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Abstract—With the increasing complexity and scale of modern
networks, the demand for transparent and interpretable Artificial
Intelligence (AI) models has surged. This survey comprehensively
reviews the current state of eXplainable Artificial Intelligence
(XAI) methodologies in the context of Network Traffic Analysis
(NTA) (including tasks such as traffic classification, intrusion de-
tection, attack classification, and traffic prediction), encompassing
various aspects such as techniques, applications, requirements,
challenges, and ongoing projects. It explores the vital role of XAI
in enhancing network security, performance optimization, and
reliability. Additionally, this survey underscores the importance
of understanding why AI-driven decisions are made, emphasizing
the need for explainability in critical network environments. By
providing a holistic perspective on XAI for Internet NTA, this
survey aims to guide researchers and practitioners in harnessing
the potential of transparent AI models to address the intricate
challenges of modern network management and security.

Index Terms—explainable artificial intelligence; network traffic
analysis; Internet traffic classification; Internet traffic prediction;
intrusion detection; deep learning.

I. INTRODUCTION

The explainability of Artificial Intelligence (AI) has become
centerfold in the field of Internet traffic analysis and monitor-
ing (aiming at traffic management and security). Indeed, in
response to the formidable requirements of modern Internet
traffic, recent research has placed a significant emphasis on the
utilization of Machine Learning (ML) and Deep Learning (DL)
techniques [1] to create efficient tools for addressing Internet
traffic classification (targeting either legit apps/services or
attacks), intrusion detection, and Internet traffic prediction,
hereafter collectively referred as Network Traffic Analysis
(NTA) tasks. While these methods hold the promise of deliver-
ing exceptional performance and the ability to autonomously
adapt to evolving traffic patterns, they inherently function as
black-box systems, making it exceedingly challenging to com-
prehend, enhance, or safeguard their behavior against potential
attacks. Consequently, trust in these methods is limited.

In fact, wrap-up performance metrics (e.g., accuracy) are
no longer sufficient in contexts as critical as network manage-
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ment; trust in AI algorithms is essential for network admin-
istrators and users to make informed decisions and determine
appropriate actions. This need is even more pronounced as AI
is increasingly proposed to handle the complexities of real-
time, evolving, large-scale, and distributed network resource
management, progressively leaving the human out of the
loop [2]. Hence, there is a unanimous consensus among key
stakeholders that there is a pressing need for explainability of
AI solutions in the broad context of networking. Explanations
for AI systems have evolved from being optional features to
becoming the cornerstone of any AI design solution that users
and network operators can deem safe, dependable, control-
lable, and equitable.

As a consequence of the many and heterogeneous needs for
explainability or interpretability, there is no lack of definitions
for these properties [3]. Therefore, we apply one of the most
comprehensive definitions for eXplainable Artificial Intelli-
gence (XAI), based on the explanation: “An explanation is a
presentation of (aspects of) the reasoning, functioning and/or
behavior of a ML model in human-understandable terms” [4].
Here reasoning refers to the process leading from inputs to
outputs, functioning is related to the structural characteristics
(data representation), and behavior describes the input-output
relationships regardless of the internals. The three aspects are
non-exclusive: an explanation may participate in more than
one. Nauta et al. [4] conflate explainability with interpretability
and intelligibility, stating that there is no agreement on the
differences among the three. We share this view, and add that
often transparency is also used to refer to explainability, in
contrast with the “black-box” metaphor.

A. Contribution and Survey Organization

This article contributes to the burgeoning field of XAI
within the context of NTA. More specifically, our contributions
are listed in the following, with reference to the structure of
the paper.

• We discuss in Section II the motivation behind our
literature analysis, defining the context and the related
studies, and highlighting the shared interest in XAI
as expressed by governmental and telecommunication
stakeholders, as well as the gap in the scientific literature
we aim to fill with our study.

• We introduce in Section III a practical taxonomy of XAI
methods, providing essential background to support the
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Figure 1. Survey organization.

reader in understanding the peculiarities of NTA-specific
research efforts and applications.

• We shed light on how the adoption of XAI proved fruitful
in Section IV, highlighting the 4 recurrent tasks in the
NTA domain XAI is applied to and focusing on the
interest trends in the last few years.

• We analyze in depth the purposes driving the adoption
of XAI in NTA in Section V, highlighting how such
techniques are useful both for the interpretation and the
improvement of black-box AI models.

• In the same Section, we provide a “translation table” with
the heterogeneous and non-standardized explanation-
quality metrics as adopted in NTA, mapping them to
the systematized categories proposed in the broader XAI
study field (and highlighting the missing viewpoints); for
each metric, we also provide its formal definition, along
with the indication of its applicability to different XAI
methods and related NTA tasks.

• We categorize and extensively discuss the practical use
cases of XAI for NTA in Section VI, leveraging the
taxonomy we proposed.

• Since network traffic can be subjected to different repre-
sentations, we discuss in Section VII how the represen-
tation of the input data influences the interpretability
of the models, underlying the peculiarities of NTA do-
main with respect to those where XAI techniques have
been initially developed (e.g., computer vision).

• Being reproducibility a main concern in the NTA field,
we survey existing public datasets in Section VIII, and
report their usage (or lack thereof) in XAI analyses, thus
providing the interested reader with valuable and ready-
to-use resources.

• In the same section, we scout for open source libraries
and tools highlighting those that provide explanation-
quality metrics.

• Finally, we draw the conclusions of the survey and
discuss open challenges and gaps arising from the
application of XAI to NTA in Section IX.

Figure 1 outlines the organization of the present sur-
vey sketching the details of the sections that constitute the
manuscript. Furthermore, Table I contains the acronyms and
abbreviations defined in the present paper to aid readability.

B. Research Methodology

To conduct our study, we have adopted a systematic ap-
proach to exploring the literature, following the methodology
outlined by Wohlin [5]. For the aims and scope of our paper,
we composed the following query:

(“explainable AI” OR “interpretable AI”)
AND (“network traffic analysis”)

The Google Scholar search engine has been selected, to
avoid bias on publishers according to best practices. From the
obtained results, we initially selected a set of 28 papers for
the snowballing methodology. Our selection criteria included
papers written in English with full-text accessibility either
publicly or through a subscription by the University of Napoli
Federico II. We considered the relevance of the title and the
number of citations to prioritize papers for inclusion. To carry
out the snowballing process, we employed both backward
and forward methods. During this process, we evaluated the
abstracts for relevance and, in the case of potential candidates
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Table I
LIST OF ACRONYMS AND ABBREVIATIONS IN ALPHABETIC ORDER.

Acronym Definition

AC Attack Classification
AD Anomaly Detection
AE AutoEncoder
AI Artificial Intelligence
BRCG Boolean Decision Rules via Column Generation
CADE Contrastive Autoencoder for Drifting detection and

Explanation
CEM Contrastive Explanation Method
CNN Convolutional Neural Network
COIN Contextual Outlier INterpretation
DARPA Defense Advanced Research Projects Agency
DDos Distributed Denial of Service
DeepLIFT Deep Learning Important FeaTures
DIR Direction
DL Deep Learning
DNN Deep Neural Network
DT Decision Tree
EDA Exploratory Data Analysis
FL Focal Loss
FPGA Field Programmable Gate Array
Grad-CAM Gradient-weighted Class Activation Mapping
IAT Inter Arrival Time
ICE Individual Conditional Expectation
ID Intrusion Detection
IDS Intrusion Detection System
IG Integrated Gradients
IoT Internet of Things
KNN K-Nearest Neighbors
LEMNA Local Explanation Method using Nonlinear Ap-

proximation
LIME Local Interpretable Model-agnostic Explanations
LRP Layer-wise Relevance Propagation
LS Label Smoothing
LSTM Long Short-Term Memory
MD Misuse Detection
ML Machine Learning
NTA Network Traffic Analysis
PDP Partial Dependence Plot
PFI Permutation Feature Importance
PL Payload Length
PS Packet Size
QoS Quality of Service
SDN Software Defined Networking
SHAP SHapley Additive exPlanations
SNI Server Name Indication
SOM Self Organizing Map
SVM Support Vector Machine
TC Traffic Classification
TCP WS TCP Window Size
TLS Transport Layer Security
TO Traffic Object
TP Traffic Prediction
t-SNE t-distributed Stochastic Neighbor Embedding
TTL Time To Live
XAI eXplainable Artificial Intelligence

for inclusion, we also reviewed the full papers. As a result
of this thorough process, we obtained a comprehensive set of
107 papers.

II. MOTIVATION FOR XAI IN NETWORKING:
CONTEXT AND RELATED WORK

Our work is strongly motivated by the absence of com-
prehensive studies that cover the adoption of XAI for NTA
despite the great consideration for XAI in networking shown
by the stakeholders at diverse layers. In Section II-A, we
discuss such interest witnessed by the principles and guidelines
as expressed by regulators and telecommunication companies.
Then, in Section II-B, we review the related literature, high-
lighting the substantial lack of surveys about the adoption of
XAI in the domain of NTA.

A. XAI in Networking: Context

The shared commitment to building a responsible and
sustainable AI ecosystem in networking is reflected in efforts
by private stakeholders and regulators. As technology evolves,
these principles guide the research, deployment, and man-
agement of AI-driven networking, promoting reliable, secure
infrastructures. Key efforts by governmental agencies and
telecommunication companies are summarized in Table II and
discussed below.

Defense Advanced Research Projects Agency (DARPA)
launched the XAI program in 2017 [9] to create more explain-
able AI models, design effective interfaces, and understand the
psychological needs for explanations. The EU AI Act [11],
finalized in January 2024, restricts AI systems that affect lives
unless they ensure transparency or explainability, especially in
high-risk areas. This aligns with the outcomes of EU High-
Level Expert Group in 2018, where transparency was already
identified as a key requirement for trustworthy AI [6]. The
2023 White House executive order also highlights the need
for AI model transparency for regulated entities [15].

These requirements are especially relevant in communica-
tions and networking, where telecommunications companies
are developing AI-driven solutions as secure foundations for
their core business operations. Telefonica’s “Responsible Use
of AI” [8] addresses discrimination, interpretability, and data
transparency, focusing on fair, transparent/explainable, and
human-centric AI as well as privacy and security by design.
Numerous other organizations and firms have established
guidelines and principles to direct their research and servicing
endeavors. In line with the EU Commission’s guidelines for
Trustworthy AI, Ericsson elaborated on this concept [10],
primarily concentrating on the explainability, safety, and veri-
fiability of AI solutions. They have also incorporated aspects
like traceability and accountability, consistently placing the
human being at the core of the entire process. Nokia’s AI
pillars [14] include transparency to ensure trustworthiness and
help engineers improve model accuracy. Explainability and
transparency also aid in root cause analysis, especially for
troubleshooting. In its “Principles for Responsible AI” [16],
Cisco also mentions transparency, intended as communicating
with the users “when and how AI is employed”. Similarly,
Juniper’s AI innovation principles include transparency [13]
meaning clarity about the adoption of AI in products. However,
Cisco adds to its principles reliability meaning “how reliably
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Table II
PRINCIPLES AND GUIDELINES RELATED TO XAI IN (NETWORKING) SYSTEMS PRESENTED IN CHRONOLOGICAL ORDER (↓).

Issuing Entity Description Year↓ Ref.

EU8 Ethics guidelines for trustworthy AI 2018† [6]
Huawei AI Security White Paper 2018 [7]
Telefonica Telefonica’s Approach to the Responsible Use of AI 2018 [8]
DARPA8 DARPA’s eXplainable Artificial Intelligence (XAI) Program 2019 [9]
Ericsson Trustworthy AI: explainability, safety and verifiability 2020 [10]
EU8 EU AI Act: first regulation on artificial intelligence 2021∗ [11]
NEC NEC AI Guide Book 2021 [12]
Juniper Explainable AI explained 2023 [13]
Nokia Responsible AI for telecom 2023 [14]
White House8 Executive Order on the Safe, Secure, and Trustworthy Development and Use of AI 2023 [15]
Cisco Cisco Principles for Responsible AI 2024 [16]

8 The issuing entity is a regulator or government body/agency.
† EU High-Level Expert Group on AI in 2018, final version in 2019 after open consultation.
∗ EU Commission Draft in 2021, EU Parliament approved Final Draft in 2024.

that solution produces a desired output based on the data set on
which it has been (continuously) trained”, and it also aims at
fairness (by identifying and remediating any harmful AI bias).
While these properties are possibly related to explainability,
they do not strictly match with explainability as pursued
in the XAI study field. On the other hand, Juniper also
explicitly considers explainability “with a goal toward having
explainable decision-making processes and intended impact”.
Huawei identifies the lack of explainability as the main cause
of security vulnerabilities in AI systems [7]. This gap creates
unique security risks in DL-based applications, making them
vulnerable to adversarial ML attacks like evasion, poisoning,
and backdoor exploits. Finally, NEC allows black-box AI for
efficiency improvements but emphasizes the need for XAI in
scenarios beyond efficiency [12].

While XAI is a challenging research in most AI applica-
tions, in networking there are additional specific difficulties,
mostly ascribable—at least partially—to the complex and
highly-structured nature of input data, deriving from traffic
traces captured by a network probe. As DL is relatively new
in NTA, XAI applications are still maturing, though its need
is clear, as evidenced by a growing body of literature. In line
with such an increasing interest, a number of studies surveyed
the existing literature on XAI in networking-related domains.
We discuss them in the following subsection in order to clearly
position our contribution.

B. Existing Surveys and Overviews on XAI for Networking

In recent years, an expanding corpus of surveys has explored
the realm of XAI within a variety of application domains,
encompassing, for instance, natural language processing [30],
healthcare [31], and energy sectors [32]. This body of literature
witnesses the interest and engagement of the broader research
community in this area and the key need for contextualiza-
tion of explainability issues and desiderata in each peculiar
domain. Notably, within the large field of networking, there
has been a proliferation of surveys that delve into the realm

of XAI as highlighted in Table III, in which we pinpoint
the networking domains considered in such related surveys
(column “Domain”). Nevertheless, existing survey efforts
comprehensively dissecting NTA, mostly focus on aspects
such as novel opaque ML/DL design methodologies [33, 34],
and XAI is overlooked or not even mentioned as a future
direction. This trend underscores the paramount importance of
enhancing the transparency, interpretability, and comprehensi-
bility of NTA. As XAI techniques mature, integrating them
into NTA promises to bolster network resilience and security.
The growing research in this area acknowledges XAI’s pivotal
role in addressing modern NTA challenges, offering promising
implications for both academia and industry. Zhang et al. [20]
provide a general overview of the landscape in AI-driven
networking solutions and systems, suggesting forthcoming
challenges and prospective trajectories, with a specific focus
on network management. The authors suggest the potential of
XAI to elevate AI-based networking solutions and provide an
initial discussion of different XAI goals such as performance,
feasibility, robustness, and trust. This article is proposed as
a primitive guidance for the incremental improvement of AI-
based networking solutions, and as an opportunity to foster a
discussion on the necessity of XAI in networking.

