is more related to
the specific app. While for Skype and Teams ≈ 70% of
the biflows has less than 100 packets, Webex and Zoom
expose longer UDP biflows with more than 100 packets in
more than 80% of the cases.

Finally, starting from the collected traffic, we applied the
incremental windowing approach, described in Sec. III to
construct the input for the DL architectures. More in detail,
the resulting dataset consists of 806 k samples for Skype,
1.9 M samples for Teams, 2.5 M samples for Webex, and
1.2 M samples for Zoom.

C. Evaluation Procedure and Metrics
The evaluation of traffic prediction strategies is conducted
using a robust stratified five-fold cross-validation setup: 80%
of the biflows are allocated for the training/validation set,
with 80% of this subset being the actual training set and 20%
assigned as the validation set; the remaining 20% of biflows
are designated as the test set for evaluation purposes. The
validation set is utilized to effectively implement the early-
stopping technique, which helps prevent overfitting during
training. Consequently, we calculate the average value and
standard deviation of each evaluation metric over the five
folds.

To assess the prediction performance of the binary DIR
traffic parameter, we employ the G-mean metric:

G-mean ≜
√

ρdwdir ρ
up
dir (12)

where ρdwdir ≜ Pr(x̂dir = DW | xdir = DW) and
ρupdir ≜ Pr(x̂dir = UP | xdir = UP), and the variable xdir

represents the sequence of actual DIRs, while the variable
x̂dir represents the predicted DIRs. The terms DW and
UP indicate the downstream and upstream directions, re-
spectively. The probability of accurately predicting the DIR
of downstream/upstream packets (ρdwdir/ρupdir) is computed by
dividing the number of correct predictions in a specific
direction by the total number of samples associated with
that true direction.

Conversely, to evaluate the prediction performance of PL
and IAT, we employ the Root Mean Squared Error (RMSE)
metric:

RMSEp ≜

√√√√√ 1

N̄

N̄B∑
j=1

N̄j−1∑
n=1

[
x̂n+1
p (B̄j)− xn+1

p (B̄j)
]2

(13)
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with N̄ being the total number of predictions, xn+1
p (B̄j)

the value of the pth traffic parameter (with p ∈ {PL,IAT})
observed for packet n+1 from the jth biflow B̄j (of length
N̄j), and x̂n+1

p (B̄j) the corresponding value provided by the
prediction model.

To provide a meaningful reference point for comparison,
we compare the performance of DL models against that of a
packet-level baseline predictor. Specifically, the latter makes
predictions by assuming that the next observation value is
equal to the current observation value: x̂n+1

RLP ≜ xn. We refer
to such a baseline as Repeat-Last-Packet (RLP).

Similarly, for the prediction of traffic aggregates (i.e.
number of packets and traffic volume), we consider
Repeat-Last-Aggregate (RLA) as a reference base-
line. The RLA predictor forecasts the aggregates of traffic
within a time interval ∆ as equal to the aggregates of traffic
observed during the previous time interval.

D. Implementation Details
For implementing and testing the DL architectures described
in Sec. III.A we exploit the model provided by Keras (https:
//keras.io) Python API running on top of TensorFlow
2 (https://www.tensorflow.org/). Input data are formatted in
Parquet and optimally managed via Apache PyArrow
(https://arrow.apache.org/). Data pre- and post-processing
have been performed mainly by means of numpy (https:
//numpy.org/) and pandas (https://pandas.pydata.org/) li-
braries. For the evaluation metrics reported in Sec. IV.C, we
use the implementation of scikit-learn (https://scikit-
learn.org/). Finally, the graphical data representation has
been obtained using matplotlib (https://matplotlib.org/)
and seaborn (https://seaborn.pydata.org/) libraries.

To ensure a fair comparison among the various architec-
tures, we set uniform values to all adjustable hyperparame-
ters related to the training process of the models. We train
all the models for a total of 100 epochs using the Adam
optimizer, with a learning rate of 0.001, and a batch size
of 32. To avoid overfitting, we use a validation-based early-
stopping technique, where we set the patience and min_delta
parameters to 4 and 0.0001, respectively. When using DEEP
SHAP, we used a background set of 500 samples randomly
selected from the training set of the current fold.

To foster the replicability and reproducibility of our anal-
ysis, we have publicly released the code of the DL architec-
tures leveraged herein, along with pre-processed data, hyper-
parameters setting, and example usages.8

V. Experimental Evaluation
In the following, we first investigate traffic prediction per-
formance for all apps and activities, attained by different
multitask DL models, with the goal of understanding whether
it is better to train a single model for all apps or a specific one
for each of them (Sec. V.A). Then, we delve into the results,

8https://github.com/IdioGuarino/AFTER

Table 3: ECE, MCE, and CW-ECE related to DIR-prediction when using
CNNALL with a memory size set to W = 10. Results refer to the prediction
of traffic generated by each app, regardless of the specific activity. For each
metric, the best and the worst calibrated apps are highlighted in green and
red, respectively. Results are in the form avg.± std. obtained over 5-folds.

App ECE [%] MCE [%] CW-ECE [%]

Skype 3.69 (±0.59) 6.63 (±2.23) 4.46 (±1.35)
Teams 7.02 (±4.16) 28.57 (±18.22) 9.69 (±5.44)
Webex 2.11 (±0.83) 4.95 (±2.59) 4.36 (±1.98)
Zoom 5.35 (±2.42) 10.26 (±3.12) 6.60 (±2.51)

Table 4: ECE, MCE, and CW-ECE related to DIR-prediction when using
CNNALL with a memory size set to W = 10. Results refer to the prediction
of traffic generated by each activity, regardless of the app activity. For each
metric, the best and the worst calibrated activities are highlighted in green
and red, respectively. Results are in the form avg. ± std. obtained over
5-folds.

