
Machine and Deep Learning Approaches
for IoT Attack Classification

Alfredo Nascita, Francesco Cerasuolo, Davide Di Monda,
Jonas Thern Aberia Garcia, Antonio Montieri, Antonio Pescapè

University of Napoli “Federico II” (Italy)
alfredo.nascita@unina.it, {fran.cerasuolo, dav.dimonda, j.garcia}@studenti.unina.it, {antonio.montieri, pescape}@unina.it

Abstract—In recent years, Internet of Things (IoT) traffic has
increased dramatically and is expected to grow further in the
next future. Because of their vulnerabilities, IoT devices are
often the target of cyber-attacks with dramatic consequences.
For this reason, there is a strong need for powerful tools to
guarantee a good level of security in IoT networks. Machine
and deep learning approaches promise good performance for
such a complex task. In this work, we employ state-of-art traffic
classifiers based on deep learning and assess their effectiveness
in accomplishing IoT attack classification. We aim to recognize
different attack classes and distinguish them from benign net-
work traffic. In more detail, we utilize effective and unbiased
input data that allow fast (i.e. “early”) detection of anomalies
and we compare performance with that of traditional (i.e. “post-
mortem”) machine learning classifiers. The experimental results
highlight the need for advanced deep learning architectures fed
with input data specifically tailored and designed for IoT attack
classification. Furthermore, we perform an occlusion analysis to
assess the influence on the performance of some network layer
fields and the possible bias they may introduce.

Index Terms—Internet of Things, Machine Learning, Deep
Learning, Network Security, Attack Classification.

I. INTRODUCTION

The Internet of Things (IoT) is experiencing an extraordi-
nary growth and is currently applied in a variety of domains.
The number of connected devices is growing every day and it
is estimated to reach 30.9 billion by 2025.1 This phenomenon
has led to a rapid increase in traffic generated in IoT networks.
Despite their widespread use, IoT devices still expose severe
vulnerabilities, including—to name a few—unprotected net-
work services, lack of encryption or access control, and insuf-
ficient protection for sensitive data. Consequently, the number
of attacks against IoT devices is growing at a rapid pace, and
there is an urgent need for tools capable of recognizing attacks
to properly react and enforce countermeasures.

In this context, intrusion detection systems are of paramount
importance as they are used to monitor network devices
and determine whether they are source or target of attacks.
Various techniques have been developed to identify cyber-
attacks and, nowadays, a large number of tools increasingly
leverage Machine Learning (ML) and Deep Learning (DL)
approaches to be more effective and efficient.

Going into details, this work focuses on Attack Classifi-
cation (AC), a process aiming at simultaneously modeling

1IoT connected devices worldwide from 2010 to 2025 - www.statista.com.

malicious and legitimate behaviors as a multi-class classi-
fication task. In other words, we aim to infer the specific
attack and distinguish malicious from benign network traffic.
In fact, while Traffic Classification (TC) is a well-established
task, paramount to most management and planning actions,
an assessment of modern classification approaches based on
ML and DL for performing AC is still an open problem,
above all in IoT networks constituting a scenario challenged
by aforementioned specific characteristics of IoT devices.

In view of these considerations, in the present work, we
apply advanced ML and DL approaches for AC in IoT net-
works. The study is carried out on the recently-published IOT-
23 dataset [1], encompassing the traffic generated with both
infected and legitimate real-hardware IoT devices. The specific
contributions are summarized hereinafter. (a) We categorize
the state-of-the-art in ML/DL-based AC toward its effective
application in IoT networks, providing also a taxonomy of
the most-related literature. (b) We perform preprocessing
operations on the IOT-23 dataset to mitigate class imbalance
and extract unbiased input data; starting from criteria derived
from ML/DL-based TC [2], we design and extract effective
input for AC based on the nature of malicious traffic analyzed.
(c) We assess the performance of state-of-the-art advanced
DL architectures borrowed from TC and first shifted to AC
domain (an 1D-CNN, a hybrid 2D-CNN+LSTM, and the
multimodal architecture MIMETIC [3]), and compare them
with traditional ML algorithms including both simple and
ensemble methods. (d) We perform an occlusion analysis
to understand the reasons behind deep models’ working and
to particularly evaluate the possible bias introduced when
considering input data extracted at network layer.

II. RELATED WORK

The present section summarizes the most related works
facing Anomaly Detection (AD) and AC via ML- and DL-
based traffic classifiers. Specifically, we consider recent papers
published in the last five years and categorize them by
highlighting the key aspects of each work as reported in Tab. I.
Firstly, we consider only papers facing AD (i.e. a binary
task: benign vs. malicious), AC (i.e. a multi-classification task:
identification of the specific malicious attack), or both tasks
via DL approaches or exploiting the IoT-23 dataset [1].

