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Abstract—Privacy-preserving protocols and tools are increasingly adopted by Internet users nowadays. These mechanisms are
challenged by the process of Traffic Classification (TC) which, other than being an important workhorse for several network
management tasks, becomes a key factor in the assessment of their privacy level, both from offensive (malign) and defensive (benign)
standpoints. In this paper we propose TC of anonymity tools (and deeper, of their running services and applications) via a truly
hierarchical approach. Capitalizing a public dataset released in 2017 containing anonymity traffic, we provide an in-depth analysis of
TC and we compare the proposed hierarchical approach with a flat counterpart. The proposed framework is investigated in both the
usual TC setup and its “early” variant (i.e. only the first segments of traffic aggregate are used to take a decision). Results highlight a
general improvement over the flat approach in terms of all the classification metrics. Further performance gains are also accomplished
by tuning the thresholds ensuring progressive censoring. Finally, fine-grain performance investigation allows to (a) demonstrate lower
severity of errors incurred by the hierarchical approach (as opposed to the flat case) and (b) highlight poorly-classifiable
services/applications of each anonymity tool, gathering useful feedback on their privacy-level.

Index Terms—Dark web; Dark net; Tor; I2P; JonDonym; traffic classification; hierarchical classification; anonymity; privacy; security.
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1 INTRODUCTION

IN LINE with the growing criticality of the activities users
perform online, privacy is today a key concern. In par-

ticular, preserving the anonymity of users is an aspect that
has gathered the attention of the research community, that
over last years put the effort in designing and developing
tools able to achieve privacy at varying degrees. As a result,
at present a number of Anonymity Tools (ATs) are freely
available, able to hide—besides the content of the commu-
nication itself, via encryption—the identity of the parties
(source and destination) involved in the communication.

The most popular ATs developed in recent years are The
Onion Router (Tor)1, the Invisible Internet Project (I2P)2, and
JonDonym3 (formerly known as Java Anon Proxy or Web-
Mix). These tools allow users to preserve their anonymity,
e.g. encrypting data multiple times and routing it through
multiple stations, providing each with just a piece of the
information. From the user viewpoint, ATs allow browsing
and running applications (also circumventing restrictions
enforced at either providers or governmental level) keeping
their identity and location secret to any intermediary entity
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observing the traffic. Accordingly, tracing users and their
activities across these networks is a complex task.

ATs have been investigated in recent years by several
studies from different perspectives including design improve-
ment, AT delay and performance analysis, feasibility of
effective attacks to ATs, users’ behavior profiling and iden-
tity disclosure risk, and censoring policies enforced for ATs
[1]. Among these crucial aspects, a cardinal issue is under-
standing to what extent (encrypted) ATs traffic can be classified,
i.e. at which granularity ATs and related applications can be
accurately recognized by external entities. Accordingly, in
this paper, we focus on ATs Traffic Classification (TC).

Indeed, TC—consisting in associating traffic aggregates
to specific applications or groups of applications (viz. la-
beling them)—is of utmost importance in Internet traffic
engineering, along with related methodologies & tools, as
they jointly support activities such as network monitor-
ing, security assessment, application identification, anomaly
detection, accounting, advertising, and service differentia-
tion [2, 3]. For these reasons, TC has gained importance in
recent years due to growing incentives to disguise certain
applications [4], comprising those generating anonymous
traffic [5].

On the one hand, investigating TC of ATs is useful to
designers, as it puts their effectiveness to the test, reveals
shortcomings, and leads the way to robustify them. On the
other hand, these studies are of interest to providers as
well as governmental entities, providing knowledge e.g. to
enforce informed engineering policies or to prevent users
performing unwanted actions. Hence, classifying ATs traffic
is a particularly appealing and challenging research field
whose state-of-art solutions leave room for improvement.

Because of the specific nature of ATs encrypted traffic,
Machine Learning (ML) classifiers represent the natural



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. *, NO. *, MONTH YYYY 2

enabler, able to provide decisions based on the sole traffic-
flow features [5] and to overcome shortcomings due to
the application of common solutions (e.g., those based on
payload inspection or earlier port-based ones [6]).

On the top of that, hierarchical classification represents
a perfect match for TC of ATs, as (i) it allows fine-grained
tuning and design, potentially leading to classification per-
formance gains; (ii) it also brings a number of “practical”
benefits by design, at cost of moderate complexity increase.
For example, re-training does not involve all the nodes in
the hierarchy when new applications leveraging anonymity
networks are released. Also, distributed deployment of TC
tasks, thanks to the modularity of the framework, is enabled
in the network (thus hierarchical classification could be
achieved through chaining of virtualized network functions,
each associated to a classifier). Albeit these benefits are
granted by the hierarchical approach itself, research efforts
are needed to deepen the aspects of design optimization (to
obtain enhanced performance) and fine-grain evaluation to
delve into privacy-level assessment of ATs.

1.1 Related Works
Up to our knowledge, there are no studies focused on clas-
sification of different anonymity services at various levels of
granularity via hierarchical learning. Accordingly, this section
first discusses the (few) works tackling standard TC (i.e.
not focusing on traffic generated by ATs) via a hierarchi-
cal approach. Then, literature on TC of ATs via a “flat”
(viz. non-hierarchical) approach is reviewed, including the
conceptually-related Website Fingerprinting (WF) problem.

Hierarchical Traffic Classification
A first approach to hierarchical TC is described in [7], where
a three-level system for Peer-to-Peer (P2P) biflow-based traf-
fic categorization is proposed to discern among 11 P2P and 5
non-P2P apps. The first-level classifier adopts a Support Vec-
tor Machine (SVM) for P2P/non-P2P recognition, whereas
Support Vector Data Descriptions are employed at the other
two levels for P2P-type (i.e. file-sharing, messenger, and TV)
and P2P plus non-P2P app TC, respectively. Results (per-
taining to each single classifier in the hierarchy separately)
show that the proposed approach achieves precision and
recall ≥ 95% in P2P/non-P2P recognition and ≥ 93% in
P2P-type classification, while a recall drop down to 71% is
observed at last level. Similarly, Grimaudo et al. [8] propose
the adoption of a hierarchical classifier to allow Internet
TC (into ≥ 20 fine-grained classes), showing a compari-
son with flat-learning results. The proposed tree-structured
(three-level) taxonomy introduces also a first level which
identifies known/unseen traffic. Both (per-classifier) feature
selection (from a set of 200, as proposed by past literature)
and (coarse-grained) optimization w.r.t. different classifiers
(such as Decision Trees, Neural Networks, and SVMs) are
considered. Results show that the proposed hierarchical
system outperforms off-the-shelf flat classification, with an
average recall > 95% for most popular traffic classes.