Other surveys focus on specific application domains such
as network security, the Internet of Things (IoT) paradigm,
or the emerging applications of 5G networks and beyond.
Differently, our study focuses on network traffic, which is the
core information processed by AI for all these verticals. Hence,
the adoption of XAI in the NTA domain overlaps with all
these above. However, the juxtaposition of the contributions
of these surveys—besides not being trivial—does not provide
a comprehensive or consistent view of the peculiarities of
XAI in NTA. Our longstanding research experience on NTA,
AI, and XAI supports a thorough investigation that both
allows understanding the specific application domains and
surfacing the common solutions and open problems. Indeed,
our contributions include an in-depth background on XAI

https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://www.huawei.com/en/trust-center/resources/ai-security-white-paper
https://www.telefonica.com/en/sustainability-innovation/how-we-work/business-principles/
https://www.ericsson.com/en/blog/2020/12/trustworthy-ai
https://artificialintelligenceact.eu/the-act/
https://www.nec.com/en/global/solutions/ai/download/necaiguidebook/NEC_AI_Guide_Book_en.pdf
https://web.archive.org/web/20220523025005/https://www.juniper.net/us/en/company/ai-innovation-principles.html
https://onestore.nokia.com/asset/f/212898
https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
https://www.cisco.com/c/dam/en_us/about/doing_business/trust-center/docs/cisco-responsible-artificial-intelligence-principles.pdf
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Table III
EXISTING OVERVIEWS AND SURVEYS ON XAI IN NETWORKING-RELATED DOMAINS. WORKS ARE LISTED IN CHRONOLOGICAL ORDER (↓).

Venue [Ref.] Year ↓

Domain Focus

Netw.
Manag.

Security IoT (B)5G
Background on
XAI Methods

XAI
Goals

Metrics
Extensive
Discussion

of Use Cases
Input Reproducibility

Open
Challenges

IEEE ISEA-ISAP [17] 2021 ✓ G# # # # #  #
IEEE Open J. Commun. Soc. [18] 2022 ✓ ✓  G# #  # #  

IEEE Access [19] 2022 ✓  # #  # G#  
IEEE Commun. Mag. [20] 2022 ✓ # G# # # # #  

IEEE Access [21] 2022 ✓ G# # #  # #  
IEEE Access [22] 2022 ✓  # G#  # G#  

IEEE BigData [23] 2022 ✓ # # G# # # # #
Comput. Commun. [24] 2022 ✓ G# # # # # # #

IEEE Trans. Netw. Service Manag. [25] 2023 ✓  # # G# # #  
IEEE Internet Things J. [26] 2023 ✓  G# #  G# G#  

IEEE Commun. Surv. Tutor. [27] 2023 ✓ ✓  # # # # #  
IEEE Open J. Commun. Soc. [28] 2024 ✓   #  # #  
IEEE Commun. Surv. Tutor. [29] 2024 ✓ ✓  G# # G# # #  

This Survey 2024 ✓ ✓ ✓        

methods, the analysis of the NTA tasks for which XAI is
leveraged, its goals, the most relevant practical use cases,
the input data exploited to feed the models, the relevant
public datasets and tools for reproducibility purpose, as
well as the analysis of the open challenges. To summarize
the above discussion, in Table III, we present an overview of
the main contributions (column “Focus”) of the present survey
(last row) compared to related ones. Going into more detail,
hereafter, we discuss the relevant surveys on the adoption of
XAI organized by the specific domain they focus on.

Security: Unquestionably, the majority of scholarly sur-
veys are centered around the domain of (cyber)security and
its diverse applications. For instance, Moustafa et al. [27]
examine the value of explainability techniques focusing on the
intersection of XAI, Intrusion Detection Systems (IDSs), and
IoT. They remark that explaining ML and DL models for cyber
defense systems is vital and highlight the lack of standardized
terminology and evaluation of explanation. Capuano et al.
[21] delve into critical facets of cybersecurity applications,
encompassing areas like IDSs, malware detection, phishing
and spam detection, botnets detection, fraud detection, zero-
day vulnerabilities, digital forensics, and crypto-jacking. This
work primarily focuses on evaluating the employment of
explainability techniques within these domains, emphasizing
notable accomplishments and emerging challenges. It also
engages in a comprehensive discussion of prior research,
ongoing trends, and forthcoming obstacles in this context.
In contrast, Zhang et al. [19] conduct an assessment of the
integration of cybersecurity measures across a diverse array of
industrial sectors, which includes the domains of smart grid,
healthcare, smart agriculture, smart transportation, human-
computer interaction, and smart financial systems. This survey
also ventures into the realm of adversarial threats aimed
at XAI models, thoroughly examining both the nature of
these attacks and the defensive strategies. In another relevant
work, Rjoub et al. [25] introduce general principles and
methodologies derived from the XAI literature while analyzing
their potential advantages when applied in the domain of

cybersecurity. They provide a comprehensive classification of
the cybersecurity field, acting as a framework to explore the
literature and potential applications of XAI in sub-domains
like privacy, investigation, access control, intrusion detection
and prevention, trust, and reputation. Furthermore, this paper
delves into future research prospects and ethical concerns
related to XAI in this context. Moreover, Hariharan et al. [17]
strive to offer insights into the terminology, classification, and
scope pertaining to XAI within the realm of cybersecurity.
This work also examines the challenges encountered and the
evaluation metrics applied, drawing valuable insights from ex-
isting literature. The review process encompasses four distinct
stages, including exploratory data analysis, XAI methods, the
availability of XAI toolkits, and the critical phase of evaluating
explanations. The survey by Neupane et al. [22] conducts
an extensive investigation of the current state of XAI within
the specific context of IDSs. This work evaluates the main
challenges in the field and examines their impact on the devel-
opment of eXplainable IDSs (X-IDSs). The survey provides a
comprehensive examination of both black-box and white-box
approaches, scrutinizing the trade-offs concerning performance
and their capacity to generate explanations. Moreover, the
authors propose a generic architecture that integrates human-
in-the-loop components, serving as a valuable reference for
designing X-IDS. In contrast, Warmsley et al. [23] concentrate
on the interpretability of graph neural networks as applied
to malware detection. Their study involves a comparative
analysis of various methods using diverse metrics to assess
the explanations and the time required for execution. As
highlighted in Table III, most surveys in the security domain
cover both the background of XAI and relevant open issues
(with the exception of [23], which lacks both). However, they
often fail to discuss metrics and input data, or do not provide
sufficient details on usable datasets and tools, which is a
significant shortcoming given the unique challenges of the
security domain.

IoT: In the realm of the IoT, an analysis of XAI
frameworks is presented by Jagatheesaperumal et al. [18],
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examining their characteristics and evaluating their suitability.
It illustrates the common adoption of XAI in various IoT
applications, like the Internet of Medical Things, Industrial
IoT, and Internet of City Things. Furthermore, this work delves
into the most recent advancements in XAI-based architectures
and their integration into 6G communication services tailored
for IoT applications. Additionally, Kök et al. [26] offer an
extensive and systematic review of recent research employing
XAI models. The surveyed studies are categorized based on
their methodology and application domains, which include
autonomous systems and robotics, energy management, envi-
ronmental monitoring, financial systems, healthcare, industrial
domain, security and privacy, and smart agriculture. Table III
underlines that all surveys in the IoT domain emphasize
the discussion on open challenges, while also providing in-
depth background on XAI, typically tailored to the specific
application context. Notably, the survey in [27] is the only
one that does not extensively discuss relevant IoT use cases
for XAI which is a key pillar of the other works.

(B)5G: Other surveys are framed in the context of
(beyond-)5G applications. Senevirathna et al. [29] explore
XAI within the realm of security, encompassing technical
aspects, applications, prerequisites, constraints, challenges,
ongoing projects, standardization efforts, and valuable insights,
all tailored to the context of beyond-5G applications. Wang
et al. [28] survey the application of XAI in the context of
the upcoming 6G era. The work encompasses various aspects,
including 6G technologies like intelligent radio and zero-touch
network management, as well as 6G use cases such as Industry
5.0. This survey summarizes insights from recent endeavors
and outlines critical research challenges for the prospective
integration of XAI into 6G networks. Fiandrino et al. [24]
review the current status of tools and methods for enhancing
the robustness and explainability of AI, listing challenges,
open issues, and potential future research directions. The au-
thors examine strategies for enabling robust and interpretable
AI within 6G networks and its incorporation into existing
network architecture models. They explore a case study to
demonstrate how XAI tools can provide explanations linked
to the characteristics of input data. Additionally, this paper
investigates the computational demands involved in executing
XAI tools, including the presentation of execution time and
resource utilization metrics. Similar to the surveys in the IoT
domain, the works here also pay particular attention to XAI
background and its application to (B)5G use cases, as well
as related open issues (except for the study in [24], which
partially overlooks both). Unfortunately, none of the (B)5G-
related surveys consider metrics, input data, or research repro-
ducibility aspects, which we believe are particularly important
in this challenging and rapidly evolving domain.

III. OVERVIEW ON XAI
To cover the range of concepts and techniques that con-

tribute to make AI “eXplainable”, we first provide a charac-
terization of XAI methods in Section III-A; then, we analyze
the metrics for quantitatively assessing the quality of the
explanations in Section III-B; finally, we discuss the reliability
of the AI models in Section III-C.

A. XAI Methods Characterization
XAI methods can be characterized along different dimen-

sions, as depicted in Figure 2. These dimensions include
the scope of the explanations they offer, the model training
phase at which they are applied, their reliance on the model
being interpreted, and the type of explanations provided.
This discussion can help interested readers understand and
identify the characteristics of the XAI method that best suit
the explainability analysis they intend to carry out.

1) Scope of Explanation — Local vs. Global: Local XAI
methods concentrate on elucidating the decision-making pro-
cess for individual predictions generated by a model [35].
They shed light on why a specific decision was reached for
a particular instance of input data. For example, in network
traffic analysis, a local XAI method can explain why a model
flagged a specific network flow as malicious, thus allowing
detailed verification of the model’s behavior for each instance
of interest. In contrast, global XAI methods aim to impart a
more comprehensive understanding of the overall behavior and
operation of the model [36]. They achieve this by unveiling
patterns, rules, and relationships across the entire dataset or
a subset of it, thus providing a holistic perspective on the
model’s behavior. A global XAI method can shed light on
the overall behavior of a system that determines the traffic
class to which a packet flow belongs, providing insights into
the characteristics that guide the whole classification process.
It is worth mentioning that there are various approaches to
transition from local explanations to global ones through
aggregation or pooling strategies [37]. Conversely, (natively)
global methods can be usually applied to also predict specific
instances.

2) Stage — Pre-model vs. Post-Hoc vs. Intrinsic: Pre-
model XAI techniques encompass a range of strategies
aimed at improving model transparency and interpretability
before its deployment. For instance, Exploratory Data Analysis
(EDA) involves delving into the dataset to uncover insights
and potential biases, while feature engineering and selection
help in selecting or transforming features for improved inter-
pretability [38]. Given the complexity and heterogeneity of
the inputs used in the context of NTA, this phase plays an
even more significant role in providing useful insights to
network operators, as it ensures that the training data
is clean and suitable for representing network traffic.
Techniques like bias and fairness analysis are essential to
identify and address biases in the data and the model [39].

Post-hoc explainability refers to methods that analyze and
interpret a pre-trained AI model [40]. These methods are
applied externally to the model and usually do not rely on its
internal workings. Post-hoc methods aim to provide insights
into the decision-making process of the model by examining
its inputs, outputs, or internal representations but without
interfering with model training. These approaches represent
the best choice when traffic analysis tools are already operating
in real-world contexts, and there is a need to gain insight into
their operations.

Intrinsic (or by-design) explainability, on the other hand,
refers to methods that focus on building AI models or al-
gorithms with built-in interpretability. These methods aim to
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Figure 2. Different facets for XAI methods characterization.

create inherently transparent models and provide explanations
alongside their predictions and often involve using simpler and
more interpretable models or incorporating explicit rules and
logic into the AI system’s architecture. Explainable by-design
models are the ideal choice when implementing new AI-driven
traffic analysis systems, as they offer inherent transparency
in their operations, rendering immediate interpretation of the
system’s decisions and fostering trust in its actions.

As an example of intrinsic explainability, attention mech-
anisms [41] can enhance neural network interpretability by
dynamically assigning weights to distinct segments of input se-
quences, providing insights into which elements influence the
decision-making process. Visualizing these attention weights
reveals the model’s focus, helping to understand its decision
dynamics. This intrinsic transparency enables the designer
to identify crucial elements that impact the model’s outputs.
Boolean Decision Rules via Column Generation (BRCG) [42]
involves iteratively generating and adding simple Boolean
decision rules to approximate the decision boundaries of a
complex model. The optimization process selects the most
informative rules in each iteration, and a pruning step helps
improve generalization. The final set of Boolean decision rules
provides a transparent and interpretable representation of the
original model, offering explicit conditions for predictions.
Another example is RuleFit [43], that is a XAI technique that
begins by generating Decision Trees (DTs) and extracting rules
from them. These rules, representing conditions on input fea-
tures, are transformed into binary features. RuleFit combines
these features with a linear model, such as logistic regression,
allowing for the modeling of complex relationships.

3) Model Dependency — Specific vs Agnostic: Model-
specific techniques are designed and tailored to a specific AI
model or algorithm. These techniques take advantage of the
specific characteristics, internal workings, and model structure
to provide explanations and exploit the model’s architecture,
parameters, or intermediate representations. Considering, for
example, a system used to classify network attacks based
on a Convolutional Neural Network (CNN), employing an
XAI method tailored to this type of network could be of
paramount importance in situations where detailed explana-
tions of internal model decisions are required from network
administrators. These tools give insight into key aspects such
as neurons’ importance and layer activations, and enable a
more accurate understanding of the model decisions. Model-
agnostic techniques do not rely on the internal details or
specifics of a particular AI model. These techniques are

more generic and can be applied to any black-box model
without requiring any knowledge about its internal workings.
They typically treat the model as a black-box and use input-
output mappings or other approximation methods to explain
its behavior. Such methods are especially well-suited when
different AI-based tools for traffic analysis are utilized and
there is a need for a unified tool for explainability purposes
(able to explain possible disagreements). This helps streamline
the process, maintain consistency in interpreting results, and
avoid the complexity and inefficiencies of managing multiple
tools.

4) Explanations Types— Visualization vs. Input Importance
vs. Example Based: As explainability is related to human
understanding, the form in which the explanations are com-
municated becomes an important aspect. In this regard, the
various state-of-the-art XAI techniques differ widely.