On the other hand, regarding the works using datasets
different than IoT-23, we can notice that most of the less

TABLE I
RELATED WORKS USING MACHINE AND DEEP LEARNING APPROACHES FOR ANOMALY DETECTION AND ATTACK CLASSIFICATION. THE PAPERS ARE

ORDERED BY YEAR. THE LAST ROW SUMMARIZES THE PRESENT WORK. ACRONYMS MEANING IS REPORTED AT THE BOTTOM OF THE TABLE.

Ref Year Dataset Task TO DL MM Raw Input Data Technique

[4] 2017 NSL-KDD AD&AC B # # Flow-based statistics RNN
[5] 2018 NSL-KDD AD&AC B # # Flow-based statistics DNN
[6] 2018 NSL-KDD AD&AC B # # Flow-based statistics CNN

[7] 2018 NSL-KDD,
KDD-Cup-99 AC B # # Flow-based statistics NDAE

[8] 2019 Bot-IoT AD B # # Flow-based statistics SVM, RNN,
LSTM

[9] 2019
KDD-Cup-99, NSL-KDD,
UNSW-NB15, Kyoto 2006+,
WSN-DS, CICIDS2017, ADFA

AD&AC B # # Flow-based statistics
DNN, LR, NB,
KNN, DT, AB,
RF, SVM

[10] 2019 NSL-KDD, UNSW-NB15,
CICIDS2017 AD&AC B # Flow-based statistics MDAE, LSTM,

DNN, NB, SVM

[11] 2020 Bot-IoT,
CSE-CIC-IDS2018 AD&AC B # # Flow-based statistics

DNN, RNN, CNN, RF,
NB, SVM, MLP, RBM,
DBN, DBM, DAE

[12] 2020 UNSW-NB15,
CICIDS2017 AD&AC B G# # # Flow-based statistics

LR, SVM, DT,
RF, MLP, KNN,
BG, BS, ST

[13] 2020 IoT-23 AD B # # Flow-based statistics LSTM+RNN
[14] 2020 Bot-IoT AD&AC B G# Biflow/packet-based L3/L4 fields M2-DAE
[15] 2021 ToN IoT, IoT-23 AC B G# # G# Flow-based features BS, RF, MLP

[16] 2021 IoT-23 AD B # # Time window-based statistics TFNN,
DT, RF, AB

[17] 2021 IoT-23 AD&AC B # # Flow-based statistics 2D-CNN+LSTM

[18] 2021 NSS Mirai
IoT-23 (Mirai) AC F # # G# Flow-based features FIM, KNN,

RF, SVM

[19] 2021 Bot-IoT, IoT Network Intrusion,
MQTT-IoT-IDS2020, IoT-23 AD&AC B # # Flow-based statistics 1D-CNN, 2D-CNN,

3D-CNN

This work 2021 IoT-23 AC B L4/L2 unbiased payload
Per-packet header fields

MIMETIC, 1D-CNN,
2D-CNN+LSTM,
NB, DT, RF, BG

Task: Anomaly Detection (AD), Attack Classification (AC). TO: Traffic Object: Biflow (B), Flow (F). DL: Deep Learning. MM: Multimodal. Raw: Raw input
data. Technique: AdaBoost (AB), Bagging Classifier (BG), Boosting Classifier (BS), Convolutional Neural Network (CNN), Deep AutoEncoder (DAE), Deep
Boltzmann Machine (DBM), Deep Belief Network (DBN), Deep Neural Network (DNN), Decision Tree (DT), Frequent Itemset Mining (FIM), KNN (K-Nearest
Neighbors), Linear Regressor (LR), Long Short-Term Memory (LSTM), Multimodal Deep AutoEncoder (MDAE, M2-DAE), MultiLayer Perceptron (MLP), Naı̈ve
Bayes (NB), Non Symmetric Deep AutoEncoder (NDAE), Random Forest (RF), Recurrent Neural Network (RNN), Restricted Boltzmann Machine (RBM), Stacked
Denoising AutoEncoder (SDAE), Stacking Classifier (ST), Support Vector Machine (SVM), Transformer-based Neural Network (TFNN).
“+” symbol indicates hybrid architectures; present, # lacking, G# partial.

recent ones [4, 5, 6, 7, 9] leverage KDD-Cup-99 or NSL-
KDD. Unfortunately, such datasets hardly exhibit a current
real-world network traffic profile, particularly considering that
they were collected more than two decades ago. Moreover,
despite the higher number of statistical features provided by
the refined NSL-KDD dataset with respect to KDD-Cup-99,
the use of such handcrafted statistics nullifies a key advantage
of DL, that is the automatic extraction of knowledge from raw
traffic data without the need of human-expert intervention.

