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Abstract—Network Intrusion Detection Systems are essential
tools for protecting networks against attacks. Deep Learning
approaches are increasingly employed in developing these sys-
tems due to their versatility and effectiveness. However, the
common procedure for training and testing Deep Learning
models typically leverages traffic data entirely collected from the
operational network managed by a single organization, posing
privacy and security concerns in sharing these data. As a result,
the assessment of the performance of these models in real-world
scenarios is significantly hindered. On the other hand, given
the wide variety of existing attacks and the emergence of new
attack types, it is crucial to evaluate the robustness of Intrusion
Detection Systems when the network context varies. Indeed, it is
highly desirable that the effectiveness of trained Deep Learning
models is not severely impacted when ported into other networks.

To this aim, in this work, we exploit various single-modal
and multimodal Deep Learning approaches and leverage a cross-
evaluation procedure to assess their capability to distinguish
malicious from benign traffic in different network contexts.
Furthermore, we investigate the impact of various informative
fields extracted from traffic on the generalization capability
of models. Our cross-evaluation leverages three recent public-
available network attack datasets related to diverse scenarios.
The results obtained suggest that the availability at training
time of traffic generated by attacks conducted in the operational
network is crucial for designing a robust Intrusion Detection
System that keeps working with minimal F1-score degradation,
when the network context changes.

Index Terms—Anomaly Detection, Network Intrusion Detec-
tion Systems, Network Security, Cross-Evaluation, Deep Learn-
ing.

I. INTRODUCTION

The dramatic growth of cyberattacks and their ever-evolving
nature require the enforcement of timely and effective network
security policies. Indeed, in the last years, severe cyberattacks
are globally increased, also fueled by the Russo-Ukrainian
(cyber-)war. Detailing, an increment of 53% in global attacks
from the 1H 2018 to the 1H 2022 has been observed, with
the malware category accounting for 38% of the share.1 As a
result, the impact of the cost of cybercrime for businesses is
estimated that will amount to $10.5 trillion by 2025.2

Therefore, monitoring the heterogeneous and highly-
dynamic traffic flowing across networks and understanding
its nature are paramount to guarantee network security (e.g.,
detection and classification of anomalies, attacks, or mal-
ware). Notably, Network Intrusion Detection Systems (NIDSs)

1https://bit.ly/clusit-report-2022
2https://bit.ly/cybersecurity-ventures-cybercrime-cost-by-2025

are increasingly used to perform Anomaly Detection (AD),
aiming to distinguish between benign traffic generated by
common/normal activities, and malicious traffic related to
illegal/fraudulent ones. In particular, Machine Learning (ML),
and especially Deep Learning (DL) approaches, have proven
their effectiveness in addressing AD [1] being able to cope
with modern traffic characteristics. Indeed, such peculiarities
severely challenge more traditional methods based on port
numbers and deep packet inspection due to the broad usage of
non-standard ports and the wide adoption of traffic-encryption
schemes, respectively. Moreover, while the successful use of
ML approaches is constrained by the design and extraction
of handcrafted domain-expert-driven features, DL ones benefit
from end-to-end learning capabilities to directly extract highly-
structured features from raw traffic data.

Nevertheless, DL approaches require a large amount of
labeled data to train supervised models, whose collection is
commonly burdensome and time-consuming. This process has
to deal with the dynamic nature of network traffic, being a
constantly moving target, and it is even harder when collecting
malicious traffic, especially for rarely observed attacks with
(partially) unknown dynamics. Also, user privacy and business
sensitivity concerns limit the sharing of these data. In fact,
despite the extensive exploration of DL-based NIDSs in the
literature, their evaluation is usually conducted by selecting
a single public-available dataset or through private (i.e. self-
collected and unshared) datasets [2]. Unfortunately, these
procedures raise some questions about the applicability of such
proposals in real-world settings.

On the other hand, taking advantage of more than one
dataset (possibly collected by different organizations and in
different scenarios) allows testing NIDSs with several types of
attacks (also unknown ones) and under various network con-
figurations. In other words, such a cross-evaluation procedure
enables the assessment of the model’s ability to generalize
on other datasets, thus obtaining more reliable insights for
the deployment of DL-based NIDSs in the real world. With
this aim in mind, in the present work, we employ different
state-of-art DL models to perform supervised AD and adopt a
cross-evaluation procedure to reliably assess the performance
and robustness of such designed NIDSs.

