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Abstract—Accurate and timely forecasting of tourist flows
is essential for supporting informed decision-making by local
authorities and tourism stakeholders, especially in the absence
of up-to-date official data and in the case of exceptional events.
This study investigates the application of advanced data-driven
models to forecast monthly tourist arrivals at accommodation
facilities in the city of Napoli, with a particular focus on
the disruptions caused by the COVID-19 pandemic. We per-
form a systematic comparison of multiple forecasting meth-
ods—including traditional machine learning regressors, ensemble
models, advanced time series techniques, and deep learning
architectures—implemented through a sliding window approach.
Experiment evaluation is conducted on both the original time
series, which includes pandemic-related distortions, and a recon-
structed version in which COVID-era values are replaced using
algorithmic interpolation. The results show that reconstructing
the pandemic-affected data significantly improves predictive
performance, yielding a reduction in forecasting error of over
80% and an increase in the coefficient of determination by
more than 0.50. These findings highlight the importance of
targeted preprocessing strategies and robust prediction methods
for enhancing the accuracy and reliability of tourism demand
forecasts.

Index Terms—Tourism flow prediction, Machine Learning,
Deep Learning, time-series analysis, COVID-19.

I. INTRODUCTION

Tourism is one of the most dynamic and economically
significant sectors worldwide, with substantial impacts on both
local development and national GDP. Italy, in particular, stands
out for its vast cultural, artistic, natural, and gastronomic her-
itage, making it one of the most attractive tourist destinations
globally [1]. Within this national context, some cities play
a pivotal role in attracting tourists; among these, Napoli has
emerged as a key destination, having recorded a significant
increase in visitor numbers in recent years and strengthening
its relevance both nationally and internationally [2].

Hence, the analysis and prediction of tourist flows represent
a strategic tool for the planning and management of territorial

This work was partially conducted within the course “Tecnologie ed
Applicazioni per la Trasformazione Digitale” at the University of Napoli
Federico II. Particularly, the authors would like to thank Alessia Ferro, Chiara
Di Ronza, and Daniela Giacobbe for their collaboration with the preliminary
experiments of the study. This work has been partially supported by the Spoke
9 “Digital Society & Smart Cities” of ICSC - Centro Nazionale di Ricerca
in High Performance-Computing, Big Data and Quantum Computing, funded
by the European Union - NextGenerationEU (PNRR-HPC).

resources, particularly in areas with a strong tourism voca-
tion. Reliable forecasts are an essential asset for supporting
evidence-based decision-making and long-term planning with
positive impacts on local economic sustainability [3, 4]. Ac-
curate forecasts support resource allocation, event planning,
and infrastructure development, aligning service supply (e.g.,
accommodation, transport, utilities) with expected demand.
However, obtaining reliable forecasts is a complex process due
to the integration of information from heterogeneous sources
such as accommodation facilities, public transport systems,
and local tourism boards.

In recent years, the use of time series forecasting has gained
popularity as an effective approach to analyzing the evolution
of tourism demand. Indeed, this methodology supports the
identification of long-term trends, seasonal components, and
anomalous patterns. While numerous predictive techniques
have been proposed—ranging from traditional statistical mod-
els to advanced Machine Learning (ML) and Deep Learning
(DL) techniques—most of the existing literature focuses on
national or regional scales, with limited attention given to
city-level analyses. At the same time, the timely availability
of tourism data is essential to inform political, economic, and
logistical decisions at all institutional levels. Nevertheless, one
of the major obstacles to achieving these goals is the delayed
release of official tourism statistics, which are typically pub-
lished several months or even years after the reference period.
This latency reduces institutional responsiveness and limits the
ability to take proactive action.

This study aims to address these issues by proposing a
forecasting methodology capable of predicting tourist flow
data based on historical information. The analysis targets the
city of Napoli, using monthly historical data on guest arrivals
in accommodation facilities between 2008 and 2023 (those
available at the time of writing), sourced from the Italian
National Statistics Institute (ISTAT).

