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Abstract—The promise of Deep Learning (DL) in solving hard
problems such as network Traffic Classification (TC) is being
held back by the severe lack of transparency and explainability of
this kind of approaches. To cope with this strongly felt issue, the
field of eXplainable Artificial Intelligence (XAI) has been recently
founded, and is providing effective techniques and approaches.
Accordingly, in this work we investigate interpretability via XAI-
based techniques to understand and improve the behavior of
state-of-the-art multimodal and multitask DL traffic classifiers.
Using a publicly available security-related dataset (ISCX VPN-
NONVPN), we explore and exploit XAI techniques to charac-
terize the considered classifiers providing global interpretations
(rather than sample-based ones), and define a novel classifier,
DISTILLER-EVOLVED, optimized along three objectives: perfor-
mance, reliability, feasibility. The proposed methodology proves
as highly appealing, allowing to much simplify the architecture to
get faster training time and shorter classification time, as fewer
packets must be collected. This is at the expenses of negligible
(or even positive) impact on classification performance, while
understanding and controlling the interplay between inputs,
model complexity, performance, and reliability.

Index Terms—deep learning; encrypted traffic; explainable
artificial intelligence; multimodal learning; multitask learning;
traffic classification.

I. INTRODUCTION

TRAFFIC CLASSIFICATION (TC) is a key activity in-
strumental to traffic management, resource planning, and

security enforcement in today’s networks, which are charac-
terized by high heterogeneity and dynamicity of transmitted
traffic. To meet these challenging demands, recent research
is strongly focusing on Deep Learning (DL) methods for
designing effective tools for accurate TC [1]. While promising
unparalleled performance, and the capability to adapt (without
an expert human in the loop) to the change of observed
traffic, these methods constitute a black-box whose behavior is
extremely hard to explain, and therefore to improve, or secure
against attacks: as such, they can not be trusted. As a result, all
the main stakeholders agree there is a strong need to research
the explainability of Artificial Intelligence (AI) solutions
applied to TC and more generally to networking, with the
aim of improving performance, reliability, and feasibility of
such solutions.
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Indeed, having explanations for AI systems is no longer
just an attractive and desirable feature, but has become the
fundamental basis of any AI design solution that users and
network operators can consider safe, reliable, and fair. In fact,
in critical contexts such as network management, it is no
longer sufficient to have accurate systems: network adminis-
trators and users must trust the results and policies suggested
by AI algorithms to decide whether to act and how.1 This is
more pressing as AI is being increasingly proposed to govern
the complexity of real-time network resources management
and network security, whose landscape has been subject to
continuous evolution, last originated by the pandemic events.

This need for transparency motivated the Defense Advanced
Research Projects Agency (DARPA) to launch its program
for eXplainable AI (XAI) already in 2017 [2], with the aim
of shaping new learning processes that (a) produce better-
explainable models, (b) design effective explanation interfaces,
and (c) understand the psychological requirements for effective
explanations. Notably, while these needs apply generally to
AI, they are specifically felt in the communications and
networking field, with several telecommunications companies
investigating how to produce AI-based solutions that can be
the (safe) engine for their core business activities. For instance,
Telefonica has focused on “Responsible Use of AI” [3] to
address potential discrimination, lack of interpretability of the
results provided by the algorithms, and transparency of the
personal data they use, and has published its AI Principles
in 2018, covering fair AI, transparent and explainable AI,
human-centric AI, privacy and security by design. Besides,
many other institutions and companies have defined rules
and principles to guide their research. In line with the EU
Commission guidelines for Trustworthy AI, Ericsson defined
this concept [4] by focusing mainly on the explainability,
safety, and verifiability of AI solutions. They also included
traceability and accountability, always considering the hu-
man being at the center of the whole process. The lack
of explainability is, according to Huawei, the main reason
for the security vulnerabilities of AI systems. Indeed, unlike
traditional systems, this lack of explainability poses specific
and serious security threats to DL-based applications that
can be exploited by adversarial machine learning methods
such as evasion, poisoning, and backdoor attacks [5]. Equally

1We underline that when referring to “trust” in results/decisions, we do not
imply network security aspects.
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important, the relevance and timeliness of XAI adoption are
also motivated by the rising adoption of encryption (e.g., TLS
encapsulation) in modern Internet traffic [6, 7].

Therefore, in response to the needs arising from DL adop-
tion for effective TC, the field of XAI is providing tools to
link the outcome of the classification to the structure of the
DL model and the input, making the model explainable, in a
number of ways [8]. In addition to explainability, in this work
we consider also reliability [9], measuring to which extent
the confidence associated with a given decision by a (possibly
opaque) DL algorithm can be deemed reliable—i.e. low (resp.
high) confidence in labeling a certain traffic object actually
leads to low (resp. high) accuracy in classifying it. This prop-
erty is crucial as it informs decisions with an impact on user
experience and economic efficiency of network management.
Finally, we also assess how XAI can be instrumentally used to
ensure the prototyping of feasible (viz. ready-to-be-deployed)
TC models [10]. Indeed, the understanding of the behavior of
the learned model enables focused performance enhancements,
much more efficient than a less-informed search over the huge
hyper-parameters space. As the adoption of DL is relatively
new, even more so in the field of network traffic analysis, it is
no wonder that XAI has not yet found mature application to
TC as well, despite its acute need: with this work we move an
important step in the direction of tackling this open challenge.

In detail, the main contributions of this paper can be
summarized as follows:
• Based on our recently proposed general framework

(DISTILLER [11]), we design a novel architecture op-
erating at biflow level which (i) effectively exploits the
heterogeneous nature of the different views of a traf-
fic object by distilling both intra- and inter-modalities
dependence via multimodal learning and (ii) is able
to solve multiple (related) TC tasks simultaneously via
multitask learning. To support this improvement, we
devise a general methodology for interpreting and as-
sessing the reliability of multimodal multitask DL-based
traffic classifiers in practical experimental scenarios. The
above analysis includes different levels of granularity or
viewpoints, including: (a) relative importance of different
input modalities for each task and down to specific parts
of each modality; (b) how each task affects the others’
behavior. Specifically, our study goes through a number of
stages, each associated with a different realization of the
general DISTILLER framework, as detailed hereinafter.

• We propose and systematically evaluate a first variation
of the original realization based on the DISTILLER
framework—named DISTILLER-EMBEDDINGS—and
compare its performance against state-of-the-art multitask
TC baselines [12–14], including our original multimodal
multitask proposal [11] referred to as DISTILLER-
ORIGINAL herein. We investigate the intrinsic working
behavior of DISTILLER-EMBEDDINGS applying state-of-
the-art XAI tools (i.e. Deep SHAP [15] and Integrated
Gradients [16]) to understand input importance associated
with each modality, and within each single modality.
In this context, a qualitative interpretability comparison
with DISTILLER-ORIGINAL is also put forward.

• We leverage the results of interpretability analysis to
improve our proposal and obtain a faster version of
it—named DISTILLER-EARLIER—with reduced training
times and allowing earlier classification. This is obtained
by using a limited number of inputs and discarding irrele-
vant ones for both modalities without losing performance.
We also compare the aforementioned method with (a) a
classic feature selection method that relies on estimating
mutual information, and we assess the results with (b) a
complete sensitivity analysis based on grid search.

• We evaluate the reliability of DISTILLER-EARLIER via a
calibration analysis, in order to assess how reliable the
confidence value reported with the prediction is. This
analysis supports further improvements of the proposed
architecture by leveraging the label smoothing technique
to improve the generalization capability of the model
associated with each TC task, leading to DISTILLER-
CALIBRATED. Indeed, the adopted calibration technique
reduces the excessive confidence associated with predic-
tions and consequently reduces overfitting.

• Aiming at improving the feasibility in terms of model
size (and related memory occupation), in order to make
the attained architecture deployable even on resource-
constrained devices, we investigate (i) pruning, (ii) quan-
tization, and (iii) knowledge distillation techniques to
compress DISTILLER-CALIBRATED and obtain our final
proposal, named DISTILLER-EVOLVED. In this context,
we assess in detail if (and, in positive case, how) perfor-
mance, interpretability, and reliability are affected by the
consequent model simplification. Overall, DISTILLER-
EVOLVED enhances the previously-proposed DISTILLER-
ORIGINAL from different viewpoints: architecture and
training procedure, input dimension, reliability (via cali-
bration analysis), and feasibility (in terms of model size).

• The experimental campaign is conducted on ISCX VPN-
NONVPN [17], a publicly-released human-generated
encrypted-traffic dataset, to foster reproducibility.

The rest of the paper is organized as follows. Section II
surveys the current state-of-the-art on TC via multimodal
multitask DL and the recent application of XAI to networking
and TC, positioning our contributions against related literature.
Section III describes the considered XAI-based multimodal
multitask TC methodology; the experimental setup considered
and the experimental results discussed are reported in Secs. IV
and V, respectively; Section VI ends the paper with conclu-
sions and future directions of research.

II. BACKGROUND AND RELATED WORK

In this section, we first review the current state-of-the-art on
TC via multimodal multitask DL (Sec. II-A). Then, we discuss
the current application of XAI methods to the networking
field (Sec. II-B). Finally, we position our contribution against
existing methods adopting XAI to DL-based TC (Sec. II-C).

A. Traffic Classification via Multimodal Multitask DL

Several works perform encrypted TC by means of a va-
riety of DL algorithms, including Deep Neural Networks
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Table I
RELATED WORKS IN THE NETWORKING DOMAIN APPLYING XAI METHODOLOGIES FOR DIFFERENT GOALS (IMPROVING MODEL PERFORMANCE,

TRUSTWORTHINESS, AND FEASIBILITY). THE SECOND PART OF THE TABLE GROUPS THE PAPERS TACKLING TRAFFIC CLASSIFICATION. IN EACH GROUP,
THE PAPERS ARE REPORTED IN CHRONOLOGICAL ORDER. THE MEANING OF ACRONYMS AND SYMBOLS IS SHOWN AT THE BOTTOM OF THE TABLE.

Paper Networking Task TO MM MT AI Technique XAI Methodology P T F

Amarasinghe et al. [18], 2018 Anomaly detection Biflow DNN LRP X X

Zheng et al. [19], 2018 Resource allocation Job DNN AM, Saliency Maps X X X

Dethise et al. [20], 2019 Video quality prediction Video chunk A3C (Pensieve) LIME X X

Morichetta et al. [21], 2019 Video quality prediction Video session HAC-Ward, HAC-Single,
K-means, BIRCH LIME X

Meng et al. [22], 2020 Global and local control
Video chunk
Flow
Src-dst path

A3C (Pensieve),
DNN (AuTO),
GNN (RouteNet)

DT-Distillation,
Hypergraph-Distillation,
LIME?, LEMNA?

X X X

Terra et al. [23], 2020 SLA violation prediction 5G e2e flow XGBoost XGBoost, SHAP,
PI, CD, LIME, Eli5 X

Aceto et al. [24], 2021 Traffic prediction Biflow X HMM, MC Markovian-Distillation X

Montieri et al. [25], 2021 Traffic prediction Biflow X X CNN, LSTM, GRU,
SeriesNet, DSANet Markovian-Distillation X

Rezaei et al. [26], 2019 Traffic classification Biflow 1D-CNN, 1D-CNN+LSTM Occlusion Analysis X

Beliard et al. [27], 2020 Traffic classification Biflow 1D-CNN Feature Maps, t-SNE X

Wang et al. [28], 2020 Traffic classification Biflow SDAE, 1D-CNN, LSTM Deep SHAP X

Aceto et al. [11], 2021 Traffic classification Biflow X X DISTILLER-ORIGINAL Calibration Analysis X

Akbari et al. [29], 2021 Traffic classification Biflow X 1D-CNN & LSTM & DNN Occlusion Analysis X

Nascita et al. [30], 2021 Traffic classification Biflow X MIMETIC-ENHANCED
Deep SHAP,
Calibration Analysis
(improved via FL & LS)

X X

Sadeghzadeh et al. [31], 2021 Traffic classification Packet
Biflow 1D-CNN UAP X

Fauvel et al. [32], 2022 Traffic classification Biflow CNN+LERes+LProto Explainable-by-design,
SHAP?, Grad-CAM? X X X

This Paper Traffic classification Biflow X X

DISTILLER-EVOLVED†

DISTILLER-ORIGINAL?

1D-CNN?, 2D-CNN?,
LSTM?, HYBRID?

Deep SHAP,
Integrated Gradients,
Calibration Analysis
(improved via FL & LS)

X X X

TO: Traffic Object; MM: MultiModal; MT: MultiTask; P: XAI for improving Performance; T: XAI for improving Trustworthiness; F: XAI for improving Feasibility.
AI Technique: Asynchronous Advantage Actor-Critic (A3C), Bidirectional Gated Recurrent Unit (BiGRU), Convolutional Neural Network (CNN), Balanced Iterative

Reducing and Clustering using Hierarchies (BIRCH), Deep Neural Network (DNN), Extreme Gradient Boosting (XGBoost), Gated Recurrent Unit (GRU), Graph Neural
Network (GNN), Hidden Markov Model (HMM), Hierarchical Agglomerative Clustering (HAC), Lightweight & Efficient Residual Block (LERes), Lightweight Prototype
layer (LProto), Long Short-Term Memory (LSTM), Markov Chain (MC), Stacked Denoising AutoEncoder (SDAE); DISTILLER-ORIGINAL: MM-MT 1D-CNN & BiGRU;
MIMETIC-ENHANCED: MM Embeddings & 1D-CNN & BiGRU.
+ symbol indicates hybrid architectures; & symbol indicates intermediate fusion of input data.
XAI Methodology: Activation Maximization (AM), Causal Dataframe (CD), Decision Tree (DT), Focal Loss (FL), Integrated Gradients (IG), Local Explanation Method

using Nonlinear Approximation (LEMNA), Label Smoothing (LS), Local Interpretable Model-Agnostic Explanations (LIME), Layer-wise Relevance Propagation (LRP),
Permutation Importance (PI), SHapley Additive exPlanations (SHAP), t-Distributed Stochastic Neighbor Embedding (t-SNE), Universal Adversarial Perturbation (UAP).
X present; ? baselines for performance comparison; † all proposed variants not expressly indicated (see Sec. V for details).

(DNNs) [12, 13], different types of AutoEncoders (AEs) [1,
33–36], one- and two-dimensional Convolutional Neural Net-
works (1D- and 2D-CNNs) [1, 11, 14, 26, 29, 30, 32, 35, 37–
43], variants of Recurrent Neural Networks (RNNs) such as
Long Short-Term Memory (LSTM) [1, 29, 34, 39, 44, 45]
and Gated Recurrent Unit (GRU) [11, 30, 38, 45, 46], pos-
sibly exploiting the composition capabilities of hybrid DL
architectures [1, 30, 44]. The way input data are fed to such
architectures is paramount for taking full advantage of the
DL paradigm. Unfortunately, some works [12–14, 41] counter-
productively conduct a preliminary ad-hoc feature extraction
and do not exploit the key advantage of DL of automatic
extracting knowledge from raw traffic data without the need
of human-expert intervention. Conversely, other works [37, 40,
44, 45] feed DL models with input data containing traffic-trace
metadata (e.g., timestamps or ad-hoc IDs) or biased fields (e.g.,

local IP addresses or source/destination ports) which are likely
to introduce bias and misleadingly inflate TC performance.
Differently, in the present work, we exploit unbiased raw input
data providing different views on traffic (i.e. payload bytes and
packet sequence information) to take advantage of its intrinsic
heterogeneity via multimodal approaches.

Indeed, even when using unbiased raw traffic data as input,
most previous studies still partially capitalize the capabilities
of DL by leveraging myopic single-modal architectures, while
only few works exploit the intrinsic heterogeneity of network
traffic data by means of multimodal proposals [11, 29, 30, 38,
39, 42], where the lower layers of the deep architecture are
trained on heterogeneous subsets of input data with the aim
of learning intra- and inter-modality dependencies.