To summarize, the key contributions of this work are as
follows:

• we leverage and experimentally evaluate the perfor-
mance of advanced DL architectures when performing

https://bit.ly/clusit-report-2022
https://bit.ly/cybersecurity-ventures-cybercrime-cost-by-2025


supervised AD: a single-modal 1D Convolutional Neural
Network (1D-CNN), a single-modal Recurrent Neural
Network (RNN), and the multimodal MIMETIC architec-
ture [3] which capitalizes on multiple views of a given
traffic object;

• we employ two types of input data extracted from network
traffic and suitable for “early” (viz. timely) traffic clas-
sification and assess their effectiveness in distinguishing
malicious from benign traffic;

• we assess the detection capability of DL-based NIDSs via
a cross-evaluation procedure that aims to evaluate their
robustness when tested in network contexts different than
those in which they were originally designed and trained
(i.e. different network configurations and attack types);

• we deepen the effect of informative traffic fields through
an obfuscation study to quantify the impact of each
field on AD performance when generalizing on malicious
traffic collected in different networks;

• we exploit three real, recent, and public-available net-
work attack datasets covering different applications,
attack types, and network configurations for cross-
evaluation purposes: IoT-23 [4], IDS2018 [5], and
KITSUNE [6].

The rest of the manuscript is organized as follows. Section II
discusses the related work and positions our contribution
accordingly. Section III details the methodology defined to
perform the cross-evaluation. Section IV presents the exper-
imental setup. Section V shows the experimental results ob-
tained. Finally, Section VI concludes the paper and discusses
future avenues.

II. RELATED WORK

In the present section, we discuss the most relevant works
tackling AD through ML and DL approaches. Indeed, AD
has found much interest due to the growing need for protect-
ing networking systems from possible and ongoing attacks.
Some proposals leverage supervised ML approaches to detect
anomalies generated by Android malware in mobile network
traffic [7, 8] or attacks against Internet of Things (IoT)
devices [9]. Differently, other works [10, 11] employ unsu-
pervised ML techniques (i.e. trained only on benign traffic)
for addressing AD in different scenarios (e.g., detection of
distributed denial of service attacks).

Recently, a surging number of papers are exploiting DL
approaches to deal with AD. Proposals such as [12, 13, 14]
feed complex deep neural networks with raw traffic data of
new public datasets (e.g., IoT-23 [4], Kitsune [6], or Bot-
IoT [15]) fostering the automatic extraction of knowledge via
DL. On the contrary, works like [16, 17] train DL models in
a counter-productive manner by utilizing manually-extracted
features (e.g., “post-mortem” statistics extracted from the
full sets of packet/payload lengths, inter-arrival times, etc.).
Unfortunately, using handcrafted features hinders the “early”
detection of anomalies and undermines the advantage of DL
approaches in limiting domain-expert involvement. Further-
more, less recent works [18, 19] exploit datasets collected

decades ago (e.g., KDD-Cup-99, NSL-KDD, or Kyoto2006+)
which are scarcely representative of current traffic profiles.

Additionally, a corpus of works focuses on the slightly
different attack-traffic classification task [19, 20, 21, 22], per-
forming (supervised) multi-class traffic classification to infer
specific attacks and distinguish them from benign traffic. Sim-
ilarly, in [23, 24], the security-related problem of classifying
the traffic generated by anonymity tools at different granularity
(e.g., anonymous network, traffic type, and application) is
taken into account.

Nevertheless, previous studies discussed above only investi-
gate the effectiveness of their proposals by training and testing
them on traffic data collected in the same network context,
completely leaving out aspects regarding the model robustness,
namely without analyzing if their proposals will keep working
when the network context changes.