A key challenge addressed in this study relates to the
COVID-19 pandemic period (2020-2021), during which travel
restrictions caused unprecedented disruptions in tourism flows.
These disruptions introduced structural breaks and irregular-
ities that complicate both model training and the reliability
of forecasts. Additionally, the inherent seasonality of tourist
arrivals, characterized by regular peaks and troughs, further



complicates modeling in the presence of shocks or anomalies.
To face these challenges, we develop and evaluate predictive

models under different conditions to identify the most effective
forecasting strategies.

In detail, the core contributions of this work are as follows:
• We exploit a broad range of ML and DL forecast-

ing techniques, including Linear Regression, Decision
Tree, K-Nearest Neighbors, Random Forest, XGBoost,
Prophet [5], and Long Short-Term Memory, to assess their
performance on historical data and forecast tourist flows
in Napoli for 2024.

• We take into account the impact of the COVID-19
pandemic on tourism flows and propose a mitigation of
COVID-19-related distortions by implementing and com-
paring multiple data-processing strategies, which include
retaining raw data with pandemic years, and reconstruct-
ing “normal” trends using algorithmic interpolation [6].
We emphasize that these data-processing strategies are
generalizable to any context in which anomalous distor-
tions can be identified in the underlying trends, regardless
of the nature of the disruptive event, thus extending
beyond the specific case of COVID-19.

The remainder of this manuscript is structured as follows.
Section II discusses the main contributions in the literature
related to time series-based tourism demand forecasting and
positions the present work. Section III details the adopted
methodology, including data pre-processing, windowing, and
forecasting models. Section IV describes the experimental
setup and evaluation metrics. Section V presents the ex-
perimental results and related outcomes. Finally, Section VI
concludes the paper and outlines directions for future work.

II. RELATED WORK

Forecasting tourism demand has been extensively investi-
gated in the literature, encompassing a wide range of statistical
and ML methods. Early approaches predominantly employed
econometric and multivariate regression models, leveraging
macroeconomic indicators such as income levels, exchange
rates, and relative prices to explain fluctuations in tourist
flows [7]. Subsequently, autoregressive time series models,
such as ARIMA and SARIMA, gained popularity—especially
for short-term forecasting—due to their ability to capture
seasonal and trend components in historical data [8, 9].

The increasing availability of data and computing power has
encouraged the adoption of ML techniques, including Support
Vector Regression [10], Random Forest [11], and Deep Neural
Networks [12]. These approaches have demonstrated greater
flexibility in modeling non-linear relationships and detect-
ing complex temporal dependencies compared to traditional
statistical models. In particular, Recurrent Neural Networks
(e.g., Long Short-Term Memory and Gated Recurrent Unit)
have been successfully applied to tourism time series due
to their ability to learn long-term dependencies and adapt
to dynamic changes [12]. More complex hybrid or ensemble
approaches capable of handling non-linearity and regime shifts

have also been explored. For example, in [13], a deep en-
semble model combining autoencoders with extreme learning
machines proved effective in capturing the complex seasonal
and shock-driven dynamics of international tourist arrivals in
Beijing.

More recently, researchers have investigated the integration
of digital and behavioral data sources, including web search
trends, social media activity, and online reviews. These fea-
tures are often used as proxies for latent tourism demand
and can significantly enhance forecasting accuracy when in-
corporated into hybrid models [11, 14, 15]. However, due
to the high collinearity among these features, dimensionality
reduction techniques (e.g., principal component analysis and
dynamic factor models) are commonly required to improve
model performance [16]. Other works [17, 18] have exploited
online review text data from platforms like TripAdvisor within
mixed data sampling models, combining low-frequency time
series with high-frequency user-generated content, and have
reported promising results.

The COVID-19 pandemic introduced significant challenges
for tourism forecasting by causing structural breaks and adding
unpredictable noise to historical time series. Recent studies,
such as [19], focused on the Airbnb market in Madrid, ob-
served substantial drops in ML models performance during the
pandemic, particularly when COVID-related variables were
not explicitly incorporated. To address these limitations, a
more recent work [20] has proposed integrating heterogeneous
data sources with varying frequencies through mixed data sam-
pling techniques for forecasting tourist arrivals from mainland
China to Hong Kong.