Activity ECE [%] MCE [%] CW-ECE [%]

ACall 2.02 (±0.78) 3.77 (±1.65) 3.38 (±2.13)
Chat 2.85 (±0.94) 9.49 (±2.91) 3.94 (±1.79)
VCall 5.15 (±3.99) 26.16 (±20.07) 6.32 (±4.45)

investigating per-packet performance and error distributions
(Sec. V.B). Concerning AI trustworthiness, we focus on the
prediction of the direction of the next packet: we explain the
model behavior via DEEP SHAP (Sec. V.C), and we assess
its reliability via calibration analysis (Sec. V.D). Next, we
deepen the impact of transport-layer protocols on packet-
level prediction performance (Sec. V.E). Finally, we analyze
the suitability of the packet-level traffic prediction approach
for forecasting aggregate traffic characteristics (i.e., number
of packets and traffic volume) in a time interval of fixed but
arbitrary duration (Sec. V.F).

A. Do we need a dedicated model for each app?
Preliminary results—not reported for brevity—showed that
W = 10 constitutes the best trade-off between the complex-
ity of the model (growing with W ) and the effectiveness
of the prediction. Therefore, we provide an overview of the
performance of the multitask DL models used for predicting
DIR, PL, and IAT by adopting a memory window size
W = 10. Specifically, we evaluate the effect of having one
single overall model for all apps instead of one separate
model for each of them. To this end, Fig. 5 summarizes the
performance of all DL models trained according to different
strategies (i.e. ALL vs. APP) with respect to all the apps
considered. In addition, for each app, we also provide the
performance achieved by the corresponding RLP baseline.

DL models always outperform RLP, especially on Skype:
we observe the largest gap on all traffic parameters (i.e. ≈
−40% G-mean on DIR, and ≈+84 B and ≈+26 ms RMSE
on PL and IAT, respectively). Conversely, we observe that
for the same parameters, the smallest gap is obtained on
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Figure 5: Prediction performance of CNN, LSTM, GRU, SeriesNet, and RLP on DIR (a), PL (b), and IAT (c). Results on the left refer to the prediction
of traffic generated by each app regardless of the specific activity. Results on the right refer to Zoom when performing a specific activity (b, d, f)—i.e.
Chat, ACall, and VCall. Memory size is set to W = 10 and both APP and ALL training strategies are considered. The arrow close to y-axis shows
the desired trend. Results are in the form avg.± std. obtained over 5-folds.

Webex (i.e. ≈−6% G-mean, and ≈+54 B and ≈+7 ms
RMSE on PL and IAT, respectively).

On the other hand, looking at the training strategies, we
note that the overall model (ALL) outperforms or equals
per-app models (APP)9. Despite this result may seem coun-
terintuitive, it is strongly related to the intrinsic nature
of CC apps and, accordingly, to their generated traffic.
Indeed, since different activities (i.e. ACall, VCall, and
Chat) are shared among different CC apps, exploiting a
traffic-prediction model tailored for a given app is likely to
provide slightly degraded performance compared to the ALL
one. On the other hand, using an ALL model has inherent
advantages related to the unnecessity of training, deploying,

9Similar outcomes were also obtained by comparing the ALL and APP

training strategies using well-known ML models—i.e., a Random Forest
Regressor for PL and IAT prediction and a Random Forest Classifier for
DIR prediction–—instead of DL models.

and managing multiple models and of having an upstream
traffic classifier to guide the selection of the specific APP
model.

Additionally, by taking into account the prediction of a
specific traffic parameter, we observe that both the examined
strategies achieve ≈ 80% G-mean when predicting DIR
(Fig. 5a). Performance on Zoom represents an exception,
showing a G-mean of ≈ 65%. A similar outcome is also
observed for PL prediction (Fig. 5b) where Zoom exhibits
a higher RMSE of ≈ +50 B compared to the other apps.
A slightly different—although more stable—performance
picture is evident for IAT prediction (Fig. 5c), for which
Skype exhibits the worst RMSE (i.e. ≈ +5 ms than the
other apps) and presents also the highest variability. Further
investigations (not reported for brevity) have shown that this
phenomenon can be attributed to the higher variability of
IATs corresponding to ACall and VCall activities.
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(a) DIR Teams.
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(b) PL Teams.
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(c) IAT Teams.
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(d) DIR Webex.
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(e) PL Webex.
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Figure 6: Per-packet index performance in terms of G-mean for DIR and RMSE for PL and IAT of the first 128 packets. Results refer to Teams (a-c)
and Webex (d-f) and are in the format avg± std obtained over the 5-folds. Horizontal lines report the overall G-mean/RMSE, the G-mean/RMSE of the
first 32 packets (G-mean/RMSE2−32), and the G-mean/RMSE of the remaining ones (G-mean/RMSE33−END) of each biflow.
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Figure 7: Probability density of prediction error on PL. The probabilities are conditioned to different combinations of (predicted, true) direction predictions,
and overall (e.g., ↑ ↑ represents correct prediction of upstream direction, ↓ ↑ an erroneous prediction of downstream for an actually upstream packet). The
number in brackets is the RMSE for the specific combination, and overall.

Since the error on DIR has the highest impact on the
use of fine-grained (viz. packet-level) prediction results, we
analyze the performance of the most “problematic” app when
predicting the DIR parameter in more depth. Hence, we
dissect the predictions related to Zoom traffic according
to the specific activity performed by the user (i.e. ACall,
Chat, and VCall) in the right column of Fig. 5.