In [9] a novel multilateral (viz. multi-view) and hierarchi-
cal approach for Internet TC is proposed, further refined into
FORMULA framework [10], operating on biflow-segmented
traffic. Specifically, the devised approach relies on a tax-
onomy that provides multilateral identification based on

four different classification criteria (i.e. service, application,
protocol, and function) via a hierarchical structure (whose
working principle is however not detailed), supporting roll-
up and drill-down operations on the classification results.
Unfortunately, the collected traffic lacks a ground truth,
precluding a verification of the reported results.

In [11], the authors propose a fine-grained scheme for
hierarchical TC of video traffic based on clustering. A hier-
archical version of k-Nearest Neighbor (k-NN) is fed with
the most discriminative statistical features selected among
40 extracted from downstream/upstream data, ranked by
the information gain ratio. The dataset, including six types
of (symmetric and asymmetric) traffic, is collected on the cam-
pus network of Nanjing University. Experimental results
report ≥ 97% F-measure in discriminating among all the
considered (video) traffic and superior performance w.r.t.
existing alternatives, while providing only a slight time-
complexity increase. Recently, in [12] a two-level hierar-
chical classification framework is presented to identify the
services running within HTTPS connections leveraging a set
of features robust to alteration (e.g., statistics of inter-arrival
times and packet/payload sizes). The proposed evaluation
method, based on real traffic traces, achieves a recall within
[95, 100]% in 50 out of the 68 HTTPS services considered.

(Flat) Traffic Classification of Anonymity Tools
The analysis of ATs has been initially carried in private
networks, e.g. with the aim of discriminating between HTTPS
and Tor traffic [13]. In detail, by leveraging a dataset made
of (i) regular HTTPS traffic, (ii) HTTP and (iii) HTTPS over
a private Tor network, authors show that HTTP/HTTPS
traffic over Tor can be detected with ≥ 93% accuracy, em-
ploying Random Forest (RF), C4.5, and AdaBoost classifiers.

On the other hand, a few works focus on TC analyz-
ing real traffic from anonymity networks, as most of the
“experimental” literature explores anonymous WF, whose
aim is to identify a web-page accessed by a client of en-
crypted and anonymized connections by observing patterns
of data flows (e.g., packet size and direction). Herrmann
et al. [14] propose a Multinomial Naïve Bayes (MNB) that
relies on the normalized frequency distribution of IP packet
sizes to tackle the WF problem in the context of different
privacy-enhancing technologies (in a closed-world scenario)
including Tor and JonDonym. Although Tor and JonDonym
guarantee a better protection than other privacy-enhancing
technologies (i.e. OpenSSL, OpenVPN), they prove to be
not perfect (3% and 20% average accuracy, respectively).
In [15] the same problem is tackled via a Support Vector
Classifier, obtaining a gain of detection rate over [14] from
3% to 55% (resp. from 20% to 80%) in Tor (resp. JonDonym)
network. On the other hand, in an open-world case, the de-
tection rate drops with a maximum of 73% and 0.05% false-
positive rate. More recently, in [16] a WF approach aimed
to overcome limitation of previously-devised alternatives
is proposed and tested on a huge real-world representa-
tive dataset, exploring the limits of WF at Internet scale.
Specifically, these are highlighted by a precision/recall drop
with the size of the background sites which the monitored
pages need to be distinguished from. Finally, we mention
that the adoption of Deep Learning (DL) to WF is also a
currently-investigated topic. A novel DL-based method to
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deanonymize Tor traffic is proposed in [17] and tested on
a dataset made of ≥ 3 · 106 network traces, with the best-
performing DL model being +2% accurate than state-of-the-
art attacks. In [18] a WF attack against Tor is developed,
leveraging a Convolutional Neural Network and evaluated
against state-of-the-art defenses (i.e. WTF-PAD and Walkie-
Talkie). Results report an accuracy > 98% on undefended
Tor traffic, while reaching > 90% accuracy (resp. 49.7%)
when WTF-PAD (resp. Walkie-Talkie) is employed, with the
attack remaining effective also in an open-world setting.

Moving to pure TC of ATs (based on real-data), He et al.
[19] devise an approach based on Hidden Markov Models
(HMMs) to classify four categories of Tor traffic (P2P, FTP,
IM, and Web). HMMs are employed to build inbound and
output models of the application types considered, and are
fed with features based on burst volumes and directions of
Tor flows, obtaining an accuracy up to 92%. AlSabah et al.
[20] present a ML-based method employing Naive Bayes
(NB), Bayesian Network (BN), functional and logistic model
trees to recognize applications used by Tor users. Both
circuit-level and cell-level information is leveraged for offline
and offline/online classification, respectively. The highest
accuracy achieved in online (resp. offline) case equals 97.8%
(resp. 91%). A similar setup is proposed in [21] for user
activity recognition by means of four classifiers (NB, BN,
RF, and C4.5) fed with traffic-flow and circuit-level features.
Both approaches reach ≈ 100% accuracy, with flow-based
TC being less demanding and based on data that could be
captured anywhere between the user and the Tor’s relay.
Along the same lines, Shahbar and Zincir-Heywood [22] em-
ploy flow-based (statistical) traffic analysis to prove whether
Tor Pluggable Transports (PTs) can evade censorship sys-
tems. Adopting a C4.5 classifier (and based on a thorough
analysis), authors show that Tor PTs usage is recognizable,
as PT-based obfuscation changes the content shape in a
distinct way w.r.t. Tor (i.e. conferring to flows distinctive
fingerprints). The effects of bandwidth sharing on I2P is
analyzed by the same authors in [23] considering both
application and user profiling achievable by an attacker.
Using a C4.5 classifier fed with flow-based features, results
show that users and applications on I2P can be profiled, with
a harmful (resp. beneficial) effect of the shared bandwidth
increase on applications (resp. users) profiling accuracy.

Recently, Shahbar and Zincir-Heywood [24] describe
Anon17 public dataset comprising directional traffic-flows
obtained by collecting data from three ATs (i.e. Tor, I2P, and
JonDonym). Besides, detailed information about the traffic
types and applications running on Tor and I2P is provided
in the form of three-level labels for each flow. Up to our
knowledge, the sole public dataset similar to Anon17 is that
described in [25], containing however only Tor traffic of eight
applications (browsing, audio, chat, mail, P2P, FT, VoIP, and
video). Anon17 dataset is leveraged in [5], where three flat
classifiers (that is, one per level, i.e. Anonymity Network,
Traffic Type, and Application), are employed to perform TC,
also in its “early” variant [26]. In detail, at each level the
performance of five ML classifiers (NB, MNB, BN, C4.5, and
RF) is compared, highlighting insights about the number
and nature of relevant features needed for an accurate TC.
Results show that the anonymity networks (i.e. Tor, I2P,
and JonDonym) can be easily distinguished (up to 99% F-

measure). Differently, the specific application generating the
traffic can be classified with up to 69% F-measure. At both
levels, early TC achieves worse results.