Despite the growing body of research, the vast majority of
studies are conducted at the national or regional level, with
limited attention to the urban scale. Some exceptions include
forecasts in metropolitan areas such as Vienna, Puerto Rico,
or Hong Kong, which often leverage alternative data sources
like Google Trends or social media platforms [20, 21, 22].
However, few studies adopt a comprehensive comparative
approach across multiple model families within a city-level
context.

A. Positioning of Our Work

In light of related research, our study aims to address two
key gaps in the literature. First, we focus on a fine-grained
urban setting—namely the city of Napoli in Italy—an area that
has received limited attention in tourism forecasting research
despite its growing importance as a travel destination [2]. Sec-
ond, we perform a systematic comparison across a diverse set
of data-driven models from different methodological families,
including: (i) traditional ML regressors (Linear Regression,
Decision Tree, and K-Nearest Neighbors), (ii) ML ensemble
methods (Random Forest, XGBoost), (iii) advanced time series
models (Prophet), (iv) and deep recurrent neural networks
(Long Short-Term Memory).

Unlike previous works, this comparison is carried out
under different data conditions, including both the original
time series and reconstructed versions to account for the
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Fig. 1. Example of input-output construction for the prediction task starting
from an initial time series. The example shows a sliding window with a fixed
size W = 6 (input); n+ 1 is the index of the value to be predicted (target).

pandemic impact and handle COVID-19-induced disruptions.
By adopting this multifaceted approach, our contribution is
both methodological and empirical, aimed at enhancing the
robustness and reliability of tourism forecasting in urban
planning contexts.

III. FORECASTING METHODOLOGY

The forecasting methodology adopted in this study is based
on the application of prediction techniques to a univariate
time series representing monthly tourist arrivals in the city of
Napoli. The problem is formulated as a single-step prediction
task: the objective is to estimate the number of arrivals for the
next month based on the values observed over the previous W
months. In Section III-A, we formalize the prediction task and
describe the windowing strategy adopted to construct the input
sequences for the prediction models. Then, in Section III-B,
we provide an overview of the prediction models leveraged in
our analysis.

A. Prediction Task and Input-Output Construction

The goal of our prediction task is to forecast the number
of tourist arrivals for the following month n + 1, denoted as
x̂n+1, based on past observations up to time n. To this end,
we define a predictor function M(·), which takes as input a
sequence of W past observations and returns the predicted
value for the next time step (viz. month):

x̂n+1 = M
(
xn−W+1, . . . , xn−1, xn

)
.

To construct the input-output data for the forecasting mod-
els, we apply a sliding window approach with unit stride, as
illustrated in Fig. 1. In this procedure, a fixed-size window of
length W is moved across the time series one time step at a
time, generating input-output pairs from partially overlapping
sequences. This ensures that all training instances contain the
same number of time steps W , allowing the models to learn
sequential dependencies without processing the entire series
at once. With this setup, the earliest prediction can be made

at time step n = W + 1. As n increases, the window slides
forward, always incorporating the W most recent observations
to generate new predictions.

Formally, given a univariate time series of length T , the
sliding window mechanism produces T −W training samples.
Each sample consists of a sequence of W consecutive input
values and the corresponding target output. This preprocessing
step is consistently applied across all predictive models used
in this study.1

To generate model forecasts, two alternative approaches
are employed. The first constructs each input window W
using only real data, ensuring that every prediction is based
exclusively on actual historical values. This setup is used
primarily to evaluate model performance. The second adopts
an autoregressive forecasting approach, where predictions are
generated iteratively. Starting from the final training window,
each newly predicted value is fed back into the input sequence
to update the window for the next step. This process continues
over the entire forecast horizon, simulating a scenario in which
future observations are unavailable and the model must rely
on its prior outputs (viz. predicted values). Specifically, the
latter approach is used both to reconstruct “normal” values for
COVID-19 years and to produce projections for years without
available data. Although it may lead to the accumulation
of errors over time, it provides valuable insight into the
robustness of the models under more realistic deployment
conditions.

B. Prediction Models

In this section, we describe the prediction models adopted
in our analysis. Specifically, we evaluate a set of seven
data-driven forecasting techniques, selected from four distinct
methodological families: (i) classic ML regressors (Linear
Regression, Decision Tree, and K-Nearest Neighbors), (ii) en-
semble-based ML models (Random Forest and XGBoost),
(iii) an advanced time series forecasting model (Prophet),
(iv) and a DL-based recurrent neural network (Long Short-
-Term Memory).