On the other hand, a larger number of works propose multi-
task DL models which make use of a shared representation to
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improve their learning ability. Specifically, they train multiple
tasks in parallel and exploit for each task the information in
the training signals of related ones. Multitask approaches have
been used to jointly tackle various problems associated with
as many operators’ needs: (i) malware detection/classification
and TC [12, 40, 41], (ii) traffic classification and predic-
tion [14, 34], and (iii) different TC tasks, such as classification
of duration, flow rate, and application (with the former two
preprocessed via a two-level quantization) [13], classification
of VPN-encapsulated traffic at different granularity [11], or
joint classification of application, application category, user
operation, operating system, and browser [45]. Moreover,
the multitask paradigm has been applied in the context of
federated learning [12], transfer learning [13, 14], and one-shot
learning [13]. We underline that all the works proposing mul-
titask architectures—with only one exception [34]—leverage
such a learning paradigm in a supervised manner, namely the
solution of the considered tasks (regardless of the specific task
dealt with) is taken into account when training the layers of
the shared representation. We point the interested reader to our
recent work [11] for a more in-depth analysis of the state-of-
the-art concerning TC via multitask DL.

B. XAI for Networking
As AI techniques have been increasingly adopted to tackle

networking tasks in recent years, networking researchers are
starting to explore XAI techniques to make AI models inter-
pretable, trustworthy, and manageable [10]. Table I highlights
the main aspects of recent works facing such networking tasks
in the light of interpretability (e.g., anomaly detection [18],
resource allocation [19], global and local network control [22],
and various networking-related prediction tasks [20, 21, 23–
25]), with a specific focus on TC whose related literature is
clustered in the bottom half of the table. It is worth noting
that Tab. I does not report the other works dealing with
multitask TC described in Sec. II-A because no XAI technique
is applied in them (with the sole exception of [11], containing
a calibration analysis of the proposed multitask TC classifier).
Still, these works are later reported in Tab. III and considered
as baselines in the experimental phase.

AI techniques applied belong to both supervised and un-
supervised Machine Learning (ML) and DL approaches, or
they are reinforcement learning solutions. Consequently, the
considered traffic object (i.e. the relevant elementary samples
of analysis) strongly depends on the specific networking
task—with biflows dominating the studies performing TC—
while multimodal (MM) or multitask (MT) architectures are
exploited only to face traffic prediction and classification.

Focusing on the specific XAI methodology adopted, we can
notice that the related works mostly apply interpretability tech-
niques to provide post-hoc explanations [30] in various forms.
These include (i) different types of perturbation analyses
(e.g. occlusion analysis [26, 29] or universal perturbation at-
tacks [31]), (ii) attribution based on Shapley values [23, 30, 39]
(iii) Layer-wise relevance propagation [18], (iv) Interpretable
local surrogates [20, 21, 23], and (v) Integrated or smoothed
gradients. Other approaches (e.g., saliency/feature maps, t-
SNE) are based on visual representations [19, 27] that help

to highlight the most important “features”—and ultimately the
portion of input data—that led to the classification outcome
(e.g., by inspecting the activation of intermediate neurons
in hidden layers). Easier-to-interpret models than DL ones
have been also exploited, namely performing distillation to-
ward (naturally interpretable) decision trees [22, 23], hyper-
graphs [22] or Markov models [24, 25]. These gray-box mod-
els despite being more simple and interpretable than DL, usu-
ally show poorer performance and need carefully hand-crafted
features. Going further, solutions aiming at explainability-
by-design based on the detection of class prototypes and
communication to the end-user are also investigated [32].

Finally, the reliability of DL outcomes is also investigated
to check whether such probabilistic outputs are calibrated,
namely to verify whether the confidence actually reflects the
reliability of the final decision. Techniques for both evaluating
calibration and improving it—to make the DL models more
reliable—are adopted in conjunction with TC tasks [11, 30].

According to our review, the considered body of literature
applies XAI methodologies to different extents, aiming at
improving the proposed solutions in one or more aspects
(see the three rightmost columns in Tab. I). Specifically, XAI
is used to improve (i) model performance (P): it provides
means to scrutinize the model for revealing bias/variances and
discerning whether the decisions are derived from the intended
portions of input data, thus allowing model performance im-
provement as well as robustness and vulnerability assessment
(e.g., susceptibility to adversarial attacks); (ii) trustworthiness
(T): as humans are reluctant to trust decisions made by
AI-based solutions without proper insights into their internal
mechanisms, XAI techniques can expedite the validation of
functional coherence, constraints violation, and policy obli-
gations, and can make decisions and recommendations more
trustworthy; (iii) feasibility (F): it can assist model refinement
in order to allow these models to be accommodated by
resource-constrained network devices.

Hereinafter, we focus on XAI techniques applied to inter-
pret, refine, and improve solutions that tackle the problem of
network-traffic classification. Beliard et al. [27] propose a
platform to graphically visualize the inference process of a TC
engine based on CNNs. Wang et al. [28] use Deep SHAP [15]
to explain a few representative outcomes obtained through
a 1D-CNN for mobile-app TC. Rezaei et al. [26] perform
an occlusion analysis that allows to inspect how the CNN
model proposed for the classification of mobile-app traffic
can classify SSL/TLS flows, revealing that certain handshake
fields can leak the information exploited in the TC process.
Sadeghzadeh et al. [31] tackle the robustness of DL-based TC
models against adversarial samples, and demonstrate that they
are vulnerable to universal adversarial perturbation. Fauvel
et al. [32] propose an explainable-by-design CNN for TC
which also fulfills lightweight and efficiency purposes. Akbari
et al. [29] perform a feature engineering study that considers
exclusively encrypted web traffic in which they occlude parts
of the input that allow the DL model to learn a lazy and
unsophisticated logic.

Concerning reliability of TC results, in a recent work [11]
we perform a calibration analysis for a proposed multimodal
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multitask DL architecture (but with no attempt in improving
it). Differently, in another work [30] we investigate inter-
pretability and reliability to improve the behavior of state-of-
the-art multimodal DL traffic classifiers by applying global-
interpretation XAI techniques based on Deep SHAP and meth-
ods to both assess and improve the reliability of classifiers.

C. Positioning of This Work

In this work, we exploit XAI methodologies to enhance
state-of-the-art multimodal multitask TC solutions along the
three previously mentioned dimensions: model performance,
trustworthiness (via improved reliability), and feasibility. Such
solutions are clearly appealing because they can tackle several
TC problems simultaneously (multitask) by inspecting the
traffic from complementary viewpoints (multimodal). Partic-
ularly, we leverage XAI methodologies to directly provide the
explanation (i.e. evaluate the importance) of raw traffic data
and not of manually-extracted features, a task not only more
challenging but also more useful for shedding light on the
black-box nature of complex DL-based traffic classifiers.

Concerning interpretability techniques, differently than our
previous work [30] and most of the surveyed literature tackling
TC—and similarly to Terra et al. [23]—we apply multiple
XAI approaches (Deep SHAP and Integrated Gradients) to
compare and cross-validate the outcomes of these techniques.
Furthermore, unlike Fauvel et al. [32]—which also tackle
the problem of enhancing performance, trustworthiness, and
feasibility in the context of TC—we do not subvert the nature
of the original DL architecture for explainability purposes
(along explainable-by-design principles) but rely on post-hoc
analyses that can be applied to any black-box ML/DL-based
solution previously proposed.

Moreover, we exploit methods to assess (reliability dia-
grams and related metrics [47]) and improve (focal loss [48]
and label smoothing [49]) the reliability of traffic classifiers.
The latter methods enhance the generalization capability of
classifiers through the reduction of excessive confidence as-
sociated with predictions and consequently the possibility of
overfitting. Also, by means of the reliable confidence score
coupled with the classification outcome, actionable context is
provided to the (human or automated) user.

Concerning feasibility, our investigation on model com-
pression covers and compares a number of approaches (i.e.
knowledge distillation, pruning, and quantization) providing a
more systematic study than previous works.

Finally, similarly to Aceto et al. [11], we employ a multi-
modal multitask DL architecture. In detail, we capitalize on the
general DISTILLER framework proposed in the latter work and
extend it by considering additional or (partially-)unexplored
aspects to overcome different limitations of its very first real-
ization leveraged in [11], here named DISTILLER-ORIGINAL.
In doing so, through a process of sequential enhancements,
each associated with a different realization (see Sec. V for
details on every novel realization), we come to the final defi-
nition of DISTILLER-EVOLVED. Enhancements are here meant
from different viewpoints, namely classification performance,
reliability, and feasibility. Indeed, these aspects have been

either improved w.r.t. [11] (i.e. performance and reliability)
or addressed for the first time here (i.e. feasibility). Overall,
to the best of our knowledge, the present paper provides the
first attempt in interpreting and enhancing this kind of
multimodal multitask DL architectures with the support of
XAI methodologies.

III. MULTIMODAL MULTITASK DEEP LEARNING–BASED
EXPLAINABLE TRAFFIC CLASSIFICATION

In this section, we describe our general methodology for
interpreting and designing improved multimodal multitask DL-
based traffic classifiers. Specifically, in Sec. III-A, we refresh
the general DISTILLER framework recalling its peculiar char-
acteristics. Then, in Sec. III-B, we introduce the concept of
interpretability in DL architectures and describe our approach
based on Deep SHAP and Integrated Gradients techniques.
In Sec. III-C, we motivate the role of reliability and introduce
metrics to assess—and techniques to improve—the calibration
of DL-based TC approaches. Finally, Sec. III-D describes
model compression techniques capitalized in this work.

A. Multimodal Multitask DL-based Traffic Classification

Herein, we recall the DISTILLER framework [11] we exploit
for encrypted TC via multimodal multitask DL and the corre-
sponding training procedure adopted for each classifier based
on it. Details of each instance are reported in later Sec. IV-B.

Generally speaking, multimodal DL is able to automatically
learn a hierarchical representation of traffic data by jointly
exploiting multiple “views” (viz. modalities) of the same traffic
object, for instance: raw bytes of payload data and informative
protocol fields of packet sequences. Additionally, multitask
learning improves the ability to tackle a given network vis-
ibility task (e.g., classifying the mobile app generating each
flow) by exploiting the information distilled from other related
tasks (e.g., predicting the average packet length of each flow
and detecting mice/elephant flows), particularly by learning
them in parallel via a shared representation. It allows a DL
model to reduce redundancy and computational overhead by
leveraging a one-comprehensive model while providing better
generalization and classification performance.

1) DISTILLER Overview: Our goal is solving v = 1, . . . , V
different related TC tasks, for example inferring the traffic-
type and the particular application generating a traffic object.
Formally, given a traffic object (i.e. a subset of network
packets sharing some common properties and constituting our
TC sample), the vth TC task (Tv) consists in assigning a
label among Lv classes (e.g., apps or services) within the set
{1, · · · , Lv}. When tackling multitask TC, each traffic object
is labeled with as many labels as the TC tasks to be solved. We
define the mth traffic object of the training set (encompassing
M samples) as x(m), while the corresponding label of the vth

classification task as `v(m). Such a label may belong to one
out of the Lv different classes, namely `v(m) ∈ {1, . . . , Lv}.

To fully exploit the highly-structured information contained
in each sample x(m), we distill such information via a
multimodal DL architecture. A multimodal DL architecture
leverages different data types (e.g., header fields or payload
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bytes) to capitalize complementary views or modalities of the
same traffic object exploiting an advanced form of informa-
tion fusion—named intermediate fusion—for capitalizing the
heterogeneity of network traffic data when solving multiple
(related) tasks in parallel.

2) DISTILLER Architectural Definition: The generic DIS-
TILLER architecture is made of P different modalities (each
corresponding to a different input type). The first part of such
a framework consists of a certain number of input-specific
single-modality layers, which extract the discriminative fea-
tures distilling the intra-modality dependencies of the pth

modality. On top of these layers, such features are fused via
a merge layer, which is in charge of channeling the modality-
specific features in a joint multimodal multitask (shared) rep-
resentation. The second part of the DISTILLER framework is
made of some shared-representation layers followed by task-
specific layers. The former layers extract the features distilling
inter-modality dependencies; the latter layers synthesize the
task-oriented features (of the vth task) from the shared ones.
The DISTILLER architecture is terminated with one softmax
layer for each TC task to be solved.

3) DISTILLER Training Procedure: We train DISTILLER
via a two-stage procedure: a preliminary pre-training to distill
the features of each single-modality branch and a successive
fine-tuning of the whole DISTILLER architecture. In more
detail, when performing pre-training, each single-modality
branch is topped with V softmax “stubs”.2 In this case, a
weighted sum of the categorical cross-entropy of each TC task
is minimized for promoting the capability of the pth modality
to solve V different TC tasks alone. Since DISTILLER solves
multiple learning tasks in parallel, each weight represents the
preference level of the vth task in the multitask categorical
cross-entropy to be minimized. For the fine-tuning, we remove
the softmax stubs and train the whole DISTILLER architecture,
i.e. by introducing the shared-representation and task-specific
layers. Nevertheless, during fine-tuning, the “lowest” single-
modality layers (i.e. those aimed at intra-modality feature
extraction) are frozen, namely their weights keep the value
learned during the pre-training. Both the categorical cross-
entropy functions concerning pre-training and fine-tuning are
minimized via standard first-order local optimizers.

B. Interpreting Multimodal Multitask DL Traffic Classifiers

The starting point for interpreting complex DL architectures
is to consider a simpler explanation model g(·), which is
designed to closely-approximate the original model f(·). In
the present work, we focus on local explanation methods,
which explain the original model f(x) in the neighborhood
of a particular per-biflow instance x using the so-called
simplified inputs x′ that map to the original ones through
a mapping function x = hx(x

′). Per-sample explanation
outcomes based on local methods are then aggregated to obtain
global explanations, as illustrated at the end of this subsection.

The majority of interpretability techniques (e.g., LIME,
LEMNA, DeepLIFT) assumes a peculiar functional form for

2In the next Sec. III-B, we will show how the auxiliary outputs of the stubs
are exploited to perform per-modality interpretation analysis.

the explanation model g(·) leading to the definition of Additive
Feature Attribution (AFA). Formally, AFA methods are linear
functions of binary variables:

g(z
′
) = φ0 +

M∑
m=1

φm z
′

m (1)

where z
′ ∈ {0, 1}M , M denotes the number of simplified

inputs, and φm ∈ R. Hence, they provide an explanation model
associating an “effect” φm to each input: the original model
output f(x) can be approximated by summing the effects of
all input attributions.

In the present work, we leverage Deep SHAP [15] and
Integrated Gradients, both detailed hereinafter.

1) Deep Shap: The first way to compute AFA solutions
is by means of the well-known Shapley values. The initial
concept of Shapley values originates from cooperative game
theory and specifies the contribution of player m to the payoff
v(P) achieved by the whole coalition P [50]. To this aim,
the method assesses the payoff of every subset of cooperating
players S ⊂ P and evaluates the effect of removing or adding
the player m to S on the total payoff v(S) obtained by S if
the players cooperate. When leveraging this method for the
interpretation of a DL-based model, the input data correspond
to the players of the cooperative game, and the output of the
DL architecture f(x) to the payoff function.

Since the exact computation of Shapley values grows expo-
nentially with the input size M , we approximate them (in a
lightweight form) via SHapley Additive exPlanation (SHAP)
by eliminating the need to re-train the models. Specifically,
SHAP approximates these values via the conditional expecta-
tion [15] formally defined as:

f(hx(z
′
)) ≈ E {f(z)|zS} (2)

where S denotes the set of non-zero indices within z
′
.