Some techniques provide explanations based on Visual-
ization, relying on the intuitiveness of interpretation. Visual
explanations often involve heatmaps, saliency maps [44], or
other graphical representations to highlight important features
or regions in an input. Among these, and despite not being
an interpretability technique in the strict sense, t-distributed
Stochastic Neighbor Embedding (t-SNE) [45] is often applied
to the space of features extracted from DL models. Conse-
quently, it becomes instrumental in interpreting the represen-
tations derived from the models and the results of classification
tasks, offering insights into the separation capabilities of the
analyzed model. For instance, by visualizing the separation
of normal traffic from various attack types, t-SNE offers
valuable insights into the classification abilities of a net-
work IDS. Other visualization-based techniques are specific
to CNNs and rely on the analysis of feature maps and neuron
activations across different layers of the architecture (e.g.,
layers and feature maps visualization).

Many techniques focus on Input Importance: they aim
at explaining model decisions based on the importance or
contribution of individual inputs. For example, when interpret-
ing a network IDS, input importance techniques can identify
which traffic features (e.g., packet size or specific protocol
flags) play the most critical role in classifying a flow as
malicious or benign. Such insights are extremely valuable
for network administrators in understanding the behaviors
or patterns influencing the system’s decisions. Among these
techniques, perturbation-based explanations involve making
changes to the input data and observing how the model’s
output changes [46]. By systematically perturbing the input,
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users can gain insights into the model’s sensitivity and the
importance of different features. A conceptually straightfor-
ward approach is provided by occlusion analysis [44], which
iteratively assesses the models’ performance by occluding
(e.g., substituting with non informative data) portions of the
inputs. The underlying rationale is that the more the model
relies on a specific subset of inputs for predictions (i.e. the
more the inputs are important), the more pronounced the
variations in performance should be. Similarly, Permutation
Feature Importance (PFI) [47] involves randomly shuffling
the values of a specific feature and measuring the impact on
the model’s performance metrics. By comparing the model’s
original performance with the performance after permuting
the feature, a decrease indicates that the feature is important
for the model. SHapley Additive exPlanations (SHAP) [48] is
based on cooperative game theory principles to fairly attribute
the contribution of each feature. It considers all possible
permutations of features, assessing how their inclusion or
exclusion affects the model’s output, and provides the average
contribution of each feature. Other techniques are based on
approximating the model’s behavior in specific input regions
using surrogate models that are more easily (or inherently)
interpretable. Local Interpretable Model-agnostic Explanations
(LIME) [49] works by generating perturbed samples and
observing their corresponding predictions. It fits a simple,
interpretable model, such as linear regression, to these per-
turbed samples, offering a transparent representation of the
local decision boundary. Similarly, Local Explanation Method
using Nonlinear Approximation (LEMNA) [50] produces a
concise set of interpretable features to clarify the classification
of an input data sample. Gradient-based explanations instead
use information from the model’s gradients to explain how
model output would change if the input were modified [51].
Layer-wise Relevance Propagation (LRP) [52] assigns rele-
vance scores to input features by systematically distributing
relevance backward from the output layer to the input layer.
These techniques are often model-agnostic as they rely on the
input-output behavior of the models. Despite this, there are
also examples of model-specific techniques such as Gradient-
weighted Class Activation Mapping (Grad-CAM) [53], that
are tailored for CNNs. Furthermore, certain techniques offer
insights into the significance of inputs by contrasting them with
reference values known as baselines (neutral feature values).
Integrated Gradients (IG) [54] constructs a path from this
baseline to the actual input, computing gradients at interme-
diate points along the way. Then, it integrates these gradients,
attributing the model’s output to each feature based on their
contributions along the path. Deep Learning Important Fea-
Tures (DeepLIFT) [55] computes the variance in the activation
of each neuron between a given input and the baseline. These
differences are then propagated backward through the network.

Example-based Explanations use specific instances to
provide explanations. They often involve showing similar
instances or explaining a decision by presenting a similar case
that the model got right or wrong. When interpreting, for
instance, a system used to recognize the application generating
traffic flows, this type of explanation method can provide net-
work administrators with highly intuitive insights. For exam-
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Figure 3. Properties for explanations quality assessment grouped by the three
dimensions: Content, Presentation, and User.

ple, if a flow is classified as originating from a video streaming
app, the explanation could present similar flows the model
has previously classified correctly, highlighting common char-
acteristics such as packet size, volume, or traffic patterns
shared among these flows. Counterfactual explanations [56]
are valuable in scenarios where users want to understand why
a model made a particular decision and what changes could
lead to an alternative outcome. An example is represented by
Contrastive Explanation Method (CEM) [57] that operates by
contrasting the model’s original prediction with an alternative
outcome by generating a counterfactual instance, a modified
version of the input that would lead to a different prediction
while attempting to minimize changes. ProtoDash [58] serves
as a method for identifying diverse prototypical examples
(prototypes) that effectively encapsulate a comprehensive rep-
resentation of the dataset. Explanations consist of the selected
set of representative examples. Contrastive Autoencoder for
Drifting detection and Explanation (CADE) [59] serves the
purpose of identifying drifting samples that deviate from es-
tablished classes and offers explanations to justify the detected
drift. To elucidate the significance of the identified drift, a
distance-based explanation method is employed. Contextual
Outlier INterpretation (COIN) [60] describes the anomaly
present in outliers identified by detectors. The interpretability
of an outlier is established by considering three elements: the
outlierness score, the attributes influencing the abnormality,
and a contextual description of its neighborhoods.

All these techniques provide different perspectives: the
choice of which XAI technique to use will depend on the
specific use case, the type of model, and the goals of the
explanation. To assess an XAI technique quality or compare
different techniques, a number of metrics, summarized here-
after, can be adopted.
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B. Metrics for Evaluating Quality of Explanations

While interpretability and explainability are often presented
as subjectively validated binary properties, recent research has
conceived it as a multifaceted and measurable concept [4].
Specifically, as depicted in Figure 3, twelve properties are
identified for comprehensively assessing the quality of an
explanation, grouped according to three dimensions: (i) con-
tent (e.g., how much explanation outcome is robust to slight
variations), (ii) presentation (e.g., how much the explanation is
simple and self-explaining), and (iii) user (e.g., how much the
explanation is relevant to user needs and aligns to prior domain
knowledge). For each of these properties, a set of verification
scenarios/metrics can be defined. In [4] also emerges that, to
date, the most considered explanation-quality properties are
Coherence (user-related), Compactness (presentation-related),
Completeness, and Correctness (both content-related).

Coherence evaluates the alignment of the explanation with
domain knowledge (if a ground truth is available), or with
other established XAI methods (used as gold standard). Com-
pactness measures the size or sparsity of the produced ex-
planation (the bigger the worse, as the user can be over-
whelmed). (Output-)Completeness quantifies if the explanation
holds enough information to explain the output. Correctness
measures to what extent the explanation is faithful to the
predictive model it explains. In our analysis of XAI applied
to NTA it is later shown (Section V-A) that instead Continuity
(content-related) is the most considered property in this do-
main. Continuity measures the generalizability of explanations
(i.e. the effect on the explanation when slightly different
inputs, not altering the model prediction, are considered).

For most of the twelve properties, different metrics and
measurement scenarios can be considered: we refer to [4] for
further details on the definitions and the associated quantitative
techniques of each explanation-quality property.

C. Reliability of AI Models
When dealing with classification tasks and the probabilistic

nature of ML and DL outputs, it becomes essential to inquire
about the calibration of these probabilities. Indeed, in addition
to explanation, the confidence of the classification must be
reliable: attaching the probabilistic equivalent of “not much
sure about this” or “little clues, it’s mostly a random guess”
to a classification response enables operators or cascading
subsystems to deal with the response in a more informed
way, as opposed to no confidence indication (amounting to
“I’m positive about this” all the time), or worse, an unreliable
(under/over-confident) indication. Therefore a key objective in
AI algorithm design is to create a (black-box) model that can
be trusted, ensuring its outputs meet specific reliability criteria.
More specifically, calibration refers to the extent to which
the model’s confidence in its decisions accurately reflects its
performance.

Various evaluation metrics that evaluate classification confi-
dence have been introduced, and encompass different notions
of calibration, such as multi-class, class-wise, and confidence-
based [61]. Figure 4 introduces the two core aspects related to
the calibration of AI-based models: assessment and improve-
ment.

1) Assessment: Various evaluation metrics assess model
calibration, such as Expected and Maximum Calibration Error,
which only consider the confidence in the predicted class,
and Class-wise Calibration Error, which instead considers the
entire probabilistic output of the model.

Visualization tools such as reliability diagrams [62] and
statistical tests are commonly used to verify and visualize
the calibration properties of AI models. Reliability diagrams,
for example, plot the accuracy as a function of confidence,
providing a clear visual representation of this crucial aspect.

2) Improvement: Researchers are actively working on im-
proving the calibration and trustworthiness of ML/DL mod-
els by utilizing advanced learning techniques to instill bet-
ter calibration. Among these, Dirichlet-based methods [61],
Focal Loss [63] and Label Smoothing [64] are prominent
approaches. In particular, Focal Loss is originally designed
to address class imbalance in classification tasks and has
also been shown to improve calibration through its inherent
entropy-based regularization properties. Label Smoothing acts
as a form of loss regularization to enhance model general-
ization and prevent overconfident predictions. This method
modifies the cross-entropy loss during training by minimizing
it with respect to a smoothed one-hot representation of the
ground truth.

Conversely, for prediction tasks reliability is only a recent
concern, as classic predictors were based only on point esti-
mates. Indeed, only recent AI literature has shifted to design
of prediction approaches which have uncertainty quantification
as a key objective, i.e. to describe predictive distributions over
forecast variables for given inputs. Different techniques have
been proposed for this more challenging case, ranging from
ensemble methods, Bayesian methods, quantile regressors and,
more recently, to conformal prediction [65]. The latter set of
techniques has the advantage of not-making any restrictive
assumption on the distribution of the forecast variable, i.e.
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it is a class of distribution-free methods [66]. Accordingly,
reliability improvement is not a separated concern, but rather
these methods are conceived with the aim of being reliable-
by-design. In the context of prediction, methods to assess the
reliability of such techniques are mainly based on the calcu-
lation of concise metrics associated with confidence intervals,
such as their mean length (viz. sharpness) and coverage w.r.t.
the true one, or losses associated with quantiles (at different
levels).

IV. XAI FOR NTA: TASKS

NTA is a critical process that involves collecting and exam-
ining network data to improve the performance and security of
communication networks [34]. However, the nature of network
traffic has evolved significantly in recent years, both in terms
of volume and composition, introducing unprecedented chal-
lenges. Traditional approaches to NTA, such as Deep Packet
Inspection, have become less effective due to the widespread
adoption of cryptographic protocols that obscure packet con-
tent [169]. Additionally, the growing heterogeneity of network
traffic further complicates the analysis and management of
modern networks.

As discussed previously,in response to th, AI techniques,
particularly those based on ML and DL [170], have emerged
as powerful solutions. While ML models typically rely on
features that are manually extracted from the data (such
as packet statistics), DL approaches are capable of directly
processing raw traffic data, making them particularly suited
to handling the dynamic and constantly evolving nature of
network traffic without requiring continuous manual feature
engineering and model updates. For further background and
details on ML and DL applied to NTA tasks, we refer the
reader to dedicated overviews and surveys [2, 33, 70] (and
references therein).

Despite their effectiveness, DL-based tools have a notable
drawback: they often function as black boxes, making it
difficult to understand the reasoning behind their predictions.
This raises significant concerns about the interpretability of
their outputs and the trustworthiness of the management
policies they suggest. For network operators, it is essential
to obtain not only accurate predictions from these models
but also explanations of their behavior. Understanding the
rationale behind a model’s decisions is critical for operators to
confidently implement the recommended network management
policies.

To address this issue, XAI has been increasingly applied
in the NTA domain. The efforts of the scientific community
involved in the adoption of XAI approaches to NTA primarily
focus on the NTA tasks discussed in the following. Table IV
provides an overview, grouping works by the specific task
faced.

A. Legit-Traffic Classification

Network Traffic Classification (TC) plays a crucial role in
modern network management activities. It aims at associating
the traffic flowing through a computer network with the
(category of) applications that generated it [169].

By classifying network traffic, administrators can gain in-
sights into the nature of the traffic and implement appropriate
policies for network optimization. For instance, understanding
the types of network traffic with the related patterns aids
in optimizing network performance. This entails pinpointing
bandwidth-intensive applications or traffic bottlenecks. In turn,
this allows for allocating resources effectively, prioritizing
critical applications, and ensuring a smooth user experience.
Additionally, classifying network traffic enables the implemen-
tation of Quality of Service (QoS) policies, allowing different
classes of traffic to be assigned varying levels of priority
and resources, ensuring critical applications receive sufficient
bandwidth and low latency. In cases compatible with network
neutrality regulations, TC is also the basis for service/billing
differentiation practices.

Formally, TC is a multiclass classification task and consists
of assigning each Traffic Object (TO)—such as flows, biflows,
service bursts, etc.—a label within the set {1, · · · , L}, where
each class corresponds to a specific traffic category. Most
of the reviewed studies consider applications (also shortly
referred to as apps) [67–80] or traffic services (traffic types,
such as Email, Chat, FileTransfer, P2P, Streaming, VoIP) [72,
73, 76–78, 80–86], as possible classes. Other works differ
in the considered classes and deal with website fingerprint-
ing [88, 91], device classification [89], apps and user activities
classification [74], or encapsulation identification [77, 85, 87].
The latter aims to distinguish whether a TO is collected
through regular sessions or encapsulated within VPN ses-
sions. Furthermore, the work [90] addresses multiple types of
network analysis problems, including protocol identification,
determining if a given Transport Layer Security (TLS) stream
contains DNS-over-HTTPS, and identifying specific Remote
Desktop Protocol and Secure Shell authentication methods. It
is worth noting that certain studies tackle multiple classifica-
tion tasks, therefore, they are reported in Table IV multiple
times. These studies employ either multitask approaches (e.g.,
[77]) or separate single-task methods.

For instance, backing TC with XAI methods allows one to
understand which protocol field or payload byte is responsible
for selecting Facebook rather than YouTube as a classification
verdict or whether the data-driven traffic classifier is confident
enough in delivering its decisions.

B. Intrusion Detection

Intrusion Detection (ID) is a broad concept that can be
applied to various data types to identify potentially malicious
or anomalous activities. For example, ID systems may fo-
cus on system calls in software-based security contexts, as
discussed in [171], to detect suspicious behaviors. However,
in the context of network traffic, the primary goal of ID is
to differentiate between legit network usage and anomalous
(malicious) activities (i.e. binary classification) that may pose
risks to the security, the performance, or the stability of the net-
work [172]. Anomalies can be either specific activities known
to be malicious or deviations from expected (normal) behavior
which indicate potential security threats. Accordingly, there
are different approaches to performing ID. One key distinction
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Table IV
WORKS DEALING WITH XAI FOR NTA TASKS (BREAK-DOWN BY TASK, IN CHRONOLOGICAL ORDER WITHIN THE TASK).