As depicted in Figs. 5a–5b, the worst DIR and PL
prediction performance is obtained on VCall, where we
observe the lowest G-mean (≈62%) and the greatest RMSE
(≈280 B), respectively. An opposite trend can be observed
when moving to the IAT prediction (Fig. 5c) which exhibits
an RMSE on VCall less than half of that on Chat and 2.5×
lower than that on ACall. Also in this case, all DL models
always outperform RLP, especially for the prediction of DIR

and IAT on ACall (i.e. ≈−46% G-mean and ≈+60 ms
RMSE, respectively) and of PL on Chat (i.e. ≈ +94 B
RMSE).

Finally, in examining the influence of the particular DL
architecture utilized, it becomes evident that it has a minimal
impact on the predictive performance, regardless of whether
we consider the entire traffic generated by a given application
or analyze the traffic based on different activities10.

Despite the comparable performance, the complexity of
the considered architectures varies significantly. We quantify
it with the number of trainable parameters: more trainable

10Similar considerations can be drawn also for Skype, Teams, and
Webex whose per-activity performance figures are not shown for the sake
of brevity.
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(b) Teams.
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(c) Webex.
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Figure 8: Probability density of prediction error on IAT. The probabilities are conditioned to different combinations of (predicted, true) direction
predictions, and overall (e.g., ↑ ↑ represents correct prediction of upstream direction, ↓ ↑ an erroneous prediction of downstream for an actually upstream
packet). The number in brackets is the RMSE for the specific combination, and overall.
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(a) Skype upstream.
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(b) Teams upstream.
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(c) Webex upstream.
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(d) Zoom upstream.
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(e) Skype downstream.
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(f) Teams downstream.
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(g) Webex downstream.

101

100

100

101

101

100
100

101

-9 -8 -7 -6 -5 -4 -3 -2 -1 0
Packet

101

100
100

101M
ed

ia
n 

Im
po

rta
nc

e 
[%

]

DIR PL IAT

(h) Zoom downstream.

Figure 9: Median importance (in log-scale) of each packet parameter (i.e., DIR, PL, and IAT) on the prediction of DIR for Skype, Teams, Webex,
and Zoom. The x-axis reports the packet index in chronological order, with 0 for the last observed packet, −1 the previous one, and so forth. Each app
is separately analyzed according to the (true) direction of packets, as upstream ((a), (b), (c), and (d)) and downstream ((e), (f), (g), and (h)).

parameters result in a longer training time. CNN is the least
complex architecture with 27.5 K parameters, while GRU,
LSTM, and SeriesNet are significantly more complex and

have +96.1 K (GRU), +135.3 K (LSTM), and +502.3 K
(SeriesNet) more trainable parameters.
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Figure 10: Results obtained without occlusion (viz. No-Occ.) are compared
with those obtained by occluding (a) the Least Recent Packet (viz. LRP),
(b) the Most Recent IAT (viz. MRI), (c) the Most Recent DIR and PL

(viz. MRDP), and (d) the Most Recent Packet (viz. MRP) as input to the
model. The results refer to the samples whose DIR was correctly predicted
by the CNN model (ALL variant) without occlusion. Memory size is set to
W = 10. The arrow close to the y-axis shows the desired trend. Results
are in the form avg.± std. obtained over 5-folds.

Take-home: Training a single model on the entire traffic
of CC apps is sufficient, as there is no significant benefit
in training specialized models for each individual app. This
finding carries significant practical implications as it elimi-
nates the need for training, deploying, and managing multi-
ple models. Additionally, when examining the performance of
the different apps, we observe that Zoom poses the hardest
challenges for prediction, particularly in terms of PL and
DIR, whereas the other apps demonstrate better and more
consistent performance. Among the Zoom-related activities,
VCall proves to be the most difficult to predict still in terms
of PL and DIR. Finally, despite the similar performance of
the considered DL architectures, they exhibit considerable
differences in terms of computational complexity, with CNN
being the least complex. Consequently, in the subsequent
analyses, we focus on the CNN model trained on the entire
traffic (namely, the ALL variant), as it represents the best
trade-off between complexity and prediction performance.

B. Deepening Traffic Prediction Performance
In the following, we delve into the prediction performance by
evaluating: (i) how well traffic parameters can be estimated
during the initial biflow lifetime (via per-packet-index perfor-
mance); (ii) how much correct/wrong DIR estimates affect
PL and IAT predictions (via the conditional distributions of
the prediction errors).

1) How does prediction performance vary along a biflow?
We aim to evaluate whether (and how) prediction perfor-
mance varies along a biflow. Hence, we provide a per-packet-
index performance analysis, where the evaluated metrics (i.e.
G-mean for DIR and RMSE for PL and IAT) are computed
considering packets at the same position in biflows, namely
sharing the same index or falling within the same interval
of indexes. Specifically, we focus on the head of the biflows
(i.e. the first 128 packets), showing aggregated performance
each 2 packets until the 32nd and each 8 packets for the
remaining segment.

Fig. 6 reports the results for Teams and Webex (Skype
and Zoom show similar patterns, thus, they are omitted
for brevity). For both apps, the analysis witnesses that the
packets from 2 to 32 are harder to be predicted in terms
of PL and IAT. Conversely, predicting their direction is
easier. In fact, the G-mean resulting from the prediction
of the DIR of the packets from 2 to 32 (G-mean2−32)
varies from 79% (Teams) up to 80% (Webex) and is higher
than that observed on the remaining part of the biflow (G-
mean33−END), on average: 78% (Teams) and 70% (Webex).
On the contrary, the prediction error incurred for PL and IAT
on the initial part of the biflows (RMSE2−32) is higher than
the error on the remaining part (RMSE33−END), on average:
up to +220B for Webex and +42ms for Teams on PL and
IAT, respectively.
Take-home: Consistent discrepancy is found between the
lower prediction capabilities achieved for the beginning part
and the higher capabilities attained for the rest of the
biflows, although being less evident in some cases (e.g., DIR
for Teams).