Consequently, we explicitly flag when DL architectures
are effectively fed (also partially) with raw input data. In
more detail, with the exception of recent works [14, 15, 18]
extracting different engineered input data fields—including
not only flow-based statistics, but also features related to con-
nection metadata, attack-stage activities, higher-layer protocol
behaviors, etc.—from raw PCAP traces, we can notice that all
the other works counter-productively apply DL to manually-
extracted traffic statistics. Interestingly, in addition to those
leveraging already preprocessed datasets (e.g., KDD-Cup-99,
NSL-KDD, Kyoto 2006+, WSN-DS, see [9] for details), most
works manually extract statistics on the sets of packet/payload
lengths, inter-arrival times, etc. from raw traffic via tools such

as CICFlowMeter2 or Zeek3. Furthermore, the choice of using
input data encompassing PCAP metadata (e.g., timestamps
or ad-hoc IDs) or biased fields (e.g., local IP addresses or
source/destination ports) is likely to introduce bias inflat-
ing AC performance [2]. Regarding the traffic segmentation
adopted, we observe that flows and especially bidirectional
flows (briefly biflows) are the most-common choices as traffic
objects. On the contrary, referring to the specific AC tech-
nique applied, several types of DL algorithms are leveraged,
including Deep Neural Networks (DNNs), different AutoEn-
coders (AEs), both 1D-, 2D-, and 3D-Convolutional Neural
Networks (CNNs), and variants of Recurrent Neural Networks
(RNNs) as Long Short-Term Memory (LSTM). In addition to
our, only two other papers [13, 17] exploit the composition
capabilities of hybrid DL architectures. We also underline
that, in Tab. I, we have partially flagged the DL column
for the works [9, 15] that employ MultiLayer Perceptron
(MLP) without specifying if in the deep or shallow variant.
Additionally, several ML approaches are commonly used as

2https://github.com/CanadianInstituteForCybersecurity/CICFlowMeter
3https://zeek.org/

baselines for comparison, usually showing poorer performance
than DL ones. They include both single ML classifiers (e.g.,
Naı̈ve Bayes and Decision Tree) and ensembles (e.g., Random
Forest and AdaBoost).

Finally, we can notice that, with the exception of the
works [10, 14] both using a variant of the MultiModal Deep
AutoEncoder (MDAE), the present work is the only one
that investigates the performance of a state-of-art multimodal
(MM) architecture [3] for AC and compare its performance
against both single-modal DL proposals and ML algorithms
(single and ensembles). Moreover, the present work uniquely
considers different types of unbiased raw input data (cf.
Sec. III) for feeding such DL architectures and also conducts
a careful occlusion analysis to evaluate the potential bias
introduced by input data pertaining to layers lower than L4.

III. EXPERIMENTAL SETUP

A. Deep Learning-based Attack Classification

In this work, we aim to perform traffic classification of
attacks conducted against IoT devices, briefly AC. Formally,
given a traffic object [2], namely an aggregation of traffic
packets sharing common proprieties, AC consists in assigning
a label among L classes (each corresponding to benign traffic
or to a specific attack) within the set {1, · · · , L}. To this aim,
we leverage state-of-art traffic classifiers based on both single-
modal and multimodal DL architectures [2, 3], ensuring that
they are fed with unbiased input data, which do not inflate
performance and then do not lead to misleading outcomes.

In more detail, we exploit a single-modal 1D-CNN having
a base architecture (i.e. layers and related hyperparameters) as
that proposed in [20]. For each traffic object, we feed the 1D-
CNN with the first Nb bytes of transport-layer payload (PAY)
or of network-layer header and payload (NET) after removing
biased fields (see Sec. IV-C). PAY and NET input types are
arranged in a byte-wise fashion and normalized within [0, 1].

Additionally, we consider a single-modal hybrid architecture
based on a combination of 2D-convolutional and LSTM layers
(named HYBRID hereinafter) [21]. HYBRID has as input
M informative unbiased fields extracted from the header of
the first Np packets (HDR) of each traffic object. Based on
suggestions of previous works [2, 21], we extract the following
per-packet header fields: (i) the number of bytes in transport-
layer payload, (ii) the direction ∈ {−1, 1}, (iii) the TCP
windows size (equal to 0 for UDP packets), (iv) the time
elapsed since the arrival of previous packet (i.e. the inter-
arrival time), (v) the time-to-live (TTL), and (vi) the TCP
flags (as a six-bit vector denoting the presence (1) or absence
(0) of each flag). HDR input type is scaled with a quantile
transformer to follow a uniform distribution that spreads out
the most frequent values and reduces the impact of outliers.