NTA Task Year Papers

Legit-Traffic Classification

Apps

2019 [67]

2020 [68], [69], [70]

2021 [71]

2022 [72], [73], [74]

2023 [75], [76], [77], [78], [79], [80]

Services

2019 [81]

2021 [82]

2022 [72], [73]

2023 [83], [77], [76], [78], [80], [84]

2024 [85], [86]

Others
2022 [87], [88], [89], [74], [90]

2023 [77], [91]

2024 [85]

Intrusion Detection

Misuse Detection

2018 [92], [93]

2020 [94], [95]

2021 [96], [97], [98], [99], [100], [101],
[102], [38], [103]

2022 [104], [105], [106], [107], [108], [109],
[110], [111], [112], [113], [114]

2023 [115], [116], [117], [118], [119], [120], [121], [122]

2024 [123], [124]

Anomaly Detection

2019 [125], [126]

2020 [127]

2022 [128], [129], [112]

2023 [130], [118]

Others

2021 [131]

2022 [132]

2023 [133], [134]

Attack Classification

IoT Focused

2019 [135]

2022 [104], [136], [137], [138], [139]

2023 [116], [140], [141], [142], [143]

2024 [123], [144]

Non-IoT Focused

2016 [145]

2018 [146]

2020 [95], [147], [148], [149]

2022 [87], [113], [150], [151], [152], [153],
[154], [155], [156], [157]

2023 [75], [115], [158], [159], [160]

2024 [161]

Traffic Prediction
2021 [162], [163]

2023 [164]

Other Tasks
2019 [165], [166]

2020 [167], [168]
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is between Misuse Detection (MD) and Anomaly Detection
(AD) approaches.

Misuse Detection: In the MD task, both malicious and
benign traffic data are available during model training. The
task is typically formulated as a supervised binary (two-class)
problem, where each traffic object is assigned a label from the
set {benign,malicious}. The model learns to classify traffic
instances based on labeled examples and seeks to generalize
this classification to unseen data [92–102, 104–113, 115–
118, 120–124]. Such approaches require labeled datasets that
accurately represent both normal and anomalous network
behavior.

Anomaly Detection: In the AD task, models are trained
using only benign traffic data. The model learns the patterns
and statistical properties of normal network behavior during
training. Anomalies are then detected as deviations from the
learned benign behavior. An AD approach does not require
labeled anomalies during training (i.e. unsupervised learn-
ing) and is useful when labeled malicious data is scarce or
when the characteristics of anomalous behavior are not well-
defined [112, 118, 125–130].

Other Approaches: Some works do not strictly fall into the
two subcategories discussed as they apply particular ad hoc
methodologies to solve the ID task. Dias et al. [131] introduce
a rule-based approach that integrates pre-existing rules created
by experts with dynamically evolving knowledge generated
by a DT algorithm, adapting to new insights gleaned from
network activity. Jeong et al. [133] introduces a novel web-
based visualization system that combines a range of visual-
ization techniques to depict network traffic data. This system
includes interactive features that empower users to engage in
an interactive visual analysis of the data representation. The
method presented in [132] utilizes self-supervised learning to
train the model on unlabeled data for the purpose of identifying
anomalies, determining the affected devices. Differently, Minh
et al. [134] introduce a method that integrates various unsu-
pervised models and combines them using a stacking strategy.
From Table IV and the preceding discussion, it is evident that
the majority of papers addressing ID tasks are concerned with
MD.

For instance, applying XAI to ID allows operators to rank
input data based on their actual contribution to the detection
process. Also XAI enables them to pinpoint the portion of the
data-driven model responsible for detecting specific anomalies
(similarly to a rule-base detector).

C. Attack Classification
Attack Classification (AC) is concerned with identifying

and categorizing specific malicious activities or cyberattacks
within network traffic. The primary objective is to recognize
and classify malicious activities or security threats, such as
malware infections, denial-of-service attacks, intrusion at-
tempts, phishing attacks, or any other unauthorized or harmful
actions that can compromise the integrity, availability, or confi-
dentiality of network resources. This task allows organizations
to swiftly detect and respond to cyber threats, tailor their
security measures to counteract known attack vectors, and im-
prove overall cybersecurity by understanding and categorizing

the nature of incoming threats targeting IoT devices (i.e. IoT
Focused) [104, 116, 123, 135–144] or more general devices
(i.e. non-IoT Focused) [75, 87, 95, 113, 115, 145–161].

This task results in a finer level of granularity in comparison
to MD, as its objective is not only to differentiate between
malicious and benign traffic but also to identify the specific
class of attack responsible for generating the TO. More for-
mally, AC is a multiclass classification task and consists of
assigning each TO a label within the set {1, · · · , L}, where
each class corresponds to benign traffic or a specific attack.
It is worth noting that the benign class may not be there and
in these cases, the task aims to distinguish the various attacks
from each other. Also, this task is similar to (legit) TC but it
is characterized by distinct objectives and unique challenges
associated with capturing and labeling network traffic [70].

Examining Table IV reveals a rising pattern in the number
of works focused on AC, with a particularly notable surge
in the last two years. XAI applied to AC helps gain insights
into the specific features and patterns the model relies on to
identify an attack, shedding light on the distinctive markers
that set it apart from other attacks and the normal network
behavior.

D. (Fine-grained) Traffic Prediction

Traffic Prediction (TP) refers to the practice of using histor-
ical data to forecast the patterns and trends of traffic flowing
within computer networks. It involves analyzing the character-
istics (e.g., volumes, rates) of network traffic to anticipate how
it will evolve over time [173]. This prediction can encompass
various aspects and can be performed at different granularity
levels that reflect how network packets are aggregated, namely
which is the TO constituting the elementary unit for the
prediction task. Accurate TP enables network administrators
to allocate resources such as bandwidth and processing power
effectively. This prevents congestion, ensures optimal per-
formance, and minimizes wastage of resources. Indeed, by
understanding traffic growth patterns, organizations can scale
their infrastructure to accommodate increasing demands with-
out suffering from unexpected network saturation. Moreover,
predicting network traffic aids in maintaining consistent QoS
levels and ensuring that end-users receive reliable services,
enhancing their overall experience.

Considering a generic TO, the TP task can be defined
as the forecasting of a set of P traffic parameters (e.g.,
volume, bandwidth) based on a sequence of historical values
assumed by these parameters. Such parameters are modeled
as a multivariate time series characterized by a time index.
Given observations of the parameters up to the nth time
index, TP aims to predict the traffic parameters associated
with the (n + 1)th time index. These predictions rely on
past observations of the same traffic parameters, which act as
the memory that the model must retain for making accurate
predictions.

The TP task can be conducted at various granularities.
Although most works typically focus on aggregated metrics
(e.g., total volume and average rate, spanning over extended
time intervals), recent years have seen a surge in the interest
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toward the challenging case of fine-grained TP. Nonetheless,
the capitalization of DL for fine-grained TP is still a challenge,
and performance gaps need to be overcome [163].

For the mentioned reasons, while some recent works deal
with XAI on aggregated traffic prediction [174], the focus
of this survey will be on investigating the adoption of XAI
methods for TP performed at packet-level and per-biflow [162–
164], i.e. given a biflow up to its nth packet, TP aims to predict
P traffic parameters associated with the (n + 1)th packet. In
this context, XAI methods can provide for instance detailed
information about which element in a multivariate time series
mostly contributes to correct predictions or about how many
packets of a (bi)flow are helpful to obtain accurate inferences.

E. Other Tasks

Other studies do not fall within the set of tasks consid-
ered. In fact, they address distinct tasks, albeit related to the
adoption of XAI to support the analysis of network traffic.
Morichetta et al. [165] and Dethise et al. [166] focus on
predicting video quality, while Terra et al. [167] address the
prediction of SLA violations. Methods proposed by Meng
et al. [168] were employed to interpret tasks related to video
streaming, flow scheduling, and routing based on Software
Defined Networking (SDN). We have reported these work in
Table IV separately.

V. XAI FOR NTA: GOALS

By definition, XAI aims at model explainability. This can
serve a dual purpose: (i) it helps interpret the decisions of
complex models, with the final goal of a better understanding
for humans; (ii) it can further guide model improvement
by revealing insights into areas where the model may need
(architectural) adjustments or further (i.e. refined, targeted)
training. In a practical application, the insights gained from
XAI can inform a feedback loop where models are iteratively
refined for better interpretability and performance.

Following this line, herein we first analyze the works that
leverage XAI techniques to interpret the functioning of models
built for NTA (Section V-A). Then, we discuss the works
that utilize such insights obtained through XAI to refine the
models, thus pursuing improvements along various directions
(Section V-B). In doing so, we also summarize the metrics
through which the benefits of applying XAI for both purposes
are quantified.

A. XAI for Interpreting NTA Models

The literature analysis highlights how existing studies vary
in the level of detail for the analyses conducted. In fact, many
studies represent a preliminary effort in leveraging XAI and
limit explainability investigations mainly to characterize the
significance of inputs [67, 81, 83, 84, 91–93, 99, 100, 103–
106, 113, 117, 119–122, 128, 130, 136–138, 140, 142, 145,
151, 155, 158–160, 162, 163, 175]. Despite the adoption of dif-
ferent methodologies, ranging from traditional to complex and
innovative approaches, such studies mostly provide insights
into the importance of inputs for decision-making models,

highlighting how specific portions of the inputs (e.g., whole
packets, packet fields, payload portions, handcrafted features)
lead the model toward either correct or wrong outcomes.

Other studies offer more detailed analyses, focusing on
aspects such as the errors made by the models [69] or investi-
gating input importance for different models [146] or different
sets of features and datasets together [109] or examining
multiple perspectives on models [68, 80, 88].

Some research aims to introduce new frameworks or
methodologies to assist users in interpreting their models
[38, 87, 133, 147, 165, 168] or novel XAI techniques, as done
by Zhang et al. [157], which propose a novel XAI technique
based on Shapley Values to accelerate global explanations for
IDSs.

A significant number of studies propose new tools or
instruments that are directly interpretable by end-users [75,
76, 79, 94, 97, 126, 132, 134, 149, 150, 153, 176, 177]. Other
research delves into insights obtained by investigating the
explanations provided by various techniques, often comparing
different techniques qualitatively [82, 90, 95, 98, 102, 108,
127, 167]. This comparison is frequently made with more
traditional methods for feature selection [135, 148, 152].

Other works leverage XAI aiming at interpreting spe-
cific facets of training, models, or data. For example,
several papers present analyses involving multiple datasets
in a cross-evaluation context. Yilmaz and Bardak [110] aim
to understand the difference between multiple datasets from
the perspective of feature importance. Similarly, Layeghy and
Portmann [112, 118] investigate the differences in feature
importance for various combinations of training and test sets
coming from different datasets, and compare them to the
case where both training and test originate from the same
dataset. Nascita et al. [178] employ various explainability
methodologies to understand the differences in the behavior
of traffic classifiers based on the training methodology. These
classifiers are trained either traditionally (having access to
all class data during training) or incrementally (using class
incremental learning techniques). In a similar context but with
a different purpose, Jorgensen et al. [78] evaluate their models
with out-of-distribution detection analysis to understand when
to retrain the model from scratch. Nascita et al. [139] utilize
XAI to evaluate the impact of specific network-layer fields and
the potential biases they introduce on the performance.

Concerning reliability in TC tasks, Li et al. [72] propose
a trustworthy TC model that provides both classification
predictions and confidence scores, aiding in the effective
differentiation between correct and incorrect predictions, while
Guarino et al. [74] examine model calibration to characterize
approaches from this perspective, in addition to traditional
performance-related aspects. As for reliability in TP tasks,
in [74] the authors face a fine-grained TP task and investigate
the reliability in the prediction of a discrete parameter (i.e.,
the packet direction) by framing it as a binary classification
task. Conversely, direct reliability enforcement in fine-grained
network prediction tasks seems unexplored to the best of
authors’ knowledge.

Only a few works in NTA defines and/or utilizes metrics
for evaluating explanations [75, 96, 115, 143, 150]. Table V
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Table V
SUMMARY OF EXPLANATION-QUALITY METRICS AS IN THE NTA LITERATURE. THE METRICS ARE ORGANIZED IN ALPHABETICAL ORDER (↓).

Metric
in NTA ↓ Descriptions (as in NTA literature), references, and formulas Category

as in [4]
Notes on

Applicability to
XAI Methods

Application to
NTA Tasks

TC AC ID TP

Accuracy (+) Quantifies the accuracy of global explanations by using its top-k
most significant features [115]. Correctness +G* 0 ✓ ✓ 0

= acc(M) − acc(Mtop−k), where Mtop−k is the model us-
ing only top-k features highlighted by a global explanation (i.e.
Ātop−k(M, xm))

Compactness (−) Quantifies (via inertia) the cohesiveness of explanations within the
same class [150]. Continuity +EB 0 ✓ ✓ p

= (1/L)
∑L

ℓ=1(1 / |Dℓ|)
∑

x∈Dℓ
∥a(M,x, xm)− āℓ(M, xm)∥2,

where āℓ(M, xm) denotes the centroid explanation of all the
samples belonging to class ℓ, i.e. Dℓ. Metric can be averaged on
either training or test sets.

Consistency (ì) Visually assesses how consistent the explanations are for similar in-
stances across different models, regardless of the model used [115]. Consistency +EB 0 ✓ ✓ 0

a(Mj ,x, xm) vs. a(Mj , x̃, xm) (or Atop−k(Mj ,x, xm) vs.
Atop−k(Mj , x̃, xm)) for different models Mj , j = 1, . . . ,M .

Effectiveness (+) Quantifies (as a binary value) whether the explanation results are
important to the decision-making process and thus change the
classification results [75].

Correctness 0 ✓ ✓ p

= 1 (resp. = 0) if x is mutated in xm by modifying all the
features contained in Atop−k(M,x, xm) and M(xm) ̸= M(x)
(resp. M(xm) = M(x)). The metric is averaged over the entire
dataset.

Efficiency (−) Quantifies (via runtime) if interpretations are promptly available in
high-speed online workflows [96]. N/A +EB 0 ✓ ✓ 0

runtime =
∑

i∈D◦ ∆ti, where ∆ti is the time needed to generate
the ith explanation and D◦ can be the whole dataset (D) or a subset
of it.

Efficiency (−) Quantifies (via latency) if interpretations do not introduce significant
delays in high-speed online workflows [143]. N/A +EB 0 ✓ ✓ 0

latency = 1
|D◦|

∑
i∈D◦ ∆ti, where ∆ti is the time needed to

generate the ith explanation and D◦ can be the whole dataset (D)
or a subset of it.

Fidelity (+) Measures (via Label Flipping Rate, LFR) the proportion of anoma-
lies that become normal when considering only a fraction of the
input features, according to their importance [96].

Correctness 0 0 ✓ p

LFR is the ratio of misclassified samples to those originally clas-
sified as correct when inputs corresponding to Atop−k(M,x, xm)
are nullified for each x.

Reliability (+) Quantifies the similarity (via Dice-Sørensen coefficient) between the
explanations of different XAI techniques (xm1 vs. xm2) used on
the same model and the same samples [143].

Correctness 0 0 ✓ p

= DS(Atop−k(M,x, xm1),Atop−k(M,x, xm2)). The metric is
averaged over the entire dataset.