These findings highlight the need for delving into the
problem via successive splits and devising a more sophisti-
cated classification framework for harder classification tasks.

1.2 Summary of Contributions
The main contribution of this paper is a detailed study on
TC of ATs by proposing a general Hierarchical Classification
(HC) framework (see Fig. 1). The novelty of this work has a
two-fold significance: it (i) investigates the unexplored adop-
tion of hierarchical approaches to TC of ATs (as opposed
to existing flat learning approaches) and (ii) overcomes the
limitations of earlier hierarchical proposals dealing with
standard TC. Such framework uniquely suits to encrypted
traffic and naturally allows for both coarsening & narrow-
ing of classification results. Our study includes its design,
implementation, optimization and evaluation.

Specifically, the hierarchical approach resorts to a struc-
ture of (potentially different) classifiers arranged in a tree
fashion, each specialized in labeling a subset of classes.
Such framework exploits the “divide-et-impera” principle,
enabling the partition of workload among several classi-
fiers, almost-naturally enabling a distributed implementa-
tion. Hence, the obtained HC structure grants scalability, en-
ables both per-node tuning and performance analysis, and
supports roll-up and drill-down operations of the results,
which are provided at different levels of detail. Per-node
performance figures also allow to accurately evaluate per-
node behaviors, and allow to identify potential causes of
performance degradation, and thus prove useful in guiding
feedback-driven design improvement. Besided, HC design
supports incremental-update (e.g., only a minor additional
training is required when a new part of the application
traffic is needed, instead of re-training the whole system).
Finally, the proposed architecture allows progressive cen-
soring of “unsure” instances, implementing a per-classifier
reject option via (a set of) independently-tunable thresholds.

The key issue researchers encounter in the collection of
AT traffic datasets and the resulting lack of data publicly
available in this field is herein overcome by leveraging
the recently released Anon17 dataset [24], representing
an important shared workbench for research studies on
anonymity and consisting of a collection of traces gathered
by different ATs, at different granularities: anonymous net-
work, traffic type, and application. Although our HC strategy
is encouraged by the nature of the classification problem de-
fined on this dataset, the underlying HC principle generally
suits to the varying degrees of privacy ensured by a certain
AT, including its identification within “normal” traffic.

The results show that the proposed HC approach proves
to be a very good fit to the problem of classification of
ATs traffic. The HC approach is able to discern among ATs
looking at their encrypted traffic, also when considering
only the features extracted from the first K packets of
each flow (i.e. implementing early TC). Compared to flat
approaches we have recently proposed [5], the hierarchical
framework also provides performance gains at application
level. This result holds both when considering classic per-
formance indexes at macroscopic level (typically adopted
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Figure 1: Sketch of the proposed HC framework.

in the TC literature) and by accurately breaking it down
and evaluating it along multiple facets (i.e. by introducing
metrics able to capture error severity).

The rest of the manuscript is organized as follows: Sec. 2
describes the considered hierarchical TC framework of ATs;
the experimental environment and the corresponding clas-
sification results are reported in Secs. 3 and 4, respectively;
finally, Sec. 5 provides conclusions and future directions.

2 HIERARCHICAL TRAFFIC CLASSIFICATION OF
ANONYMITY TOOLS

In this section we introduce the proposed framework for HC
of AT traffic, as streamlined in Fig. 1, whose main compo-
nents are discussed in the following. In detail, preliminaries
on HC are discussed first, together with a general overview
of the proposed approach (Sec. 2.1). Then, terms and con-
cepts regarding traffic objects are introduced, along with
a description of the feature sets (Sec. 2.2). The dissertation
ends with the classification algorithms (Sec. 2.3) which could
be adopted for AT (hierarchical) traffic analysis.

2.1 Preliminaries and Proposed HC Framework

In what follows we provide HC preliminaries needed to un-
derstand the design choices adopted for the TC framework
here proposed and investigated in the context of TC of ATs.

First, we remark that our classification framework fo-
cuses on classes whose relationship can be summarized in
the form of a tree (each class has one parent class, at most)
with T classification levels and Lt classes to discriminate
from at tth level (whose number increases with the depth),
organized in the corresponding set Lt fi {1, . . . , Lt}.

The tree structure can be explored with three alternative ap-
proaches [27]: (i) top-down approach, i.e. the system employs
a set of local classifiers each tackled to a specific sub-prob-
lem; (ii) big-bang (or global) approach, when a single clas-
sifier copes with the entire class hierarchy (i.e it is trained
by considering the entire class hierarchy at once); (iii) flat
classification approach, ignoring the class relationships at
different levels (solving a classification task at each level of
the hierarchy in an independent fashion), as adopted in [5].

In this paper, we adopt the top-down choice (similarly to [8]).
In this case, for each instance to be classified, the HC frame-
work first predicts its first-level (most generic) class, then it
uses that predicted class to narrow the choices of classes to
be predicted at the second level (i.e. allowed second-level
predicted classes are the children of that predicted at the
first level), and so on. Although errors at a certain class
level could propagate downwards the hierarchy, this choice
promotes the architecture modularity, which is crucial in TC,
as opposed to big-bang and flat classifiers.

Further, three different ways of using the local information
can be employed, mainly differing in their training phase [27]:
(i) Local Classifier per Node (LCN); (ii) Local Classifier per
Level (LCL); (iii) Local Classifier per Parent Node (LCPN).
LCN and LCL consist in training one binary classifier for
each node and a multi-class classifier for each level of
the class hierarchy, respectively. Unluckily, since these two
approaches suffer from class-membership inconsistency and
have higher complexity, in this work we adopt LCPN, that is
widely used in the literature [8, 11] and requires a multi-class
classifier for each parent node in the class hierarchy, trained
to distinguish among its children nodes (usually less than
Lt, with t being node classification level).