The generalization capability of ML-based attack-traffic
classifiers is investigated in [25]. The authors release the
ToN IoT traffic dataset and use it to train a set of classi-
fiers which is then tested on the IoT-23 dataset. The results
show large performance discrepancies w.r.t. the good results
attained on the sole ToN IoT dataset, highlighting the need
for standardization of feature descriptions and attack classes.
Likewise, in [26], the authors benefit from a SHAP values-
based explainability analysis [27] to highlight what features
contribute the most for distinguishing between benign and
malicious traffic flows when testing data are collected in net-
work contexts different than the training one. Finally, in [28],
the robustness of ML models is addressed by proposing
XeNIDS, a framework based on Random Forests allowing dif-
ferent network contexts to be simultaneously considered. More
specifically, XeNIDS is leveraged to support the deployment
of NIDSs in an actual-network environment which possibly
includes also unknown attacks.
Positioning of Our Contribution. Herein, we perform AD via
supervised DL approaches assessed through a cross-evaluation
procedure. This enables us to design NIDSs that are well-
suited for real-world network environments. Differently than
previous works [25, 26, 28] exploiting traditional ML ap-
proaches, we leverage both single-modal and multimodal DL
architectures and feed them with different types of unbiased
raw input data suitable for “early” AD (see Sec. III-A).
Moreover, unlike [28], we quantitatively evaluate the impact
of different traffic fields on AD performance and detect which
fields negatively affect the generalization capability of con-
sidered models. Finally, we underline that we conduct our
investigations by leveraging recent public-available network-
security datasets [4, 5, 6] to make the obtained outcomes
easier to reproduce, comparable against other studies, and
generalizable to other datasets/approaches not studied yet.

III. METHODOLOGY

In this section, we detail the methodology defined to detect
anomalous traffic via DL. Section III-A provides the problem
definition, introduces the traffic object and related input data



that are fed to the DL models, and finally describes their archi-
tectures and the associated training procedure. Section III-B
illustrates the key concepts of the cross-evaluation procedure
adopted to assess the DL-based NIDSs.

A. Deep Learning-based Anomaly Detection

Herein, we carry out AD using supervised DL approaches:
given a traffic object (i.e. an aggregation of traffic packets
sharing common properties), we tackle a binary classification
task that assigns a label between {benign,malicious}.
Traffic Object and Input Data. We segment network traffic
into bidirectional flows (biflows), defined as a stream of
packets sharing the same 5-tuple (i.e. transport-level protocol,
source and destination IP addresses and ports) regardless of the
direction of communication. For each biflow, we extract two
sets of unbiased input data, namely we remove the bytes/fields
(e.g., PCAP metadata, absolute timestamps, local IP addresses,
or source/destination ports) that could inflate AD performance
and thus lead to misleading results. More in detail, (i) NET
input consists of the first Nb bytes of the network-layer packet
(i.e. header and payload) arranged in a byte-wise format after
the obfuscation of biased fields (i.e. IP addresses, ports, and
checksums) [21]; (ii) PSQ input includes a set of unbiased
informative fields of the first Np packets: (a) the number
of bytes in the network-layer packet (PL), (b) the direction
∈ {−1, 1} (DIR), (c) the TCP window size (WIN) equal to
zero for UDP biflows, and (d) the inter-arrival time w.r.t. the
previous packet (IAT). We emphasize that both inputs are
naturally suited for “early” AD.
DL Architectures and Training Procedure. We employ
state-of-art DL approaches well-suited for AD and attack-
traffic classification [21]. Specifically, we consider two single-
modal architectures (1D-CNN and RNN) and a multimodal
one (MIMETIC [3]). The 1D-CNN is fed with the NET input
and is made up of two 1D convolutional layers (with 16 and
32 filters, respectively) each followed by a max-pooling layer
(with unit stride and spatial extent equal to 3), a flatten layer, a
fully-connected layer (with 256 neurons), and the final softmax
that fulfills AD. The RNN is fed with the PSQ input and
consists of a bidirectional Gated Recurrent Unit (with 64 units)
followed by a flatten and a fully-connected layer (with 256
neurons) before the final softmax.

The multimodal MIMETIC combines the two single-modal
networks described above, each fed with the relevant input,
to capitalize on multiple views of the same traffic object.
In more detail, the outputs of the last fully-connected lay-
ers of the two single-modal branches (i.e. before the final
softmax) are concatenated via a merge layer and fed to a
fully-connected (shared-representation) layer. The MIMETIC
architecture is completed with a final softmax layer performing
AD. MIMETIC is trained via a two-phase procedure encom-
passing: (i) pre-training, where each single-modal branch is
independently trained and (ii) fine-tuning, which involves the
fully-connected layers of both single-modal branches and the
shared-representation layers.