We can further simplify the formulation in Eq. (2) by assum-
ing the statistical independence of the inputs and the linearity
of the model [15], formally: f(x) =

∑M
m=1 wmxm+b. When

both these hypotheses hold, the φm’s are in closed-form and
equal to φm(f,x) = wm pxm − E {xm}q. We exploit the
latter assumption to actually calculate the Shapley values.

In more detail, we leverage DeepLIFT [51] for the explicit
computation of the SHAP values. DeepLIFT is an AFA
recursive explanation method for the decisions of DL archi-
tectures, which attributes to each input xm a value C∆xm∆o

representing the effect of that input being set to a reference
value as opposed to its original value. Specifically, DeepLIFT
capitalizes a linear composition rule for the calculation of the
C∆xm∆o’s, which is based on the linearization of the non-
linear components of a DNN, such as (soft)max, products, or
divisions. The reference value f(r) is a user-defined parameter
typically chosen to be an uninformative background value
for the mth input. When setting φ0 = f(r) in Eq. (1)
the explanation model of DeepLIFT is compliant with the
functional form of AFA methods and Shapley values represent
the unique solution. Consequently, DeepLIFT can be used to
obtain a compositional and fast approximation algorithm of
Shapley values, named Deep SHAP [15]. We underline that
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since Deep SHAP relies on an approximate computation of
Shapley values, the local accuracy property f(x) = g(x) may
be not satisfied with perfect equality.3

2) Integrated Gradients (IG): The second interpretability
technique we used in the present work is the Integrated
Gradients (IG). IG is based on the founding concept of input
baseline. The underlining idea springs from the human incli-
nation to make attributions based on counterfactual intuition,
namely by implicitly comparing a certain effect (e.g., the
decision of a classifier) against the absence of the effect. IG
models such an ”absence” using a single baseline input. In
other words, we interpret the IG value φm as the importance
value of the mth input in moving the confidence relative
to the same class with the baseline as input (along the ith

dimension for an input). Accordingly, IG is obtained by (a)
considering the straightline path from the baseline (x′) to the
input (x), (b) computing the gradients at all points along
the path and (c) cumulating them. Hence, given an input
x = {x1, . . . , xM} ∈ RM , the “effect” φm of each input
xm is given by:

φm(x) =
´

xm − x
′
m

¯

×
∫ 1

α=0

∂pi
´

x
′
+ α

´

x− x
′
¯¯

∂xm
dα (3)

According to the completeness axiom, all the effects add up
to the difference between the output of the model relative to
the ith class, pi(x), at the input x and the baseline x′:

M∑
m=1

φm(x) = pi(x)− pi(x
′
) (4)

Other axioms satisfied by this technique are: (i) sensitivity–
for every input and baseline that differ in one feature but have
different predictions, the differing feature should be given a
non-zero effect and (ii) implementation invariance–the effects
for two functionally-equivalent networks4 are always identical.

3) From Local to Global Explanations: Hereinafter, Deep
SHAP and IG methods are used to evaluate the (relative)
importance of input data extracted from raw traffic (see Sec. IV
for details) of a given traffic object when performing a certain
TC task.5 Therefore, to explain the predictive behavior of DL-
based traffic classifiers, the prediction model f(x) is chosen
as the soft-output associated with the ith class (regardless of
the specific task considered), i.e. pi(x). Hence, we interpret
the Deep SHAP or IG φm as the importance value of the mth

input in forming the confidence pi associated with labeling the
traffic sample (whose overall input is x) with the ith class.

It is worth noticing that φm can be also negative. Conse-
quently, an importance value can be interpreted as follows:
positive (negative) values increase (decrease) the confidence
pi(x) in the classification of the ith class w.r.t. its aver-
age E{pi} or baseline pi(x

′) value for Deep SHAP or IG,
respectively. In more detail, for Deep SHAP, the sum of

3In our previous work [30], we have experimentally proven that only a
negligible discrepancy (always lower than 1%) exists.

4Two functionally-equivalent networks have the same output for all inputs,
despite different implementations.

5To simplify the notation, in the following, we avoid explicitly indicating
the vth task considered. Indeed, all the considerations are valid for all the
TC tasks constituting our multitask formulation.

the importance values equals the considered soft-output value
(pi(x)) minus the so-called base output. The latter represents
the average of the same soft-output obtained in correspondence
of the samples associated with the background set. Herein,
for each traffic object, we focus on explaining the soft-output
associated with the predicted class p̂(x), as this represents the
most relevant (and highest) output for a given TC task.

The additive form of employed methods enables the evalua-
tion of importance attributed to non-overlapping input subsets.
This investigation fits evaluating to which degree the different
modalities of a multimodal DL traffic classifier contribute to
the interpretation of the decisions made (on a given TC task).
Formally, we denote the input subsets associated with the
P modalities as x1, . . . ,xP , where x =

⋃P
p=1 xp. Then, to

quantify the importance of the pth modality to multimodal TC
effectiveness (we omit in what follows the index associated
with the vth task), we resort to a pooled importance value
φMp

. The latter represents the importance value of the input
subset xp (corresponding to the pth modality) in classifying
the traffic object associated with the overall input x with the
label ˆ̀. The pooled importance value is obtained as φMp

fi∑
m∈Mp

φm, whereMp denotes the index set associated with
the pth input subset within x, and its interpretation with is
analogous to that of the unpooled value φm.

On the other hand, to focus on a given modality and assess
the related importance contribution of each individual input,
we consider the stub output associated with the pth modality
as our f(·) only depending on xp. In such a way, we can
exclusively focus on the behavior of the pth single-modality
branch, namely before the combined effect of intermediate
fusion achieved by the shared-representation layers. This
procedure isolates the interacting effect of other modalities
on the pth modality and permits per-modality interpretation.
The (isolated) importance values associated with the input
subset xp (feeding the pth modality) are represented by the
importance values φ(p)

m , where m = 1, . . . , |Mp|. In the latter
case, before proceeding to the calculation of the importance
values, we perform an additional fine-tuning of both single-
modality branches topped with the stubs—which follows the
conventional pre-training and fine-tuning phases performed to
train the classifiers based on the DISTILLER framework. This
further step does not affect the performance of classifiers but
it is required to update the stub weights to reflect on them the
changes made to the rest of the DL architecture during the
(conventional) fine-tuning phase (see Sec. III-A).

Notably, a soft-output can assume a range of different
values. Accordingly, the absolute importance of the mth input
may differ from sample to sample. Therefore, once we have
obtained a local explanation for a single instance, our proposed
global explanation approach relies on aggregating explana-
tions over different samples x1, . . . ,xN . The aggregation step
is carried out on normalized importance values, obtained by
dividing each value by their overall sum, namely:

rφm fi φm /

M∑
m=1

φm. (5)

Considering rφm allows focusing on the relative importance of
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each input (indeed, for each sample, the sum of the importance
values equals one). Additionally, as in [28, 30], we aggregate
only on correctly-classified samples to focus on the correct
behavior of considered classifiers and to allow to interpret their
counter-intuitive (while right) decisions a posteriori.

The above methodology for interpreting the behavior of
multimodal multitask DL traffic classifiers will be applied
to the models based on DISTILLER framework described
in Sec. III-A. Specifically, to obtain the global explanations
pertaining to different granularities, we will consider the
following views of aggregation: (i) over the whole ISCX
VPN-NONVPN dataset and (ii) related the certain classes of
a given task (e.g., P2P, FTPS). Nevertheless, we underline that
the proposed interpretability approach is general and can be
potentially applied to any multitask and/or multimodal DL-
based architecture exploited for TC.

C. Calibration in Multitask Deep Learning

As discussed in Sec. II, it is of paramount importance to
assess the reliability of (traffic) classifiers, which is one of
the considered pillars of XAI. Specifically, we evaluate the
reliability of a classifier in providing TC decisions with high
confidence (or not), namely if they are calibrated (or not).
Additionally, given the multitask nature of traffic classifiers
considered, we assess how reliability on a given task (i.e.
on a specific network visibility problem) is affected by cor-
rect/wrong decisions on other tasks.

Formally, given the generic input sample x fed to the
multitask DL traffic classifier, we investigate the reliability of
the whole confidence vector (i.e. pv(x) = pv1(x), . . . , p

v
Lv

(x))
and of the confidence associated to the predicted class (i.e.
p̂v(x) = maxi=1,...,Lv p

v
i (x)) when solving the vth task. In

detail, a confidence-calibrated multitask classifier is such that
for each sample, the confidence of a prediction p̂v related
to the vth task equals Pr

{
ˆ̀v = `v| p̂v

}
, where `v is the

actual class and ˆ̀v is the predicted one. On the other hand,
a miscalibrated classifier returns excessively optimistic (or
pessimistic) confidence outputs associated with its decisions.

To illustrate this property when varying p̂v , we exploit
the reliability diagrams [47], which depict the accuracy as
a function of the confidence (i.e. Pr

{
ˆ̀v = `v| p̂v

}
vs. p̂v)

for each of the V different tasks. The so-obtained diagram is
commonly compared with the ideal Pr

{
ˆ̀v = `v| p̂v

}
= p̂v

identity line: a perfectly-calibrated classifier has a reliability
diagram corresponding to the identity function. Going into
detail, a reliability diagram is obtained by partitioning the
predictions into M equally-spaced bins (with width 1/M ) and
calculating the accuracy of each bin. Let Bm be the set of
evaluated samples such that the confidence associated with
the predicted class falls into the range Im fi (m−1

M ; m
M ], the

corresponding bin-accuracy equals:

acc(Bm) = |Bm|
−1

∑
n∈Bm

1( ˆ̀v(n) = `v(n)) (6)

where `v(n) and ˆ̀v(n) fi argmaxi=1,...,Lv
pvi (n) are the

true and predicted labels of the vth task for the nth sample,

respectively. Confidence values range in the interval [1/Lv , 1],
where Lv is the number of classes of the vth TC task. Hence,
the starting point of the confidence interval is 1/Lv .

We complement the reliability diagrams with the Expected
Calibration Error (ECE), a concise metric measuring the
deviation from a perfect calibration. The ECE for the vth

task is defined as Ep̂v

{ˇ
ˇ

ˇ
Pr

{
ˆ̀v = `v| p̂v

}
− p̂v

ˇ

ˇ

ˇ

}
and ex-

presses the expected absolute deviation between confidence
and confidence-conditional accuracy. We approximately cal-
culate it using the formula:

ECE ≈
M∑

m=1

p |Bm| /Nq |acc(Bm)− conf(Bm)| (7)

which depends on the total number of tested samples N
and the confidence averaged within the bin Bm, obtained
as conf(Bm) = |Bm|

−1 ∑
n∈Bm

p̂v(n). In the last term
p̂v(n) fi maxi=1,...,Lv

pvi (n) denotes the predicted confidence
of the vth task for the nth sample.

In what follows, other than analyzing the calibration of each
TC task separately, we also investigate how the reliability
of a task is affected by the other tasks. To do so, we gen-
eralize the above concepts to the task-conditional reliability
diagram (Pr

{
ˆ̀v = `v| p̂v, tsk

}
vs. p̂v) and task-conditional

ECE (Ep̂v|tsk

{ˇ
ˇ

ˇ
Pr

{
ˆ̀v = `v| p̂v, tsk

}
− p̂v

ˇ

ˇ

ˇ

}
), where tsk de-

notes the generic task-conditional intersection of classification
events on the other tasks, defined as:

tsk fi
⋂

v?=1,...,V ; v? 6=v

(ˆ̀v
? =
6= `v

?

) (8)

The above notation takes into account compactly all the
combinations of correct (=) and wrong ( 6=) classification
events on all the tasks except v. Clearly, the task-conditional
reliability diagram and ECE can be both approximated sim-
ilarly as the unconditional case. Task-conditional calibration
analysis is useful in multitask DL traffic classifiers as it allows
understanding if (and, in affirmative case how much) soft-
outputs may become over-optimistic (or over-pessimistic) due
to a correct/wrong decision on a related network visibility task.

To improve the calibration (and consequently the reliability)
of a DL traffic classifier we resort to the label smoothing6

technique which is a type of loss regularization aiming at
improving the generalization ability of DL models and reduc-
ing an overly high prediction confidence [49]. More in detail,
during the training phase, the label smoothing dictates that the
cross-entropy loss minimizes the prediction w.r.t. a smoothed
one-hot representation of the ground truth for the vth task
`v(n), computed as

tvls(n) = (1− α) tv(n) + α

Lv
1Lv (9)

6We have also tried to employ the focal loss (in place of the cross-entropy
loss) function which is commonly used to deal with class imbalance, but
that can be leveraged also to improve calibration by capitalizing its implicit
regularization properties [30]. Unfortunately, using the focal loss (even in an
optimized fashion) we have attained a notable deterioration of performance,
which majorly impacts the hardest TC task. Moreover, the results (whose
details are omitted for brevity) suggest its weaker impact on calibration when
compared with label smoothing.
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where tv(n) fi
“

tv1(n) · · · tvLv
(n)

‰T
is the one-hot rep-

resentation of the label `v(n). The smoothing parameter α
defines the amount of uncertainty enforced on the ground
truth, with α→ 0 collapsing to the usual non-smoothed cross-
entropy-based training procedure.

D. Deep Learning Model Compression

As mentioned earlier, another key objective of our analysis
is to assist model refinement to enable the deployment of
DL architectures in resource-constrained environments such
as on network devices. This is also one of the main reasons
underlying the design of a (single) multitask DL architecture
to solve multiple related TC tasks [11]. Specifically, we aim
at compressing (multitask) DL models while limiting any
potential loss in model “quality” (in terms of TC performance
and calibration on all the tasks). The techniques we have
individually considered for performing such model compres-
sion are pruning, quantization and knowledge distillation [52].
Moreover, we investigate the results obtained when applying
quantization to a pruned model. Compression techniques con-
sidered are briefly described in the following.

1) Knowledge Distillation: it has been initially proposed
for compressing the knowledge of an ensemble of models into
a single one [53]. By extension, the same methodology can be
applied to train a smaller model (“the student”) to imitate the
(soft) predictions of a larger (and more accurate) pre-trained
model (“the teacher”).

The underlying idea is to exploit the soft outputs of the
teacher model to train the student for capitalizing on the
high informative value of soft outputs in combination with
the common hard decisions. Indeed, to attain the best per-
formance, a balance—expressed by a λ factor—between two
loss functions should be reached, taking into account both soft
and hard outcomes. In detail, such loss functions are: (i) the
cross-entropy between one-hot encoded labels and student
hard decisions and (ii) the cross-entropy7 between teacher and
student soft outputs. To effectively convey more and even
better information to the student, the soft outputs and hard
decisions are obtained from the logits scaled by a factor T ,
called temperature. The data used to train the student model is
the so-called transfer set: in this work, we make the common
choice of using the entire training set. Moreover, we train the
student model for as many epochs as the teacher model since
longer training should be beneficial for performance [55].

Since both the teacher and student architectures are based
on the DISTILLER framework, we apply knowledge distillation
to both pre-training and fine-tuning phases. Hence, to distill
knowledge from the single-modality branches during their pre-
training, we consider the stub outputs of the teacher model to
obtain its hard and soft outcomes.8

7Other functions (e.g., Kullback–Leibler divergence or focal loss [54]) can
be also used for computing the loss between student and teacher soft outputs,
however, these functions lead to worse results than the common cross-entropy
loss function.

8We have also tested other scenarios performing distillation either only
during the pre-training or the sole fine-tuning, without substantial differences
in performance.