Reliability (−) Quantifies (via Average Reliability) the differences in feature im-
portance scores between different XAI methods (xm1 vs. xm2) and
indicates how consistent the model explanations are [143].

Correctness +EB 0 ✓ ✓ 0

= |a(M,x, xm1)− a(M,x, xm2)|1 /N . The metric is averaged
over the entire dataset.

Metric Interpretation: (+): the higher the better; (−): the lower the better; (ì): for visualization-based metrics an ordering criterion can not be defined.
Metric Formulas: a(M,x, xm) denotes the local explanation obtained from interpretability method xm on model M and sample x (size N ), whereas Atop−k(M,x, xm)

denotes the corresponding set of top-k features in case the xm method falls within the Input Importance category. Ātop−k(M, xm) has the same meaning, but for a
global explanation. JS(A,B) = |A ∩ B| / |A ∪ B| while DS(A,B) = 2|A ∩ B|/(|A|+|B|), where A and B are two generic sets.
XAI methods: All metrics are applicable to all Local XAI methods and Global methods that allow one to extract explanations for single samples. A subset of them is

applicable also to Global XAI methods that cannot allow to extract explanations on single instances (+G*). All metrics are applicable to Input Importance-based XAI
methods. A subset of them is applicable also on Example-based XAI methods (+EB). All metrics are applicable to the following variations of XAI methods: Model-
Agnostic/Specific, Post-Hoc/Intrinsic. Pre-Model methods are not suitable for explanation-quality assessment.
Application to NTA Tasks: ✓: applied to / proposed for the NTA task; 0: adaptable to the NTA task possibly with minor modifications; p: not adaptable to the NTA

task with minor modifications.
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(Continued) Table V
SUMMARY OF EXPLANATION-QUALITY METRICS AS IN THE NTA LITERATURE. THE METRICS ARE ORGANIZED IN ALPHABETICAL ORDER (↓).

Metric
in NTA ↓

Descriptions (as in NTA literature), references, and formulas Category
as in [4]

Notes on
Applicability to
XAI Methods

Application to
NTA Tasks

TC AC ID TP

Robustness (+) Quantifies (via Jaccard Similarity) the robustness of explanations to
noise [96]. Continuity 0 0 ✓ 0

JS(Atop−k(M,x, xm),Atop−k(M,x + n, xm)), where ni ∼
N (0, σ2). The metric is averaged over the entire dataset.

Robustness (+) Measures (via Dice-Sørensen coefficient) how similar the explana-
tion results are for similar instances [75]. Continuity +EB 0 ✓ ✓ p

= DS1 − DS2, where DS1 (resp. DS2) represents the average of
DS(Atop−k(M,x, xm),Atop−k(M, x̃, xm)) over all the samples
x̃ in the dataset having the same prediction as (resp. different
prediction from) M(x).

Robustness (−) Measures at the per-class consistency of explanations between the
training and testing datasets (via Average Link Distance) [150]. Continuity +EB 0 ✓ ✓ 0

= |a(M,x, xm1)− a(M,x, xm2)|1 /N . The metric is averaged
over the entire dataset.

Separability (+) Quantifies (via differential Accuracy) whether explanations them-
selves can help differentiate between different classes effec-
tively [150].

Continuity +EB 0 0 ✓ p

= acc(Min
clus)−acc(Mexp

clus), where Min
clus (resp. Mexp

clus) represents
the clustering-based classifier working on original training data
(resp. explanations taken from them).

Separability (+) Quantifies (via differential F1-score) whether explanations them-
selves can help differentiate between different classes effec-
tively [150].

Continuity +EB 0 0 ✓ p

= F1(Min
clus)−F1(Mexp

clus), where Min
clus (resp. Mexp

clus) represents
the clustering-based classifier working on original training data
(resp. explanations taken from them).

Stability (ì) Visually assesses how consistent the explanations are for similar
instances within a single model [115]. Continuity +EB 0 ✓ ✓ 0

a(M,x, xm) vs. a(M, x̃, xm) (or Atop−k(M,x, xm) vs.
Atop−k(M, x̃, xm)).

Stability (+) Quantifies (via Jaccard Similarity) the similarity of explanations
provided for the same samples across multiple runs [96]. Continuity 0 0 ✓ 0

JS(A(1)
top−k(M,x, xm),A(2)

top−k(M,x, xm)), where superscript in
Atop−k refers to two different runs of explanation with the same
setting. The metric is averaged over the entire dataset.

Stability (+) Reflects that the input importance should not be significantly af-
fected by small changes to the model (via Dice-Sørensen coefficient),
such as the number of epochs [75].

Correctness +EB 0 ✓ ✓ 0

= |a(M,x, xm1)− a(M,x, xm2)|1 /N . The metric is averaged
over the entire dataset.

Metric Interpretation: (+): the higher the better; (−): the lower the better; (ì): for visualization-based metrics an ordering criterion can not be defined.
Metric Formulas: a(M,x, xm) denotes the local explanation obtained from interpretability method xm on model M and sample x (size N ), whereas
Atop−k(M,x, xm) denotes the corresponding set of top-k features in case the xm method falls within the Input Importance category. Ātop−k(M, xm) has the
same meaning, but for a global explanation. JS(A,B) = |A ∩ B| / |A ∪ B| while DS(A,B) = 2|A ∩ B|/(|A|+|B|), where A and B are two generic sets.
XAI methods: All metrics are applicable to all Local XAI methods and Global methods that allow one to extract explanations for single samples. A subset of them is

applicable also to Global XAI methods that cannot allow to extract explanations on single instances (+G*). All metrics are applicable to Input Importance-based XAI
methods. A subset of them is applicable also on Example-based XAI methods (+EB). All metrics are applicable to the following variations of XAI methods: Model-
Agnostic/Specific, Post-Hoc/Intrinsic. Pre-Model methods are not suitable for explanation-quality assessment.
Application to NTA Tasks: ✓: applied to / proposed for the NTA task; 0: adaptable to the NTA task possibly with minor modifications; p: not adaptable to the NTA

task with minor modifications.
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lists the metrics adopted (and possibly introduced) in such
works, along with their definitions and formulas we have
extracted and harmonized based on the scattered descriptions
provided in the reported references. Also, for the sake of a
comprehensive overview, for each metric, we report: (i) how
it measures explanation quality (i.e. the higher the better, or
vice versa); (ii) the “translation” into the systematic categories
proposed in [4]; (iii) the specific characteristics of XAI meth-
ods to which it applies, based on the dimensions presented in
Sec. III-A; (iv) the NTA tasks it has been used for or could
be adapted to with minimal adjustments.

Detailing, from the inspection of the table, one can notice
how different studies consider diverse (sets of) metrics, the
most common being Robustness and Stability. More important,
the lack of consensus and clarity in metric definitions can be
noted. In fact, different papers utilize identical names while
referring to different metrics, or even distinct explanation
aspects altogether (as in the case of Stability). This lack of
agreement complicates the task of comparing and evaluating
various explanation methods. Broadly speaking, the evaluation
of XAI methods based on the quality of their explanations is
of paramount importance to the scientific community. Hence,
recent efforts have been dedicated to proposing or organizing
existing metrics, laying the groundwork for evaluation frame-
works that consider this fundamental aspect when designing a
system with XAI components [4]. In line with these efforts, in
Table V we have also provided a “translation” of the adopted
terms and the corresponding ones used in the systematic
organization presented in [4]. In the papers we analyzed in
this survey, we identified 17 definitions for explanation-quality
metrics being considered in NTA. All metrics can be applied
to local XAI methods, and global methods that allow for
the extraction of explanations for individual samples. Only
one (Accuracy) is also applicable to global XAI methods
that do not provide explanations for single instances (+G*).
Moreover, all the metrics can be used with input importance-
based XAI methods, and a subset of them is also applicable
to example-based XAI methods (+EB). Finally, all metrics
apply to both model-agnostic and model-specific methods,
and post-hoc and intrinsic methods. Pre-model methods are
unsuitable for explanation-quality assessment, as they pertain
to a stage where models have not yet been implemented, and
therefore no explanations of their behavior are available. In
general, despite adopting different techniques, a significant
portion of these metrics pertain to the Continuity property (7
out of 17 definitions). The second most considered property
is Correctness (4 out of 17 definitions), and both belong
to the content viewpoint. This insight suggests that in NTA
many explanation-quality properties are currently neglected,
and future works should assess also other properties, at least
covering the three viewpoints identified in [4], namely content,
presentation, and user. To foster comparability of different
models and explanations, we also suggest that a reduced set
of shared metrics definitions, possibly tailored to the NTA
domain, should be also adopted.

B. XAI to Improve NTA tools

The insights gained from XAI techniques can be employed
for improving the NTA data-driven models from different
perspectives. Indeed, the explanations that XAI techniques
provide allow researchers to identify areas where AI models
underperform or even make erroneous decisions. This enables
iterative refinement, leading to more accurate, reliable, and
robust NTA tools.

One potential strategy to improve performance is to refine
the inputs. XAI techniques can identify the most important
inputs as well as those with null or negative impact on
the predictions. Thus, it is possible to attain performance
enhancement by using only the inputs marked as essential and
discarding those that could confuse the model leading to wrong
outcomes. Even though several studies do not specifically aim
to optimize models from the perspective of inputs, they assess
the performance achieved when only subsets of the original
inputs are utilized. This type of analysis holds dual value: it
serves not only to optimize approaches and make them more
efficient but also to validate that the features highlighted by
XAI techniques are the most important for the model. For
instance, Roshan and Zafar [129] optimize an AutoEncoder
(AE) by using the most crucial 40 features (out of 78) based
on SHAP and obtain an optimized model with higher area
under the curve and accuracy w.r.t. the initial model. Garcia
et al. [73] apply the same approach to traffic-type and app
classification tasks. The initial model considers the first 1500
bytes of each packet as input. In both cases, the interpretability
results indicate that information in preprocessed packet head-
ers is the most important, while payloads are not relevant. To
validate this result, the authors train the model using only
the headers as input, and the results show small losses or
even performance improvements. By doing so, they reduce
input dimension and speed up the model via XAI. Keshk
et al. [116] evaluate the performance achieved when utilizing
only the top-20 features highlighted by SHAP or PFI, or
by combining insights from both techniques. Notably, they
also investigate how much training and detection times are
reduced. He et al. [82] and Dethise et al. [166] demonstrate
the effectiveness of focusing on a subset of features selected
through XAI techniques, obtaining similar results as using the
original inputs in terms of accuracy and quality of experience,
respectively. Other studies employ explanations as input to
design innovative traffic analysis approaches that are more
accurate and robust. Caforio et al. [111] capitalize on the
explanations to improve the system’s accuracy and robustness
by using them for classification through a Grad-CAM-based
nearest-neighbor classification of network anomalies. Barnard
et al. [107] propose a two-stage pipeline for the MD task. In
the first stage, they employ an XGBoost model and utilize
SHAP to generate explanations. In the second stage, these
explanations are fed as input to an AE, which aims to learn
a latent representation of typical behavior during training. In-
stances are then classified based on the reconstruction error of
the AE assuming deviations from this baseline indicate zero-
day attacks. Essentially, the final classification stage utilizes
the explanations obtained in the initial stage as input. A similar
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approach is introduced also by Fujita et al. [114]. Malik et al.
[154] propose a XAI-based fine-tuning procedure to improve
accuracy and robustness to adversarial samples in cyber-threat
detection. It consists of a two-step fine-tuning. After training
on original and adversarial samples, the authors first fine-tune
the model with the information produced by SHAP and then
further fine-tune it using the adversarial training set. In this
manner, they utilize explanations to help the model focus on
the input features it identifies as the most relevant by designing
a sort of dynamic feature selection on each sample. Dias et al.
[131] pursue a distinct objective and present a methodology
to achieve heightened and enduring security. They leverage a
DT to uncover novel insights from observed network activity
and expand the rules system, by combining rules derived
from interpretability analysis with those initially provided by
domain experts. Similarly, Li et al. [125] select the most
important features and employ them to assist in generating
network access control policies.

Another group of studies employs XAI to enhance the fea-
sibility of approaches for analyzing Internet traffic. Actually,
all studies that reduce the inputs of a model, even though
not explicitly stated, enhance its feasibility. In general, a DL
model with fewer inputs is less complex both structurally
and in terms of training times. Moreover, in specific cases
where the reduction is done judiciously and the nature of the
input allows for it, this reduction also leads to a decrease
in the “time-to-insight” (e.g., the time needed to gather the
necessary number of packets or bytes for the model to produce
the output). An example of this is pursued by Nascita et al.
[77], leveraging the outcomes of explainability analyses to
pinpoint the subset of inputs most pivotal for predictions.
Subsequently, they exclusively employ this subset, reducing
training times by ≈ 60% and achieving a shorter time-to-
insight. This efficacy arises from the system’s need for a
more restricted input set (i.e. a significantly lower number of
packets) to deliver classification output. An alternative strategy
for making a Deep Neural Network (DNN) deployable on
resource-constrained systems involves extracting rules using
XAI techniques. Yan et al. [101] implement this approach to
devise an online system based on Field Programmable Gate
Array (FPGA) tailored for high-speed network environments.
They illustrate that integrating rules into an FPGA is not only
straightforward but also more cost-effective than embedding
DNNs. Wang et al. [89] follow a similar approach: after
analyzing the interpretation outcomes for their model, they
select specific key bytes and their positions within the packet
to create pattern strings for TC. This approach not only
maintains high accuracy levels but also significantly enhances
the model’s feasibility, making it a more viable and efficient
solution for real-world applications since matching the pattern
strings with flows requires considerably less computational
effort.

From a reliability standpoint, some works go beyond
calibration assessment [70, 74] and implement strategies to
enhance models from this perspective. The goal is to obtain
models where confidence better aligns with actual perfor-
mance. In detail, Nascita et al. [71, 77] enhance model
calibration by employing alternative loss functions (distinct

from the classic cross-entropy) to mitigate the overconfidence
observed in DL models. Notably, they improve the generaliza-
tion capability of TC models using Focal Loss (FL) and Label
Smoothing (LS) [71] and assess and improve the impact on
calibration (and performance) of compression techniques such
as knowledge distillation, pruning, and quantization [77].

From the analysis of literature on the usage of XAI to
improve performance, ultimately it emerges that, while the
insights gained from explainability analyses can provide valu-
able guidance on how to improve approaches from various
perspectives, they do not (at their current stage of maturity)
directly and automatically contribute to enhancing traffic de-
tection or prediction accuracy. This remains an open challenge,
discussed in Sec. IX-A.

VI. XAI FOR NTA: PRACTICAL USE CASES

The present section delves into the examination of practical
use cases of XAI approaches employed in works addressing
NTA tasks with a focus on interpretability and reliability.

A. NTA Works on Interpretability

Hereinafter, we discuss several works addressing inter-
pretability in Internet NTA by following the characterization
introduced in Section III-A. We underline that the different
aspects covered are not orthogonal, hence we categorize the
works based on their prominent aspects related to the NTA
use case they take into account.