Finally, we employ the multimodal traffic classifier (named
MIMETIC) we have recently proposed in [3] to capitalize the
intrinsic heterogeneity of traffic data via the intermediate fu-
sion of highly-structured features extracted via DL. MIMETIC
consists of two branches each corresponding to a different
input modality: a 1D-convolutional branch fed with PAY/NET

input type and a branch based on a bidirectional Gated Recur-
rent Unit fed with HDR input type. The intermediate features
extracted by each branch are then concatenated and further
elaborated via a shared dense layer. MIMETIC is trained via
a two-phase procedure consisting of pre-training of individual
modalities and fine-tuning of the whole architecture.

All DL-based classifiers are completed with a softmax (i.e.
a dense layer with L nodes and softmax activation) and are
trained for a total of 90 epochs (for MIMETIC, we consider
25 epochs for pre-training of each modality and 40 epochs
for fine-tuning) to minimize categorical cross-entropy loss.
Also, we leverage the Adam optimizer (with batch size of
32 for single-modal classifiers and of 128 for MIMETIC) and
the early-stopping technique (with patience of 15 epochs and
minimum delta of 0.01) to prevent overfitting. In case the
instances are longer or shorter than the considered fixed-length
input data (i.e. Nb or Np), to constrain them to the designed
length, we truncate or pad with zeros, respectively.4

Furthermore, we consider as baselines ML-based traffic
classifiers fed with 70 handcrafted biflow-based features,
namely the number of packets, the packet rate, and statistics
(i.e. min, max, mean, standard deviation, variance, mean abso-
lute deviation, skewness, kurtosis, and percentiles) computed
on the set of packet lengths, inter-arrival times, TTLs, and
TCP window sizes. We evaluate four state-of-art ML-based
classifiers: (i) Gaussian Naı̈ve Bayes (NB), (ii) Decision Tree
(DT, with max depth of 16 and entropy feature-split criterion),
(iii) Random Forest (RF, with 200 estimators and entropy
feature-split criterion) and (iv) Bagging classifier (BG, with
100 DT estimators). For completeness, we have also evaluated
three feature selection techniques (i.e. Recursive Features
Elimination without and with Cross-Validation and Sequential
Features Selection) without finding appreciable differences.5

Therefore, in the following, we employ the aforementioned
feature set without further modifications. Finally, we underline
that such approaches are applicable only in “post-mortem”
AC, as opposed to all DL classifiers employed that are fed
with input types which are naturally suited for “early” AC.

B. Dataset Description and Preprocessing Operations

We employ the IOT-23 dataset [1] collected at the Strato-
sphere Laboratory of the Czech Technical University between
2018 and 2019. Overall, IOT-23 encompasses 23 traffic traces
(i.e. PCAP files named scenarios) captured within a controlled
IoT network environment with unrestrained network connec-
tion: 20 traces are related to malicious traffic and 3 to benign
traffic. In more detail, each scenario corresponds to a specific
malware sample or to benign traffic. A Raspberry Pi infected
with a certain malware generates malicious traffic, while the
3 benign scenarios are generated each with a different real-
hardware IoT device: a Philips HUE Smart Led Lamp, an

4To distinguish actual from padded zeros, we add 1 to all bytes of PAY/NET
input before normalization (by dividing each byte by 256) and zero-padding.

5We use a validation set (20% of training set) for parameter tuning
and feature selection, while we consider Scikit-learn (https://scikit-learn.org/)
default values for parameters not explicitly mentioned before.

10 100 1000 10000 100000
Number of Biflows

PartOfAHorizontalPortScan
Okiru

Benign
DDoS

C&C-HeartBeat
C&C

Attack
C&C-PartOfAHorizontalPortScan

C&C-HeartBeat-Attack
C&C-FileDownload

C&C-Torii
FileDownload

C&C-HeartBeat-FileDownload

Fig. 1. Number of per-class biflows (in log scale) of preprocessed IOT-23
dataset. For details on label meaning, please refer to [1].