2) Pruning: it involves purging connections between neu-
rons or some neurons altogether, that contribute less to the per-
formance of the model. This procedure potentially improves
the inference time and energy efficiency of models having
sparse connection matrices: hence it is expected to work well
with DL-based traffic classifiers. In this work, we exploit
the gradual pruning approach [56], in which the sparsity
increases from an initial value Si (usually zero) to a final
value Sf , over a span of n pruning steps. In detail, this method
introduces a binary mask variable in each layer to be pruned,
having the same size and shape of the layer weights, and
specifying the weights that contribute to the forward execution
of the optimization procedure. The aim is to mask to zero the
smallest magnitude weights until a specified sparsity level Sf

is reached: zeroed weights do not get updated in the back-
propagation step. In our analyses, pruning is applied to either
(i) an already-trained model or (ii) to a model to be trained
(i.e. within the training phase).

3) Quantization: it approximates a DL model that employs
floating-point values with a model using lower precision data-
types for storing model weights and performing computation.
As a result, the memory requirements and computing costs of
the quantized model are drastically reduced by limiting the
number of bits (viz. resolution) to represent each trainable
parameter. More specifically, we apply post-training quanti-
zation [57] which is a desirable (and popular) compression
strategy not requiring re-training of the DL model (or ac-
cess to the whole training set) and thus circumventing the
usual difficulties in performing such an activity (e.g., lack
of computing-resource or data). The simplest form of post-
training quantization statically approximates the weights of an
already-trained model, e.g. from 32-bit to 16-bit floating point
numbers (or to 8-bit precision integers).

IV. EXPERIMENTAL SETUP

This section describes the experimental setup considered
in this work. Specifically, in Sec. IV-A a brief description
of the ISCX VPN-NONVPN dataset is provided. Then, we
introduce in Sec. IV-B the specific DL-based traffic classi-
fiers originating from the general DISTILLER framework and
the multitask baselines used for comparative performance.
Finally, in Sec. IV-C, we report implementation details for
reproducibility.

A. Dataset Description

For our experiments, we used the ISCX VPN-NONVPN
dataset [17] collected at the Canadian Institute for Cyberse-
curity. It contains human-generated traffic related to different
traffic types and applications and collected through sessions
both regular and encapsulated over VPN. The dataset is
provided in raw (PCAP) format, and the ground-truth is
generated at trace-level: each PCAP trace corresponds to an
encapsulation technique (VPN or nonVPN), a traffic type (6
classes), and a specific application (15 classes). For this reason,
it is possible to associate a three-view label (i.e. encapsulation,
traffic type, and application) to any traffic object and for each
of them define three TC tasks to be tackled. As the vast
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Figure 1. Number of per-class biflows for each ISCX VPN-nonVPN dataset
task. Hatches underline the number of nonVPN and VPN biflows for each
class.

majority of papers tackling (multitask) TC works with either
unidirectional or bidirectional flows (viz. biflows), we segment
the raw traffic collected in the ISCX VPN-NONVPN dataset
in biflows. A biflow is defined as the set of packets shar-
ing the same quintuple (Src_IP, Src_Port, Dst_IP,
Dst_Port, L4 Protocol) where source and destination
IP addresses and ports of the quintuple can be swapped [1].

Notably, analyzing the dataset, we have found that≈ 65% of
biflows extracted from ISCX VPN-NONVPN raw traffic data
have only one UDP packet with (Dst_IP, Dst_Port)
equal to (255.255.255.255, 10505). After further in-
spection, we have found that these packets are network broad-
casts periodically sent by BlueStacks, an Android emulator
for PCs.9 Moreover, we also noted some biflows pertaining
to certain protocols (e.g., SNMP, Dropbox LanSync Protocol,
BOOTP) used in LANs for different purposes not strictly
related to the traffic types or applications constituting the
dataset. Therefore, as opposed to the other works leveraging
ISCX VPN-NONVPN as is, we carried out careful pre-
processing cleaning operations to remove this noisy traffic and
thus obtain more meaningful results.

As a consequence, the final dataset contains ≈ 10.5k
biflows whose distribution among the different classes for
each task is shown in Fig. 1. In the same figure we also
highlight (with different hatches) the portion of VPN and
nonVPN traffic for each class. For the applications, in almost
all the cases (12 out of 15), the traffic type is unique: Aim
and ICQ (100% Chat), Email (100% Email), Spotify,
Netflix, Vimeo, VoipBuster and YouTube (100%
Streaming), Torrent (100% P2P), FTPS, SFTP and

9https://www.bluestacks.com/

SCP (100% File Transfer). However, there are also
apps for which the situation is different as they represent a
mix of traffic types: Facebook (16% Chat, 84% VoIP),
Hangouts (28% Chat, 72% VoIP), Skype (8.4% Chat,
42.5% FileTransfer, 49.1% VoIP).

Finally, we also report (as a complementary viewpoint)
that the distribution of ISCX VPN-NONVPN in terms of
protocols10 is as follows: 33.76% TLS, 37.79% UDP:DATA,
15.23% HTTP, and the remaining 13.22% associated with
gQUIC, STUN, SSH, TCP:DATA, and other undetected pro-
tocols.11

B. Multitask Traffic Classifiers

Hereinafter, we describe the traffic classifiers we have inves-
tigated in this work, based on the general multimodal multitask
DISTILLER framework introduced in Sec. III-A, along with the
other baselines considered for performance comparison. Given
the ISCX VPN-NONVPN dataset, we tackle a multitask TC
problem with V = 3 TC tasks: (T1) encapsulation identifica-
tion (L1 = 2 classes), (T2) traffic type recognition (L2 = 6
classes), and (T3) application classification (L3 = 15 classes).

As mentioned in Sec. IV-A, aiming at a consistent compar-
ison with the state-of-the-art, all considered models operate
with biflow traffic objects and use the same inputs. Specifically,
the latter are chosen among those proposed in the most related
(recent) literature based on a preliminary investigation (not
shown for brevity): we consider the first Nb bytes of transport-
layer payload arranged in byte-wise fashion (PAY input type)
or informative unbiased fields extracted from the sequence of
the first Np packets (PSQ input type), namely (i) the number
of bytes in the transport-layer payload (PL), (ii) the direction
(DIR) ∈ {0, 1}, (iii) the TCP windows size (TCP_WS) equal to
0 for UDP packets, and (iv) the time elapsed since the arrival
of the previous packet, i.e. the inter-arrival time (IAT). More
in detail, we set Nb = 784 bytes and Np = 32 packets—by
truncating longer samples and zero-padding shorter ones—and
normalize both input data within [0, 1].12

We underline that we leverage neither biased inputs
(e.g., raw PCAP metadata encompassing timestamps or ad-
hoc IDs and other biased fields as local IP addresses or
source/destination ports) which could wrongly inflate perfor-
mance leading to misleading outcomes [1], nor manually-
extracted features (e.g., statistics extracted on the sets of
packet/payload lengths or inter-arrival times) to fully ex-
ploit the benefits of DL, namely the possibility of working
directly with raw traffic significantly limiting human-expert
intervention. It is worth noting that PAY input could be
possibly affected by the ratio of cleartext data (e.g., encryption

10In detail, the Python wrappers PyShark (https://kiminewt.github.io/
pyshark) and Scapy (https://scapy.net/) were employed.

11TCP:DATA and UDP:DATA indicate that the payload of the correspond-
ing TCP or UDP packets, respectively, can not be identified more exactly (e.g.,
unavailable protocol dissector, non-standard ports used, missing beginning of
the communication).

12To properly exploit the Integrated Gradients technique (see Sec. III-B),
we need to distinguish actual from padded zeros. To this end, we add 1 to all
bytes of the PAY input before normalization (by dividing each byte by 256)
and zero-padding. Similarly, for the PSQ input, we constrain the quantile
transformer to map padding values to zeros.

https://www.bluestacks.com/
https://kiminewt.github.io/pyshark
https://kiminewt.github.io/pyshark
https://scapy.net/
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based on TLS 1.2 vs. 1.3), while PSQ input by network-
specific conditions, application-specific behaviors, and OS-
specific patterns. Nevertheless, in this regard, XAI allows us
to trace back and evaluate the importance of each input (and
even part of it) and how importance can mutate as a result
of environmental fluctuations. On the other hand, both PAY
and PSQ input types are suited for “early” TC—as opposed
to classification decisions that need to wait for the whole
traffic object to be taken—and they refer to different levels
of abstraction (biflow vs. packet) and standpoints (encryption-
dependent vs. encryption-independent).

1) DISTILLER-based Traffic Classifiers: All the classifiers
described hereinafter are designed according to the DIS-
TILLER general framework and trained based on the two-
phase procedure illustrated in Sec. III-A. Our starting point is
the DISTILLER-ORIGINAL classifier we have firstly exploited
in [11]. DISTILLER-ORIGINAL is made of P = 2 single-
modality branches: the PAY-modality branch is fed with the
PAY input, while the PSQ-modality branch with the PSQ one.
The single-modality layers of the PAY-modality branch are two
1D convolutional layers (with 16 and 32 filters, respectively,
kernel size of 25, and unit stride), each followed by a 1D
max-pooling layer (with unit stride and spatial extent equal
to 3) and, finally, by one dense layer (with 128 neurons).
The single-modality layers of the PSQ-modality branch are
instead a bidirectional GRU (BiGRU with 64 units and return-
sequences behavior) and a dense layer (128 neurons). To
capture the inter-modality dependencies, the abstract features
extracted by such branches are fused using a concatenation
layer and fed to a shared-representation dense layer (with 128
neurons). The latter is then connected to V = 3 layers, each
constituting one task-specific dense layer (with 128 neurons),
before performing the vth TC task via the corresponding
softmax (i.e. a dense layer with Lv neurons and softmax
activation). Except for the last softmax, all the layers are
equipped with Rectifier Linear Unit (ReLU) activations. To
provide regularization and avoid overfitting, a 20% dropout
is applied after each dense layer (including the concatenation
one) and after flattening the 2D representation of both the stack
of convolutional/pooling layers and BiGRU.

Starting with this traffic classifier, in our analyses, we follow
a process of sequential improvement of the basic DISTILLER-
ORIGINAL architecture via various optimizations. All the
DISTILLER-based variants, along with their improvements, are
introduced throughout Sec. V and are summarized in Tab. II.
They are all trained via the two-phase procedure involving
the independent pre-training of single-modality branches for
30 epochs each, and the successive fine-tuning of the whole
architecture for 40 epochs during which the lowest two
1D convolutional (of PAY-modality) and BiGRU (of PSQ-
modality) layers are frozen. Specifically, pre-training and fine-
tuning minimize the respective multitask categorical cross-
entropy loss functions (set with a uniform allocation of the
preference weights, that is each per-task weight equals 1/3)
via the standard ADAM optimizer (set with a batch size of 50
samples). Finally, to further reduce the chance of overfitting,
we apply the early-stopping technique by monitoring the

variation of the training accuracy.13

2) Multitask Traffic Classification Baselines: In the fol-
lowing, we provide some details on the baselines against
which we compare DISTILLER-based classifiers. We report in
parentheses the input with which we feed each baseline.

We have implemented a modified version—henceforth
named 2D-CNN (PAY)—of the multitask (single-modal) ar-
chitecture made of two 2D-CNN branches originally presented
in [40]. In its original formulation, this baseline is fed with
biased input data (i.e. raw PCAP formatted as images) and
characterized by an excessively ad-hoc structure. We adapted
it to our scenario by (i) feeding it with the unbiased PAY
input and (ii) considering a different task mapping to the two
CNN-based branches, namely one binary (T1 - Encapsulation)
and two multi-class learning tasks (T2 - Traffic Type and T3

- Application).
We have also extended three state-of-the-art DL-based

single-task traffic classifiers to the multitask setup, namely
the 1D-CNN (PAY) architecture proposed in [37] and the
LSTM (PSQ) and HYBRID (PSQ) architectures proposed
in [44]. The former encompasses two 1D convolutional layers
and a dense layer. The latter two are an LSTM and a hybrid
cascade of two 2D convolutional layers and an LSTM layer,
respectively. We have extended these single-task architectures
by replacing the last softmax with three separate softmax
layers, one for each task.

Finally, we compare DISTILLER-based classifiers with five
native multitask DL architectures proposed for TC: two differ-
ent (deep) MLP (PAY/PSQ) architectures adopted in [12, 13]
and the 1D-CNN (PSQ) proposed in [14]. For the first
two MLP baselines, we evaluate the performance with PAY
and PSQ input types, as in the reference works, they used
handcrafted PL/IAT stats as input. For the 1D-CNN (PSQ)
baseline, we exploit the best-performing PSQ input type [11],
as opposed to the original work in which the authors used a
subset of PSQ (signed PL and IAT) as input.

To be consistent with DISTILLER-based classifiers, all the
baselines are trained to minimize a multitask categorical
cross-entropy loss function set with a uniform allocation of
preference weights and using the ADAM optimizer and the
early-stopping technique to prevent overfitting. The maximum
number of training epochs is set to 100, corresponding to
the number of epochs obtained summing up those of pre-
training and fine-tuning stages of DISTILLER-based classifiers.
Other training parameters are set in accordance with the
recommendation provided in the respective original studies.

C. Implementation Details

To allow reproducibility, we provide specific imple-
mentation details on the whole experimental workbench.

13The most common approach monitors early-stopping by means of a
validation set. Nevertheless, some classes in the training set (e.g., Aim, ICQ,
SFTP) have a reduced number of samples due to the class-imbalance inherent
in the ISCX VPN-NONVPN dataset (cf. Sec. IV-A) but also typical of a
real TC scenario. Therefore, using part of the training set for validation could
impair the performance associated with these minority classes. For this reason,
we use early-stopping on training data by evaluating the “knee” of the training
accuracy, and exiting when this condition is satisfied.
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Table II
VARIANTS OF DISTILLER-ORIGINAL INVESTIGATED IN THIS WORK

AND RELATED ENHANCEMENTS.

Variant EL+ALR IR Ca Co

DISTILLER-ORIGINAL — — — —
DISTILLER-EMBEDDINGS X — — —
DISTILLER-EARLIER X X — —
DISTILLER-CALIBRATED X X X —
DISTILLER-EVOLVED X X X X

EL+ALR: Embedding Layers and Adaptive Learning Rate;
IR: Input Refinement (driven by Deep SHAP);
Ca: Enhanced Calibration (via label smoothing);
Co: Compression (via pruning).

All the APIs refer to Python (3.7) programming lan-
guage. Specifically, we exploit the DL models provided by
Keras (https://keras.io) and TensorFlow 2 (https://www.
tensorflow.org/), to implement, test, and calibrate the traf-
fic classifiers described above. For pruning, we leverage
the TensorFlow Model Optimization Toolkit, a
suite of tools for optimizing ML and DL models for deploy-
ment and execution. For quantization, we exploit the func-
tionalities provided by TensorFlow Lite (https://www.
tensorflow.org/lite) which enables to convert TensorFlow mod-
els for the deployment on lightweight devices. Also, we
use the shap library (https://github.com/slundberg/shap) to
leverage its Deep SHAP implementation and the open source
Python library Alibi (https://www.seldon.io/tech/products/
alibi/) to calculate the IG. Data pre- and post-processing
operations have been performed mainly by means of numpy
(https://numpy.org/) and pandas (https://pandas.pydata.org/)
libraries. Finally, the graphical data representation has been
obtained using matplotlib (https://matplotlib.org/) and
seaborn (https://seaborn.pydata.org/) libraries.

All the experiments refer to the same hardware architecture:
an OpenStack virtual machine with 16 vCPUs and 32 GB of
RAM, and Ubuntu 16.04 (64 bit) operating system, running on
a physical server with 2 × Intel(R) Xeon(R) E5-4610v2 CPUs
@ 8 × 2.30 GHz and 64 GB of RAM. For the evaluation
of (per-epoch) training complexity of DL approaches, we
computed the execution times via time.process_time()
to consider only the actual runtime on the CPUs (i.e. in a
sequential fashion).