2) What kind of errors do the models make?
We aim at characterizing the errors the prediction models
make. Figs. 7 and 8 report the prediction error (x̂n+1

(·) −xn+1
(·) )

associated with PL and IAT, respectively, for all the apps
(grey curves). By construction, negative values in the dis-
tribution are related to under-estimation (i.e. the prediction
is lower than the actual value) for either PL or IAT, while
positive ones report over-estimation (i.e. the prediction is
higher than the actual value).

Overall, the errors span almost the whole theoretical
(−1470, 1470) B range for PL, while they lie in the range
(−198, 196) ms for IAT. However, errors small in mag-
nitude are extremely more frequent than errors with high
magnitude. In all the cases, the bias of the distribution is
placed around 0 (at a distance always ≤ 9 B and ≤ 2 ms for
PL and IAT, respectively). For PL prediction, the RMSE
varies between 157 B and 277 B (for Skype and Zoom,
respectively). For IAT prediction, the RMSE varies between
14 ms and 20 ms (for Skype and Zoom, respectively).

In order to analyze the relationship between the predic-
tions on DIR and the other two metrics (PL and IAT),
Figs. 7 and 8 report also the breakdown of the error distri-
bution conditioned on true and predicted DIR, i.e. (x̂n+1

(·) −
xn+1
(·) )|x̂dir, xdir. Observing the impact of correct/wrong pre-

dictions of DIR on the error incurred for the other two
metrics, it is evident that when the models make mistakes in
predicting DIR, higher errors are recorded for both PL and
IAT regardless of the specific app.

Specifically, the observed behavior also depends on the
app. Focusing on PL (Fig. 7), while for Skype wrongly
predicting DIR has no remarkable impact on PL, the same
does not apply to the other apps, where over-estimation of
PL is observed, on average. In fact, the observed bias equals
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(a) Skype.
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(b) Teams.
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(c) Webex.
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(d) Zoom.

Figure 11: Reliability diagrams related to DIR-prediction task for Skype (a), Teams (b), Webex (c), and Zoom (d) when using the ALL model. As the
DIR-prediction task represents a binary classification problem, the confidence interval varies in the range [50%, 100%]. Confidence is divided into 10

bins. The number at the bottom of each bar reports the percentage of samples within the corresponding bin.
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(a) ACall.
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(b) Chat.
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(c) VCall.

Figure 12: Reliability diagrams related to DIR-prediction task for ACall (a), Chat (b), VCall (c) when using the ALL model. As the DIR-prediction
task represents a binary classification problem, the confidence interval varies in the range [0.5, 1]. Confidence is divided into 10 bins. The number at the
bottom of each bar reports the percentage of samples within the corresponding bin.

to 119 B (resp. 114 B) for Teams (resp. Zoom) when
(x̂dir, xdir) = (↑, ↓) (resp. (x̂dir, xdir) = (↓, ↑)). For Webex
the bias is 167 B and 61 B when (x̂dir, xdir) = (↓, ↑) and
(x̂dir, xdir) = (↑, ↓), respectively.

On the other hand, concerning IAT (Fig. 8) remark-
able under-estimation of the parameter is observed when
(x̂dir, xdir) = (↓, ↑) for Skype and Teams (−3 ms and
−6 ms, respectively). Interestingly, for Teams if xdir =↓,
when x̂dir =↓ the incurred bias is larger than when x̂dir =↑.

Overall, PL under-estimation is more frequent than over-
estimation for Zoom, Webex, and Teams, while the op-
posite holds for Skype. This tendency is confirmed when
restricting the observation to cases where DIR is not mis-
taken. On the other hand, when DIR is wrongly predicted,
an inversion in this can take place. On the contrary, the

probability of over-estimating IAT is higher than under-
estimating it for all the apps.

Errors on PL (both over- and under-estimation) larger than
200 B appear in less 25% of the cases for all the apps (less
than 10% of the cases for Skype). Similarly, errors on IAT
with magnitude larger than 10 ms appear for less than 30%
of the cases.
Take-home: The occurrence of under-estimating PL is more
common than over-estimating it for Zoom, Webex, and
Teams, while the opposite trend is observed for Skype.
This pattern remains consistent when considering only cases
where DIR is correctly predicted. However, when DIR is
incorrectly predicted, there is a reversal of this tendency.
Finally, for all the apps, the probability of over-estimating
IAT is higher than under-estimating it.
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(a) Webex (↑).
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(b) Zoom (↑).
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Figure 13: Reliability diagrams related to DIR-prediction task for Webex (a, c) and Zoom (b,d) when using the ALL model and according to the correct
DIR prediction (↑=upstream, ↓=downstream). As the DIR-prediction task represents a binary classification problem, the confidence interval varies in the
range [50%, 100%]. Confidence is divided into 10 bins. The number under each bar reports the percentage of samples within the corresponding bin.

C. Interpreting DIR prediction via DEEP SHAP: how do
inputs affect DIR prediction?
Herein, relying on DEEP SHAP, we examine the relative
influence of the three traffic parameters—i.e., DIR, PL, and
IAT—extracted from the last W observed packets of each
biflow on the prediction of DIR.

As a result, for each traffic parameter, Fig. 9 depicts the
median importance values across the last 10 packets (since
W = 10) of each biflow that are used to feed the model
to obtain the prediction of the next packet. More in detail,
the figure provides a detailed breakdown of Skype, Teams,
Zoom, and Webex for each packet direction (i.e. upstream
↑ and downstream ↓). As can be seen, for a given traffic
parameter, the importance associated with packets in the
sequence varies according to the predicted direction.