Amazon Echo Home, and a Somfy Smart Doorlock. IOT-23
authors have manually analyzed each PCAP file and defined
a set of handcrafted rules to label Zeek biflows. Specifically,
the labels describe the relation between malicious flows and
malicious activities performed, while non-malicious traffic is
labeled as “benign”. For brevity, we refer to IOT-23 web-
site [1] for the details on the labels used for malicious traffic.

To exploit the biflow-level labels provided with the IOT-23
dataset, we parse the raw PCAP files and aggregate packets
into biflows6 thus being our traffic objects. It is worth noting
that this is also the most common choice of the vast majority
of state-of-art works tacking AC or AD (cf. Tab. I).

IOT-23 exhibits a class imbalance problem, with the four
most highly-populated classes having more than 15M biflows
(compared with other ones having no more than 40k samples),
while three minority classes present less than 10 biflows.
Therefore, based on such per-class occurrences, we have
randomly down-sampled (without replacement) the following
classes to the 0.25% of the original dataset7: (i) PartOfAHor-
izontalPortScan, (ii) Okiru, (iii) DDoS, and (iv) Benign. On
the other hand, we have removed the classes whose number
of biflows is less than 10: (i) C&C-Mirai, (ii) Okiru-Attack,
and (iii) PartOfHorizontalPortScan-Attack. Overall, employed
dataset contains 870.6k biflows. Figure 1 shows their distribu-
tion among the 13 final classes. We underline that—although
preprocessing operations guarantee a sufficient number of
biflows for each class and reduce the computational burden—
given the unbalanced per-class share of samples, such a dataset
represents a realistic and challenging evaluation testbed.

IV. EXPERIMENTAL EVALUATION

Our evaluation is based on a stratified hold-out technique:
we split the dataset into training (75%) and test (25%) sets.
Performance is evaluated in terms of accuracy (the ratio
of correctly classified samples), macro (i.e. arithmetically-
averaged over classes) F-measure, and macro G-mean.8

6A bidirectional flow or biflow is defined as a stream of packets sharing
the same quintuple (i.e. transport-level protocol, source and destination IP
addresses and ports) regardless the direction of communication.

7We have chosen to down-sample the whole dataset, as opposed to the sole
training set, since the latter choice would have biased the overall accuracy
(evaluated on the test set) toward the performance of the majority classes.

8F-measure is the harmonic mean of precision (the per-class ratio of
decisions being correct) and recall (the class-conditional accuracy), while G-
mean is the geometric mean of recall and specificity (the fraction of per-class
actual negatives correctly classified as such).

256 576 784 1024 2048
#bytes

20

40

60

%

Accuracy F-measure G-Mean # TP

0
500
1000
1500
2000

#T
P

[k
]

(a) 1D-CNN.

8 12 16 20 32 64
#packets

20
40
60
80

100

%

Accuracy F-measure G-Mean # TP

0
500
1000
1500

#T
P

[k
]

(b) HYBRID.

Fig. 2. Accuracy [%], F-measure [%], G-mean [%], and number of trainable
parameters [#TP] of 1D-CNN (a) and HYBRID (b) when varying the input
dimensions Nb and Np, respectively. The best value is highlighted via a ?.

TABLE II
PERFORMANCE MEASURES [%] OF ML AND DL CLASSIFIERS.

Traffic Classifier Accuracy F-Measure G-Mean

NB 37.60 25.44 55.64
DT 95.62 75.92 80.92
BG 95.46 76.98 82.96
RF 95.49 77.28 82.81

1D-CNN (PAY) 64.03 29.69 33.39
HYBRID (HDR) 94.88 58.33 64.40
MIMETIC (PAY+HDR) 95.73 67.41 73.97
MIMETIC (NET+HDR) 99.93 91.70 93.50
MIMETIC (NET*+HDR) 99.99 95.89 97.42

Unbiased per-metric best performance and overall best ML and
DL classifiers (based on F-measure) are highlighted in boldface.
NET* includes biased fields.

A. Sensitivity Analysis

To tune the input size of considered DL architectures,
we perform a sensitivity analysis as depicted in Fig. 2. In
detail, we show the AC performance for different values of
Nb and Np attained by single-modal 1D-CNN and HYBRID,
respectively, in terms of all considered metrics.9 Moreover,
we report the number of trainable parameters to highlight
the input size-complexity trade-off. The best configurations
(marked with a ?) are obtained with Nb = 576 B and
Np = 20 packets, for PAY and HDR input, respectively, having
also a reasonable number of trainable parameters. Given the
above considerations, in the next analyses, we set Nb = 576 B
and Np = 20 packets for all the DL architectures employed.