V. EXPERIMENTAL EVALUATION

This section reports the experimental evaluation performed
in this work. First, we introduce a new version of the classifier
(namely DISTILLER-EMBEDDINGS) by introducing trainable
embedding layers 14 for both the modalities and a learning
rate scheduler.15 We compare its performance against some
of the state-of-the-art multitask traffic classifiers and analyze
it in depth w.r.t. the three TC tasks (Sec. V-A).

14Each input element is embedded into a vector of dimension e = 10.
To reduce the training complexity, in the PSQ-modality we embed only the
number of bytes in transport-layer payload.

15The newly introduced learning rate scheduler implements an adaptive
learning rate which is halved every five epochs during both the pre-training
and the fine-tuning.

Then, in Sec. V-B we analyze the importance of the traf-
fic modalities used by the classifier, considering them both
together and separately. To this aim, we employ two well-
known techniques, namely Deep SHAP and IG. By leveraging
the median importance obtained with Deep SHAP for each
modality input, we perform an analysis to choose the most
appropriate input dimensions, discarding non-influential inputs
that do not help in classifying the instances (Sec. V-C). In
this way, we obtain another variant for the classifier, fed
with a subset of the original inputs, that is more suitable for
early classification (named for the above reason DISTILLER-
EARLIER).

In Sec. V-D, we assess and improve the calibration of this by
using label smoothing during the training phase, thus achieving
DISTILLER-CALIBRATED. We also analyze whether and how
calibration changes when considering some combinations of
instances that have been correctly or incorrectly classified
according to the three TC tasks.

Finally, in Sec. V-E, we compare different techniques (e.g.,
knowledge distillation, pruning and quantization) to define a
lightweight architecture with similar performance to the clas-
sifier optimized so far. With all these improvements in place,
we define DISTILLER-EVOLVED, which is enhanced from
different points of view: input size, calibration, performance,
and dimension.

To conclude our study, in Sec. V-F we provide an inter-
pretability analysis of DISTILLER-EVOLVED. Table II summa-
rizes the variants of DISTILLER-ORIGINAL that we obtain in
our study, with the characterizing enhancements. We compare
the different versions of DISTILLER-ORIGINAL in Sec. V-G.

In all the following analyses, the performance evaluation
is based on a stratified ten-fold cross-validation. Indeed, the
latter represents a solid assessment setup since it keeps the
sample ratio among classes for each fold: in this case, since
we are facing multiple TC tasks, the stratification is performed
herein on T3, representing the hardest task. Hence, we report
both the mean and the standard deviation of each performance
measure as a result of the evaluation on the ten different folds.

A. Performance Comparison with State-of-the-art Baselines

In this section, we compare DISTILLER-EMBEDDINGS
against the considered baseline architectures w.r.t. the three
TC tasks considered. Table III summarizes the results in terms
of (i) Accuracy (i.e. the fraction of correctly classified biflows
over their total number) and (ii) F-measure, (which takes into
account recall and precision in a more concise way). In detail,
as we consider multi-class traffic classifiers, we employ their
arithmetically-averaged (viz. macro) versions.

Experimental results highlight that DISTILLER-
EMBEDDINGS performs better than all the considered
baselines according to both the considered performance
metrics. Indeed, it provides remarkable improvements w.r.t.
the best-performing baseline that is DISTILLER-ORIGINAL
in all the cases. More in detail, DISTILLER-EMBEDDINGS
reports performance improvements of 1.32% and 1.57% for
task T1, of 2.69% and 2.51% for task T2 and of 1.91% and
1.45% for task T3 in terms of Accuracy and F-measure,

https://keras.io
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://github.com/slundberg/shap
https://www.seldon.io/tech/products/alibi/
https://www.seldon.io/tech/products/alibi/
https://numpy.org/
https://pandas.pydata.org/
https://matplotlib.org/
https://seaborn.pydata.org/
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Table III
COMPARISON OF DISTILLER-EMBEDDINGS (HIGHLIGHTED IN ORANGE) ACCURACY AND F-MEASURE WITH STATE-OF-THE-ART BASELINES. RESULTS
ARE IN THE FORMAT avg. (± std.) OBTAINED OVER 10-FOLDS. RANK IS BASED ON THE AVERAGE OF ALL PERFORMANCE METRICS ON ALL THE TASKS.

THE LAST ROW SHOWS DISTILLER-EMBEDDINGS GAIN [%] ON THE OVERALL-BEST-BASELINE: DISTILLER-ORIGINAL (HIGHLIGHTED IN BLUE).

Multitask DL Traffic Classifier
T1 - Encapsulation T2 - Traffic Type T3 - Application

Accuracy [%] F-measure [%] Accuracy [%] F-measure [%] Accuracy [%] F-measure [%]

DISTILLER-EMBEDDINGS 93.01 (± 0.60) 91.46 (± 0.84) 81.71 (± 1.26) 80.16 (± 1.79) 79.92 (± 1.31) 66.38 (± 2.99)

DISTILLER-ORIGINAL (Aceto et al. [11]) 91.69 (± 0.80) 89.89 (± 1.00) 79.02 (± 1.40) 77.65 (± 1.79) 78.01 (± 1.24) 64.93 (± 1.79)
1D-CNN (PAY) (Wang et al. [37]) 86.22 (± 0.79) 83.09 (± 0.80) 74.93 (± 1.51) 73.58 (± 1.76) 76.23 (± 1.22) 64.04 (± 1.74)
2D-CNN (PAY) (Huang et al. [40]) 86.25 (± 1.07) 82.86 (± 1.27) 73.93 (± 1.14) 72.54 (± 1.63) 74.94 (± 1.07) 62.56 (± 1.84)
MLP (PAY) (Zhao et al. [12]) 85.65 (± 1.01) 82.07 (± 1.35) 72.38 (± 1.21) 70.47 (± 1.93) 72.48 (± 1.12) 58.57 (± 2.01)
MLP (PAY) (Sun et al. [13]) 84.34 (± 0.71) 80.67 (± 0.69) 69.70 (± 1.42) 67.42 (± 1.66) 69.53 (± 1.60) 55.01 (± 2.65)
1D-CNN (PSQ) (Rezaei and Liu [14]) 85.45 (± 1.03) 82.02 (± 1.16) 65.56 (± 2.72) 65.07 (± 3.02) 63.92 (± 1.59) 52.30 (± 2.45)
HYBRID (PSQ) (Lopez-Martin et al. [44]) 85.03 (± 2.82) 81.16 (± 4.53) 66.46 (± 6.67) 64.30 (± 7.61) 62.97 (± 7.00) 51.92 (± 7.12)
MLP (PSQ) (Zhao et al. [12]) 84.96 (± 1.78) 80.91 (± 3.19) 66.23 (± 1.70) 65.05 (± 2.86) 63.51 (± 1.18) 50.21 (± 1.92)
MLP (PSQ) (Sun et al. [13]) 83.83 (± 0.63) 79.51 (± 1.04) 63.41 (± 1.55) 61.44 (± 2.47) 60.09 (± 1.88) 44.81 (± 2.53)
LSTM (PSQ) (Lopez-Martin et al. [44]) 82.94 (± 0.76) 77.78 (± 1.07) 60.79 (± 1.93) 59.37 (± 2.70) 57.83 (± 2.29) 44.93 (± 2.56)

DISTILLER-EMBEDDINGS GAIN + 1.32 (± 0.82) + 2.69 (± 0.71) + 1.91 (± 0.73) + 1.57 (± 0.98) + 2.51 (± 1.30) + 1.45 (± 2.39)

×× × × × ××× ×× × ×
(T1 - Encapsulation, T2 - Traffic Type, T3 - Application)
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Figure 2. Detailed performance of DISTILLER-EMBEDDINGS. Error bars
report average ± standard deviation of the joint probability of classification
outcomes for V = 3 TC tasks: Encapsulation, Traffic Type, and Application
(T1, T2, and T3, respectively). Each outcome can be either correct (X) or
wrong (×), thus leading to 2V = 8 configurations.

respectively. It is worth noting that the performance rank of
the architectures witnesses that multimodal approaches (i.e.
DISTILLER-EMBEDDINGS and DISTILLER-ORIGINAL) are
able to achieve better performance as they capitalize on two
different views of traffic data. Generally speaking, results
highlight that classifiers based on the PAY input outperform
those exploiting PSQ input.

To understand the performance of DISTILLER-
EMBEDDINGS in more detail, we also investigate the
relationship among classification results on different tasks.
Hence, the bar plot in Fig. 2 reports the joint probability of
classification outcomes for the three tasks, with each outcome
being either correct (X) or wrong (×). For each probability,
we report the mean and standard deviation averaged over
the 10 folds. Results show that for most of the instances

(≈70%) DISTILLER-EMBEDDINGS succeeds in classifying
correctly on all the tasks simultaneously, i.e. (X,X,X), thus
allowing full network visibility. Moreover, it is evident that
the cases where the classifier is able to recognize the two
most difficult tasks (T2–Traffic Type and T3–Application)
while failing at the simplest one (T1–Encapsulation), i.e.
(×,X,X), are very infrequent. In addition, the probability of
wrongly predicting all three tasks (×,×,×) is about twice as
high as the probability of identifying one of the two most
difficult tasks when the other two have not been correctly
classified, namely (×,×,X) or (×,X,×).

B. Interpretability Analysis

This section presents the interpretability analysis for
DISTILLER-ORIGINAL and DISTILLER-EMBEDDINGS to
highlight their differences in terms of performance explain-
ability when investigated with Deep SHAP or IG. In detail, in
Sec. V-B1 we assess the contribution of each modality to com-
pare their relative importance. Then, in Secs. V-B2 and V-B3
we analyze in more detail PAY- and PSQ-modalities.16

1) Contribution of the Modalities to Correct TC Decisions:
In Fig. 3, we investigate the (relative) contribution that PAY
and PSQ give to TC, focusing on DISTILLER-ORIGINAL
and DISTILLER-EMBEDDINGS and using both Deep SHAP
(Figs. 3a and 3b) and IG (Figs. 3c and 3d). We consider
the pooled Deep SHAP values and the pooled IG rφM for
each modality and for each of the three TC tasks. The
corresponding distributions (shown via boxplots) are then

16Implementation Details for Interpretability Methods: the baseline for
IG is set to all zero values for both modalities. Moreover, for DISTILLER-
ORIGINAL, we calculate IG w.r.t. the input layers. Conversely, for DISTILLER-
EMBEDDINGS, we calculate IG w.r.t. the embedding layer and then we sum
the attribution of each input’s vector representation [58]. Specifically, when
we investigate its PSQ-modality, we refer to the layer concatenating the output
of the embedding layer used for PL with the other fields (and then we isolate
its representations). Similarly, when we investigate the PAY-modality of the
same architecture, we refer to the output of the embedding layer. Conversely,
for Deep SHAP, not being based on a gradient definition, the effect is always
evaluated w.r.t. the original inputs.
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(a) Modality Contributions for DISTILLER-ORIGINAL with Deep SHAP.
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(b) Modality Contributions for DISTILLER-EMBEDDINGS with Deep SHAP.
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(c) Modality Contributions for DISTILLER-ORIGINAL with IG.
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(d) Modality Contributions for DISTILLER-EMBEDDINGS with IG.

Figure 3. Modality contributions of DISTILLER-ORIGINAL and DISTILLER-EMBEDDINGS with Deep SHAP (a, b) and IG (c,d) techniques. Normalized
importance rφMp for both PAY-modality and PSQ-modality is reported for the three considered TC tasks. Whiskers show 5th and 95th percentiles.

obtained by selecting the correctly classified test samples of
the whole dataset and they refer to PAY-modality (red) and
PSQ-modality (green). Focusing on DISTILLER-ORIGINAL
and Deep SHAP (Fig. 3a), PAY-modality contributes with
higher importance values: the median value is higher than
≈ 65% for all the considered TC tasks. The situation is very
similar when considering the outcome of the analysis with IG
(Figs. 3c), but reporting lower values in absolute terms.

On the other hand, the results of the analysis are remarkably
different for DISTILLER-EMBEDDINGS (Figs. 3b and 3d).
Indeed, the differences among median values of pooled Deep
SHAP are less significant, with the two modalities contributing
almost equally to the model predictions. Specifically, for the
task T1 with both the techniques, we can observe that the PSQ-
modality median value exceeds that of the other modality.

In summary, regardless of the specific interpretability
technique adopted, DISTILLER-EMBEDDINGS results in a
more balanced importance between the two input modal-
ities w.r.t. DISTILLER-ORIGINAL. This can be attributed to
the addition of embedding layers to the basic architecture of
DISTILLER-ORIGINAL.

2) Interpretability of PAY-modality: In this section, we fo-
cus on providing global explanations for the PAY-modality of
DISTILLER-ORIGINAL and DISTILLER-EMBEDDINGS, which
rely on the first Nb = 784 transport-layer payload bytes
of each biflow. In the following, sample-wise positive and
negative Deep SHAP values are highlighted with red and
blue colors, respectively. Also, for completeness, the median
importance value of each byte (over different samples) is
reported as a solid black line. This allows for highlighting
regions that are more consistently influential (if any) for
predictions. We conducted this analysis for each of the three
TC tasks.

When considering the traffic pertaining to the two
classes of task T1 (i.e., VPN and non-VPN), clear influ-

ential regions can be hardly highlighted, regardless of the
classifier and the technique. This behavior results from the
fact that a mix of traffic generated by different applications
is found at this level, with biflows exposing dramatically
different characteristics.

Moving to task T2 (Traffic Type), for some classes the
situation appears to be clearer. In Fig. 4, we compare the ex-
planations obtained for the P2P traffic type as an explanatory
example. We show the outcomes provided by Deep SHAP and
IG for both models. Looking at Figs. 4a and 4b, relating to the
explanations obtained with Deep SHAP, the first 100 bytes of
the biflows result to be essential. The same conclusion can be
drawn according to IG (Figs. 4c and 4d), although the impor-
tance reports more extreme values and the explanation is less
clear overall. We can notice that the median assumes exactly
a zero value after 100 bytes (IG assigns zero importance to
the bytes with the same value of the baseline). Comparing
the two models, a more precise explanation is obtained for
DISTILLER-EMBEDDINGS (Figs. 4b and 4d), probably due to
the “focusing effect” brought by the embedding layer.

By inspecting the content of these biflows, the bytes
with higher importance values often correspond to strings
get_peers1 and info_hash20 which are typical of DHT
Protocol used by BitTorrent. These packets start with the
expression d1:ad2:id20 and have padding values bytes in
the final part. In the analyzed cases this padding receives very
low values differently from the initial ≈ 100 bytes. Among
Torrent biflows, there are also HTTP biflows (GET) and for
them, it is difficult to recognize consistently influential regions.

For the task T2, the importance peak is always found in
the first 100–200 bytes (even if it is less evident than in Fig. 4
in some cases). As a notable exception, for the Email class,
there are a few groups of important bytes both in the central
and the last part of the considered portion of the biflow.

The same phenomenon occurs for the classes associated
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(a) P2P Deep SHAP
DISTILLER-ORIGINAL.

(b) P2P Deep SHAP
DISTILLER-EMBEDDINGS.

(c) P2P IG
DISTILLER-ORIGINAL.

(d) P2P IG
DISTILLER-EMBEDDINGS.

Figure 4. Importance for the inputs (transport-layer payload bytes) of PAY-modality. Exemplifying service type (T2): P2P.

with the task T3, with the exception of some apps (including
Email, Hangouts, SCP, Vimeo and YouTube) which
have groups of bytes of non-negligible importance in addition
to the initial ones. There are also other apps for which we
cannot generalize and identify the most influential regions.
For such apps, this observation does not imply that the first
100–200 bytes are not important, but that areas with higher
importance are more hardly identifiable. More specifically,
this occurs for some apps either having very few correctly
classified samples (such as ICQ and Aim) or whose traf-
fic is composed of different traffic types (such as Skype,
Facebook, and Hangouts). For instance, in the latter case
(e.g., Skype), the traffic mix corresponds to 8.4% Chat,
42.5% FileTransfer, and 49.1% VoIP (see Sec. IV-A).