In particular, for almost all apps, all observed input
sequences positively contribute to the prediction when the
model correctly predicts the upstream direction (↑, see
Figs. 9a–9d), with the most recent packets usually having
greater importance. Interestingly, for Teams and Webex,
unlike PL and IAT, the DIR of the last 10 observed packets
always has a negative effect on the prediction of the upstream
direction. At the same time, when we examine DIR and
PL of the last observed packet, we find that it has no
effect or even works against a proper direction prediction
(negative score). This holds especially for Zoom and Teams,
where the last observed packet has a non-negligible negative
importance—which also corresponds to the highest values in

magnitude—suggesting that this generally leads the model
to predict the downstream direction instead of the correct
upstream one.

Conversely, moving to the prediction of downstream direc-
tion (↓, see Figs. 9h–9g), we notice an opposite trend, where
the DIR and PL of the last packet have a positive impact
on the prediction. Furthermore, their importance (in terms
of magnitude) is significantly greater than that of the other
packets. Based on this observation, we can infer that the
DIR and PL of the last packet lead the model to accurately
predict the downstream direction. Lastly, it is worth noting
that, unlike all other apps, in the case of Teams, the DIR of
all observed packets has a positive impact on the prediction
of the downstream direction of the next packet.

We conducted an occlusion analysis to quantitatively as-
sess the above findings. Occlusion analysis is a perturbation
technique that examines the effect of occluding certain inputs
on the output of DNNs [44]. Accordingly, we evaluated how
the performance of CNN (variant ALL) varies by occluding
different traffic parameters used as model inputs on samples
whose direction is correctly predicted. To this end Fig. 10
depicts the performance obtained by occluding: (i) the Least
Recent Packet (viz. LRP), (ii) the Most Recent IAT (viz.
MRI), (iii) the Most Recent DIR and PL (viz. MRDP), and
(iv) the Most Recent Packet (viz. MRP).11 These occlusion

11The occluded traffic parameter has been replaced with the correspond-
ing padding value, i.e. 0 for PL and IAT and 0.5 for DIR.
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Figure 14: Prediction performance of CNN and RLP on DIR, PL, and IAT
w.r.t. UDP and TCP protocols. For CNN, the results obtained by utilizing
the ALL training strategy are compared with those achieved by using the
PROTO strategy. Results refer to the prediction of traffic generated by all
apps with a memory W = 10. Results are in the form avg.±std. obtained
over 5-folds.

choices reflect the importance of the input parameters shown
in Fig. 9.

We note that occluding the parameters of the least recent
packet results in a slight worsening of performance (i.e.,
≤ 5.4% of G-mean). In contrast, partially or completely
occluding the parameters of the most recent packet results
in a significant worsening (i.e. ≤ 44% of G-mean). Further
focusing on the traffic parameters of the most recent packet,
we note that simultaneously occluding DIR and PL results
in a greater performance loss (i.e. ≤ 43% of G-mean for
Skype) than occluding the sole IAT (i.e. ≤ 12% of G-mean
for Zoom). The aforementioned findings are consistent with
that shown in Fig. 9, where it can be seen that DIR and PL of
the most recent packet have a similar impact on the predicted
DIR, and their importance, in magnitude, is considerably
greater than that of IAT. Conversely, the features of the least
recent packet have a minor impact on the model outcome.
Take-home: The prediction of the direction of the next
packet, based on the observation of the last 10 most recent
packets, is mostly influenced by the 3 ∼ 4 more recent

packets observed. Moreover, the direction and transport-
layer payload length of the last observed packet can be
either highly beneficial (downstream case) or detrimental
(upstream case) to properly predict the direction of the next
packet.

D. Calibration analysis: how reliable is the prediction of
DIR?
We now focus on assessing the reliability of the model on
the prediction of DIR in terms of the calibration metrics
defined in Sec. III.D, namely the (i) ECE, (ii) MCE and (iii)
CW − ECE. To this end, in Tabs. 3 and 4, we report the
above values (in percentage form) obtained by considering
the app and the activity performed by the user, respectively.

Focusing on the app, we note that in the case of Webex,
the model has the best calibration when used to predict the
direction of the next packet with respect to all the metrics.
This result is in agreement with Fig. 5a in which it is
shown that the model achieves the best performance in the
case of Webex (i.e. ≈ 80% of G-mean). Conversely, the
model is less calibrated, particularly in the case of Teams
for which the MCE is significantly higher (up to 6×).
Also, it is interesting to note that although the prediction
performance associated with Teams is significantly better
than that obtained for Zoom (see Fig. 5), in the former case,
the model is less calibrated, especially in terms of MCE.

Finally, moving to the activity, we note that while for
ACall and Chat the model has a good calibration (except
for Chat in terms of MCE), this does not hold for VCall to
which corresponds an ECE/CW − ECE and an MCE that
are 2× and 7× higher, respectively.

Then, to visualize in detail how Pr
{
x̂n+1
dir = xn+1

dir | p̂
}

varies with p̂, in Figs. 11–12, we show the accuracy as
a function of the confidence by means of a variant of
the reliability diagrams described in Sec. III. Therein, the
difference p̂ − Pr

{
x̂n+1
dir = xn+1

dir | p̂
}

is reported on the y-
axis: a perfectly-calibrated classifier implies a null difference
on all the bins, whereas an over-confident (resp. under-
confident) model is associated to a positive (resp. negative)
difference.

Looking at the results obtained per app, we note that the
samples are uniformly distributed across the bins. Moreover,
as highlighted in Figs. 11a and 11c, for Skype and Webex
we observe a slight overall over-confidence and a near-ideal
behavior, respectively. In contrast, referring to Figs. 11b
and 11d, in the case of Teams and Zoom we observe
a more pronounced over- and under-confidence that varies
with confidence. Specifically, for Teams, we observe under-
confident (resp. over-confident) behavior, especially when
the confidence ranges in 60 − 75% (90 − 100%). On the
other hand, for Zoom, we observe a trend that indicates
that the model is more over-confident the more confidence
with which it makes predictions. This means that increased
confidence does not correspond to increased accuracy. To

20 VOLUME ,



Skype Teams Webex Zoom0

1

2
 R

M
SE

 [K
B]

5 10 20 30 40 50 PROTOTCP RLA

(a) TCP- VOLup.