B. Performance Overview

This section describes the performance obtained with ML
and DL approaches exploited for AC. Looking at Tab. II,
it is apparent that all ML approaches achieve satisfactory
performance, with the exception of NB, which shows an
accuracy of 37.60% and an F-measure of 25.44%. In par-
ticular, the ensemble methods achieve almost the same (best)
performance, with RF slightly outperforming BG.

9For the multimodal MIMETIC classifier, which is fed with both input types,
we have not tested all the possible combinations of Nb and Np, for brevity.

0 2 4 6 8 10 12
True Label

0

2

4

6

8

10

12

Pr
ed

ic
te

d
La

be
l

10
2

10
1

10
0

10
1

10
2

(a) 1D-CNN (PAY).

0 2 4 6 8 10 12
True Label

0

2

4

6

8

10

12

Pr
ed

ic
te

d
La

be
l

10
2

10
1

10
0

10
1

10
2

(b) HYBRID (HDR).

0 2 4 6 8 10 12
True Label

0

2

4

6

8

10

12

Pr
ed

ic
te

d
La

be
l

10
2

10
1

10
0

10
1

10
2

(c) MIMETIC (PAY+HDR).

0 2 4 6 8 10 12
True Label

0

2

4

6

8

10

12

Pr
ed

ic
te

d
La

be
l

10
2

10
1

10
0

10
1

10
2

(d) MIMETIC (NET+HDR).

0 = Benign 7 = DDoS
1 = C&C 8 = FileDownload
2 = C&C-FileDownload 9 = Okiru
3 = C&C-HeartBeat 10 = PartOfAHorizontalPortScan
4 = C&C-HeartBeat-Attack 11 = C&C-PartOfAHorizontalPortScan
5 = C&C-HeartBeat-FileDownload 12 = Attack
6 = C&C-Torii

(e) Categorical Label Coding.

Fig. 3. Confusion matrices of 1D-CNN (a), HYBRID (b), MIMETIC
(PAY+HDR) (c), and MIMETIC (NET+HDR) (d) with log scale to evidence
small errors. Correspondence between classes and categorical labels (e).

On the contrary, DL architectures exhibit worse results. In
fact, although HYBRID still achieves acceptable performance,
reaching 94.88% accuracy and 58.53% F-measure, the results
of 1D-CNN are remarkably lower. The possible reason is that
most of the classes have several zero-payload packets and
therefore the 1D-CNN, that is fed with PAY input type, hardly
distinguishes the samples and can not classify them correctly.

This phenomenon is further evident from the confusion
matrix in Fig. 3a: the 1D-CNN classifies many instances
belonging to other classes as PartOfAHorizontalPortScan or
Attack which are among the most represented ones (see Fig. 1).
Interestingly, such misclassification patterns are exhibited also
by the confusion matrix of HYBRID (Fig. 3b) despite less
evident. Conversely, HYBRID shows a higher concentration of
erroneous predictions toward Benign traffic w.r.t. 1D-CNN.

Nevertheless, MIMETIC (exploiting PAY+HDR input)
achieves an accuracy of 95.73% and an F-Measure of 67.41%,
witnessing the effectiveness of employing a multimodal clas-
sifier: MIMETIC attains an improvement of ≈ 9% F-measure
over HYBRID. However, since the results obtained with the
1D-CNN suggest that PAY input is not sufficiently informative
for AC, we extend it by considering the first Nb = 576 B of
network-layer header and payload (NET input, see Sec. III-A).
Specifically, in Tab. II, we report the performance of MIMETIC
fed with both NET+HDR and NET*+HDR, namely obfuscating
all the fields that could introduce bias or not, respectively (cf.

TABLE III
PERFORMANCE MEASURES [%] WHEN OCCLUDING NET INPUT FIELDS.

Occluded Field Accuracy F-Measure G-mean

No Occlusion 99.96 94.93 96.19
Src IP 66.77 43.11 55.41
Dst IP 86.57 41.67 47.14
Src port 94.06 90.90 93.19
Dst port 51.87 57.29 64.02
IP checksum 99.95 96.84 98.02
L4 checksum 99.95 92.11 94.16
Src & dst IPs 64.97 24.40 32.41
Src & dst ports 49.95 34.19 41.64
All fields 64.36 16.63 20.73

Sec. IV-C). The NET+HDR unbiased configuration is then the
one we consider for a fair evaluation of MIMETIC. Indeed,
in such a case, the performance reached is much higher than
that attained with the PAY input: MIMETIC provides an almost
ideal accuracy, an F-measure of ≈ 92%, and a G-mean > 93%.