Both the single-modal architectures are trained for a max-
imum of 25 epochs. The whole training phase of MIMETIC
encompasses 90 epochs at most: the pre-training of single-
modal branches is performed for 25 epochs in line with the
training of single-modal architectures, the fine-tuning for 40
epochs. For all DL architectures, we minimize a binary cross-
entropy via the Adam optimizer set with a batch size of
256 and take advantage of the early stopping technique (with
patience of 15 epochs and minimum delta of 0.01) to prevent
overfitting. To further promote regularization, we apply a 20%
dropout after (a) each fully-connected layer (including the
merge layer) and (b) after flattening the 2D representation of
both the stack of convolutional/pooling layers and the Gated
Recurrent Unit.

B. Cross-evaluation of DL-based NIDSs

The cross-evaluation of DL-based NIDSs allows us to assess
these systems in network operational scenarios different from
the training one. This evaluation can be performed according
to different contexts. More formally, with the term context
we refer to the composition of the data used for training and
testing DL models leveraged to realize the NIDSs in terms of
benign or malicious samples (in the case of binary AD). In
particular, depending on the context, models are trained and/or
tested in the same network scenario (i.e. same network con-
figuration and attack types) or in different scenarios (realized
by combining different datasets).

In the present work, we consider 3 contexts where AD can
be performed, reflecting real-world use cases [28].
Baseline. This context is the most investigated in the state-of-
the-art literature. In this case, both the training and test sets
include benign and malicious biflows belonging to the same
dataset. The Baseline context refers to a use case in which
an organization trains and evaluates its NIDS with benign and
malicious traffic collected into its network infrastructure.
Generalization. This context aims to assess if the NIDS can
detect attacks not included in the training set. In more detail,
considering two datasets DA and DB , the training set contains
benign and malicious biflows belonging to DA, while the test
set is composed of benign biflows of DA and malicious biflows
of DB . The Generalization context represents the use case in
which an organization trains its NIDS with traffic collected
into its network infrastructure but wants to assess the NIDS’
ability to detect attack traffic originating from a different
network. Given the diverse and increasing number of threats
in today’s networks, the cross-evaluation performed according
to the Generalization context is crucial for organizations to
assess NIDSs’ robustness in different network conditions and
evaluate their ability to handle different or unseen attacks.
Extension. This context comes into play when there is a
need to balance low detection performance against unknown
attacks (i.e. the NIDS shows low generalizability). To this
aim, attack traffic originating from a different network is
included in the training set to potentially extend the detection
capabilities of the NIDS. Precisely, taking two datasets DA

and DB , the training set contains benign biflows of DA and
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Fig. 1: Number (in log scale) of benign and malicious biflows
for each considered dataset.

malicious biflows of both the datasets DA and DB ; the test
set encompasses benign biflows of DA and malicious biflows
of DB . The difference with the Generalization context is that
the malicious biflows of DB are added to the training set to
help the detection process. The Extension context represents
the use case where an organization—having noticed poor
generalization performance—adds malicious traffic collected
into a different network to the malicious traffic of its network
infrastructure. The goal is to understand whether by exploiting
such augmented knowledge during training, its NIDS becomes
able to improve AD performance w.r.t. the Generalization
context.

IV. EXPERIMENTAL SETUP

This section outlines our experimental setup. Section IV-A
describes the datasets employed for cross-evaluation. Sec-
tion IV-B summarizes the metrics considered to evaluate per-
formance. Finally, Section IV-C details the preliminary steps
(viz. the pre-processing operations) to the cross-evaluation.

A. Datasets Description

Figure 1 depicts the composition of the three datasets
to perform our cross-evaluation in terms of the number of
benign and malicious biflows. Given the high heterogeneity of
datasets, we pre-process them to have a comparable number of
biflows, to keep the intra-dataset balance between benign and
malicious biflows among all the datasets, and to reduce the
computational burden.3 To carry out AD, for each dataset, we
label all the biflows attributed to the various attack classes as
malicious. We refer to the datasets’ papers/websites for details
on the collection environment, equipment, and process.
IoT-23 [4]. The IoT-23 dataset encompasses 23 PCAP
traffic traces captured within a controlled IoT environment
with unrestrained network connections, with no defense so-
lutions being enforced. A Raspberry Pi infected with a cer-
tain malware is exploited to generate malicious traffic, while
three real IoT devices (i.e. a Philips HUE Smart Led Lamp,
an Amazon Echo Home, and a Somfy Smart Doorlock)
generate benign one. Overall, 20 traces contain malicious
traffic, and 3 benign traffic. Detailing, IoT-23 comprises the