1) Categorization by Scope: Considering the scope of the
explanations, most of the works consider XAI approaches
providing local explanations for individual predictions. Nev-
ertheless, a handful of recent works aim to achieve a global
explanation of the overall behavior of considered models. In
the domain of network security and privacy, Jacobs et al. [87]
return global explanations via DT-distillation of black-box
ML models, while Ables et al. [106] propose an explainable
IDS based on Self Organizing Maps (SOMs) that can provide
both global and local explanatory visualizations. Similarly, the
SPIP framework proposed by Keshk et al. [116] and the IoT-
related IDSs designed by Abou El Houda et al. [105, 108]
can also produce both types of explanations by leveraging
multiple XAI tools. Focusing on SHAP explanations, Šarčević
et al. [152] discuss their different aggregations and overall
visualizations capable of providing a global viewpoint in
addition to local ones. Furthermore, Nascita et al. [71, 77, 178]
pool the outcomes of local approaches (i.e. SHAP and IG)
to obtain global explanations associated with different gran-
ularities (e.g., overall dataset, per-protocol, per-application).
A slightly more sophisticated approach is pursued by Zhang
et al. [157], who propose a new methodology for sub-sampling
and pooling Shapley values to design a novel Shapley-based
lightweight global explainer.

2) Categorization by Stage: XAI approaches can be applied
at different stages of the model (to be interpreted) lifetime. The
application stage not only impacts the working principle of the
interpretability approach but can also enforce some constraints
on the underlying model.



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. *, NO. *, MONTH 2024 18

Pre-model. Interestingly, while most of the works apply pre-
processing operations to refine data before exploiting the
model for NTA, they do not claim to perform such operations
to explicitly improve the transparency and interoperability of
the model. A notable exception is the work by Liu et al.
[38], which specifically devises a pre-modeling explainability
module aiming at improving the quality of network traffic
data (via data cleaning and redundant input removal) to aid
the module in providing the actual explanations of model
internals. Similarly, Islam and Eberle [113] propose a do-
main knowledge-aided system to improve the explainability
of an IDS. Their method infuses the “confidentiality, integrity,
and availability” principles within the model by mapping
the selected features with the most related principle(s) and
thus aiding the interpretability of the IDS. Finally, although
not explicitly described as a pre-model solution, Piet et al.
[90] present GGFAST, a framework that automates feature
engineering to develop fast and interpretable NTA tools for
different purposes, such as identifying protocols, finding DNS-
over-HTTPS in TLS flows, and discovering SSH authentica-
tion method. GGFAST looks for snippets (i.e. characteristic
patterns of message lengths) that give a way to characterize
each class by underlying protocol or message idioms, thus
revealing the features that make each class unique and poten-
tially providing explainable decisions.
Post-hoc. Most of the considered works achieve explainability
through post-hoc techniques, intending to identify the parts of
the input that mostly influence the model’s decision (i.e. input-
importance techniques according to the categorization by “ex-
planation type” defined in Section III-A). The primary reason
for resorting to post-hoc methods is their applicability to pre-
trained models, which do not require any modifications to the
latter. Furthermore, since they are often model-agnostic, they
can be applied across various model types.

Delving into the specifics, undoubtedly the most frequently
employed technique is SHAP (in all its flavors), utilized in
at least one analysis within many studies [69, 71, 77, 82–
85, 98, 99, 103–105, 107–109, 112, 115–124, 128–130, 136–
138, 141–144, 148, 151, 151, 152, 154–156, 158–160, 164,
167, 178]. Although most studies do not specify the exact
SHAP implementation they used, some provide this detail by
explicitly mentioning the use of versions specifically designed
for the models being interpreted, like DeepSHAP [69, 71, 77,
84, 121, 144, 164, 178] and TreeSHAP [107, 152, 167], or
the more general KernelSHAP [128, 128, 129].

The LIME technique is the next most frequently employed
interpretability tool, and it is also used in a significant number
of NTA-related works [82, 85, 89, 96, 98, 105, 114, 115, 117,
120, 121, 123, 124, 135, 136, 140, 141, 143, 160, 165–167].
These two post-hoc techniques are often used also together
within the same work to analyze the same model from different
perspectives or to conduct multiple separate interpretability
analyses [82, 85, 98, 105, 115, 117, 120, 121, 123, 124, 136,
141, 143, 147, 160, 167].

Other post-hoc techniques introduced in Section III-A are
used in fewer works facing Internet NTA. In more detail, LRP
is employed by Amarasinghe et al. [92] and Amarasinghe and
Manic [146]. The work by Nascita et al. [77] is the only

one employing IG to compare their interpretability outcomes
with those provided by SHAP, while Garcia et al. [73] use
saliency maps to trace the most important inputs for per-
packet TC at different granularity (i.e. traffic type and specific
application). A similar approach called GEE (Gradient-based
Explainable Variational autoEncoder) is proposed by Nguyen
et al. [126] to explain the anomalies detected by a variational
AE via a gradient-based fingerprinting technique. Grad-CAM
is used by Caforio et al. [111] to interpret the decisions
of the proposed GRACE (GRad-CAM-enhAnced Convolution
neural nEtwork) IDS which performs a K-means clustering
on localization maps explaining a CNN used for classification
and by [86] for interpreting CNNs encrypted network packet
classification results. Li et al. [125] propose an IDS for AD
and generation of SDN flow rules, which operates based on
the explanations provided by LEMNA. Lastly, Abou El Houda
et al. [105, 108] design a XAI-powered framework that
gives explanations to DL-based decisions for IoT-related IDSs
exploiting SHAP, RuleFit, and LIME techniques. Similarly,
Islam et al. [124] employ LIME, SHAP, ELI5, and ProtoDash,
while Arikkat et al. [85] use SHAP, LIME, Permutation
Importance, and Counterfactual Explanations.

Another line of research in Internet NTA employs post-
hoc techniques that capitalize both the pre-trained model and
the traffic dataset used for training it. These techniques are
however usually tied to the selection of a specific surrogate
(explanation) model. For instance, some works have taken a
first step towards interpreting DL-based predictors of network
traffic through Markovian Distillation [162, 163], aiming at
emphasizing the variations in their behaviors. To this end, the
authors distill small-order Markov Chains from the DL models
and scrutinize the disparities in their predictive behaviors. A
different post-hoc method that extracts tree-based rules to
explain the relationship between input, hidden, and output
layers of a pre-trained DNN is proposed by Yan et al. [101].
The goal is to shed light on the decision process of a misuse
detector and exploit the rule tree to deploy an online detector
on low-resource equipment. A similar idea is pursued by Ja-
cobs et al. [87] that introduces TRUSTEE (TRUSt-oriented
decision TreE Extraction), a framework for post-hoc global
interpretability of black-box ML models applied in the domain
of network security. The idea is to synthesize highly accurate
and easily interpretable DTs starting from an ML model
and its training dataset, along with a trust report that can
be used to identify the components of the ML pipeline to
be modified for improving the trustworthiness of the model.
In the same vein, Meng et al. [168] present Metis which
encompasses two methods to interpret DL-based networking
systems. Metis utilizes teacher-student training to build DTs
for local networking systems (e.g., congestion control agents
on end-devices or flow schedulers on switches) and hyper-
graph formulations to generate interpretable policies for global
networking systems (e.g., the controller in SDN).
Intrinsic/Explainable-by-design. Hereinafter, we describe
explainable-by-design XAI techniques with intrinsic inter-
pretability capability employed when performing NTA. Within
this category, some works use transparent models or models
that provide explainability information alongside their results,
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while others introduce innovative techniques that are inher-
ently interpretable.

Concerning the first group of studies, various works exploit
DT models to perform security-related NTA tasks. Mahbooba
et al. [100] conduct a feature importance analysis based on
information gain and analyze the rules that DT models follow
when performing MD. Wang et al. [145] adopt a similar
approach in their TrafficAV, which implements a scoring
mechanism to analyze the underlying reasons behind malicious
outcomes based on DT information gain. On the same line,
Šarčević et al. [152] compare the “if-then” decision rules
extracted from a DT with the SHAP outputs for tree models
(i.e. the TreeSHAP feature attribution values) when performing
AC. Dias et al. [131] propose an interpretable hybrid IDS that
integrates rules crafted by experts with dynamic knowledge
continuously generated by a DT as new pieces of evidence
emerge from network activity. An interpretable IDS is also
presented by Xu et al. [97]: it exploits an intrinsically-
explainable additive tree for MD capitalizing on the features
of normal and attack traffic biflows extracted via a shallow
AE. We underline that the use of DT here differs from their
application in post-hoc techniques, as in the former case such
model is used as a surrogate explainer for a more complex
model (i.e. tree-based techniques are not used for inference).

Another body of works proposes innovative explainable-by-
design techniques for various NTA-related tasks. The work
by Sejr et al. [127] focuses on detecting and explaining
malicious HTTPS requests by implementing an unsupervised
anomaly detector composed of three components: an n-gram
vectorizer, a dimensionality reducer, and an outlier detector. A
methodology for Distributed Denial of Service (DDos) attack
detection based on a modified K-Nearest Neighbors (KNN)
algorithm and a k-dimensional tree is devised by Feng and
Li [149]. In the case a DDos attack is detected, the detector
returns an alert message along with a risk profile represent-
ing the shortest distance to the legitimate traffic profile in
the KNN searching space. Fauvel et al. [79] introduce a
new Lightweight, Efficient, and eXplainable-by-design convo-
lutional neural network (LEXNet) for Internet TC. LEXNet
involves three steps: (i) the CNN backbone extracts discrim-
inant features, (ii) the prototype block computes similarities
to the learned class-specific prototypes, and (iii) the classifi-
cation layer decides based on the computed similarities. The
local explanations are given as application-specific prototypes
stemming from the communication of detected prototypes and
are compared with those obtained with post-hoc methods. In
the context of incremental learning, Song et al. [75] propose
an approach called I2RNN (Incremental and Interpretable
Recurrent Neural Network) for encrypted TC. I2RNN is
a modified version of a Long Short-Term Memory (LSTM)
network and provides interpretability including time-series
feature attribution (via feature ranking and identification of
important ones) and inter-class similarity portrait. Minh et al.
[134] present an approach involving the integration of multiple
unsupervised models (base-learners), which are then combined
through a stacking strategy. Notably, they use graphical rep-
resentations of traffic flows to improve the explainability of
the detection process. Each base-learner operates on pairs of

features and the anomaly score is determined by the number of
feature pairs deemed anomalous. This scoring method makes
the results interpretable for security analysts since enables the
identification of attack patterns based on visual cues.

Ge et al. [161] introduce MetaCluster, an interpretable
classification framework that provides explainability by ex-
tracting feature prototypes at varying levels of granularity. This
approach helps identify key patterns and semantics in network
traffic that are easily interpretable for humans. While ongoing
debates in the literature question the suitability of attention
mechanisms as a measure of feature importance [41, 179],
numerous studies utilize this technique to highlight the inputs
that attract the model’s attention, implicitly suggesting their
significant contribution to the classifier’s decision-making pro-
cess. These studies regard both the ID [95, 150, 153, 176] and
TC [80, 89] tasks.

3) Categorization by Model Dependency: Concerning the
dependence of interpretability techniques on the model, we
underline that most of the pre-model and post-hoc methods
are model agnostic, while explainable-by-design methods are
naturally model specific. For instance, all the works using DTs
to design interpretable IDSs [97, 100, 131, 145, 152] base their
explanations on peculiar rules/paths of tree-based models.

Nevertheless, some notable exceptions are worth to be
underlined. In the case of post-hoc methods, model-specific
ones all pertain to NTA tasks faced via CNNs and focus
on specific aspects such as (i) filter activations for traffic
fingerprinting [88], (ii) layer projections via feature maps for
TC [68], and (iii) neuron activations for ID [147].

More sophisticated model-specific approaches are also pro-
posed, such as GRACE [111] which combines K-means clus-
tering with localization maps (Grad-CAM) for designing an
interpretable CNN-based IDS. Another proposal tailored for
the network-security domain is DeepAID [96], an interpre-
tation method for unsupervised AD using DNNs. DeepAID
encompasses a model-specific extension called Distiller that
“distills” high-level heuristics from black-box DNN models
and expert feedbacks into simplified finite-state machines.

4) Categorization by Explanations Types: Explanations in
the NTA domain are provided in different forms depending on
the specific interpretability technique used. In the following,
we summarize illustrative use cases grouping them based on
the categorization introduced in Section III-A.
Visual Explanations. Most NTA tasks faced using explainable
CNNs [68, 88, 111, 147] provide explanations via different
visual representations. Other works exploit model-agnostic
graphical representations of data or other information related
to the models they aim to elucidate. Many of these works
leverage t-SNE [68, 76, 80, 147]. As notable examples, Beliard
et al. [68] propose a platform to visualize the inference process
of a commercial-grade network TC engine based on CNN that
generates a set of interactive graphs (e.g., feature maps and t-
SNE) to develop a better understanding of the most salient
features driving the classification process. Furthermore, Wu
et al. [147] use interactive visual analytics for interpreting and
optimizing DL-based IDSs via feature maps, neuron activa-
tions, and t-SNE layer projections of CNNs. Ables et al. [106]
also propose a SOM-based eXplainable IDS exploiting various
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visualizations, namely feature significance, U-matrices, and
feature heatmaps. Analogously, Jeong et al. [133] provide
an interactive web-based visualization system, designed using
multiple incrementally-updated views for analyzing network
traffic data via uncertainty quantification and discrete wavelet
transform. The Hybrid Oracle-Explainer is devised in [94]
to develop an IDS made of (i) an oracle encompassing a
feature engineering module and a DNN and (ii) an explainer
combining clustering results with DT-based visualization. The
latter represents the DT corresponding to the closest centroid
and whose prediction is the same as that of the oracle.

Input Importance. The prevalence of input-importance tech-
niques is attributed to the specific interpretability needs in the
networking field. Indeed, in practical NTA-related use cases,
the urge is to obtain a deeper understanding of the relationship
between the inputs and the resulting decisions [168, 180]
rather than comprehending the internal workings of the model.
As mentioned before, commonly post-hoc methods are also
input-importance techniques working on an already-trained
model. Among the studies proposing such methods, EXPLAIN-
IT [165] represents a hybrid input-importance methodology for
interpreting the results of unsupervised NTA tasks (e.g., anal-
ysis of Quality of Experience in YouTube video streaming).
EXPLAIN-IT exploits LIME for interpreting the outcomes
of a Support Vector Machine (SVM) traffic classifier trained
on the results of an agglomerative hierarchical clustering: the
most important features identified by LIME correspond to the
characteristics responsible for the assignment to the clusters.
Another input-importance technique proposed by Ahn et al.
[175] utilizes a genetic algorithm to select the most crucial
input features to optimize the trade-off between classification
accuracy and model complexity (i.e. by removing unnecessary
features) for service-specific TC. Other studies determine input
importance through occlusion analysis: Rezaei et al. [67] in-
vestigate the impact of TLS extensions on the accuracy of DL
models, Nascita et al. [139] evaluate the impact and potential
bias of packet header fields (e.g., IP addresses and ports)
on AC performance. Lastly, Nascita et al. [178] propose an
innovative methodology for grasping the differences between
traffic classifiers trained from scratch and incrementally, fo-
cusing on input importance (via SHAP), feature visualization,
and analysis of base and incremental models.