Skype Teams Webex Zoom0

2

4

6

 R
M

SE
 [K

B]

5 10 20 30 40 50 PROTOUDP RLA

(b) UDP- VOLup.

Skype Teams Webex Zoom0

2

4

6

 R
M

SE
 [K

B]

5 10 20 30 40 50 PROTOTCP RLA

(c) TCP- VOLdw.

Skype Teams Webex Zoom0

2

4

6

 R
M

SE
 [K

B]

5 10 20 30 40 50 PROTOUDP RLA

(d) UDP- VOLdw.

Skype Teams Webex Zoom0

1

2

 R
M

SE
 [P

kt
s]

5 10 20 30 40 50 PROTOTCP RLA

(e) TCP- PKTsup.

Skype Teams Webex Zoom0

2

4

6

8

10
 R

M
SE

 [P
kt

s]
5 10 20 30 40 50 PROTOUDP RLA

(f) UDP- PKTsup.

Skype Teams Webex Zoom0

2

4

6

 R
M

SE
 [P

kt
s]

5 10 20 30 40 50 PROTOTCP RLA

(g) TCP- PKTsdw.

Skype Teams Webex Zoom0

2

4

6

8

10

 R
M

SE
 [P

kt
s]

5 10 20 30 40 50 PROTOUDP RLA

(h) UDP- PKTsdw.

Figure 15: Prediction performance (RMSE) of CNN trained on TCP (left column) and UDP (right column) traffic for VOLup (a, b), VOLdw (c, d), PKTsup
(e, f), and PKTsdw (g, h) as ∆ ∈ {5, 10, 20, 30, 40, 50} ms. CNN performance is compared against RLA predictor. Results refer to the prediction of
traffic generated by all apps with a memory W = 10.

deepen this finding, in Figs. 13, we present a similar analysis
for Webex and Zoom, distinguishing based on the true DIR.

As shown, the calibration of the analyzed apps varies by
direction. Specifically, we observe a slight over-confidence
for the downstream direction (i.e., ↓) for Webex and a
slight under-confidence for Zoom. This especially holds for
samples whose confidence levels are in the range 80− 85%
range for Webex and in the range 60 − 80% for Zoom.
This corresponds to a gap of up to 7% between the expected
confidence and the corresponding accuracy. Conversely, in
the upstream direction (i.e., ↑), both Webex and Zoom show

a trend where the predictor becomes more over-confident
as its confidence level increases. This trend is particularly
noticeable when the confidence level is ≥ 90% for Webex,
and ≥ 5% for Zoom. In such cases, the gap between the
expected confidence level and the accuracy is ≥ 10%. It is
worth noting that while this behavior affects only 15% of
Webex samples, it affects 66% of Zoom samples. Based
on these findings, we deduce that the poor performance
in predicting DIR for Zoom (cf. Fig. 5a) is mainly due
to inaccurate prediction of the upstream direction. This is
further supported by the fact that the recall rate, not shown
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for brevity, is only about ≈55% for the upstream direction,
while it is ≈80% for the downstream direction.

Moving to the calibration results related to the specific
activity, for ACall and VCall (see Figs. 12a and 12c),
the related prediction tasks present the best and worst
calibration, respectively. We note that while for ACall the
confidence of each bin is very close to the corresponding
accuracy (close-to-zero difference), for VCall the model is
particularly under-confident and over-confident with respect
to the samples falling in bins 2− 6 and 8− 10, respectively.
Finally, for Chat (see Fig. 12b), we note that most of
the samples (53%) fall in the last bin. This indicates an
optimistic behavior of the model in the presence of Chat
traffic that does not affect its calibration.
Take-home: Generally, the predictor exhibits good calibra-
tion, i.e., the confidence level associated with the predictions
reflects its reliability. The level of miscalibration is typically
< 2%, with the highest level of over-confidence observed
in the case of Zoom, where it still remains below 10%. In
addition, for Zoom, when analyzing the calibration w.r.t. the
upstream direction we notice that as the confidence level
increases, the predictor becomes more over-confident. This
results in a gap ≥ 10% between the expected confidence
level and the actual accuracy, which affects ≈ 66% of its
samples. This is related to the poor performance achieved
for DIR prediction shown in Sec. V.A.

E. Do we need a dedicated model for TCP and UDP
protocols?
We have previously shown in Sec. V.A that the CNN
architecture achieves the best trade-off between performance
and computational complexity when trained on all apps (ALL
strategy). Additionally, Sec. IV revealed that CC apps utilize
both TCP and UDP protocols in their operations. Indeed,
while they tend to establish numerous TCP connections (viz.
biflows), the majority of data (in terms of both packets and
volume) are transmitted through UDP biflows. This is gen-
erally because TCP is mainly used for various control and
data management purposes, while UDP handles real-time
communications related to audio or video traffic in the case
of CC apps, which require low latency and fast transmission
(cf. Fig. 3). Accordingly, here we investigate the benefits
of having a separate model for each transport protocol (ref.
PROTO strategy) against employing a single model to handle
both TCP and UDP traffic (ref. ALL strategy). In Fig. 14,
we present the performance results obtained by these models
for each app, distinguishing between specific protocols and
training strategies. For the sake of completeness, we also
include the breakdown of performance achieved by the RLP
predictor. Overall, our results show that the effectiveness of
the two strategies depends on the app and the protocol: while
for UDP traffic, the performance is unaffected by the training
strategy, for TCP traffic training a specific model for the
protocol results in a considerable performance improvement
for all prediction tasks. In particular, the improvement on

DIR prediction is up to +5% of G-mean, and up to ≈−70 B
and ≈−11 ms of RMSE for PL and IAT, respectively.