3More specifically, the original IoT-23 and CSE-CIC-IDS2018 on
AWS datasets required downsampling having a number of biflows several
orders of magnitude higher than KITSUNE.

following attacks: PortScan, Okiru, DDoS, HeartBeat, Torii,
Command&Control.4 Since the dataset exhibits a severe class
imbalance problem (i.e. highly-populated classes have more
than 15M biflows while others have less than 40k biflows), we
randomly down-sampled (without replacement) the majority
classes to 0.25%. Consequently, the IoT-23 dataset contains
870.6k biflows.
IDS2018 [5]. The CSE-CIC-IDS2018 on AWS (thereafter
IDS2018 for brevity) dataset contains benign traffic along
with the following attack classes: Brute-force, DoS, Infiltra-
tion, Botnet, DDoS, and PortScan. The attack infrastructure
consists of 50 machines, while the victim organization has 5
departments and includes 420 machines and 30 servers. The
dataset includes the network traffic of each machine captured
over 10 days. Similarly to IoT-23, we down-sample the
malicious traffic to 20% and the benign traffic to 1% for each
of the 10 capture days. As a result, the IDS2018 dataset
contains 966.2k biflows.
KITSUNE [6]. The KITSUNE dataset contains benign traffic
and network-attack traffic collected in a commercial IP-based
surveillance system by setting up an IoT network consisting
of two deployments of four monitoring cameras each. The
attacks are conducted via different tools (e.g., Nmap, Hping3,
Ettercap) and are targeted to affect the availability and integrity
of video uplinks. KITSUNE includes Reconnaissance, Man-
in-the-middle, DoS, Injection, Flooding, and Botnet attacks.
Overall, the dataset contains 147.9k biflows. We highlight
that for privacy reasons, each packet payload is trimmed to
200 bytes. We take into account this constraint in the pre-
processing steps needed for cross-evaluation (see Sec. IV-C
for details).

B. Evaluation Metrics

Our evaluation leverages a stratified hold-out technique: all
datasets are split into training (80%) and test (20%) sets by
keeping the proportion of samples of the benign and malicious
biflows. To carry out cross-evaluation, such training and test
sets are properly combined according to the investigated
context (see Sec. III-B). Since generalization and extension
contexts involve mixing data from different organizations,
to avoid the inference of biased insights due to peculiar or
unfortunate combinations of data in training and/or test sets,
we repeat each experiment 10 times by varying the stratified
hold-out pseudo-random seed in each repetition. Accordingly,
for each metric described hereinafter, we report the average
and standard deviation over the 10 repetitions.

To cope with the problem of class imbalance between
benign and malicious biflows, we benefit from the follow-
ing metrics: (a) Precision = TP

TP+FP
calculates the ra-

tio of positive class predictions that are actually positive;
(b) Recall = TP

TP+FN
calculates the ratio of positive class

predictions made out of all positive samples in the test set;
(c) F1-score = 2 × Precision×Recall

Precision+Recall is the harmonic mean
of precision and recall that aims to take into account their

4For more details on malicious traffic collected, we refer to [4].



TABLE I: F1-score [%] of 1D-CNN, RNN and MIMETIC in
the Baseline context. Results are shown as avg ± std over
10 repetitions. For each dataset, the F1-score of the best-
performing model is highlighted in boldface.

Dataset 1D-CNN RNN MIMETIC

IoT-23 78.10 (±2.53) 71.57 (±9.83) 91.19 (±2.11)
IDS2018 99.27 (±0.63) 99.25 (±0.87) 99.96 (±0.01)
KITSUNE 91.59 (±1.79) 82.02 (±4.33) 91.98 (±1.74)

trade-off. Specifically, we exploit the macro (viz. arithmeti-
cally-averaged) F1-score of benign and malicious classes. In
the above formulas, TP denotes the true positives, FP the false
positives, and TN the true negatives.