The significant F-measure improvement (about +25%) at-
tained by MIMETIC when passing from having PAY+HDR to
NET+HDR as input is also proven by comparing the confusion
matrices in Figs. 3c and 3d. In fact, we can observe a
remarkable reduction of error patterns when using NET+HDR,
with predictions showing a higher concentration toward the
diagonal (where predicted class equals the actual one).

C. Occlusion Analysis

Occlusion analysis is a type of perturbation analysis that
studies the effect of occluding part of the input on the output
of DNNs. Herein, we investigate how AC performance of 1D-
CNN changes when occluding part of NET input (i.e. the first
Nb B of network-layer header and payload).10 Operationally,
for each packet we replace, at inference time, the value of one
or multiple fields of the network-layer header/payload with
zeros (i.e. a non-informative value). By observing how the
AC performance changes, we can infer the impact of the field
and also evaluate the bias it could introduce in the AC process.

Table III reports AC performance obtained when occluding
one or more fields. Specifically, IP addresses and transport-
layer ports are commonly considered as biased inputs that
could inflate (traffic) classification performance [2]. IP and
transport (viz. L4) checksums are also obfuscated because they
are computed including the above-mentioned fields.

From the inspection of results we can notice that occluding
source and destination IP addresses leads to the most signifi-
cant performance drop. In fact, a certain source IP address is
often (almost) exclusively associated to a specific attack, being
the address of the infected device generating the malicious
traffic, and thus could (erroneously) be representative for such
an attack. Similar considerations are less straightforward for
the destination IP address. In this regard, since biflows group
packets sharing the quintuple regardless of their direction, the

10We do not perform occlusion analysis considering MIMETIC (NET+HDR)
because directly evaluating the occlusion effect of the sole NET input would
not have been possible.

field obfuscated depends on the packet direction. Therefore,
when we obfuscate the destination IP address for upstream
packets, we are still hiding an address that is uniquely
associated with a given attack as discussed above. Hence,
we evaluate also the results attained when occluding both
IP addresses of each packet and observe a more significant
performance drop, up to ≈ −24% F-measure.

Analogous considerations apply to source and destination
ports, with the former showing less impact on results. Indeed,
while the set of destination ports has a reduced cardinality
and some are related more frequently to certain attacks, the
source port assumes almost all distinct values. In line with
the observations regarding IP addresses, we can notice an
equally significant performance degradation when obfuscating
both ports. For checksums, we have smaller changes, probably
because in this case the classifier can still exploit all other
fields on which checksums are calculated. Finally, as expected,
occluding all the above-mentioned fields causes the most
significant performance drop down to 16% F-measure.

Such observations suggest that the fields considered in
occlusion analysis influence AC performance since they carry
information related to the capture scenario, witnessing the im-
portance of not taking them into account for a fair evaluation.

V. CONCLUSIONS AND FUTURE PERSPECTIVES

IoT devices expose several vulnerabilities, thus the effective
and timely identification of attacks against them calls for novel
intelligent tools. In this paper, we performed AC via state-of-
art DL approaches based on both single-modal and multimodal
architectures, and compared them with more traditional ML
approaches, encompassing both single and ensemble methods.

The experimental results exploit a dataset of malicious and
benign traffic generated via real-hardware IoT devices. While
ML classifiers achieve satisfactory results (up to 77% F-
measure with RF), they are applicable only for “post-mortem”
AC, as opposed to DL ones that show poorer performance
when leveraging configurations derived from traditional TC
(i.e. not properly targeted to the specific peculiarities of AC in
IoT networks). Particularly, DL classifiers fed with transport-
layer payload exhibit unsatisfactory AC results (≈ 30% F-
measure). Hence, taking into account the specific nature of
considered malicious/benign traffic, we exploit information
extracted from network-layer header and payload, taking care
to obfuscate some fields that could introduce bias in perfor-
mance. Experimental results demonstrate that the multimodal
MIMETIC approach fed with such an input is the best per-
forming one in terms of all considered measures (≈ 92% F-
measure), being also suited for “early” AC. The final occlusion
analysis helped us to shed light on the working principles of
DL architectures, highlighting also the impact of the fields
that are known to introduce bias in results, witnessing the
importance of not considering them in operational scenarios.

Future works will explore DL methods more in detail, in
particular by evaluating hierarchical architectures where AC is
done through a multi-stage approach. We plan also to apply
Few-Shot Learning to AC to exploit its benefits in unbalanced

datasets with limited samples for certain attack classes, and
to extend the interpretability analysis to further investigate the
behavior of DL approaches when facing AC.