3) Interpretability of PSQ-modality: Similarly to the pre-
vious section, here we use the above-mentioned interpretabil-
ity techniques and investigate the importance of the inputs
associated with the PSQ-modality of DISTILLER-ORIGINAL
and DISTILLER-EMBEDDINGS, thus discussing the branch fed
with the 4 header fields extracted from the first 32 packets
of each biflow. Hence, considering the importance associated
with these fields, the figures in the following show (for some
representative examples) the median importance values for
each element of the 4 × 32 matrix used as input for this
modality.

First, when considering T1 also the interpretation of PSQ-
modality is hard to understand, likely due to the mix of
traffic belonging to the related classes.

Moving to T2 and T3, often, the role of a field is not clearly
stated (with sequences having both elements assuming positive
and negative importance). However, the two techniques agree
for most classes in identifying positive importance for
the PL field or the role (positive or negative) of specific
fields. IG often highlights as important a (limited) number of
packets that assume more extreme values in absolute terms
when compared with Deep SHAP.

When referring to the explanations obtained for DISTILLER-
EMBEDDINGS with Deep SHAP, the PL field always assumes
higher importance values for all the classes of both T2 and
T3 tasks. Although the other fields assume lower importance
values than PL, they are worthy of consideration as they
assume positive values.

Figure 5 reports interesting evidences for FTPS. Looking
at Figs. 5a and 5b, it is evident that moving from DISTILLER-

ORIGINAL to DISTILLER-EMBEDDINGS, the importance is
much more concentrated on the PL field, which becomes
the most important field playing a fundamental role in the
classification of the biflows of this application. Indeed, while
the various fields assume comparable values in Fig. 5a, the PL
field assumes much higher median values for the DISTILLER-
EMBEDDINGS model (cf Fig. 5b). This result is justifiable
if we consider that the modification made to DISTILLER-
ORIGINAL for the PSQ-modality consists in introducing an
embedding level just for this field. This confirms that the
change made to the architecture has increased the expressive
power of the PL.

Although less clear, the same phenomenon stems out from
the analysis with IG (Figs. 5c and 5d). In fact, the im-
portance of the DIR, IAT and TCP_WS fields is reduced
in the transition from DISTILLER-ORIGINAL to DISTILLER-
EMBEDDINGS and the very first elements of PL sequence
assume higher median values.

In general terms, the initial elements of the sequences
show higher values than the others (even if there are cases
where the trend is not always strictly decreasing).

From Fig. 5b we can notice that after the introduction
of embedding layers, the first packets have much higher
importance than the following ones since the explanation
provided by Deep SHAP clearly shows a decreasing trend for
the PL field. We can find this trend also for PL of the first
packets in Fig. 5d. Furthermore, in IG explanations we have
different packets with a zero median value. This phenomenon
can be explained both by the fact that packets have decreasing
importance and by the IG characteristic of assigning a value
of zero importance to packets with a padding value.

Notably, inspecting Fig. 5 both interpretability tech-
niques suggest that for the two architectures (above all for
DISTILLER-ORIGINAL) the DIR field assumes negative im-
portance values, potentially confusing the classifier. In con-
trast, the IAT field has positive values, although the median
values are not very high. Generally speaking, there can be no
total agreement for the other fields different from PL.

In conclusion, although the two techniques are based on
two different assumptions, they mostly agree in suggesting
the most important groups of bytes or packets for predictions,
albeit with some differences. Deep SHAP provides more
stable and limited (less extreme) values that are easier to



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. *, NO. *, MONTH 2022 16

101

100
100
101

101

100
100
101

101

100
100
101

4 8 12 16 20 24 28
Packet

101

100
100
101M

ed
ia

n 
Im

po
rta

nc
e 

[%
]

PL TCP_WS DIR IAT

(a) FTPS Deep Shap
DISTILLER-ORIGINAL.

101

100
100
101

101

100
100
101

101

100
100
101

4 8 12 16 20 24 28
Packet

101

100
100
101M

ed
ia

n 
Im

po
rta

nc
e 

[%
]

PL TCP_WS DIR IAT

(b) FTPS Deep Shap
DISTILLER-EMBEDDINGS.

101

100
100
101

101

100
100
101

101

100
100
101

4 8 12 16 20 24 28
Packet

101

100
100
101M

ed
ia

n 
Im

po
rta

nc
e 

[%
]

PL TCP_WS DIR IAT

(c) FTPS IG
DISTILLER-ORIGINAL.

101

100
100
101

101

100
100
101

101

100
100
101

4 8 12 16 20 24 28
Packet

101

100
100
101M

ed
ia

n 
Im

po
rta

nc
e 

[%
]

PL TCP_WS DIR IAT

(d) FTPS IG
DISTILLER-EMBEDDINGS.

Figure 5. Importance for fields and packets for FTPS app. Comparison of Deep SHAP and IG explanations for DISTILLER-ORIGINAL and DISTILLER-
EMBEDDINGS.

visualize and understand (and are in line with expectations,
e.g., about the impact of the adoption of embedding). In fact,
IG explanations often result in a noisier and less clear impor-
tance representation. While IG has the advantage of clearly
reporting input regions that are not influential to prediction
(e.g. padding) which are assigned a zero importance value
by construction, results show that Deep SHAP also clearly
identifies these regions (assigning minimal importance values).
For these reasons, we will refer to the Deep SHAP technique
for the considerations in the following sections.

C. Capitalizing on XAI to choose input dimensionality

The analysis of the importance of each modality suggests
that the initial bytes and packets of each biflow are the most
important, despite some differences among traffic types and
applications. Starting from the observations above, we can
exploit this valuable information to improve the model by
selecting a subset of the original inputs, disregarding the
less influential ones. This analysis allows for optimizing the
architecture in a targeted way, avoiding the more onerous
sensitivity analysis that, considering the multimodal nature
of DISTILLER-EMBEDDINGS, requires the training of a DL
model for each combination of PAY and PSQ inputs.

Note that concerning the PSQ-modality, our aim is to
reduce the number of packets rather than the number of
fields considered: while the PL field plays a crucial role in
classification, the importance of the other fields depends upon
the specific classes. Hence, considering them could still be
beneficial for predictions. Moreover, reducing the number of
packets (instead of their fields) is beneficial to reduce both
the network training time and the time needed to gather the
relevant input to the DL architecture (i.e. allowing earlier TC).

In order to identify where the inputs are to be trimmed,
we propose the XAI-driven optimization procedure that
follows. Since the importance of the considered inputs for
both modalities shows a decreasing trend, we identify as
more promising those inputs before the point of maximum
curvature of the median importance curve obtained for each

modality. In more detail, a single importance curve for PSQ-
modality is obtained by summing the median importance of the
fields considered for each packet. We interpolate these curves
(to mitigate their discontinuous trend) and find the point of
maximum curvature with the kneedle algorithm [59].

Figure 6 reports the outcome of applying the above XAI-
driven optimization procedure for the three tasks to both
modalities. Specifically, the procedure highlights that the ini-
tial ≈ 200 bytes and the first ≈ 10 packets are the most
influential for PAY-modality and PSQ-modality, respectively.
To exploit this outcome, we can conservatively define a
configuration that considers the first 256 bytes and the first 12
packets of each biflow as input for DISTILLER-EMBEDDINGS
to obtain input dimensions commonly exploited in recent
literature [29, 30, 38].

In order to evaluate these results, we compare them with
the indications provided via the mutual information, which is a
classic alternative method. Specifically, we measure the mutual
dependence between independent variables (the inputs of the
two modalities) w.r.t. the dependent variable (the actual label)
and assign a score accordingly. This method is used to obtain a
curve analogous to that obtained with the XAI-driven analysis,
thus to compute the point of maximal curvature accordingly.
The optimization based on mutual information (whose results
are omitted for brevity) turns out to be even more conservative
because recommends utilizing at least 300 bytes and 24
packets for all tasks, leading to a bigger architecture with
longer training times.

Both methods are validated against the resource-consuming
sensitivity analysis which explores all the combinations of
values within the range of interest (i.e. a grid search). For
this analysis, we selected for the PAY-modality some values
among the most used in state-of-the-art classifiers (e.g., 128,
256, 576). In addition, from 64 to 320 bytes, we increase by
64 bytes the considered dimension both to take into account
the dimensions selected with mutual information and, above
all, to understand if the performance reflects the importance
profile obtained through Deep SHAP. For the PSQ-modality,
we start with 4 packets and increase the size by 4 until 32 (the
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Figure 6. Median Importance of DISTILLER-EMBEDDINGS inputs for each TC task according to Deep SHAP. Figs. (a–c) refer to PAY-modality, Figs. (d–f)
to PSQ-modality. The colored line represents the interpolating polynomial (5th and 3rd degree, respectively) starting from the point of maximum median
importance. The dashed line shows the location of interpolating polynomial knee (point of maximum curvature).
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Figure 7. Sensitivity analysis results for DISTILLER-EMBEDDINGS: Figures (a-c) depict the F-measure for the three tasks versus (no. of bytes, no. packets).
The square with the solid line highlights the point identified with the XAI-driven method, whereas the one with the dotted line represents the configuration
found with the analysis based on mutual information. Similar results are observed with the accuracy (not shown, for brevity).

initial number of packets).
The heatmaps in Fig. 7 detail the performance (in terms of

F-measure) of the DISTILLER-EMBEDDINGS classifier with
the different combinations for the input size. For task T1, the
point identified by the XAI-driven procedure corresponds with
the best performance. For task T2, however, the configuration
suggested by the two methods provides similar performance,
comparable with the ones obtained with more bytes and pack-
ets. For task T3, the dimensions identified with our proposal
provide higher performance than those identified with the
other method. Actually, the highest performance corresponds
with 576 bytes and 24 packets, but, considering that the gain
in performance is not so high and the mean RTPE (Run
Time Per-Epoch) is much higher (≈ 37 seconds), the most
convenient configuration remains the one suggested by our
proposed methods.

Indeed, reducing the inputs leads to a significant reduction
in terms of mean RTPE: DISTILLER-EMBEDDINGS has a
mean RTPE of ≈ 50 seconds whereas the configuration
suggested by the proposed XAI-driven approach requires ≈ 21
seconds, i.e. a 58% decrease. Notably, considering fewer bytes
and packets also provides slight improvements for all three
tasks. In detail, concerning F-measure, we have improvements
of 0.39, 0.46, and 1.26 for the three TC tasks, respectively.

At the end of this analysis, we obtain an instance of
DISTILLER, which performs better and is more suitable
for early classification since it requires fewer packets to
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Figure 8. Calibration sensitivity analysis of DISTILLER-EARLIER in terms
of ECE. At the right of the dashed line, the best configuration is shown (i.e.
with α = 0.025 for the task T1 and α = 0.05 for tasks T2 and T3). The
value of α providing the best calibration for each single task is highlighted
via a ?.

provide the classification outcome. For this reason, we refer
to this new configuration as DISTILLER-EARLIER.

D. Calibration Analysis

In this section, we investigate the reliability of the TC
models. Specifically, we focus on assessing and enhancing the
calibration of DISTILLER-EARLIER, as defined in Sec. III-C.
The assessment is performed based on the calibration analysis
(reliability diagrams and ECE). On the other hand, the cali-
bration enhancement is pursued by investigating the benefits
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Figure 9. Calibration analysis of DISTILLER-CALIBRATED in terms of task-conditional ECE (as affected by other two tasks) for all three TC tasks (a).
Task-conditional Reliability Diagrams for DISTILLER-CALIBRATED, referring to task T2, are reported in (b-d). In detail, figure (b) depicts the diagram when
instances are correctly classified on both tasks T1 and T3. Conversely, in figure (c) (resp. (d)) the diagram refers to instances correctly classified by T3 (resp.
T1) but misclassified by T1 (resp. T3).

Table IV
F-MEASURE EVALUATION OF DISTILLER-EARLIER VERSUS THE (LABEL)

SMOOTHING PARAMETER α. THE LAST ROW QUANTIFIES THE F-MEASURE
[%] DIFFERENCE BETWEEN DISTILLER-EARLIER (α = 0) AND ITS

BEST-CALIBRATED VERSION: DISTILLER-CALIBRATED.

α T1 - Encapsulation T2 - Traffic Type T3 - Application

0 91.86 (± 0.80) 80.61 (± 1.74) 67.64 (± 2.38)
0.0125 91.76 (± 0.67) 80.34 (± 1.84) 67.55 (± 2.53)
0.025 91.73 (± 0.80) 80.47 (± 1.43) 67.99 (± 2.55)
0.05 91.84 (± 0.94) 80.27 (± 1.48) 67.44 (± 2.75)

0.075 91.62 (± 0.79) 80.58 (± 1.68) 67.33 (± 2.10)
0.1 91.88 (± 0.75) 80.60 (± 1.74) 67.83 (± 2.27)

α1 : 0.025 - α2,3 : 0.05 91.80 (± 1.05) 80.67 (± 1.55) 67.17 (± 3.17)

Difference − 0.06 (± 0.68) + 0.05 (± 0.97) − 0.47 (± 2.43)

provided by the adoption of label smoothing during the
training phase of our classifier.

For the latter technique, we let the value of α (cf. Eq. (9))
vary in {0.0125, 0.025, 0.05, 0.075, 0.1}. In the configuration
with α = 0, the usual cross-entropy is employed (viz.
without label smoothing). Figure 8 shows the calibration
performance obtained when using label smoothing in terms
of ECE. Although a unimodal trend can be spotted for each
task, the illustration highlights that it is not possible to select
a unique value for the parameter α such as to provide the best
calibration for all the three TC tasks. Hence, in order to define
a calibrated version of the architecture (namely, DISTILLER-
CALIBRATED) we set α to 0.025 for the binary task T1,
whereas this parameter is chosen equal to 0.05 for the other
two tasks (T2 and T3). The calibration figures obtained with
this combination of values are shown at the right of the dashed
line with a gray background.

By comparing the reliability diagrams of DISTILLER-
EARLIER and DISTILLER-CALIBRATED (not directly shown

for brevity) to understand the differences in terms of calibra-
tion, we can spot that DISTILLER-EARLIER is over-confident
in its predictions, especially for the (harder) tasks T2 and
T3. This phenomenon appears in a way lighter fashion when
focusing on DISTILLER-CALIBRATED which takes advantage
of label smoothing.

Conversely, in Tab. IV we focus on the classification perfor-
mance and report the assessment of the impact on F-measure
when employing label smoothing (with varying α). The
last row shows the difference between DISTILLER-EARLIER
(where label smoothing is not employed) and DISTILLER-
CALIBRATED. Notably, both versions of the classifier achieve
comparable results. Hence, leveraging label smoothing dur-
ing the training can improve the calibration of the
investigated multimodal multitask architecture, without
significant losses in performance (we even have small
improvements in some cases).

Finally, by focusing on DISTILLER-CALIBRATED, in Fig. 9
we report a task-conditional calibration analysis as described
in Sec. III-C. To this end, in Fig. 9a we depict the task-
conditional ECE of each task w.r.t. the four possible com-
binations of classification outcomes—namely, correct (X) or
wrong (×) prediction—on the other two tasks. For complete-
ness, the weighted average of the task-conditional ECEs for
each case (the first bar of each group) is also reported. By
looking at the results, for each task we can observe worse
calibration outcomes (i.e. a higher conditional ECE) for the
combinations involving at least one wrong decision on another
task, and especially when considering the instances misclas-
sified for both the other two tasks (corresponding to a “?”
and two “×”). Indeed, for tasks T2 and T3, we have a similar
trend, with the worst calibration observed in correspondence
of the instances erroneously classified by all the other tasks.
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Figure 10. Comparison of Expected Calibration Error (ECE) against the size
of compressed models (only int8 quantization is shown).