C. Pre-processing Steps

Before carrying out the cross-evaluation of DL approaches
exploited for AD, a number of pre-preprocessing steps are
required. Firstly, for each biflow, we extract the first Nb = 200
bytes and Np = 12 packets to construct the NET and PSQ
input, respectively (see Sec. III-A for details).

For the NET input, the choice for Nb = 200 bytes is
compliant with the size of the available packet bytes of
KITSUNE. Indeed, this choice has allowed us to use a uniform
input size and format for all three datasets. Also, we obfuscate
some bytes of the network-layer packet of the NET input (i.e.
those corresponding to IP addresses, ports, and checksums are
replaced with zeros). Our aim is to remove information that
could cause overfitting (and consequently biased results) as it
is representative of a particular network environment and not
of the traffic nature [21]. On the contrary, selecting Np = 12
packets per biflow for the PSQ input is based on extensive
analyses performed in our previous works [3] and further
preliminary validations not reported for brevity.

For both NET and PSQ inputs, if a sample is longer or
shorter than the prescribed Nb or Np length, truncation or zero-
padding is applied, respectively. Also, to distinguish actual
from padded zeros, we add 1 to each byte of the NET input
and to the WIN field of the PSQ input.

V. EXPERIMENTAL EVALUATION

The present section shows the results of the experimental
evaluation conducted using our cross-evaluation procedure.
Section V-A reports the performance of 1D-CNN, RNN,
and MIMETIC in the Baseline context. Then, Section V-B
and Section V-C discuss their detection capabilities in the
Generalization and Extension contexts, respectively.

A. Baseline Context Performance

Table I reports the experimental results attained in the
Baseline context in terms of F1-score. MIMETIC is the best-
performing DL approach on all considered datasets, while
the 1D-CNN achieves similar (but slightly lower) results on
KITSUNE and IDS2018. Overall, the highest mean F1-score
value of 99.96% is reached by MIMETIC on the IDS2018
dataset. Similarly, the 1D-CNN performs well with the same

dataset (99.27% F1-score), while it reaches a lower mean F1-
score of 78.10% when assessed on IoT-23. On the other
hand, even though the RNN presents a mean F1-score of
99.25% with IDS2018, it shows the worst performance on
all the datasets, down to 71.57% F1-score with the IoT-23
dataset.

Regarding the AD performance obtained on the di-
verse datasets, we can notice that on IoT-23 the mul-
timodal MIMETIC—capitalizing on multiple views of the
same biflow—experiences significantly higher F1-score values
than both single-modal approaches: +13% over 1D-CNN
and +20% over RNN. Conversely, on IDS2018 all DL
approaches reach F1-score values higher than 99%, while on
KITSUNE MIMETIC outperforms RNN of +10%.

Finally, we can observe that performance variability is lim-
ited with standard deviation values generally less than 3%. The
sole RNN experiences a slightly higher variability, particularly
on the IoT-23 dataset having a standard deviation of 9.83%.

B. Generalization Context Performance

Figure 2 shows the performance in terms of F1-score
achieved in the Generalization context. For each cell, the
top x-axis reports the composition of benign and malicious
biflows of the training set, while the bottom x-axis shows the
composition of the test set. We recall that the Generalization
context is the most challenging one since the NIDS is tested
for detecting malicious traffic not seen during the training.

Indeed, as expected, the models do not achieve generally
satisfactory performance. Nevertheless, we can draw interest-
ing remarks by focusing on specific cases. MIMETIC attains
the highest mean F1-score of 76.36% when trained with
IoT-23 biflows and generalizing to KITSUNE malicious
biflows during testing. Similarly, the 1D-CNN shows good
generalization capability (72.17% F1-score) with the same
training set but when tested on IDS2018 malicious biflows.
Conversely, the worst results are obtained when training on
IDS2018 and testing on IoT-23 attack traffic, with all DL
models exhibiting F1-score values lower than 24%.

Focusing on the specific DL networks, the RNN exhibits
the lowest performance, also when trained on IoT-23. It
is also characterized by high variability of performance,
with F1-score standard deviation up to 32.65% when trained
on KITSUNE and tested on IDS2018 malicious biflows.
Conversely, the 1D-CNN and MIMETIC have almost always
better performance than the RNN, even though always lower
than 44% F1-score when trained on IDS2018 or KITSUNE.
Notably, in the latter case, the RNN outperforms both the other
models regardless of the specific test set considered.