Fig. 1 reports a sketch of the proposed HC framework.
We highlight that the indexing of a node reflects the ordered
list of its ancestors (except the root C0), e.g. Cij denotes the
jth L3 classifier having C0 and Ci, as grandparent and par-
ent, respectively. Classifier Cij is in charge of discriminating
from L̄ij < L3 classes, grouped within the set Ωij , based on
the associated prediction probabilities p1, . . . pL̄ij

.
The proposed HC framework is trained by recursively

splitting the training set according to the tree structure.
Specifically, the procedure starts from the root classifier C0

trained using the whole set. On the other hand, each node
concurring to t > 1 level classification uses a training set
corresponding to a subset of Lt, the elements all belonging
to the same class at (t− 1). Reducing the number of classes
per classifier hopefully simplifies the resulting problem and
reduces the error scope of flat classification.

In addition, the proposed framework adopts a
progressive-censoring (viz. non-mandatory leaf node predic-
tion [27]) policy, accomplished by equipping each classifier
node with a “reject option” that censors “unsure” classifica-
tion outcomes at intermediate layers (RO blocks in Fig. 1).
In other words, the reject option forces the classification
process to stop for a given instance when a classifier node
(e.g.Ci,j) does not reach a clear verdict, i.e. when the highest
class prediction probability (e.g. max`=1,...L̄i,j

p`) is below a
threshold (e.g. γij). This design choice—already introduced
and justified in the mobile context in a flat scenario [28]—
here avoids that misclassifications are propagated down-
wards, at the expense of coarser-grained predictions.

By looking at the hierarchy of classifiers reported in
Fig. 1, it is apparent that its naivest implementation re-
sorts to the same classification algorithm and feature set
throughout all the hierarchy. Nonetheless, although HC can
achieve a potential performance gain w.r.t. a flat approach
even in this case (due to the decomposition of the classi-
fication task into sub-problems), the proposed framework
allows for further optimization [27]. Indeed, classification
performance is expected to improve with more refined
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implementations, leveraging a specific selection of features for
classification, and/or using different classification algorithms
at different nodes of the class hierarchy (e.g., chosen from a
pool of classifiers available). This work investigates both
these optimization degrees-of-freedom. In case both the
classifier and the feature set are optimized at each node,
the combinatorial explosion of the resulting optimization
is herein circumvented by a decoupled design resorting to
per-node performance, e.g. selecting the pair corresponding
to the classifier and the number of features ensuring the
highest score for the sub-classification problem the classifier
node is in charge to solve. Nonetheless, we remark that an
optimization based on complete enumeration or alternative
heuristics does not contrast with HC architecture in Fig. 1.

2.2 Traffic Object and Feature Design
The definition of a specific traffic object (also known as
traffic view) determines how raw traffic is segmented into
multiple discrete traffic units [2] which are then labeled by
the classifier. We remark that, although several proposals
exist and have been considered in the (ATs) TC literature,
flows and biflows are the most commonly used traffic ob-
jects [5, 24]. In more detail, a flow is a set of packets with
the same 5-tuple (i.e. source IP, source port, destination IP,
destination port, and transport-level protocol). On the other
hand, a biflow includes both directions of traffic. In other
words, in the latter case, (IP address, port) pairs of
source and destination are interchangeable. Referring to the
hierarchical approach illustrated in Fig. 1, we assume that
all the classifiers in the hierarchy shall operate on a common
TC object, although not restricted to a specific one.

As previously explained, different sets of features (of
different sizes) can be considered to feed the classifiers in the
hierarchical architecture (to achieve accurate TC), as shown
in Fig. 1. For instance, referring to the example in Sec. 2.1,
classifier Cij is assumed to rely on Mij features, collected
in the vector fij . Finally, given a set of features, feature
selection/extraction techniques are adopted to extract only a
subset among them, with the aim of improving further TC
performance, while reducing the computational complexity.

2.3 Classification Algorithms
As in the case of set of features, the proposed HC approach
allows for a different classifier to be employed at each
node (see Fig. 1). Therefore, any ML/DL-based (as ATs
traffic is encrypted) supervised classifier can be adopted. For
example, referring to classifier Cij in the example of Sec. 2.1,
any ML/DL-based classifiers could be used to discriminate
from L̄ij classes within the set Ωij . The sole requirement for
each classifier is to be able to provide its soft-output vector,
required by the censoring mechanism described in Sec. 2.1.

3 EXPERIMENTAL ENVIRONMENT

Hereinafter, we first report the main details of Anon17
dataset and the pre-processing operations carried out on
it (Sec. 3.1); then we discuss the design choices made to
implement the HC system, matching the characteristics of
the dataset (Sec. 3.2); finally, we introduce the performance
metrics employed to evaluate our solution (Sec. 3.3).
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Figure 2: Anon17 Classification Levels: Anonymous network
(L1), Traffic Type (L2) and Application (L3), with total
no. of samples per class and class label at each level.

3.1 Dataset Description

Anon17 was collected in a real-network environment at the
NIMS Lab [24] during 2014–17 and gathers traffic from Tor,
I2P, and JonDonym. The dataset has been labeled leverag-
ing the information provided by the anonymity services
themselves. Indeed, it provides labels at different levels:
(i) Anonymous Network Level (L1 = 3 classes); (ii) Traffic Type
Level (L2 = 7 classes); (iii) and Application Level (L3 = 21
classes). This label organization promotes analyses of ATs
traffic at different levels of granularity, as well as the imple-
mentation of hierarchical approaches, as remarked in Fig. 2.
We point to [24] for obtaining exhaustive information on
Anon17 dataset. In this study, we down-sample to 5% the
most-populated traffic-type classes of the original dataset,
adopting a pre-processing strategy similar to [5], so as to
mitigate class imbalance. This represents a safe choice due
to the high number of samples of “majority” classes.4

According to the above dataset description, we tackle
the problem of classification of ATs traffic assuming that
we are in the presence of AT traffic only, similarly to [5].
The depicted scenario refers to a context where an upstream
classifier has been able to separate AT traffic from clear
or standard-encrypted one (e.g., as shown by [13] for Tor
network). Hence, the aim of the proposed approach is to
assess discrimination of anonymity services and related
applications once this AT traffic has been separated from other
traffic. More generally, the results of our analysis can be
intended as an upper bound on the ATs classification perfor-
mance in the case of an open-world assumption. Indeed, the

4. Experimental results, not shown, have highlighted negligible dif-
ference with the (additional) use of oversampling of “minority” classes.
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use of an upstream classifier would perfectly fit within the
hierarchical approach proposed in this paper, with design
and evaluation of the whole AT-TC system (truly operating
in an open-world scenario) left as future work.