Linear Regression (LR) is a basic statistical method that
models the relationship between one or more input variables
and a target variable under the assumption of linearity. The
model estimates the coefficients of the linear function by
minimizing the residual sum of squares between the observed
and the predicted values. Owing to its simplicity, interpretabil-
ity, and computational efficiency, LR is widely adopted as a
baseline in predictive modeling tasks. However, its accuracy
can significantly deteriorate in the presence of non-linear
relationships or when key assumptions—such as linearity,
independence of errors, and homoscedasticity—are violated.

Decision Tree (DT) is a non-parametric supervised learning
model that recursively partitions the input space by applying
hierarchical decision rules based on optimal threshold splits.

1Note that this windowing procedure is not required for Prophet [5], which
is an additive time series forecasting model that can directly forecast future
values from raw time series data without requiring manual windowing.



The structure produced is a tree, where each internal node
corresponds to a decision based on a feature value, and each
leaf node yields a continuous-valued prediction. For regression
tasks, the model selects splits that minimize the variance
of the target variable within each partition. DTs are highly
interpretable and capable of capturing complex non-linear
relationships and interactions among input variables. However,
they are prone to overfitting, particularly when grown to
large depths without appropriate pruning or regularization
techniques.

K-Nearest Neighbors (KNN) is a non-parametric, instance-
based learning algorithm that predicts the target value for a
new input by averaging the target values of its K nearest
neighbors in the feature space. The model does not involve
an explicit training phase; instead, it stores the entire training
dataset and performs all computations at inference time. Al-
though KNN is simple and effective in capturing local patterns
in the data, its predictive performance is highly sensitive to
the choice of K, which must be carefully tuned to balance the
common bias-variance trade-off.

Random Forest (RF) is an ensemble learning method that
addresses the overfitting tendencies of individual DTs by
aggregating the predictions of multiple trees, each trained
on a different random subset of the data. Specifically, each
tree is built using a bootstrap sample of the training set
and performs random feature selection at each split, which
increases diversity among the trees in the ensemble. The final
prediction is obtained by averaging the outputs of all individual
trees, commonly resulting in improved accuracy, robustness,
and generalization.

XGBoost (short for eXtreme Gradient Boosting) is an en-
semble learning algorithm based on the gradient boosting
framework, designed for high-performance prediction of con-
tinuous numerical targets. It constructs an ensemble of DTs,
where each tree is trained sequentially to correct the errors
made by the previous ones, effectively minimizing a specified
loss function. Unlike traditional bagging methods, gradient
boosting optimizes residual errors through gradient descent,
allowing the model to capture complex patterns. XGBoost
introduces additional improvements, such as regularization,
parallelized training, and native handling of missing values,
which enhance both accuracy and computational efficiency. It
is known for its robustness to overfitting and is widely used
in regression tasks involving structured data.

Prophet is a time series forecasting model developed by Meta,
designed to handle data exhibiting multiple seasonalities and
trend changes [5]. It is based on an additive decomposition
model, where non-linear trends are combined with yearly,
weekly, and daily seasonal components, as well as user-
specified holiday effects. Prophet is particularly effective for
time series with strong seasonal patterns and multiple years
of historical data. It is robust to missing values, trend shifts,
and outliers, and requires minimal manual tuning, making it
suitable for applications where domain knowledge may be
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Fig. 2. Monthly tourist arrivals in Napoli (2008–2023), with the COVID-19
period highlighted in light blue.

limited.

Long Short-Term Memory (LSTM) is a specialized type of
recurrent neural network architecture designed to effectively
capture long-term dependencies in sequential data. Unlike
traditional recurrent neural networks, LSTM units incorpo-
rate internal memory cells along with gating mechanisms
(i.e. input, forget, and output gates) that regulate the flow
of information. These gates enable the network to selectively
retain or discard information over time, allowing it to learn
and preserve complex temporal patterns. This capability makes
LSTM particularly well-suited for modeling nonlinear, dy-
namic behaviors often present in time series data.