REFERENCES
[1] S. Garcia, A. Parmisano, and M. J. Erquiaga. (2020) Iot-23: A

labeled dataset with malicious and benign iot network traffic. [Online].
Available: https://www.stratosphereips.org/datasets-iot23

[2] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “Toward effective
mobile encrypted traffic classification through deep learning,” Neuro-
computing, vol. 409, pp. 306–315, 2020.

[3] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapè, “MIMETIC: mobile
encrypted traffic classification using multimodal deep learning,” Elsevier
Computer Networks, vol. 165, p. 106944, 2019.

[4] C. Yin, Y. Zhu, J. Fei, and X. He, “A deep learning approach for intrusion
detection using recurrent neural networks,” IEEE Access, vol. 5, pp.
21 954–21 961, 2017.

[5] A. A. Diro and N. Chilamkurti, “Distributed attack detection scheme
using deep learning approach for internet of things,” Future Generation
Computer Systems, vol. 82, pp. 761–768, 2018.

[6] K. Wu, Z. Chen, and W. Li, “A novel intrusion detection model for
a massive network using convolutional neural networks,” IEEE Access,
vol. 6, pp. 50 850–50 859, 2018.

[7] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep learning approach
to network intrusion detection,” IEEE Transactions on emerging topics
in computational intelligence, vol. 2, no. 1, pp. 41–50, 2018.

[8] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, “Towards
the development of realistic botnet dataset in the internet of things
for network forensic analytics: Bot-iot dataset,” Future Generation
Computer Systems, vol. 100, pp. 779–796, 2019.

[9] R. Vinayakumar, M. Alazab, K. Soman, P. Poornachandran, A. Al-
Nemrat, and S. Venkatraman, “Deep learning approach for intelligent
intrusion detection system,” IEEE Access, vol. 7, pp. 41 525–41 550,
2019.

[10] H. He, X. Sun, H. He, G. Zhao, L. He, and J. Ren, “A novel multimodal-
sequential approach based on multi-view features for network intrusion
detection,” IEEE Access, vol. 7, pp. 183 207–183 221, 2019.

[11] M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke, “Deep
learning for cyber security intrusion detection: Approaches, datasets, and
comparative study,” Journal of Information Security and Applications,
vol. 50, p. 102419, 2020.

[12] M. M. Rashid, J. Kamruzzaman, M. M. Hassan, T. Imam, and S. Gor-
don, “Cyberattacks detection in iot-based smart city applications using
machine learning techniques,” International Journal of Environmental
Research and Public Health, vol. 17, no. 24, p. 9347, 2020.

[13] M. Woźniak, J. Siłka, M. Wieczorek, and M. Alrashoud, “Recurrent
neural network model for iot and networking malware threat detection,”
IEEE Trans. on Ind. Info., vol. 17, no. 8, pp. 5583–5594, 2020.

[14] G. Bovenzi, G. Aceto, D. Ciuonzo, V. Persico, and A. Pescapé, “A
hierarchical hybrid intrusion detection approach in iot scenarios,” in IEE
GLOBECOM’20, 2020, pp. 1–7.

[15] T. M. Booij, I. Chiscop, E. Meeuwissen, N. Moustafa, and F. T.
den Hartog, “Ton iot: The role of heterogeneity and the need for
standardization of features and attack types in iot network intrusion
datasets,” IEEE IoT Journal, 2021.

[16] R. Kozik, M. Pawlicki, and M. Choraś, “A new method of hybrid time
window embedding with transformer-based traffic data classification in
iot-networked environment,” Pattern Analysis and Apps., pp. 1–9, 2021.

[17] A. K. Sahu, S. Sharma, M. Tanveer, and R. Raja, “Internet of things
attack detection using hybrid deep learning model,” Computer Commu-
nications, 2021.

[18] K. L. K. Sudheera, D. M. Divakaran, R. P. Singh, and M. Gurusamy,
“Adept: Detection and identification of correlated attack stages in iot
networks,” IEEE IoT Journal, vol. 8, no. 8, pp. 6591–6607, 2021.

[19] I. Ullah and Q. H. Mahmoud, “Design and development of a deep
learning-based model for anomaly detection in iot networks,” IEEE
Access, vol. 9, pp. 103 906–103 926, 2021.

[20] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang, “End-to-end
encrypted traffic classification with one-dimensional convolution neural
networks,” in IEEE ISI’17, 2017.

[21] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret, “Net-
work traffic classifier with convolutional and recurrent neural networks
for internet of things,” IEEE Access, vol. 5, pp. 18 042–18 050, 2017.