By breaking results down on specific apps and protocols,
we observe that prediction of DIR performs better on TCP
traffic for nearly all apps except Webex. However, this trend
reverses when predicting PL and IAT, where models for
TCP traffic exhibit poorer performance. Furthermore, our
results reveal that CNNs consistently outperform the RLP
predictor for all predicted parameters, irrespective of the
protocol and training strategy. The difference is particu-
larly pronounced for TCP traffic generated by Skype and
Teams, with CNNs outperforming the RLP predictor by
approximately ≈+40% of G-mean for DIR and ≈−240 B
and ≈ −60 ms of RMSE for PL and IAT, respectively.
Similar trends are also observed for Webex and Zoom,
where the difference between CNNs and the RLP predictor
is up to +27% for DIR and up to −120 B and −40 ms on
PL and IAT, respectively. When analyzing UDP traffic, the
performance gap between CNNs and the RLP predictor is
still evident but less prominent. For Skype, CNN models
outperform the RLP predictor by ≈+40% for DIR, ≈−50 B
for PL, and ≈−20 ms for IAT.
Take-home: The effectiveness of a specific training strategy
(i.e., ALL and PROTO) varies depending on the transport-
level protocol: for all apps, training a dedicated model for
TCP traffic (i.e., the PROTO strategy) generally leads to
notable improvements in performance across all prediction
tasks. However, the same approach does not show similar
benefits for UDP traffic, as the training strategy does not
have a noticeable impact. Additionally, the prediction ac-
curacy for DIR is generally higher for TCP compared to
UDP traffic, while the reverse trend is noticed for PL and
IAT predictions.

F. Is Packet-Level Prediction suitable to Predict Traffic
Aggregates?
Herein, we analyze the suitability of packet-level predictors
to forecast aggregate traffic (i.e., the number of packets and
the traffic volume) in a given time interval ∆. Therefore,
applying the methodology outlined in Sec. III.F, we compare
the performance of a CNN trained leveraging the PROTO
strategy (i.e., two dedicated models designed for TCP and
UDP traffic) against a simple RLA predictor.

Fig. 15 illustrates the performance—in terms of RMSE—
for each protocol when predicting the number of pack-
ets (viz. PKTs∗) and the traffic volume (viz. VOL∗), for
both upstream and downstream directions. The performance
is reported for different time horizons, namely ∆ ∈
{5, 10, 20, 30, 40, 50} ms.

At a high level, we observe that the error increases with
∆. The greater unpredictability of traffic over extended time
intervals could be attributed to its greater variance and
uncertainty [45] and also to the growth of prediction errors
accumulated through the recursive procedure adopted. This
variability is particularly evident in VoIP traffic, encompass-
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ing both audio and video, as it tends to produce micro-bursts
that are difficult to predict–—i.e., a notable surge in data
transmission within a brief duration, followed by relatively
quieter periods.

We also note that this error varies depending on three
factors: (i) traffic direction, (ii) protocol, and (iii) app con-
sidered.

Taking a closer look, we observe that the errors in the
upstream direction increase gradually and tend to stay within
a relatively narrow range (averaging around ≈ 1.3 KB and
≈ 1 packet) for most applications and protocols, except for
Webex on UDP traffic. In contrast, the downstream direction
shows a more abrupt and highly-variable change, with errors
reaching higher average levels (up to ≈ 3 KB and ≈ 4
packets).

When analyzing the performance on TCP traffic (see left
column of Fig. 15), CNN proves to be a superior choice for
predicting all features compared to RLA, regardless of the
prediction interval ∆. This advantage is particularly evident
when considering the traffic direction for Skype, Zoom,
and Teams. Specifically, for Skype (resp. Zoom), the mean
RMSE of CNN is at least ≈ 23% (resp. ≈ 24%) and ≈
23% (resp. ≈27%) lower for VOLup and PKTsup, respectively.
Similarly, for Teams, the difference is at least 8% and 27%
lower for VOLdw and PKTsdw, respectively.

Interestingly, the only scenario where this trend is reversed
is observed on Skype in the downstream direction when
∆ ≥ 30 ms (see Figs. 15c and 15g). In such cases, the
RMSE of the CNN on VOLdw and PKTsdw is up to +45%
and +32% higher than that of RLA.

However, when moving on UDP traffic (see right column
of Fig. 15), no consistently predominant approach can be
identified. Nonetheless, the results obtained indicate that
CNN is the most favorable option for the majority of sce-
narios, particularly when it comes to predicting the number
of packets.

Specifically, compared to RLA, we find that CNN provides
a more accurate packet number estimation for applications
such as Skype, Teams, and Webex in the upstream di-
rection (Fig. 15f), as well as for Skype and Zoom in the
opposite direction (Fig. 15h). However, it is important to
note that for certain applications (e.g., Teams and Zoom in
the downstream and upstream directions, respectively), while
CNN outperforms the RLA predictor on short prediction
intervals (i.e., ∆ ≤ 20 ms), the trend reverses on longer
ones.

Lastly, when examining the results on traffic volumes (see
Figs. 15b and 15d), we notice a more diverse pattern between
CNN and RLA methods. In the case of Teams (Skype), the
CNN consistently surpasses the RLA approach exhibiting a
reduced error ranging from −4% (−10%) to −18% (−24%)
on the upstream (downstream) direction.