IV. EXPERIMENTAL SETUP

The present section outlines the experimental setup. Sec-
tion IV-A describes the dataset, while Section IV-B details
the evaluation metrics used to assess the performance of the
forecasting methodology applied to monthly tourist arrivals.

We also underline that to ensure a fair and unbiased
comparison, all prediction models are evaluated using their
default hyperparameters as defined by their respective library
implementations.

A. Dataset Description

The dataset used in this study consists of a univariate
monthly time series representing the number of tourist arrivals
at accommodation facilities in the city of Napoli. Tourist ar-
rivals are aggregated from both national and international ori-
gins to provide a comprehensive measure of inbound tourism
flow. The data, provided by the Italian National Institute of
Statistics (ISTAT), cover the period from January 2008 to
December 2023, for a total of 192 samples.

Figure 2 depicts the time series, which exhibits a clear
seasonal pattern, with recurring peaks in the summer months
(July and August), corresponding to the high tourism season,
and depressions in the winter months (January and February),
typical of the low season. In addition to seasonality, there
is a long-term increasing trend interrupted by a sharp and
anomalous decline during the COVID-19 pandemic period
(2020–2021). Indeed, the global restrictions severely curtailed
travel demand and mobility during this period, followed by



a gradual recovery in subsequent years. Based on the 192
monthly observations and using a sliding window of length
W , the dataset is converted into 192−W input-output samples
for model training (see Sec. III-A for details).

B. Evaluation Metrics

To assess the performance of the prediction models, we
adopt two metrics: the Root Mean Squared Error (RMSE),
defined in Eq. 1, and the Coefficient of Determination (R2),
defined in Eq. 2.

Let xi denote the actual observed values of the target
variable, x̂i the predicted values, and x̄ the mean of the ob-
served values. The difference between xi and x̂i indicates the
prediction error for each observation, serving as the foundation
for these performance metrics.

The RMSE is defined as:

RMSE =

√∑n
i=1(xi − x̂i)2

n
(1)

It is particularly useful for measuring the discrepancy between
predictions and actual observations. Specifically, the RMSE
quantifies the standard deviation of the prediction errors; lower
values reflect better model performance and a closer match
between predicted and actual values.

The R2 is defined as:

R2 = 1−
∑n

i=1(xi − x̂i)
2∑n

i=1(xi − x̄)2
(2)

The R2 indicates the proportion of variance in the target
variable that is explained by the model. Values approaching 1
denote high explanatory power, while values near 0 indicate
a poor fit. Notably, negative R2 values can occur when the
model performs worse than a simple mean-based prediction,
indicating that the model fails to capture the underlying
structure of the data.

V. EXPERIMENTAL RESULTS

This section presents our experimental evaluation. In detail,
Section V-A compares the forecasting results obtained with
the original time series, while Section V-B investigates the
performance of the prediction models when applied to the data
reconstructed to account for the disruptions associated with the
COVID-19 period.

A. Forecasting Performance Comparison with Original Data

This section evaluates the prediction models trained on
historical data up to the end of 2022 and tested on observations
from 2023. To identify the most effective configuration, dif-
ferent sliding window sizes W , equal to 3, 6, and 12 months,
are tested for structuring the training set, to determine which
setup yields the highest predictive accuracy.

The comparative analysis revealed that the 12-month win-
dow obtains the highest performance, indicating that a longer
historical horizon contributes to the models’ stability and
reliability in capturing tourist behavior. Consequently, all
subsequent analyses adopt a 12-month window. With this
configuration, a total of 180 training instances are generated.

TABLE I
COMPARISON OF DIFFERENT PREDICTION MODELS BASED ON RMSE AND

R2 (ORIGINAL DATASET).

Regressor RMSE R2

LR 49092 0.90
DT 41217 0.93
KNN 32798 0.96

RF 29950 0.96
XGBoost 48132 0.90

Prophet 114483 0.46

LSTM 40127 0.93
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Fig. 3. Graphical comparison of actual monthly arrivals and predictions
generated by RF and KNN for 2023 with the original time series.

We recall that Prophet, due to its additive structure and built-
in seasonality, generates forecasts directly from the full raw
time series, without requiring the sliding window technique
for input-output construction.