3.2 HC Implementation Choices
Hereinafter, we briefly discuss how the general HC frame-
work described in Sec. 2 is specialized in the case of its
adoption on Anon17 dataset, with the following paragraphs
covering all the different aspects needing specification. HC
framework specialized for classification of Anon17 traffic-
flows has been implemented in Python, leveraging Weka
wrapper and Scikit-learn utilities. A Virtual Machine (OS
Ubuntu Server 16.04) equipped with 32 VCPUs and 64 GB
RAM, running on private OpenStack cloud platform, has
been employed for evaluating the HC framework. Finally,
the code used for the analyses has been made available on
GitHub5 to foster reproducibility of the experiments.

HC Architecture
Based on the nature of the traffic in Anon17 dataset, the TC
here considered is arranged in three levels, corresponding to
anonymity networks, traffic types, and specific applications.
As a whole, the HC framework resorts on one classifier at L1,
two classifiers at L2 and five classifiers at L3.

Traffic Object and Feature Sets
Anonymous traffic contained in Anon17 is split into differ-
ent flows (see Sec. 2.2), by means of the flow-exporting tool
Tranalyzer2 [29], constituting the TC object here employed.
We highlight that the direction of each flow (considered
as a feature) is indicated as “A” or “B” for client-to-server
and vice versa, respectively. We note that the proposed HC
approach could even operate at the packet-level, in principle
(viz. the TC object could be the single packet6). For each
traffic flow, Anon17 provides different sets of features ex-
tracted via Tranalyzer2 [29]. In this work, we consider two
different feature sets, referred hereinafter to as TC_set and
EarlyTC_set. In brief, TC_set capitalizes complete traffic
flows, while EarlyTC_set only relies on the firstK packets
of each flow, thus enabling early TC.7

In detail, TC_set originally refers to 81 per-flow statisti-
cal features. Repeated fields (such as those related to packet
length and packet size) and (initial/final) timestamps have
been removed to avoid overestimated results.8 As a result,
the employed feature set consists of 74 statistics comprising:
(i) flow direction and duration, (ii) packet length (PL) and
inter-arrival time (IAT) statistics (mean, min, max, median,
quartiles, etc.), (iii) TCP9 and IP header-related features
(window size, sequence number, TCP and IP options, etc.),
(iv) number of Tx/Rx bytes and packets, (v) number of
distinct hosts connected to flow source or destination IP

5. https://github.com/NM2/hierarchical-tc-at.
6. Up to our knowledge, there is no work in literature tackling

anonymous TC at this granularity.
7. We highlight that other feature sets (e.g. histograms), leading to

lower performance, have been considered in [5].
8. Timestamp values depend upon the process adopted for collecting

traces, potentially introducing to classification artifacts.
9. TCP-related features have zero-value if the flow leverages UDP as

transport protocol (e.g., I2P network works on both TCP and UDP).

(during its lifetime), (vi) number of concurrent flows sharing
the same (source IP, destination IP) pair (regardless of source
& destination ports).10 Differently, EarlyTC_set is made
of the sequence of pairs (PL, IAT) of the first K packets
of each flow. In the rest of the paper, we will employ
TC_set when referring to standard TC, whereas adoption
of EarlyTC_set will be assumed just for early TC.

Finally, for TC_set features, we consider feature selec-
tion, based on a filtering approach, ranking the elements of
the set based on the relative importance of each feature
(so as to skim the more informative ones), in terms of
mutual information with the class (random) variable, whereas
for EarlyTC_set features, ranking is performed according
to a time-constraint (i.e. only the first K packets are em-
ployed). We remark that, for the TC_set, feature extraction
techniques, such as PCA, could be easily adopted in the
proposed HC framework without any substantial change.

Classification Algorithms

Herein, we consider as potential nodes four different ML-
based classifiers, i.e. the C4.5, the RF, the NB, and the BN.
Indeed, these classifiers have been successfully employed
in several works tackling TC of anonymous traffic [20, 21,
23]. Nonetheless, as the proposed HC framework is general,
other ML (e.g., SVM, Gradient Boosting, etc.) or even DL
classifiers could be adopted with no substantial change.

Specifically, the first two belong to the family of decision
trees, whereas the second two to the Bayesian family. In brief,
C4.5 is an algorithm employed to generate a decision tree
used for classification based on the distribution entropy
concept and trained via a top-down recursive and greedy
procedure, whereas RF is a classifier based on an ensemble
of different decision trees built at training time exploiting
the ideas of “bootstrap aggregating” and random-feature
selection to mitigate overfitting. Differently, NB is a simple
probabilistic classifier that assumes class conditional inde-
pendence of the features, being not the case for real-world
problems, but working well in practice and leading to low
complexity. Such stringent assumption is mitigated by the
BN classifier, modeling dependence relationships between
features and classes usually via a direct acyclic graph. In this
work, for the latter two algorithms we will adopt the vari-
ants shown to perform better in [5], i.e. NB_SD (supervised
discretization is used for numerical features) and BN_TAN
(the dependence model is reduced to a simpler tree).

3.3 Performance Metrics

Performance evaluation process is based on the following
main performance metrics: accuracy, precision (prec), recall
(rec), and specificity (spec). For conciseness, out of the latter
three metrics, we consider the F-measure, F fi (2 · prec ·
rec)/(prec + rec), and the G-mean, G fi

?
rec · spec. Since

these two arise from three metrics defined on a per-class
basis, we employ their arithmetically averaged (viz. macro)
versions. Also, confusion matrices (breaking the results down
by class) are leveraged to provide a representation of the
results of the investigated classification approaches, also

10. We point to the user manual of Tranalyzer2 (https://tranalyzer.
com) for further details about these features.
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highlighting misclassification patterns at fine grain. To de-
tect performance bottlenecks of our HC approach, we also
provide per-node metrics (i.e. not considering classification
errors introduced by upper levels), also deriving useful
guidelines for system design and evaluation.

Considering that in our design each classifier imple-
ments a reject option, we also deepen the impact of this
design choice on performance. In more detail, we investigate
the impact of varying the thresholds (see Sec. 2.1), whose
tuning can be effective to improve classification perfor-
mance trading it off with the reduction of the classified
instances (viz. the ratio of classified instances, CR).

For each considered analysis, our evaluation is based
on a (stratified) ten-fold cross-validation, representing a stable
performance evaluation setup. As a consequence, we report
both the mean and the standard deviation (in the form of
a ±3σ interval, corresponding to 99.7% confidence under
a Gaussian assumption) of each performance measure as a
result of the evaluation on the ten different folds.