Finally, we point out that some experiments reveal large
standard deviations, particularly, as aforementioned, those re-
lated to the RNN. In other words, the performance depends on
the similarity/difference of the malicious biflows constituting
the training and test sets. Specifically, the more similar the
latter biflows (collected in a different network context and
not seen during training) are to the malicious biflows of the
training set, the more they should be distinguishable from the
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Fig. 3: Precision and Recall [%] of RNN for benign and
malicious classes in the Generalization context. Results are
shown as avg.± std. over 10 repetitions. The top and bottom
x-axes specify the compositions of training and test sets in
terms of benign [B] and malicious [M] biflows related to the
three considered datasets, respectively.

benign biflows of the test set. Therefore, such performance
variations are likely due to the different composition of train-
ing and test sets across the considered repetitions (based on a
pseudo-random hold-out split).
Fine-Grained Analysis: Precision and Recall. Herein, we
aim to provide further insights into the (poor) performance
of the RNN in the Generalization context via a fine-grained
analysis showing the precision and recall of both the benign
and malicious classes, separately. Figure 3 depicts the results
of this analysis for all the combinations of training and test sets
in the Generalization context. Overall, the correct detection
of benign and malicious biflows is highly related to such
combinations.

Detailing, when training on IoT-23, poor performance
is obtained for both benign biflows (≈ 40% precision/recall
regardless of the specific test set) and malicious biflows
for which precision equals 70% (resp. 65%) and recall is
50% (resp. 55%) when generalizing to the IDS2018 (resp.
KITSUNE) dataset. A notable behavior is observed when
training on IDS2018: high recall values (> 95%) for benign
biflows (i.e. low false negatives) are associated with very
poor performance in the detection of malicious ones. Such an
outcome points out that the RNN tends to predict malicious

biflows of IoT-23 and KITSUNE datasets as benign, namely
it fails to generalize to malicious samples not seen during the
training. Lastly, when training on KITSUNE, the precision of
benign biflows detection drops down to 30% (i.e. high false
positives). This result indicates that the RNN misclassifies
benign biflows as malicious, although KITSUNE biflows have
been seen during the model training, highlighting the tough-
ness of AD in the Generalization context.

As discussed before, the RNN exhibits large variations for
most of the training-test set combinations. Since the high
deviations for the benign class are mainly related to low
precision and recall values, we speculate that they are due
to repetitions where greater confusion between benign and
malicious biflows occurred. Similar considerations can be
drawn for the malicious class. However, in this case, the
variability can be associated with the differences in malicious
samples contained in training and test sets at each repetition.
Obfuscation Study. In light of the above considerations, we
explore how the RNN performance varies when obfuscating
(i.e. set to 0 during both training and test) the fields of the
PSQ input one by one for all the Np packets. Our aim is to
quantify the impact of each field and pinpoint whether the poor
performance of RNN can be attributable to a specific one.

Figure 4 shows the difference w.r.t. the F1-score obtained
by the RNN fed with the whole PSQ input (i.e. no obfuscation
is enforced). A specific field that significantly affects AD
performance is not clearly identifiable for all combinations of
datasets considered in the Generalization context: the F1-score
variation depends on the specific combination. Nevertheless,
the lowest and highest differences are both obtained when
training on IoT-23 and generalizing to IDS2018 and range
from a mean drop of −23.16% (obfuscating WIN) to a mean
boost of +30.12% (obfuscating DIR).

Going into the details of specific fields, the obfuscation
of IAT generally leads to performance improvements or to
negligible variations, on average. Particularly, the highest im-
provement is attained when training on KITSUNE, with up to
+29.55% F1-score when generalizing to IoT-23. We recall
that in the latter context, the RNN exhibits very low precision
on the benign biflows (see Fig. 3); then, we speculate that
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Fig. 4: Obfuscation study in the Generalization context. Results show the difference of the F1-score [%] of the RNN fed
with the obfuscated and the whole PSQ input set, and they are shown as avg.± std. over 10 repetitions. The top and bottom
x-axes specify the compositions of training and test sets in terms of benign [B] and malicious [M] biflows related to the three
considered datasets, respectively.
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Fig. 5: Performance of 1D-CNN, RNN, and MIMETIC in the Extension context. Results show the difference of the F1-score
values [%] attained in the Extension context with those of the same model attained in the Generalization context, and they
are shown as avg.± std. over 10 repetitions. The top and bottom x-axes specify the compositions of training and test sets in
terms of benign [B] and malicious [M] biflows related to the three considered datasets, respectively.