Example-Based. Using specific instances for explanations is
less common in the NTA domain. Nevertheless, an adversarial
approach for IDS interpretation is proposed by Marino et al.
[93]. Explanations are generated as minimum modifications
of input features needed to correctly classify a given set of
misclassified samples. Similarly, Burkart et al. [102] design
an IDS complemented with explanations in the form of coun-
terfactual examples for a MD task. Finally, Han et al. [96]
leverage CADE that exploits contrastive learning to detect
concept drift for individual samples deviating from existing
classes and to explain the reasons behind the detected drift.
CADE is evaluated in two NTA tasks: Android malware
classification and general attack classification.

B. NTA Works on Reliability

In this section, we delve into an examination of literature
that investigates the reliability of tools used for the analysis
of network traffic. Compared to the works that investigate
the interpretability of the models, those that analyze their
reliability are fewer in number and focus mainly on the
calibration assessment and improvement of models trained
for TC tasks [70, 71, 74, 77]. Differently, Li et al. [72]
propose a trustworthy TC model which learns separately the
classification predictions and the associated confidence scores.
Specifically, a complementary neural network (ConfidNet)
trained based on the probability of the true classes, is built
to learn the confidence score of the classification model. A
different approach is pursued by Jorgensen et al. [78] that in-
corporates techniques to quantify the uncertainty of predictions
(i.e. a learned Mahalanobis distance) into the training process
of a prototypical network [181]. Finally, the work by Guarino
et al. [164] constitutes a first attempt to interpret a TP task
by reducing the problem to a binary classification task and
evaluating its calibration.

VII. FROM NETWORK TRACES TO INPUT DATA: THE
IMPORTANCE OF REPRESENTATIONS

Defining the form to pass inputs to NTA tools is a critical
step, which requires in-depth domain knowledge to design
suitable traffic representations that are able to capture the
important characteristics of the network traffic. This contrasts
with the naive application to the computer vision domain, as
stressed in Fig. 5. Indeed, network traffic is a complex entity,
defined by the interaction among many distributed parties that
communicate by exploiting heterogeneous media through a
multitude of protocols that fulfill a large number of functional-
ities. The result is that a monitoring point placed in the middle
of a network is traversed by bidirectional streams of packets
that can be observed, analyzed, and interpreted at different
extents based on the aggregation granularity. Based on such
granularity, different TOs can be defined, thus determining
how the captured raw packets are partitioned into distinct
units with appropriate labels indicating the nature of the traffic
(e.g., the benign or malicious application that injected it in the
network).

Concerning studies focusing on the interpretability of AI-
based NTA tools, commonly the network traffic is analyzed
and managed being segmented in flows, representing a group
of packets that share the same 5-tuple (consisting of the
source IP and port, destination IP and port, and transport-
layer protocol). It is worth noting that this definition takes
into account the direction of the traffic. Nevertheless, in many
studies, flow direction is disregarded in the traffic segmentation
phase, and all packets from both directions are treated as part
of a single flow, often referred to as a biflow [169].

Once the TO is defined, experts in charge of designing
NTA tools have further knobs at their disposal, as different
choices can be made in terms of input-data representation. It
is worth noting that the definition of the TO is crucial, as
the representations that can be designed may depend on such
choice.
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(d) Traffic as pre-extracted features.

Figure 5. Relation between explainability and input representation in image classification (a) and app traffic classification (b–d). Colors map to the importance
of the portions of the input (red=negative importance, blue=no importance, green=positive importance). Different input representations result in different degrees
of explainability. Image representation is not subjected to discussion and is naturally understandable by humans (a). Hence, the role of the input portions
is naturally explainable with no ambiguities. On the other hand, the input-design choices available for network traffic (raw bytes (b), packet sequences (c),
pre-extracted features(d)) are intuitive to a human operator at different degrees and impact on the interpretability of the explanations.

Notably, in other domains such as computer vision, the
representation of the information is not subjected to discussion
(i.e. an image is a two-dimensional array of pixels). When
referring to such representation, the role of the input (i.e. how
its portions contribute to the decisions of the model) is
naturally explainable with no ambiguities (see Figure 5a).
Referring to a widely-known example from the computer
vision domain, highlighting the portion of the image that led
the classifier to output “husky dog” allows one to understand
whether this choice was erroneously dictated by the presence
of some snow in the background. Indeed, as the portion of the
input (matrix of pixels) is directly understandable by humans,
when an image area is highlighted as being more important
there is no effort or specific skill required to understand
the meaning: the semantic gap is minimal. Differently, when
dealing with NTA the different input-design choices available
(related to TO segmentation and data representation) impact
the interpretability of the results to different extents. In this
section, we delve into the types of inputs that are used in
works applying XAI techniques to NTA.

A. Raw Bytes

In order to fully capitalize DL end-to-end learning capabil-
ity, many approaches feed the traffic-analysis pipeline directly
with raw-byte sequences exchanged across the network (see
Figure 5b). In general terms, raw bytes can be extracted in
different forms, e.g., considering the payload of L2, L3, or
L4 Protocol Data Units. The specific choice is related to the
specific application domains. For instance, when focusing on
AC or AD, considering the content of even the header of L2
frames can be highly informative. On the other hand, when
the aim is classifying app traffic, the bytes constituting the L5
messages are usually in the spotlight.

Commonly, studies employing raw-byte sequences under-
take preprocessing procedures aimed at eliminating privacy-
sensitive details or those introducing unwanted bias possibly
causing overfitting, e.g., being closely linked to the particular
network environment where data are gathered. Such details
may include header fields such as IP and MAC addresses or
Server Name Indication (SNI).

For example, Garcia et al. [73] employ the first 1500
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bytes of each packet. To prevent overfitting, a preprocessing
phase is implemented, encompassing various packet transfor-
mations that include removing the Ethernet header, masking
IP addresses, adding padding to UDP headers, and removing
irrelevant packets. Luo et al. [76] employ payload bytes with
IP addresses and ports removed and padding of UDP header
to obtain data alignment of TCP header and UDP header.
Their approach considers a maximum number of bytes set to
1500, converts each element of the byte array to binary, and
then re-encodes to integers by grouping them in groups of 1
(i.e. binary form), 2, 4 or 8 bits (i.e. decimal form). Wang
et al. [69] leverage the first 1014 transport-layer bytes of each
biflow, after removing all the packet headers (i.e. Ethernet, IP,
and TCP/UDP). Wang et al. [89] let the number of bytes of the
first IP packet of each flow vary in the range {16, 32, 64, 128}
and select the dimension by considering the best trade-off
between the classification accuracy and time overhead on
validation data. On the other hand, Sejr et al. [127] consider the
byte sequence corresponding to HTTP requests in its plaintext
form.

As an alternative approach, certain studies employ an ad-
ditional representation step before sending bytes across the
classification system. For instance, Li et al. [72] take the first
784 L4-payload bytes and convert them into images (with
dimensions of 28× 28), while Luis-Bisbé et al. [86] consider
the first 1024 L4-payload bytes and convert them into images
(with dimensions of 32× 32). Notice that obtaining bidimen-
sional representations from monodimensional byte sequences
typically is not soundly motivated and represents an obstacle
to the practical interpretation of the outcome of the analysis
by itself.

Notably, the impact of content encryption plays a major
role when dealing with such representation. On the one hand,
encryption heavily impairs the performance of NTA tools
relying on recurring signatures in packet content. On the other
hand, it also prevents the interpretation of the results that can
be hardly put in relation with input data (differently than what
occurs when dealing with sequences of fields exchanged in
clear). In this sense, via an occlusion analysis, Bovenzi et al.
[182] assess the robustness of the proposed classification solu-
tion against encryption mechanisms that compromise specific
portions of the input (TLS SNI) at different extents.

Finally, it is worth noting that the majority of the papers that
employ bytes as data representation primarily address TC.

B. Packet Sequences

Several studies have explored the adoption of informative
fields extracted from a sequence of packets modeled as a time
series (see Figure 5c). These informative fields include the
packet Direction (DIR), the Inter Arrival Time (IAT) (i.e. the
time between consecutive packet), the TCP Window Size (TCP
WS) (i.e. the dimension of the TCP window), the Payload
Length (PL) (i.e. the number of bytes in the transport-layer
payload), the overall Packet Size (PS), the Time To Live
(TTL), and the TCP flags.

Since the adoption of these informative fields allows for
avoiding the inspection of the content of the packets, this

strategy is convenient from several points of view. First, the
extraction process is more lightweight compared to Deep
Packet Inspection, thus supporting faster input extraction (even
at line speed). Secondly, these sequences are practically less
impacted by encryption, thus proving more robust.

The difference among papers utilizing this data type lies in
the specific fields they employ and the number of packets they
refer to. For instance, Nascita et al. [71, 77] leverage DIR, IAT,
TCP WS, and PL considering a varying number of packets.
Yan et al. [101] employ the sequence of PS for the first 9
packets. Song et al. [75] leverage PL, DIR, IAT, TCP WS,
TCP flags, and TTL, adjusting the number of packets based
on the application whose fingerprint is calculated. Fauvel et al.
[79] and Beliard et al. [68] utilize PS and DIR from the first
10 and 20 packets, respectively. Luxemburk and Čejka [83]
consider IAT, DIR, and PS for the first 30 packets. Guarino
et al. [164] employ 10 packets and for each of them extract
DIR, IAT, and PL.

Based on the studies reviewed in this survey, it is apparent
that this input type is predominantly employed for TC, and it
is also complemented with raw input data and pre-extracted
features.

C. (Pre-extracted) Features

A number of works [81, 82, 85, 92–100, 102–126, 128–131,
133–138, 140–156, 158–161, 165, 166, 175, 177] design NTA
approaches that are fed with preprocessed data representing
TOs via a set of concise features whose definition is usually
guided by domain experts and are possibly handcrafted. In this
case, network traffic is generically represented as tabular data,
with each row representing a TO and each column representing
a feature (see Figure 5d).

In more detail, several of the surveyed papers employ
statistical features recorded via NetFlow1 [104, 109, 118, 119,
126, 136, 143, 149] or generated from the collected network
traffic, e.g., by using tools such as CICFlowMeter2 [94, 96,
102, 103, 106, 109, 110, 113, 128–130, 133, 134, 142, 151,
154, 155, 159]. Specifically, CICFlowMeter allows for the
calculation of over 80 statistical network traffic features related
to the entire (bi)flow. These include either features associated
with the whole biflow lifetime (e.g., duration, number of
packets, number of bytes) or features obtained by summarizing
per-packet properties (e.g., packet or header length). In the
latter case, generally, the minimum, the maximum, the mean,
and the standard deviation are computed. A similar reasoning
also applies to counts of packets having specific TCP flags set
(e.g., FIN, SYN, RST, PSH, ACK, URG, CWR, and ECE).

On the other hand, other works extract different sets of
features defined ad hoc. For instance, Ahn et al. [175] extract
20 statistical features derived from the sequences of PSs
and IATs (i.e. minimum, maximum, average, and standard
deviation), along with the number of packets and bytes for
each flow. Kundu et al. [138] extract 199 different features
from packet headers after performing traffic aggregation into

1https://datatracker.ietf.org/doc/html/rfc3954.
2https://github.com/CanadianInstituteForCybersecurity/CICFlowMeter.

https://datatracker.ietf.org/doc/html/rfc3954
https://github.com/CanadianInstituteForCybersecurity/CICFlowMeter
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unidirectional and bidirectional flows. These features are cate-
gorized into four groups: aggregated, temporal, statistical, and
connection-context features. Hsupeng et al. [155] add a set
of features obtained through their CSTITool to the common
features extracted with CICFlowMeter. Other expert-driven
features describing byte distribution and incorporating domain-
specific knowledge are also taken into account. Wang et al.
[145] leverage 4 features from HTTP requests and 6 from TCP
flows, while Chowdhury et al. [81] uses 216 features related
to packet, protocol, rate, stochastic and time information. Dias
et al. [131] exploit 5 features: destination IP, destination port,
protocol, PS, and packet timestamp.

Caforio et al. [111], Andresini et al. [150], and Wu et al.
[147] follow a different approach and transform the features
into images before providing them to their models thus re-
formulating the network TC task as an image classification
problem.

When using pre-extracted features, different datasets likely
provide different sets of features, thus introducing severe
challenges in assessing the robustness of models when applied
to different network scenarios. Furthermore, pre-extracted fea-
tures are typically computed using post-mortem (viz. offline)
approaches. Indeed, although it is possible to extract such
features by observing only a certain number of packets, the
most common method is calculating them after observing
the whole biflows. For this reason, utilizing such an input
type is usually not associated with quick verdicts (e.g., early
NTA [70]). On the other side, relying on pre-engineered and
human-understandable features may positively impact in terms
of attainable interpretability, as the results are naturally related
to input data that are understandable by humans.

D. Heterogeneous Inputs

Notably, the majority of proposals investigating XAI for
NTA focuses on strategies relying on a single type of input,
thereby employing single-modal approaches. On the other
hand, some other studies use multiple input types, therefore
aiming at interpreting the role of each in generating the output.

Specifically, Luxemburk and Čejka [83] and Luxemburk
et al. [84] exploit packet sequences (IAT, DIR, and PS) in con-
junction with per-flow statistics, while the works by Nascita
et al. [71] [77] leverage payload bytes and packet sequences
(IAT, PS, DIR, and TCP WS). The paper by Guarino et al.
[74] is the only one employing all three input types together.

When dealing with heterogeneous inputs, the interpretability
can be achieved at different levels. For instance, Nascita et al.
[71, 77] first aim at defining which is the role of each modality
(i.e. a set of inputs) in determining the results, and then the
specific modality is further dissected. Differently, Luxemburk
and Čejka [83] and Luxemburk et al. [84] only focus on each
modality individually.

E. Considerations on Inputs and Impact on Explainability

Table VI provides a quantitative summary of the input
types as adopted by works that focus on XAI for NTA.
The analysis of the literature witnesses that most of the
studies take advantage of concise features as they leverage the

Table VI
COUNT OF THE WORKS USING THE DIFFERENT TYPES OF INPUT, DIVIDED

BY TASK AND IN TOTAL.

Task
Input TC ID AC TP Other Total

Only Raw Bytes 9 1 1 0 0 11
Only Pkt Sequence 4 1 1 2 0 8

Only Features 6 43 32 0 4 85

Raw Bytes, Pkt Sequence 3 0 0 0 0 3
Raw Bytes, Features 1 1 1 0 0 3

Features, Pkt Sequence 2 0 0 0 0 2
Raw, Pkt Sequence, Features 1 0 0 0 0 1

effort of other researchers who have previously collected and
preprocessed the data, thus providing a set of features ready to
be fed to NTA models. This decision is motivated by the desire
to ease the workflow to expedite model training and evaluation.
Additionally, it is justified by the fact that in many cases
raw data are not readily available for researchers to extract
alternative representations or features of their definition.