4 EXPERIMENTAL EVALUATION

In this section, we show experimental results aimed at
investigating anonymous TC performance via the proposed
hierarchical framework, also when considering early TC.
First, the performance of the proposed approach is analyzed
and compared with the best flat classifier, showing that
the usage of a “naive” hierarchical architecture is able to
introduce non-negligible improvements, being the result
of decomposition in simpler TC sub-tasks. Then, the results
of design improvements are shown, deepening the impact
of both rough- and fine-grained optimization choices—the
former consisting in varying the number of features of the
classifiers (keeping the classifier type fixed) in the hierarchy
with the same increment, while the latter involving changes
to both features and classifier types. Concerning the early-
TC scenario, only final results pertaining to fine-grained
optimization are reported, for brevity. Also, the evaluation
contains finer-grained analyses of the error patterns of these
two different classification “philosophies” along with the
severity of errors (thus leading to interesting conclusions on
the ATs considered). Finally, a first investigation of classi-
fication performance obtained by resorting to progressive
censoring in the hierarchical case is reported, and compared
with the effects of censoring on a flat classifier baseline.

Naive Hierarchical vs. Best Flat Classifier
In Tab. 1 we report the performance of the best flat classifiers
(e.g., the configurations with an optimal number of features
in terms of F-measure) as derived from [5] and resulting
in a RF fed with 50, 35, and 65 features at L1, L2, and L3,
respectively. Performance is reported in terms of accuracy,
F-measure, and G-mean at each classification level.11 Such
optimal setup is compared with a first naive implementation
of our HC approach, obtained by using the best L3 flat
configuration (RF + 65 features) in all the classifier nodes
of the hierarchy. Unsurprisingly, L1 performance metrics
report a score ≥ 99.7%: traffic generated through different

11. “n.d.” points out unavailable performance for flat classifiers at
levels deeper than that considered for classification.

Table 1: Accuracy, F-measure, and G-mean (%) of the best flat
classifier (RF) with {optimal number of features} at each
level compared to naive hierarchical configuration. Re-
sults are in the format avg. (± std.) over 10-folds.
Legend: Best Accuracy (?), F-measure (†), and G-mean (♦) per level.

Classifier Metric L1 L2 L3

Best Flat L1
{50}

Accuracy 99.80±0.03% n.d. n.d.
F-measure 99.80±0.04% n.d. n.d.
G-mean 99.83±0.03% ♦ n.d. n.d.

Best Flat L2
{35}

Accuracy 99.75±0.06% 97.01±0.24% n.d.
F-measure 99.73±0.06% 94.30±0.35% n.d.
G-mean 99.80±0.05% 96.19±0.29% n.d.

Best Flat L3
{65}

Accuracy 99.70±0.06% 96.77±0.24% 73.52±0.40%
F-measure 99.71±0.06% 93.51±0.58% 71.14±1.05%
G-mean 99.79±0.04% 95.71±0.34% 82.73±0.57%

Naive
Hierarchical
{65}

Accuracy 99.81±0.06% ? 97.17±0.24% ? 74.60±0.48% ?
F-measure 99.81±0.06% † 94.43±0.75% † 73.82±1.42% †
G-mean 99.83±0.05% 96.23±0.39% ♦ 84.35±0.74% ♦

anonymity networks is easily distinguishable from each
other, confirming that these tools are designed to provide
anonymity but not to hide the usage of the tool itself.
Also, results show that even a naive hierarchical solution
improves L3 performance (up to +2.68% F-measure)12 w.r.t.
the best L3 flat classifier, and performs on a par in terms
of L1–L2 levels when compared to level-optimized best flat
classifiers. This is due to split of the original TC task (21
classes at L3) into smaller tasks (at most, 5 classes).

Impact of Feature Selection

As a first step towards the optimization of the proposed
approach, we investigate here the performance of the frame-
work when varying the number of features used by each
classifier but considering a common number of features (here de-
noted M ) for each node in the tree, and keeping the classification
algorithm fixed to RF (that is, the best-performing one in the
flat case [5]). We remark that although there is a common M
for all nodes, the specific set of features may differ.

Fig. 3 summarizes the obtained results—with a view
to finding the optimal value M for the entire hierarchy—
also providing a comparison against the three flat classi-
fier counterparts (in terms of F-measure and G-mean, as
accuracy showed similar trends). First, results highlight that
there is no appreciable performance difference among L1–
L3 flat classifiers and the hierarchical approach by looking
at L1 metrics, and only a slight performance improvement
is observed with a high number of features (performance
saturation is observed with at least 10 features) is achieved.
On the other hand, at L2 slightly higher performance are
obtained by the hierarchical approach with a lower num-
ber of employed features per node (approximately 10–20),
whereas at L3 (being the harder task) the following key
observations can be made: (i) the hierarchical approach
provides a non-negligible improvement over the L3 flat clas-
sifier for all the range considered, (ii) the best performance
of the HC is attained with a smaller number of features.
These considerations apply to both F-measure and G-mean.
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(f) L3 - Application.

Figure 3: F-measure (a–c) and G-mean (d–f) [%] of hierarchical and flat classifiers: RF fed with different subsets of features in
TC_set (from 5 to 74 with increments of 5). Average on 10-folds and corresponding ±3σ confidence interval are shown.

Fine-grained Optimization
Herein the fine-grained framework optimization, in case
of features from TC_set, is discussed. In detail, with the
aim of trading off design complexity with performance, we
remove the constraints previously introduced, and allow each
node in the hierarchy to be optimized in terms of both the
number of features and the classifier type. As remarked in
Sec. 3.2, we consider four different ML-based classifiers
(C4.5, RF, NB_SD and BN_TAN). We remark that, to avoid
a combinatorial explosion of the optimization problem, we
resort to the per-node optimization rationale described in
Sec. 2.1. Based on the above rationale, in Fig. 4 we report
the classification performance in terms of accuracy (Fig. 4a),
F-measure (Fig. 4b) and G-mean (Fig. 4c), by comparing the
flat classification approaches with the per-node optimized
hierarchical classifier. The proposed (optimized) hierarchical
classifier is able, at least, to perform at tth (t = 1, 2, 3)
level as well as the corresponding flat classifier explicitly
designed to solve the classification task of the same level.
In detail, such optimized hierarchical approach is able to
achieve 99.81% (resp. 99.83%), 95.81% (resp. 97.44%) and
75.56% (resp. 85.89%) F-measure (resp. G-mean) score at
L1, L2, and L3, respectively. These results (almost) represent
a tie at L1, whereas +1.51% (resp. +1.73%) and +4.42%
(resp. +3.16%) gains are experienced at L2 and L3, respec-
tively.13 The details of optimized HC are reported in Fig. 5a,
where for each classifier node the employed classifier and
the number of features are reported. Remarkably, RF de-
notes the best classifier for each node-specific classification
task, while only for the classifier of Tor App applications
BN_TAN provides higher performance. Instead, the vari-

12. Also, from a statistical significance viewpoint, we observed a gain
of HC approach in 100% of the cases over the considered folds.