The forecasting performance varies across models, with
some providing predictions that closely match the actual data.
The corresponding evaluation metrics are presented in Table I.
In detail, KNN and RF achieve the best performance in terms
of both RMSE and R2 values. Specifically, RF exhibits the
lowest RMSE of 29 950 and the highest R2 of 0.96, indicating
that this ensemble method is highly effective in capturing
complex patterns in the data. Similarly, KNN delivers robust
results, with an RMSE of 32 798 and an R2 of 0.96, showing
only a slightly higher RMSE than RF. DT and LSTM also
provide competitive performance, achieving an R2 of 0.93
and RMSE values of 41 217 and 40 127, respectively. These
outcomes reflect the models’ capacity to capture non-linear
relationships, although they are slightly less accurate than
the top-performing models. Conversely, Prophet exhibits the
weakest performance, with a high RMSE of 114 483 and
an R2 of 0.46, suggesting that it struggles to adapt to the
characteristics of the dataset and fails to model the underlying
trends effectively—particularly in the presence of anomalous
disruptions such as those occurring during the COVID-19
years.

Figure 3 provides a zoomed-in view of the year 2023,
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Fig. 4. Forecasts of arrivals for the year 2024 using RF and KNN as prediction
models.

TABLE II
COMPARISON OF DIFFERENT PREDICTION MODELS BASED ON RMSE AND

R2 (RECONSTRUCTED DATA).

Regressor RMSE R2

LR 43835 0.92
DT 34022 0.95
KNN 23860 0.98

RF 38759 0.94
XGBoost 32366 0.96

Prophet 20415 0.98

LSTM 72270 0.78

showing that the best-performing models (i.e. KNN and RF)
closely follow the actual trend of tourist arrivals, further
confirming the consistency of the quantitative results.

For this reason, these models are selected to generate
monthly forecasts of tourist flows for the year 2024. Since
actual data for 2024 were not available at the time of writing,
the models are trained on historical data up to the end of 2023
and applied using an autoregressive forecasting approach with
a sliding 12-month window (see Sec. III-A). In this case, the
evaluation is performed visually by comparing the predicted
trends with historical patterns to assess their plausibility. The
forecasts generated by the models are presented in Fig. 4.
We observe that the KNN predictions closely follow the trend
observed in recent years (i.e. 2022 and 2023), while the RF
model provides forecasts that appear to incorporate longer-
term patterns, being more similar to earlier segments of the
historical time series.

B. Robust Forecasting with Reconstructed COVID-19 Data

Tourism flows recorded during the years 2020–2021 were
profoundly disrupted due to the COVID-19 pandemic, intro-
ducing structural discontinuities and significant anomalies in
the data. These disruptions compromised the ability of the
affected time series to accurately reflect typical historical pat-
terns and seasonal dynamics. This scenario motivated the im-
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Fig. 5. Graphical comparison of actual monthly arrivals and predictions
generated by KNN and Prophet for 2023 with reconstructed time series.

plementation of a synthetic reconstruction methodology, aimed
at evaluating whether the replacement of anomalous data with
estimates produced by ML/DL models could improve their
predictive performance. To this aim, the models have been
trained only using historical data up to December 2019 to
prevent bias introduced by the pandemic. It is important to note
that conventional metrics for assessing predictive accuracy,
such as the RMSE or the R2, have not been applied in this
context, as the aim of the analysis has not been to optimize
predictive performance on observed data, but rather to obtain a
plausible estimate of the evolution of the analyzed time series
in a hypothetical no-pandemic scenario. Each reconstructed
time series, one for each model, is used to re-train the
corresponding forecasting model (i.e. the same used for the
reconstruction), now with data extended up to December 2022,
and tested on actual data from 2023 to evaluate the impact of
this “correction” strategy on predictive performance.

While evaluation metrics are not computed in the recon-
struction phase (2020–2021), they are subsequently applied
to evaluate model performance on the 2023 test set, for
which actual observations are available. As shown in Tab. II,
the best results are achieved by KNN and Prophet, both
attaining the highest R2 of 0.98, and the lowest RMSE values
of 23 860 and 20 415, respectively. DT and RF also obtain
competitive results, with R2 values above 0.94, though slightly
less accurate than the top performers. LR showed moderate
effectiveness, while LSTM recorded the weakest performance,
with both the highest RMSE (72 270) and the lowest R2 (0.78).