Still, when there is only one task misclassification, T2 and T3

seem to be highly affected each other. Conversely, for task T1

we have a slightly different situation with calibration approxi-
mately the same when we consider instances misclassified on
both tasks T2 and T3 (? × ×) or only on task T2 (? × X).

To further deepen such an analysis, we inspect the task-
conditional reliability diagrams for task T2, referring to
(T1, T3) = (X,X), (T1, T3) = (×,X) and (T1, T3) = (X,×)
in Fig. 9b, 9c, and 9d respectively. We omit the case (T1, T3) =
(×,×) as this is less frequent (this generally applies to all the
tasks considered) but also the case where it is more expected
to have a calibration degradation. Overall, we can observe
that we have an under-confident classifier when focusing on
the instances correctly classified for both the other two tasks
(Fig. 9b). Conversely, a particularly over-confident model is
observed when the instances are misclassified only on task T3

(Fig. 9c). Finally, the shift to overconfidence is less apparent
when misclassifications are on task T1 (Fig. 9d). This again
confirms the higher coupling effect between T2 − T3, rather
than T1 − T2.

E. Model Compression

This analysis aims at evaluating whether we can obtain a
lighter version of the architecture optimized so far using model
compression techniques (namely, knowledge distillation, prun-
ing, and quantization) with no significant loss in classification
performance and calibration. We highlight that this aspect is
particularly important for deployment in resource-constrained
environments. To fairly quantify the benefits achieved with the
techniques investigated, we refer to the memory occupation of
the model.17

To apply knowledge distillation, we consider DISTILLER-
CALIBRATED as the teacher model, and we define a
lightweight version of it as the student model, by halving
the number of filters in convolutional layers, the number of
units of dense and GRU layers, and the output dimension of

17To appreciate the differences, we consider the size of the compressed file
(gzip) used to save each model. We cannot use the number of parameters
for comparison because it remains unchanged after compression (pruning
sets parameters to zero, while quantization uses different representations for
parameters).

embedding layers. We evaluate different combinations for T
and λ parameters (cf. Sec. III-D). The configuration which
returns the best results is with T = 1 and λ = 0 (notably,
in this configuration the student model can rely only on the
logits provided by the teacher model and we use them as they
are without scaling them up). However, knowledge distillation
does not achieve satisfactory performance figures in the case
investigated: the performance of the student is not comparable
to that of the DISTILLER-CALIBRATED (especially for task
T3, where a 3.73% loss is experienced). Likely, the cause of
this result can be found in the fact that (i) either distillation
usually assumed to be initialized with a model trained on a
larger balanced dataset [60] or (ii) the student model suffers
from the halving of parameters and has irretrievably lost the
ability to distinguish certain classes (especially those with few
samples). In light of this last consideration, in future work, we
plan to more accurately design the student model.

Concerning pruning, a number of parameters have to
be tuned, including: (i) the number of epochs to per-
form the additional training phase required to identify the
weights to be pruned, (ii) the value of the final sparsity;
(iii) whether initializing the model to prune with random
weights or with the weights of the model optimized so far
(DISTILLER-CALIBRATED)—with the latter approach being
recommended in the official documentation of the tfmot
module. Hence we performed an exhaustive experimental
campaign18 (whose results are not shown, for brevity) aimed
at identifying the setup leading to a pruned model whose
performance is as much as possible similar to the one of the
not pruned model. Results show that 20 epochs (6 epochs
for each pre-training phase and 8 for the fine-tuning one) are
enough to prune our already-trained model while keeping high
classification performance, while with final sparsity values
higher than 0.6 classification performance starts decreasing. In
such a configuration, the pruned model is ≈ 50% lighter than
DISTILLER-CALIBRATED, and exhibits performance compa-
rable with the starting model in terms of both F-measure and
expected calibration error.

Finally, we have also evaluated quantization in two
configurations, transforming the architecture weights from
float32 to float16 and int8 representations, respec-
tively. Notably, this compression technique has the remarkable
advantage of being a post-training technique, i.e. does not
require any additional training phase. Quantization leads up
to a more than 70% occupation reduction (achieved when
using int8 representation). In our experimental campaigns,
we have also explored the compression figures achievable
when combining quantization and pruning (i.e. applying
quantization to an already-pruned model). In this case, the
reduction is even more significant (more than 85%).

Table V details the results of the experiments, reporting the
memory occupancy (averaged over the 10 folds) achieved via
each compression technique evaluated, together with classifi-
cation performance in terms of F-measure as well as the related
calibration figures.

18Number of epochs and final sparsity took values in {10, 20, 50, 100} and
{0.6, 0.7, 0.8, 0.9}, respectively.
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Table V
OVERALL COMPARISON OF COMPRESSED MODELS. SIZE REFERS TO THE MEMORY NEEDED TO STORE EACH MODEL. RESULTS ARE REPORTED IN TERMS

OF CLASSIFICATION (F-MEASURE) AND CALIBRATION (ECE) PERFORMANCE, AND ARE IN THE FORMAT avg. (± std.) OBTAINED OVER 10-FOLDS.

Multitask DL Traffic Classifier Size [MB] T1 - Encapsulation T2 - Traffic Type T3 - Application

F-measure [%] ECE [%] F-measure [%] ECE [%] F-measure [%] ECE [%]

DISTILLER-CALIBRATED 3.67 91.80 (± 1.05) 1.47 (± 0.49) 80.67 (± 1.55) 3.76 (± 1.09) 67.17 (± 3.18) 3.39 (± 0.79)

DISTILLER-CALIBRATED Student 1.49 (−59.4%) 91.12 (± 1.04) 1.75 (± 0.50) 79.05 (± 1.63) 3.48 (± 0.53) 62.46 (± 2.12) 3.46 (± 0.69)
DISTILLER-CALIBRATED Student KD 1.49 (−59.4%) 91.12 (± 0.82) 1.80 (± 0.65) 79.58 (± 1.58) 3.54 (± 1.46) 63.44 (± 2.82) 3.34 (± 1.30)

DISTILLER-CALIBRATED P 1.85 (−49.6%) 91.41 (± 0.95) 1.49 (± 0.46) 80.35 (± 1.48) 3.73 (± 1.05) 66.11 (± 3.42) 3.54 (± 1.10)

DISTILLER-CALIBRATED Q (float16) 1.80 (−50.9%) 91.80 (± 1.05) 5.23 (± 1.22) 80.67 (± 1.55) 14.35 (± 2.92) 67.15 (± 3.16) 26.76 (± 3.12)
DISTILLER-CALIBRATED Q (int8) 0.84 (−77.1%) 91.79 (± 0.99) 5.00 (± 1.29) 80.62 (± 1.51) 14.33 (± 2.89) 67.42 (± 3.17) 26.76 (± 3.16)

DISTILLER-CALIBRATED P&Q (float16) 1.00 (−72.7%) 91.41 (± 0.95) 4.61 (± 0.46) 80.36 (± 1.48) 11.26 (± 1.84) 66.11 (± 3.42) 20.20 (± 1.97)
DISTILLER-CALIBRATED P&Q (int8) 0.52 (−85.8%) 91.40 (± 0.89) 4.52 (± 0.62) 80.38 (± 1.48) 11.21 (± 1.81) 66.13 (± 3.45) 20.18 (± 1.97)

The values in parentheses for Size report Size reduction w.r.t. DISTILLER-CALIBRATED
P: Pruning, Q: Quantization, KD: Knowledge Distillation.
DISTILLER-CALIBRATED P (highlighted in green), resulting in the best trade-off between Calibration and Size, is the model that we define as DISTILLER-EVOLVED.

Quantization produces compressed models with higher re-
ductions in size. In addition, as far as F-measure is concerned,
the performance of quantized models (whether we prune
or not the model) is very close to the original. Although
these observations might suggest quantization as the best
choice, when also considering calibration the results in the
Tab. V highlight that using quantization (either with or with-
out pruning) produces highly decalibrated models. In more
detail, reliability diagrams (not shown, for brevity) witness
that applying quantization results in strongly under-calibrated
classifiers for all three tasks, with the confidence being lower
than the accuracy for every bin (similar observations can be
made when considering int8 representation).

Figure 10 compares the ECE against the size for some of the
compressed models discussed above. The inspection is limited
to DISTILLER-CALIBRATED and those models with an F-
measure drop ≤ 1.5%. Moreover, only the int8 quantization
is considered since it achieves a higher compression (with
similar calibration performance). Specifically, the three models
compared with DISTILLER-CALIBRATED are those obtained
after the application of (i) pruning, (ii) quantization, or (iii)
both techniques. It is evident that quantization allows a drastic
size reduction but, unfortunately, it also results in a substantial
increase in the ECE. As a result, both the architectures where
quantization is applied have similar representations and are
positioned in the top-left part of the graph where the size is
reduced, but the ECE becomes unacceptable. On the other
hand, with pruning we obtain a model whose size is about
≈ 50% less than the original model, keeping the calibration
performance almost unchanged. Indeed, its representation is
positioned in the same horizontal band identified by the cal-
ibration error of DISTILLER-CALIBRATED but in the central
part of the graph w.r.t. the model size axis.

Hence, in our sequential process, we select pruning as
the best compression technique, thus defining DISTILLER-
EVOLVED as the result of applying pruning to DISTILLER-
CALIBRATED and resulting in the model optimized along the
three objectives.

F. DISTILLER-EVOLVED Interpretability Analysis

In this section, we focus on the interpretability of
DISTILLER-EVOLVED via Deep SHAP.

Focusing on PAY-modality, we can say that the most
crucial region is not always the same for the various classes,
confirming the importance of considering a value for Nb no
less than 256 bytes. Indeed, when looking at task T2, the most
significant bytes are those in the range (50–150). On the other
hand, for P2P (Fig.11a), the first 100 bytes are those with the
highest importance (same applies to DISTILLER-ORIGINAL,
as shown in Sec. V-B2), while for Email (Fig.11b), the
significant bytes are those up to position 200. For task T3,
the bytes around position 100 are almost always the most
important, with the exception of isolated cases with few
samples. In some cases, such as Facebook and Vimeo, the
region of highest importance extends to bytes around position
175; for other classes (e.g., Email and SCP), one has to
go even further to consider all bytes with the highest median
importance.

Regarding PSQ-modality, the PL field remains the most
important field, while the others highlight lower values (pos-
itive in most of the cases). It may happen that they also
assume negative values, but in isolated cases and often for
single values of the sequence. Accordingly, they may help in
classification even if they contribute less to the output. Figures
11c and 11d report the median importance for PSQ-modality
for two exemplary classes (FTPS and Chat).

Notably, Fig. 11e shows the median importance for either
modality and highlights how the PSQ-modality becomes the
most important for all three tasks after all the improvements.

G. Architecture Comparison

This section provides an overview of the performance
for all the architectures we have defined in our process of
sequential enhancement leading from DISTILLER-ORIGINAL
to DISTILLER-EVOLVED (cf. Tab. II). The radar plot in Fig. 12
compares the five realizations based on DISTILLER framework
along the three dimensions of interest, reporting the related
memory occupation as well as the calibration performance and
the classification performance. Notably, the latter is reported
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(a) P2P. (b) Email.
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Figure 11. Interpretability of DISTILLER-EVOLVED based on Deep SHAP.

as its complement to 1 (1−F-measure) in order to obtain a plot
where smaller areas are associated with major improvements.

First, we have obtained DISTILLER-EMBEDDINGS, which
capitalizes embedding layers and adaptive learning rate and
achieves better classification performance than DISTILLER-
ORIGINAL, but resulting in huge memory occupation. Then,
we have performed XAI-driven input optimization, thus defin-
ing DISTILLER-EARLIER, which reports better performance
(for all the dimensions of interest), in spite of being able to
provide classification verdicts after only 256 bytes and 12
packets. To enhance the reliability of DISTILLER-EARLIER,
we have leveraged label smoothing and obtained DISTILLER-
CALIBRATED, which severely limits its calibration error
trading this improvement for limited loss in classification
performance. Finally, we focus on enhancing also mem-
ory occupation by taking advantage of pruning. The re-
sulting DISTILLER-EVOLVED outperforms DISTILLER-
ORIGINAL in all the aspects of interest while paying lim-
ited classification degradation (≈ 1% F-measure) w.r.t. the
other variants, but remarkably improving calibration and
memory occupation as it achieves the best performance
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Figure 12. Comparison of the different DISTILLER versions obtained in
the sequential optimization process. Axes report Size, Calibration (ECET1,
ECET2, and ECET3), and Classification Performance (1 − FMT1, 1 −
FMT2, and 1−FMT3). Note that classification performance is reported as
the complement of F-measure to 1 so as to obtain smaller areas for better
models.

figures for both.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we exploited XAI as a Swiss Army Knife
aiming for (i) interpreting, (ii) improving, and (iii) making
feasible implementations of multimodal DL approaches that
solve multiple (visibility) TC tasks via multitask learning,
focusing on encrypted traffic. Pursuing these goals, we design,
implement, and evaluate an evolved multimodal multitask DL
traffic classifier, attained in multiple refinement steps driven
by XAI, finally producing the DISTILLER-EVOLVED model,
passing through a number of stages, each associated with
different realizations of the DISTILLER framework.

Our evaluation was performed on the public ISCX VPN-
NONVPN dataset of human-generated traffic labeled according
to three different TC tasks, namely encapsulation (VPN-
encapsulated or not), traffic type (6 classes), and application
recognition (15 classes). We first showed that in all consid-
ered tasks our initial proposal (i.e. DISTILLER-EMBEDDINGS)
outperforms several multitask DL-based traffic classifiers cho-
sen as baselines from the most relevant literature [12–14,
37, 40, 44], including the previous state-of-the-art version
(i.e. DISTILLER-ORIGINAL) sketched from the same general
multimodal multitask framework [11]. Moreover, we exploited
two interpretability methods (i.e. Deep SHAP and Integrated
Gradients) to provide a global explanation of the underlying
rationale for each considered modality, fed with transport-
layer payload or fields extracted from packet-sequences, re-
spectively. We quantified the contribution of each modality in
solving each task and underlined how the payload still keeps
high importance—despite the significant amount of encrypted
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traffic—as well as the fields extracted from the very first
packets. Overall, DISTILLER-EMBEDDINGS resulted in more
balanced importance between the two input modalities w.r.t.
DISTILLER-ORIGINAL. Also, generalized evidence depends
on the combination of input type, task to be solved, and em-
ployed DL architecture. Driven by interpretability outcomes,
we designed a better performing and “earlier” version of our
traffic classifier, namely DISTILLER-EARLIER.

Such an optimized proposal was then investigated in terms
of reliability, namely how much we can trust its prediction
confidence, via calibration. Leveraging label smoothing we
designed the DISTILLER-CALIBRATED classifier that halves
the calibration error on all the three tasks w.r.t. DISTILLER-
EARLIER, obtaining a significant gain in reliability, without a
significant loss in performance.

Finally, we investigated three techniques to reduce the
model size aiming at improving its feasibility: knowledge
distillation, pruning, and quantization. Pruning turned out
to be the best compression technique and led us to the
definition of DISTILLER-EVOLVED which outperforms the
DISTILLER-ORIGINAL starting point in terms of all aspects of
interest: performance, interpretability, reliability, and memory
occupation.

Future prospects of research will include (a) employing
other datasets to assess the generalizability of the proposed
approach by taking into account different network conditions,
applications, and operating systems; (b) taking advantage
of XAI approaches toward the capitalization of unlabeled
data via semi-supervised multitask learning; (c) the use of
reliability and interpretability techniques for the analysis and
improved design of hierarchically-arranged DL-based traffic
classifiers; (d) a robustness assessment of multitask DL-based
traffic classifiers to (possibly-multimodal) adversarial attacks;
(e) investigating the effect of high classifier reliability on
open-set TC (f) the design of (natively) self-explainable [32]
and lightweight DL traffic classifiers.