13. Also, from a statistical significance viewpoint, we observed a gain
of HC approach in 97.5% of the cases over the considered folds.

ability of the optimal number of features underlines no clear
trend, except that usually I2P-related node classifiers require
a lower number of features, at least when leveraging those
in TC_set.

Optimization for Early TC

Herein we evaluate the hierarchical framework when the
classifiers are fed with features in EarlyTC_set (see
Sec. 3.2), i.e. considering PLs and IATs of the first K =
1, . . . , 16 (non-zero payload) packets. This analysis helps
assessing the framework capability in supporting early TC,
i.e. to evaluate how soon and to which degree ATs and
related services can be identified. To this end, we have
paralleled the previous investigations in the early-TC sce-
nario. Nonetheless, herein we omit the details for brevity,
and comment only the final results. We remark that the
main difference with the previous analysis concerns the feature
selection process, herein performed on a time-basis (i.e. only
the features drawn from the first K packets are considered).

First, results show that a naive hierarchical “extension”
of best flat L3 classifier (in this case a BN_TAN with K = 11
packets) is not able to provide improved performance (e.g.
48.80% F-measure at L3, as opposed to 50.23% in the flat
case). This result highlights a key difference with respect to
the scenario leveraging TC_set and emphasizes the need
for hierarchical-specific optimization in such case. Secondly, we
investigate (as in Fig. 3) how varying the features corre-
sponding to the first K packets could improve the perfor-
mance of the naive hierarchical extension, and compare it
with the best flat counterpart. Our investigations reveal that
a performance saturation is observed after ≈ 10 packets,
and that the HC approach is able to improve best flat L3
approach in terms of G-mean, whereas an F-measure drop
is observed for all values of K considered. Finally, fine-
grained optimization (see Figs. 4d, 4e, and 4f) provides
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Figure 4: Accuracy (a), F-measure (b) and G-mean (c) of the best classifiers and of their early-TC counterparts (d, e, and f). Average
on 10-folds and corresponding ±3σ confidence interval are shown.

higher performance with respect to the optimized flat case,
e.g., +1.71% F-measure and +1.59% G-mean at L3.14

The corresponding optimized hierarchical structure is
shown in Fig. 5b and—when compared to Fig. 5a—clearly
shows that per-node optimized classifiers significantly differ
in type and number of features, thus motivating the need for
fine-tuned optimization of the proposed HC. Although the
HC gain is not significant, its operating principle allows to
delve into the “information structure” of the TC problem
and highlight critical points, by excluding potential perfor-
mance drops due to the size of the classification task, as
shown by the following per-node performance analysis.

Per-node Detailed Classification Performance
For completeness, we report in Figs. 5c and 5d the de-
tailed per-node classification performance, corresponding to
TC_set and EarlyTC_set, respectively.

The following interesting observations can be made
on the reported tree representation. First, with respect to
Anonymous Network Level classification (L1) nodes present
near-ideal performance both when relying on TC_set and
EarlyTC_set, thus showing (almost) no errors propagat-
ing from HC of ATs. Secondly, at Traffic Type Level (L2)
both approaches based on TC_set and EarlyTC_set
present near-ideal performance in classifying Tor traffic
types, whereas some performance degradation is observed
in classification of I2P traffic types; this phenomenon is more
penalizing in the early-TC case, e.g., with I2P F-measure
dropping down to 60.61%. This represents one of the main
causes of performance difference among the two scenarios,
as all these errors are propagated downwards. Finally, at Appli-
cation Level (L3), the behavior of the classifier nodes is more
varied. Indeed, referring to approach based on TC_set, it

14. Also, from a statistical significance viewpoint, we observed a gain
of HC approach in 90.0% of the cases over the considered folds.

is apparent that Tor nodes (TorApp and TorPT) work well,
whereas on I2P nodes significant degradations (higher than
those at L2) are observed, with I2PApp80BW the most signif-
icant. Differently, discrimination within each I2P traffic type
and TorApp is only possible with < 65% F-measure with
features in EarlyTC_set. Therefore, classification within
I2PApp80BW cannot be accurately attained with neither of
the considered feature sets (confirming the intuition that
I2PApp80BW represents traffic obtained by mixing different
apps), and the advantage of the classification task split into
sub-problems cannot exceed a certain threshold in this case,
due to the impossibility of discerning applications within
this traffic type, resorting to the set of the available features.

Per-Class Performance Breakdown
Since classification at L3 is a challenging task (but also
the most interesting from a user’s privacy perspective), we
report in Fig. 6 the per-class performance breakdown of HC
results in terms of confusion matrices at L3, comparing them
against results obtained with flat approach. We recall that
for these matrices the higher the concentration toward the
main diagonal, the better the overall performance. Further,
to highlight how errors at L3 which do not imply misclassi-
fications at L1/L2 are less severe and should be promoted as
opposed to the others, in the same figures we also highlight
the error patterns corresponding to the same traffic type
(solid boxes) and the same AT (dashed boxes).

First, comparing flat and hierarchical approaches
(Figs. 6a and 6b, respectively), we can observe a reduction
of error-patterns in the latter case, highlighting the benefi-
cial “divide-et-impera” principle of HC. Secondly, confu-
sion matrices at L1 (dashed boxes) show that classifiers
based on both approaches (with different quantitative out-
comes) present error patterns which almost entirely lead
to a misclassification of the traffic type within the same
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(b) Fine-grained optimized hierarchical structure with EarlyTC_set.

Classifier #Classes Accuracy F-measure G-mean

C0 → 1 L1 = 3 99.81 (± 0.06) 99.81 (± 0.06) 99.83 (± 0.05)
C1 → 2 L1 = 3 99.97 (± 0.04) 99.91 (± 0.20) 99.97 (± 0.04)
C2 → 3 L2 = 3 95.05 (± 0.29) 91.53 (± 1.06) 93.29 (± 0.79)
C11 → 4 L11 = 3 99.58 (± 1.25) 99.58 (± 1.25) 99.69 (± 0.94)
C12 → 5 L12 = 5 99.72 (± 0.12) 99.44 (± 0.21) 99.63 (± 0.14)
C21 → 6 L21 = 3 72.42 (± 1.32) 58.43 (± 1.63) 69.00 (± 1.26)
C22 → 7 L22 = 3 48.94 (± 0.51) 48.90 (± 0.52) 60.37 (± 0.42)
C23 → 8 L23 = 5 75.12 (± 5.95) 72.50 (± 6.99) 81.68 (± 4.58)

(c) Performance metrics with TC_set.