The comparison with results obtained on the original time
series (in Tab. I) highlights an overall improvement in per-
formance (with only LSTM showing an evident performance
drop) and confirms the benefits of the data reconstruction
strategy. Notably, Prophet shows a remarkable enhancement,
shifting from the weakest to the best-performing models, with
an RMSE reduction of over 80% and an increase in R2 of more
than 0.50. These findings suggest that the reconstructed time
series better aligns with the underlying structure assumed by
the model. Similarly, KNN and XGBoost also show significant
gains, reducing their error by ≈ 27% and ≈ 33%, respectively.
In contrast, both LSTM and RF do not benefit from the data
reconstruction, showing instead a decline in performance. For
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Fig. 6. Forecasts of arrivals for the year 2024 using KNN (left) and Prophet (right).

LSTM, the RMSE increases by ≈ 80% and the R2 drops by
0.15, while for RF, the RMSE rises by ≈ 29% with a decrease
in R2 of 0.02.

To further support these outcomes, Fig. 5 provides a graph-
ical comparison between the actual monthly arrivals in 2023
and the forecasts produced by the KNN and Prophet models
on the reconstructed dataset. Both models closely replicate
the seasonal pattern of tourist flows, with only marginal
deviations. This evidence further reinforces the effectiveness
of the correction strategy in improving the reliability of the
forecasts.

Based on these results, KNN and Prophet are selected for
further analysis and to generate arrivals forecasts for the year
2024. Specifically, the models are trained with data up to
December 2023 and are employed to produce forecasts for the
year 2024. Due to the unavailability of official data, the results
are visually investigated. Figure 6 illustrates the continuity and
seasonality captured by both models in their 2024 forecasts.
While slight differences in amplitude are observable, particu-
larly in the summer peaks, both KNN and Prophet maintain
reasonable and consistent trends that align with historical
seasonal patterns, further supporting the credibility of the
pandemic-adjusted strategy.

VI. CONCLUSION

This study explored the application of advanced data-driven
models to forecast tourist flows in the city of Napoli, with a
particular focus on the impact of the COVID-19 pandemic.
We conducted a systematic comparison of multiple models,
including traditional machine learning algorithms, ensemble
methods, time series forecasting techniques, and deep learning
architectures, trained on historical time-series data. Their per-
formance was assessed on both the original dataset, including
COVID-19 distortions, and in a scenario in which “normal”
trends were reconstructed using algorithmic interpolation.

The comparative analysis of performance obtained on the
original and pandemic-reconstructed time series highlighted
that the reconstructed series yields higher forecasting per-
formance. In particular, Prophet and KNN demonstrated im-
proved consistency and reliability in the prediction results.

The adopted reconstruction not only mitigated the impact of
structural discontinuities but also improved the models’ ability
to generalize and capture the underlying temporal dynamics.
The results indicated that the proposed approach effectively
addresses the challenges posed by the inherent variability and
seasonality of the tourism data.

Building upon these findings, the future prospects of this
work involve both the refinement of the forecasting method-
ology and the extension of the analysis to broader contexts.
A promising direction includes the integration of exogenous
variables, such as socio-economic factors, social media activ-
ities, or travel trends, which could enhance the models’ pre-
dictive capabilities. Additionally, exploring probabilistic and
ensemble methods may further improve forecast robustness
by providing uncertainty intervals for better risk assessment in
managing tourist flows. Another promising direction involves
the use of Large Language Models for time series forecasting,
such as TimeGPT [23]. Thanks to their pre-training on large
time-series datasets, these models can enable more flexible
and context-aware predictions, potentially complementing or
even outperforming statistical and ML-based approaches in
capturing complex temporal dependencies. These models are
particularly well-suited for forecasting contexts that are highly
unpredictable or rapidly changing, such as in the tourism
sector, where nonlinear trends and exogenous shocks are
frequent. Lastly, applying this forecasting framework to other
cities or regions would help assess its applicability through
diverse tourism scenarios and provide valuable insights to
support policy-making and strategic planning.
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