In the other scenarios, the CNN remains the superior
option for predicting aggregate traffic within relatively short
time intervals (i.e., ∆ ≤ 30ms). However, CNN is less

effective over longer time horizons. Nonetheless, it is worth
noting that having a more accurate predictor over short
time intervals facilitates constant monitoring of network
performance and real-time optimization. These aspects are
essential when dealing with CC apps, especially when these
are used by the user to perform VoIP calls (i.e., audio and
video), which require a good level of QoS and at the same
time tend to cause intense activity on the network.
Take-home: The proposed approach outperforms RLA in
most scenarios, especially when used to predict aggregate
traffic over relatively short time intervals (e.g., ∆ ≤ 30 ms).
Within this range, the proposed approach yields an average
error of up to ≈1.3 KB (≈1.6 KB) and 1 (2) packet(s) on
TCP (UDP) traffic protocol. Overall, the error is limited
to ≈ 3 KB (≈ 3.5 KB) and 2 (4) packets on TCP
(UDP). These findings are significant as they indicate that
the proposed approach represents a first step towards the
development of more responsive networks. Indeed, accurate
short-term predictions facilitate real-time optimization of
network capacity, enabling effective bandwidth adaptation
and resource allocation as needed. This has the potential to
enhance the network’s performance and responsiveness in
dynamic and ever-changing traffic conditions.

In particular, we analyzed the calibration breaking down
in the correctly predicted direction.

VI. Discussion
The experimental analysis highlights some interesting take-
aways, summarized and discussed in the broader spectrum of
existing literature. First, our results have shown that a CNN
trained on the whole traffic of all apps represents a better
trade-off between prediction performance and complexity
compared to per-app models. Architecture-wise, the CNN
results align with those reported in [9], which however refer
to a larger and different set of mobile apps. Conversely,
regarding the training strategy, negligible performance gains
originating from the design of per-app predictors have been
already found in the context of model-based predictors
(i.e. multimodal Markov-chains [46]) and confirmed herein.
Then, focusing on the different transport-layer protocols
used by the apps under analysis, we found that training a
dedicated model for TCP traffic generally leads to notable
improvements in traffic-prediction performance across all the
tasks considered.

Going deeper, the results show a variety of behaviors
for the different apps, with Zoom being the hardest to
predict, especially regarding the direction (65% G-mean)
and the payload length (260 B RMSE) of the next packet.
Such behavior was preliminarily observed also in [9], where
the predictability of apps including video streaming (i.e.
belonging to the Mirage-VIDEO dataset [9]) was shown
to be lower with respect to non-video apps (i.e. belonging
to the Mirage-19 dataset [43]). Within the former set, the
performance of Zoom was worse also in comparison to
other apps accounting for video dissemination (e.g., Netflix
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and PrimeVideo achieving ≥ 90% G-mean on prediction
of direction). Conversely, regarding the activities that can
be performed by these apps, video-call is the hardest one
for what concerns the prediction of the direction and the
payload length, and the easiest concerning timing prediction.
Interestingly, video-call is the most identifiable activity when
performing traffic classification, see e.g. [42].

Overall, the predictor results very well-calibrated when
predicting DIR. Therefore the confidence reported with
the prediction is actually representative of its reliability
(generally < 2% miscalibration, with the worst-case of
< 10% overconfidence for Zoom only). The fine-grained
interpretation of the DL models highlights that using a
limited memory of previously observed packets, the pre-
dictions are mainly influenced by the most recent packets.
A dominating short-term evolution behavior of biflows was
also preliminarily observed thanks to the proficient use of
higher-order Markov Chains with a very limited memory
as predictors [22]. Furthermore, in most cases, the last
observed packet can be either very informative (for Skype
and Zoom downstream) or confounding for the model (for
Zoom upstream). These results point to possible applications
and direction-specific improvements, following a per-sample
inspection of misleading inputs.

Finally, taking advantage of the benefits offered by the
fine granularity prediction approach (i.e. at packet level), we
made a first attempt to solve coarser granularity prediction
problems (e.g., to predict traffic volume and number of pack-
ets in a given time interval). While different sophisticated
design solutions for coarser-granularity prediction exist—
e.g. [21]—the flexible-granularity property of our approach
represents a novel aspect of this work. Our results show
that performance varies depending on several factors such
as the transport-layer protocol, traffic direction, and the app
considered. The best results are obtained for Webex on
TCP—with an average error of up to 0.5 KB (1.8 KB) and
≈1 (≈2) packets in the upstream (downstream) direction—
and for Skype on UDP—with an average error of up to
0.5 KB (1 KB) and ≈ 1 (≈ 2) packets in the upstream
(downstream) direction.

VII. Conclusions and Future Directions
We tackled packet-level traffic prediction via Deep Learning
architectures (a CNN, a GRU, an LSTM, and a SeriesNet)
using the publicly released MIRAGE-COVID-CCMA-
2022 dataset as a valuable test bench. We employed XAI
approaches (i.e. DEEP SHAP) to contrast the black-box
nature of these models and obtain actionable insights on the
importance of specific subsets of input data and evaluated
the reliability of predicting DIR (via a calibration analysis).
Third, we have identified the impact of employing different
training strategies on the design of predictors to assess the
actual need for multiple model training, deployment, and
management.

Finally, taking advantage of the benefits offered by the
fine granularity prediction approach (i.e., at packet-level), we
made a first attempt to solve coarser granularity prediction
problems (e.g., to predict traffic volume and number of
packets in a given time interval). Our results showed that
performance varies depending on several factors such as
the transport layer protocol, traffic direction, and the app
considered.

Future directions will include: (i) interpretability analysis
for payload length and inter-arrival and general use of XAI
toward improvement of multitask predictors, (ii) design of
a more advanced approach to predict traffic aggregates from
packet-level predictions, (iii) lifelong learning to cope with
concept drift due to app aging, and (iv) federated-learning
exploiting multiple vantage points (also including different
stakeholders and institutions).
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