Classifier #Classes Accuracy F-measure G-mean

C0 → 1 L1 = 3 99.80 (± 0.05) 99.78 (± 0.06) 99.87 (± 0.04)
C1 → 2 L1 = 3 99.20 (± 0.12) 90.48 (± 1.61) 94.82 (± 1.27)
C2 → 3 L2 = 3 72.20 (± 0.81) 60.61 (± 1.70) 66.85 (± 1.02)
C11 → 4 L11 = 3 63.42 (± 4.92) 63.27 (± 4.92) 72.01 (± 3.85)
C12 → 5 L12 = 5 99.69 (± 0.07) 99.55 (± 0.18) 99.63 (± 0.13)
C21 → 6 L21 = 3 67.37 (± 0.81) 44.56 (± 1.45) 56.38 (± 0.97)
C22 → 7 L22 = 3 43.47 (± 0.75) 43.13 (± 0.72) 55.76 (± 0.63)
C23 → 8 L23 = 5 50.67 (± 9.21) 37.75 (± 11.24) 58.04 (± 7.81)

(d) Performance metrics with with EarlyTC_set.

Figure 5: Fine-grained optimized hierarchical structure with (a) TC_set and (b) EarlyTC_set. Optimal number of features for
each classifier (node) is shown in square brackets. Lighter colors point to worse performance. Related per-node metrics
are shown in (c) and (d), respectively (with < 60% F-measure nodes highlighted in gray).
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(a) Flat TC applied to L3.
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(b) Hierarchical TC at L3.
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(c) Flat early TC applied to L3.
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(d) Hierarchical early TC at L3.

Figure 6: L3 Confusion matrices ([%] in log scale) of best flat and hierarchical classifiers in standard TC (red) and early TC (blue).

anonymous network. Differently, referring to L2 standpoint
(solid boxes), HC provides improved capabilities in confining
errors to the same traffic type (especially in the case of I2P
traffic). A similar consideration applies to early TC results
(Figs. 6c and 6d) and, in particular, to errors concerning the
applications of I2P Apps and Tor Apps. Hence HC approach
performance clearly highlights the inability, not depending on
the size of the classification task, in satisfactorily discriminating
(with an early TC setup in mind) among I2P traffic types and
within their corresponding applications, along with those in
Tor Apps. On the other hand, results confirm the outcomes
of [30], witnessing that obfuscation implemented by Tor
Pluggable Transports induces a class fingerprint easily
distinguishable (≥ 99% accuracy, see C2 classifier in Fig. 5)
from both Normal Tor Traffic and Tor Apps.

Performance with Reject Option
Finally, in Fig. 7 we focus on the adoption of censoring
threshold(s) for flat classification and HC of ATs. Specif-
ically, we report L3 performance, being the hardest task

considered. We recall that, although in the flat case there
is only a single tunable γ (referred to as FC3), HC allows to
set a different threshold value at each node (e.g. for Cij the
threshold γij can be adjusted independently from the others,
see Sec. 2.1). Nonetheless, as a preliminary investigation
toward the censored behavior of HC approach—to avoid
cumbersome analyses—we consider two simplified options:
considering only a common γ value shared by (a) by all the
nodes in the hierarchy (HCall) and (b) solely by the classifier
nodes concurring to L3 classification (HC3). Accordingly,
we report the F-measure vs. γ (similar trends have been
observed for other metrics) along with the corresponding
trend of the ratio of classified samples (CR).

Although using such thresholds cannot be intended as
a panacea able to cope with high-confidence wrong predic-
tions, results pertaining to the adoption of TC_set show
performance improvement with increasing γ. In detail, both
hierarchical variants offer performance gain with higher CR
(less discarded flows) w.r.t. FC3 (e.g. ≈ 80% F-measure
is attained with ≈ 80% CR), with HCall having slightly
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Figure 7: F-measures and Classified Ratios (CR) of best classifiers vs. γ.

improved performance (while incurring in a slightly higher
CR, due to the presence of non-zero thresholds for nodes
at higher levels in the hierarchy). On the other hand, in
the early-TC scenario, the CR is lower for hierarchical
approaches, while HCall provides slightly improved per-
formance than FC3, whose performance do not benefit
from a γ increase. Nonetheless, such results underline how
progressive censoring via per-node thresholds may be a
viable option for further performance improvement.

5 CONCLUSIONS AND FURTHER DIRECTIONS

In this paper, we tackled TC of Tor, I2P, and JonDonym via
a hierarchical approach that, beyond classification perfor-
mance gains, carries by design several advantages in terms of
modularity, training efficiency, distributed deployment, and
“tunable view” of classification outputs. In detail, the pro-
posed framework was designed with varying constraints,
resulting in implementations with different degrees of com-
plexity (in terms of classifiers, features, and reject option).

Our experimental analysis—carried on the Anon17 pub-
lic dataset—allowed reasoning on which degree ATs traffic
can be told apart, considering different granularities such as
the anonymity network adopted (L1), the traffic type tunneled
in the network (L2), and the application category generating
such traffic (L3). Moving from naive to fine-grain opti-
mized implementations for the hierarchical classifier, results
at different granularities highlighted how HC guarantees
interesting performance gains, especially at the finest level
(L3). More specifically, applications were classified with up
to 75.56% F-measure, obtaining a gain of up to +4.5% with
respect to an optimized flat implementation [5].

Further, it was proved that these errors can be mitigated
further with outcome censoring mechanisms (avoiding error
propagation), e.g. by discarding ≈ 20% of classified flows,
the proposed approach is able to guarantee ≈ 80% F-
measure. Also, per-node and per-class performance evalua-
tion allowed to delve into misclassification patterns and
their severity, proving that HC approach better confines mis-
classifications in the same AT and even the same traffic type.
These evaluations witnessed the appeal and effectiveness
of HC framework also in real environments and provided
insights in identifying performance bottlenecks which lie
on a very limited set of nodes in the hierarchy. Specifically,
applications running within I2P correspond to the hardest to
be classified each other, thus confirming the common thinking
that such AT provides a higher privacy level (from TC
viewpoint) w.r.t. Tor, at the expenses of increased latency.

The proposed HC framework suggests the following fu-
ture directions: (i) use of sophisticated nodes and alternative

hierarchical approaches; (ii) advanced HC optimization, e.g.
automatic computation of reject thresholds possibly differ-
ing at each node; (iii) hierarchical architectures having nodes
operating with different TC objects and with applications ar-
ranged in “multi-view” structures; (iv) HC implementation
in the community-oriented TC platform TIE [31], allowing
live (anonymous and not) traffic evaluation.
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