ACKNOWLEDGMENTS

This work is partially supported by the Italian Research
Program “PON Ricerca e Innovazione 2014–2020 (PON R&I)
– Asse IV REACT-EU – Azione IV.4”, the “Centro Nazionale
HPC, Big Data e Quantum Computing – ICSC” and the
“RESTART” Project funded by MUR.

REFERENCES
[1] G. Aceto, et al. Mobile Encrypted Traffic Classification Using Deep

Learning: experimental Evaluation, Lessons Learned, and Challenges.
IEEE Trans. Netw. Serv. Manag., 16(2):445–458, 2019.

[2] D. Gunning et al. DARPA’s explainable artificial intelligence (XAI)
program. AI Magazine, 40(2):44–58, 2019.

[3] Telefónica. Telefónica’s Approach to the Responsible Use of AI.
Technical report, Telefónica, S.A., 2020. URL https://www.telefonica.
com/en/commitment/how-we-work/business-principles/.

[4] A. Mujumdar, et al. Trustworthy AI: explainability, safety and verifia-
bility. Technical report, Ericsson, Dec 2020. URL https://www.ericsson.
com/en/blog/2020/12/trustworthy-ai.

[5] Huawei. AI Security White Paper. White paper, Huawei Technologies
Co., Ltd, Oct 2018. URL https://www.huawei.com/en/trust-center/
resources/ai-security-white-paper.

[6] A. Razaghpanah, et al. Studying TLS Usage in Android Apps. In 13th
ACM International Conference on emerging Networking EXperiments
and Technologies (CoNEXT), pages 350–362, 2017.

[7] D. Madariaga, et al. Analyzing the Adoption of QUIC From a
Mobile Development Perspective. In ACM Workshop on the Evolution,
Performance, and Interoperability of QUIC (EPIQ), page 35–41, 2020.

[8] W. Samek, et al. Explaining Deep Neural Networks and Beyond: A
Review of Methods and Applications. Proc. IEEE, 109(3):247–278,
2021.

[9] C. Guo, et al. On Calibration of Modern Neural Networks. In 34th
PMLR International Conference on Machine Learning (ICML), pages
1321–1330, 2017.

[10] T. Zhang, et al. Interpreting AI for Networking: Where We Are and
Where We Are Going. IEEE Commun. Mag., 60(2):25–31, 2022.

[11] G. Aceto, et al. DISTILLER: Encrypted traffic classification via
multimodal multitask deep learning. Journal of Network and Computer
Applications, 183:102985, 2021.

[12] Y. Zhao, et al. Multi-task network anomaly detection using federated
learning. In ACM 10th International Symposium on Information and
Communication Technology (SoICT), pages 273–279, 2019.

[13] H. Sun, et al. Common Knowledge Based and One-Shot Learning
Enabled Multi-Task Traffic Classification. IEEE Access, 7:39485–39495,
2019. ISSN 2169-3536.

[14] S. Rezaei et al. Multitask learning for network traffic classification. In
29th IEEE International Conference on Computer Communications and
Networks (ICCCN), pages 1–9, 2020.

[15] S. M. Lundberg et al. A Unified Approach to Interpreting Model
Predictions. In 30th Conference on Neural Information Processing
Systems (NeurIPS), pages 4765–4774, 2017.

[16] M. Sundararajan, et al. Axiomatic attribution for deep networks.
In International Conference on Machine Learning, pages 3319–3328.
PMLR, 2017.

[17] G. Draper-Gil, et al. Characterization of encrypted and VPN traffic
using time-related features. 2nd International Conference on Information
Systems Security and Privacy (ICISSP), pages 407–414, 2016.

[18] K. Amarasinghe, et al. Toward Explainable Deep Neural Network Based
Anomaly Detection. In 11th International Conference on Human System
Interaction (HSI), pages 311–317, 2018.

[19] Y. Zheng, et al. Demystifying Deep Learning in Networking. In 2nd
ACM Asia-Pacific Workshop on Networking (APNet), page 1–7, 2018.

[20] A. Dethise, et al. Cracking Open the Black Box: What Observations
Can Tell Us About Reinforcement Learning Agents. In ACM Workshop
on Network Meets AI & ML (NetAI), page 29–36, 2019.

[21] A. Morichetta, et al. EXPLAIN-IT: Towards Explainable AI for
Unsupervised Network Traffic Analysis. In 3rd ACM CoNEXT Workshop
on Big DAta, Machine Learning and Artificial Intelligence for Data
Communication Networks (Big-DAMA), page 22–28, 2019.

[22] Z. Meng, et al. Interpreting Deep Learning-Based Networking Sys-
tems. In ACM Special Interest Group on Data Communication on the
Applications, Technologies, Architectures, and Protocols for Computer
Communication (SIGCOMM), page 154–171, 2020.

[23] A. Terra, et al. Explainability methods for identifying root-cause of SLA
violation prediction in 5G network. In IEEE Global Communications
Conference (GLOBECOM), pages 1–7, 2020.

[24] G. Aceto, et al. Characterization and Prediction of Mobile-App Traffic
Using Markov Modeling. IEEE Trans. Netw. Serv. Manag., 18(1):907–
925, 2021.

[25] A. Montieri, et al. Packet-level prediction of mobile-app traffic using
multitask deep learning. Computer Networks, 200:108529, 2021.

[26] S. Rezaei, et al. Large-Scale Mobile App Identification Using Deep
Learning. IEEE Access, 8:348–362, 2019.

[27] C. Beliard, et al. Opening the Deep Pandora Box: Explainable Traffic
Classification. In IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), pages 1292–1293, 2020.

[28] X. Wang, et al. Real network traffic collection and deep learning
for mobile app identification. Hindawi Wireless Communications and
Mobile Computing, 2020.

[29] I. Akbari, et al. A look behind the curtain: traffic classification in an
increasingly encrypted web. Proceedings of the ACM on Measurement
and Analysis of Computing Systems (POMACS), 5(1):1–26, 2021.

[30] A. Nascita, et al. XAI meets mobile traffic classification: Understanding
and improving multimodal deep learning architectures. IEEE Trans.
Netw. Serv. Manag., 18(4):4225–4246, 2021.

[31] A. M. Sadeghzadeh, et al. Adversarial Network Traffic: Towards
Evaluating the Robustness of Deep-Learning-Based Network Traffic
Classification. IEEE Trans. Netw. Serv. Manag., 18(2):1962–1976, 2021.

[32] K. Fauvel, et al. A Lightweight, Efficient and Explainable-by-Design
Convolutional Neural Network for Internet Traffic Classification. arXiv
e-prints, pages arXiv–2202, 2022.

[33] D. Li, et al. Traffic Identification of Mobile Apps Based on Variational

https://www.telefonica.com/en/commitment/how-we-work/business-principles/
https://www.telefonica.com/en/commitment/how-we-work/business-principles/
https://www.ericsson.com/en/blog/2020/12/trustworthy-ai
https://www.ericsson.com/en/blog/2020/12/trustworthy-ai
https://www.huawei.com/en/trust-center/resources/ai-security-white-paper
https://www.huawei.com/en/trust-center/resources/ai-security-white-paper


IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. *, NO. *, MONTH 2022 23

Autoencoder Network. In 13th IEEE International Conference on
Computational Intelligence and Security (CIS), pages 287–291, 2017.

[34] A. Rago, et al. Multi-Task Learning at the Mobile Edge: an Effective
Way to Combine Traffic Classification and Prediction. IEEE Trans. Veh.
Technol., 69(9):10362–10374, Sept. 2020.

[35] M. Lotfollahi, et al. Deep packet: A novel approach for encrypted traffic
classification using deep learning. Soft Computing, 24(3):1999–2012,
2020.

[36] G. Bovenzi, et al. Data poisoning attacks against autoencoder-based
anomaly detection models: A robustness analysis. In ICC 2022-IEEE
International Conference on Communications, pages 5427–5432, 2022.

[37] W. Wang, et al. End-to-end encrypted Traffic Classification with
one-dimensional convolution neural networks. In IEEE International
Conference on Intelligence and Security Informatics (ISI), pages 43–48,
2017.

[38] G. Aceto, et al. MIMETIC: Mobile encrypted traffic classification using
multimodal deep learning. Elsevier Computer Networks, 165:106944,
2019.

[39] X. Wang, et al. Automatic Mobile App Identification From Encrypted
Traffic With Hybrid Neural Networks. IEEE Access, 8:182065–182077,
2020.

[40] H. Huang, et al. Automatic Multi-task Learning System for Abnormal
Network Traffic Detection. International Journal of Emerging Technolo-
gies in Learning, 13(04):4–20, 2018.

[41] O. Barut, et al. Multi-Task Hierarchical Learning Based Network Traffic
Analytics. In IEEE International Conference on Communications (ICC),
pages 1–6, 2021.

[42] A. Nascita, et al. Machine and deep learning approaches for iot attack
classification. In IEEE INFOCOM 2022-IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), pages 1–6, 2022.

[43] G. Bovenzi, et al. A comparison of machine and deep learning models
for detection and classification of android malware traffic. In 2022
IEEE Symposium on Computers and Communications (ISCC), pages
1–6, 2022.

[44] M. Lopez-Martin, et al. Network Traffic Classifier With Convolutional
and Recurrent Neural Networks for Internet of Things. IEEE Access, 5:
18042–18050, 2017.

[45] W. Li, et al. Multi-Task Attention Network for Digital Context
Classification from Internet Traffic. In 7th International Conference
on Machine Learning Technologies (ICMLT), pages 1–12, 2022.

[46] C. Liu, et al. FS-Net: A Flow Sequence Network For Encrypted Traffic
Classification. In IEEE Conference on Computer Communications
(INFOCOM), pages 1171–1179, 2019.

[47] A. Niculescu-Mizil et al. Predicting good probabilities with supervised
learning. In 22nd International Conference on Machine learning
(ICML), pages 625–632, 2005.

[48] J. Mukhoti, et al. Calibrating deep neural networks using focal loss. In
34th Conference on Neural Information Processing Systems (NeurIPS),
2020.

[49] R. Müller, et al. When does label smoothing help? In 32th Conference
on Neural Information Processing Systems (NeurIPS), 2019.

[50] L. S. Shapley. A value for n-person games. Contributions to the Theory
of Games, 2(28):307–317, 1953.

[51] A. Shrikumar, et al. Learning Important Features Through Propagating
Activation Differences. In 34th PMLR International Conference on
Machine Learning (ICML), pages 3145–3153, 2017.

[52] Y. Cheng, et al. A survey of model compression and acceleration for
deep neural networks. arXiv preprint arXiv:1710.09282, 2017.

[53] G. Hinton, et al. Distilling the knowledge in a neural network. In NIPS
Deep Learning and Representation Learning Workshop, 2015.

[54] Y. Wu et al. Lightweight Network Traffic Classification Model Based on
Knowledge Distillation. In Springer International Conference on Web
Information Systems Engineering (WISE), pages 107–121, 2021.

[55] L. Beyer, et al. Knowledge distillation: A good teacher is patient and
consistent. arXiv preprint arXiv:2106.05237, 2021.

[56] M. Zhu et al. To prune, or not to prune: exploring the efficacy of pruning
for model compression. arXiv preprint arXiv:1710.01878, 2017.

[57] S. Migacz. 8-bit inference with TensorRT. In GPU technology
conference, volume 2, page 7, 2017.

[58] M. Ancona, et al. Towards better understanding of gradient-based attri-
bution methods for deep neural networks. In International Conference
on Learning Representations (ICLR), 2018.

[59] V. Satopaa, et al. Finding a "Kneedle" in a haystack: Detecting knee
points in system behavior. In 31st IEEE International Conference on
Distributed Computing Systems Workshops (ICDCSW), pages 166–171,
2011.

[60] E. Belouadah et al. Il2m: class incremental learning with dual memory.

In IEEE/CVF International Conference on Computer Vision (ICCV),
pages 583–592, 2019.

Alfredo Nascita is a PhD Student in Information
Technology and Electrical Engineering at DIETI,
University of Napoli Federico II. He received his
M.S. Laurea Degree in Computer Engineering from
the same University in March 2021. His research
interests include traffic classification, machine and
deep learning, and explainable artificial intelligence.

Antonio Montieri (M’18) is an Assistant Professor
at DIETI of the University of Napoli Federico II.
He has received his Ph.D. degree in Information
Technology and Electrical Engineering in April 2020
from the same University. His work concerns net-
work measurements, (encrypted and mobile) traffic
classification, traffic modeling and prediction, and
monitoring of cloud network performance. Antonio
has co-authored 39 papers in international journals
and conference proceedings.

Giuseppe Aceto is an Assistant Professor at Univer-
sity of Napoli Federico II, where he received his PhD
in Telecommunication Engineering. His research
concerns network performance, traffic analysis, and
censorship, both in traditional networks and SDN,
and ICTs applied to health. He received the best
paper award at IEEE ISCC 2010, and 2018 Best
Journal Paper Award by IEEE CSIM.

Domenico Ciuonzo (S’11-M’14-SM’16) is Tenure-
Track Professor at University of Napoli Federico II.
He holds a Ph.D. from the University of Campania
L. Vanvitelli. He is the recipient of two Paper awards
(IEEE ICCCS 2019 and Elsevier ComNet 2020),
the 2019 IEEE AESS Exceptional Service award,
the 2020 IEEE SENSORS COUNCIL Early-Career
Technical Achievement award and the 2021 IEEE
AESS Early-Career Award. His research interests
are data fusion, network analytics, IoT, and AI.

Valerio Persico is an Assistant Professor at DIETI,
University of Napoli Federico II, where he received
the PhD in Computer and Automation Engineering
in 2016. His work concerns network measurements,
cloud-network monitoring, and Internet path tracing
and topology discovery. He has co-authored more
than 30 papers within international journals and
conference proceedings.

Antonio Pescapé (SM’09) is a Full Professor of
computer engineering at the University of Napoli
Federico II. His work focuses on measurement,
monitoring, and analysis of the Internet. He has
co-authored more than 200 conference and journal
papers, he is the recipient of a number of research
awards. Also, he has served as an independent
reviewer/evaluator of research projects/project pro-
posals co-funded by a number of governments and
agencies.


	Introduction
	Background and Related Work
	Traffic Classification via Multimodal Multitask DL
	XAI for Networking
	Positioning of This Work

	Multimodal Multitask Deep Learning–based Explainable Traffic Classification
	Multimodal Multitask DL-based Traffic Classification
	Distiller Overview
	Distiller Architectural Definition
	Distiller Training Procedure

	Interpreting Multimodal Multitask DL Traffic Classifiers
	Deep Shap
	Integrated Gradients (IG)
	From Local to Global Explanations

	Calibration in Multitask Deep Learning
	Deep Learning Model Compression
	Knowledge Distillation
	Pruning
	Quantization


	Experimental Setup
	Dataset Description
	Multitask Traffic Classifiers
	Distiller-based Traffic Classifiers
	Multitask Traffic Classification Baselines

	Implementation Details

	Experimental Evaluation
	Performance Comparison with State-of-the-art Baselines
	Interpretability Analysis
	Contribution of the Modalities to Correct TC Decisions
	Interpretability of PAY-modality
	Interpretability of PSQ-modality

	Capitalizing on XAI to choose input dimensionality
	Calibration Analysis
	Model Compression
	Distiller-Evolved Interpretability Analysis
	Architecture Comparison

	Conclusions and Future Directions
	Biographies
	Alfredo Nascita
	Antonio Montieri (M'18)
	Giuseppe Aceto
	Domenico Ciuonzo (S'11-M'14-SM'16)
	Valerio Persico
	Antonio Pescapé (SM’09)