obfuscating IAT could mitigate such performance drop when
generalizing to IoT-23 or IDS2018. Similarly, obfuscating
DIR yields an F1-score improvement of +30.12% (resp.
+17.33%) when training on IoT-23 and generalizing to
IDS2018 (resp. KITSUNE), while it proves to be a valuable
field when training on KITSUNE and generalizing to IoT-23
with an F1-score drop of −8.41% observed without DIR.

We emphasize that the dataset composition in Generaliza-
tion contexts, in terms of benign and malicious samples within
the different repetitions, is an important factor to be taken
into account, in line with what was discussed in Sec. V-B:
large variations from mean F1-score values are evident in
some cases. For instance, obfuscating WIN when training on
KITSUNE and generalizing to IoT-23 gives an F1-score
improvement of +3.99% but with a standard deviation of
37.78%, demonstrating that in some repetitions, performance
decay occurred despite an overall improvement.

C. Extension Context Performance
In this section, we discuss the performance obtained for the

last cross-evaluation analysis related to the Extension context.
To this end, Fig. 5 reports the difference between the F1-
score values attained in the Extension context with those of
the Generalization context, given that the AD capability of DL
models is evaluated in the same scenario (i.e. same test set).

On the other hand, we recall that in the Extension context, the
training set exploited in the Generalization context is extended
with malicious traffic collected from the tested network.

Overall, we can notice that such augmented knowledge
significantly enhances DL model detection capability, on av-
erage. Especially, extending IDS2018 with IoT-23 (resp.
KITSUNE) malicious biflows leads to an improvement of
more than 70% (resp. 57%) for all the models. Accordingly,
MIMETIC ramps up to > 99% F1-score, and this consistent
performance boost is also corroborated by F1-score standard
deviations less than 1%. Finally, we highlight that, although
the average F1-score values are always higher than those ob-
served in the Generalization context, high standard deviations
reveal that for some repetitions lower F1-score values are
obtained. Nevertheless, this commonly occurs for training-test
combinations showing quite good performance already in the
Generalization context (e.g., training on IoT-23 extended
with IDS2018/KITSUNE malicious traffic).

VI. CONCLUSIONS AND FUTURE PERSPECTIVES

In this work, we performed supervised AD via state-of-
the-art DL approaches based on single-modal and multimodal
architectures. Specifically, we conducted a cross-evaluation
procedure to assess their performance and examine the ro-
bustness of these DL-based NIDSs in operational scenarios



different from the training one. To this end, we exploited
three real, recent, and public-available datasets encompassing
benign and malicious traffic data collected in different network
scenarios: IoT-23, IDS2018, and KITSUNE.

The experimental results showed that all DL models attain
satisfactory performance (up to > 99% F1-score with the
multimodal approach) when operated in the same network
where they were trained. Conversely, a significant performance
drop was experienced when AD is performed in different
network conditions, i.e. when detecting attacks unseen during
training. In this case, DL models fed with informative fields
extracted from packet sequences exhibited significantly lower
performance (down to 24% F1-score) than the models fed with
(unbiased) raw traffic data (up to 76% F1-score). Accordingly,
we conducted an obfuscation study to identify packet fields
that could cause such performance drops. We found that some
fields could be detrimental for AD and obfuscating them
led to better performance (e.g., the obfuscation of the inter-
arrival times generally allows a performance improvement up
to +29% F1-score). Nevertheless, the benefit of obfuscation is
highly dependent on the specific network scenario. Therefore,
we considered a further use case where malicious traffic
collected from the operational network is added to the original
traffic during training. We obtained that such augmented
knowledge improves DL model detection capability (up to
> 99% F1-score reached with the multimodal approach).

In future work, we plan to perform cross-evaluation with
finer granularity to conduct multi-class attack-traffic clas-
sification and investigate eXplainable Artificial Intelligence
techniques to interpret the decisions of DL-based NIDSs in
the challenging scenarios of cross-evaluation and guide their
proper design.
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