Whatever the cause behind input definition, it influences the
choice of XAI techniques that can be used and has a direct
impact on the nature of the explanations related to the role
of the inputs and their usability. This is evident when input
importance techniques are applied, because the explanations
are defined in terms of the model inputs (cf. Section III).
In practice, when applying XAI techniques to expert-driven
features extracted from traffic data (which have a well-defined
meaning), it becomes easier and more immediate to reason
about the obtained explanations and speculate on their
reliability.

On the other hand, when working with raw bytes, achiev-
ing interpretability of the results becomes more challeng-
ing. Despite this difficulty, the adoption of interpretability
techniques is even more crucial in this case, as this input
representation is the least intuitive among those described.
Therefore, it is essential to shed light on how (and how
much) the portions of the input contribute to the decisions
of the models. Notably, when considering other application
domains such as computer vision, DL models naturally process
images and input contribution is more easily understandable
by human operators. For instance, explanations generated
by XAI techniques can be presented using heatmaps, which
highlight how the various regions within the images contribute
to the predictions (see Figure 5a). This approach is intuitive
for humans, aiding in understanding why a model makes a
particular choice.

In principle, this approach could also be pursued with
network traffic, but it is certainly much more complicated
for the end user to benefit from the final explanation than
it is for images. Unlike the latter, where specific regions can
move around but still convey the same information, network
traffic requires expert interpretation to identify critical
bytes, sequences, or protocol fields. The widespread use of
encryption further complicates this analysis, making it difficult
or even impossible to extract meaningful insights.

Another difference to highlight with respect to the im-
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age domain is that the representations we can obtain for
network traffic are more structured than images. In the
latter case, a specific subpart of the image can be in different
positions within the same image and, therefore, the same
visual information may contribute similarly to the output
despite being in different positions. This causes explanation
aggregations to lose meaning and makes local explanations
more suitable for these input types. On the contrary, some of
the representations extracted from traffic lend themselves
to other types of aggregations—in addition to the spatial
aggregation discussed in Section VI-A—to obtain different
views and different insights on the problem (e.g., with
packet sequences input we can aggregate considering proto-
cols, specific fields, or packets).

Ultimately, the differences between computer vision and
networking highlight why XAI struggles with NTA. The
weaker semantic content in networking data limits the
effectiveness of XAI, indicating the need for specialized
approaches tailored to the unique demands of NTA.

VIII. DATASETS, LIBRARIES, AND TOOLS: THE ROAD
TOWARDS THE REPRODUCIBILITY

This section discusses two fundamental aspects underpin-
ning the reproducibility of XAI-based analysis in the NTA
domain: public datasets (Section VIII-A) and libraries and
tools available (Section VIII-B).

A. Datasets

Having high-quality and publicly available traffic datasets
represents an invaluable resource, fostering reproducibility and
thorough evaluations and fueling XAI research to support
NTA. Sadly, data availability is a primary concern in this
domain. Indeed, standardized procedures for generating, gath-
ering, preprocessing, labeling, and disseminating traffic data
are indispensable. However, these methods are frequently ab-
sent, primarily due to diverse and privacy-sensitive collection
contexts. This notwithstanding, the scientific community has
provided tangible effort in releasing traffic that has been used
or can be used for studies related to NTA.

We collect, analyze, and categorize these datasets, which
are summarized in Table VII.

The table presents 51 datasets and includes both the datasets
already leveraged to support XAI studies and examples of
those we believe are valuable to be considered by researchers
for future studies. For each dataset, we provide details to guide
their adoption for future works. The pieces of information
reported include the capture span and the release year of
the dataset, as well as the nature of collected traffic (e.g.,
mobile apps, desktop, IoT, security, and anonymity tools)
together with the related label space and the modality the
traffic capture was conducted (either automatically or human-
generated). In addition, the table also highlights whether raw
traffic traces are available (which guarantees higher flexibility
in data representation). Finally, we indicate which datasets
were used in the works collected in this survey and, in
more detail, whether the scientific community has conducted
explainability analyses concerning the NTA tasks discussed

in Section IV (i.e. TC, AC, ID, TP). This represents another
important aspect of reviewed works and can assist researchers
in understanding and comparing the results of their analyses.

Inspecting Table VII, it is evident that the majority of
the datasets lie in the security domain (30/49), with the
other domains being poorly represented in most of the cases.
Interestingly, only a limited number of datasets (14) rely
(completely or partially) on human-generated captures. How-
ever, in most cases, raw data are provided, allowing for more
freedom in data representation and supporting a wide range
of XAI methodologies. Finally, focusing on the four rightmost
columns, our analysis highlights how XAI studies have mostly
posed their attention on a larger number of different datasets
for legit TC, with ID and AC being also in the spotlight,
witnessing the recent attention of the scientific community to
network security issues.

To conclude, we believe that although being limited and
requiring additional effort to be consolidated, the endeavor
of the scientific community in providing shared datasets to
benchmark and reproduce results is evident and represents an
important resource to support XAI studies in the NTA domain
in the future.

B. Libraries and Tools
Beyond quality datasets, ready-to-use implementations of

XAI methods are the other side of the coin that allows
existing studies to be consistently reproduced. Fortunately,
the scientific community can leverage plenty of (open-source)
tools and coding libraries allowing for running XAI methods
in the NTA domain with minor implementation effort for
their adaptation. In Table VIII, we list the most popular
libraries/tools for explainability analyses. For each, we report
the related release/update timing information and the XAI
techniques covered. Moreover, we highlight the ones providing
metrics for evaluating the explanations from different perspec-
tives, when available.

Remarkably, most of the reported tools were released after
2018, underlining the recent and increasing interest of the
scientific community in this topic in the last 5 years, which
is further witnessed by the continuous updates of the software
(continuous revisions are available, with the majority of the
projects being updated in the last two years).

Some libraries reported in the table implement a single
technique and are often maintained by the authors of the
paper proposing the technique (e.g., SHAP [48], LIME [49],
Anchor [223], Weight Watcher [234]). On the other hand, other
libraries gather a number of known techniques presented in
the scientific literature (e.g., AIX360 [221], Xplique [233],
OmniXAI [230], Alibi [222]). Such aggregators are particu-
larly useful for benchmarking analyses (i.e., when different
XAI techniques are to be compared) since they provide a
common interface for different methods and help mitigate
the issues encountered in integrating different libraries with
diverse dependencies. Notably, all the entries listed in the table
have Python as their programming language, witnessing its
wide adoption and versatility in the field of data science.

The majority of libraries/tools provide explainability tech-
niques in the strict sense, while others serve as tools to gain
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Table VII
PUBLIC DATASETS EMPLOYED FOR NTA. LISTED BY RELEASE YEAR (↓). THE NAMES OF DATASETS ARE CLICKABLE LINKS, DIRECTING TO THEIR

RESPECTIVE REFERENCE PAGES.

Release Traffic Raw XAI applied for
Dataset Year↓ Nature ♂ Label Space Data Capture Span TC AC ID TP

KDDCUP99 [183] 1999 # 4 attacks categories, 38 attacks N/A ✓ ✓

DISCOVERY CHALLENGE ECML/PKDD [184] 2007 # normal & 7 attacks N/A ✓

CAIDA 2007 DDOS* 2007 # ICMP flood attack ✓ 04/08/07 (1h) ✓

NSL-KDD [185] 2009 # 4 attacks categories, 38 attacks N/A ✓ ✓

DARPA 2009 DDOS* 2009 # TCP SYN flood attack 05/11/2009 ✓

UNIBS [186] 2011 # 7 Traffic Types ✓ 10/2009 – 11/2009 ✓

FRGP NTP FLOW DATA* 2014 # NTP reflection attack 01/12/2013 – 28/02/2014 ✓

UNSW-NB15 [187] 2015 # benign / 9 attack types ✓ 22/01/15 & 15/02/2015 ✓ ✓

UPC [188] 2015 # 17 protocols, 25 apps, 35 web services ✓ 25/02/13 – 01/05/13 ✓

DDOS CHARGEN 2016* 2016 # UDP reflection and amplification attacks 25/11/2106 – 26/11/2016 ✓

UGR’16 [189] 2016 # normal & 10 attacks 4 months ✓

ISCXVPN2016 [190] 2016 ø  2 encaps. types / 7 traffic types / 15 apps ✓ 03/15 – 06/15 ✓

ISCXTOR2016 [191] 2016 ´  8 traffic types / 18 apps ✓ 07/15 – 02/16 ✓

USTC-TFC2016 [192] 2017 # benign (10 apps) / 10 Malware types ✓ 2011 – 2015 ✓

CIC-IDS2017 [193] 2017 # 7 attacks ✓ 03/07/17 – 07/07/17 ✓ ✓

KITSUNE [194] 2018 # 4 attack types / 9 attacks ✓ N/A ✓ ✓

UNSW(IOT) [195] 2018 Æ  28 devices ✓ 10/16 – 04/17 ✓

CSE-CIC-IDS2018 ON AWS [193] 2018 # 7 attacks ✓ 02/18 – 03/18 ✓ ✓

MON(IOT)R [196] 2019 Æ # 26 IoT devices ✓ 85 days ✓

CROSS-PLATFORM-IOS [197] 2019 I # 185 apps N/A ✓

CROSS-PLATFORM-ANDROID [197] 2019 I # 167 apps N/A ✓

MIRAGE-2019 [198] 2019 I  40 apps 05/17 – 05/19 ✓ ✓

CICIDDOS2019 [199] 2019 # 13 attacks ✓ 12/01/19 & 11/03/19 ✓

BOT-IOT [200] 2019 # benign / 10 attacks ✓ N/A ✓ ✓

TON-IOT [201] 2019 # benign / 9 attacks N/A ✓ ✓

MIRAGE-VIDEO [163] 2020 I  4 video categories / 8 apps 06/19 – 03/20 ✓

IOTID20 [202] 2020 Æ # normal, 4 attack types, 8 attacks ✓ N/A ✓ ✓

CIC-DARKNET2020 [203] 2020 ´ ø  benign & darknet, 8 traffic types ✓ 03/15 - 06/15 & 07/15 - 02/16 ✓

WUSTL-IIOT 2021 Æ # normal & 4 attack categories N/A ✓ ✓

USB-IDS-1 [204] 2021 # benign / 16 attacks N/A ✓

REGSOC–KES2021 [99] 2021 # normal & anomaly N/A ✓

MIRAGE-COVID-CCMA-2022 [205] 2022 I  9 apps / 3 user activities 04/21 – 12/21 ✓

APPCLASSNET [206] 2022 I ø  500 apps N/A ✓

CESNET-QUIC22 [207] 2022 I ø  7 traffic types / 102 services 31/10/2022 – 27/11/2022 ✓

CESNET-TLS22 [83] 2022 I ø  200 services 10/11 (2 weeks) ✓

IOT23 2022 # benign / 9 attacks ✓ 2018-2019 ✓

IEC 60870-5-104 ID [208] 2022 # 14 attacks ✓ N/A ✓

VPN/NONVPN NETWORK APP TRAFFIC [78] 2023 ø # 5 categories, 10 apps ✓ 06/19 – 06/20 ✓

No XAI application

ISCXIDS2012 [209] 2012 # benign / 4 attacks ✓ 06/10 (1 week)
ANON17 [210] 2017 ´  3 anon. tools / 8 traffic types / 21 apps 2014 – 2017
MTD [211] 2018 I  12 apps 10/16 – 03/17
QUIC [212] 2018 ø # 5 QUIC services 03/18
N-BAIOT [213] 2019 # benign / 10 attacks N/A
IOT NETWORK INTRUSION DATASET 2019 # benign / 9 attacks ✓ N/A
MQTT-IDS-IOT [214] 2020 # benign / 4 attacks ✓ N/A
ORANGE’20 [215] 2020 I  8 traffic types 11/07/19
UTMOBILENETTRAFFIC2021 [216] 2021 I G# 16 apps / 31 user activities 03/18 – 04/18
CICIOT2022 [217] 2022 Æ G# 3 device types / 40 devices / 2 Attacks Types ✓ 09/21 – 12/21
ETF-IOT-BOTNET [218] 2022 # 6 attacks ✓ 2019-2021
EDGE-IIOT [219] 2022 # 5 attack types / 14 attacks ✓ 11/21 – 01/22
CICIOT2023 [220] 2023 # 7 attack types, 33 Attacks ✓ N/A

Traffic Nature: I = Mobile Apps, ´ = Anonymity Tools, ø = Desktop, Æ = IoT, = Security.
♂ = Human-generated: whether it is completely/partially generated by real human experimenters, instead of bots or scripts.
Raw Data: PCAP files are available.
*The datasets marked with an asterisk include traffic from a single class of attack. To effectively conduct AC tasks, it is essential to merge them into one dataset, following the approach outlined in the work [149].

https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.lirmm.fr/pkdd2007-challenge/
https://www.caida.org/catalog/datasets/ddos-20070804_dataset/
https://github.com/Jehuty4949/NSL_KDD
https://www.impactcybertrust.org/dataset_view?idDataset=742
http://netweb.ing.unibs.it/~ntw/tools/traces/
https://www.impactcybertrust.org/dataset_view?idDataset=776
https://unsw-my.sharepoint.com/:f:/g/personal/z5025758_ad_unsw_edu_au/EnuQZZn3XuNBjgfcUu4DIVMBLCHyoLHqOswirpOQifr1ag?e=gKWkLS
https://cba.upc.edu/monitoring/traffic-classification
https://www.impactcybertrust.org/dataset_view?idDataset=693
https://nesg.ugr.es/nesg-ugr16/
https://www.unb.ca/cic/datasets/vpn.html
https://www.unb.ca/cic/datasets/tor.html
https://github.com/yungshenglu/USTC-TFC2016
https://www.unb.ca/cic/datasets/ids-2017.html
https://www.kaggle.com/datasets/ymirsky/network-attack-dataset-kitsune
https://iotanalytics.unsw.edu.au/
https://www.unb.ca/cic/datasets/ids-2018.html
https://moniotrlab.khoury.northeastern.edu/imc19dataset/
https://recon.meddle.mobi/cross-market.html
https://recon.meddle.mobi/cross-market.html
https://traffic.comics.unina.it/mirage/mirage-2019.html
https://www.unb.ca/cic/datasets/ddos-2019.html
https://research.unsw.edu.au/projects/bot-iot-dataset
https://research.unsw.edu.au/projects/toniot-datasets
https://traffic.comics.unina.it/mirage/mirage-video.html
https://sites.google.com/view/iot-network-intrusion-dataset/home
https://www.unb.ca/cic/datasets/darknet2020.html
https://www.cse.wustl.edu/~jain/iiot2/index.html
https://idsdata.ding.unisannio.it/datasets.html
https://traffic.comics.unina.it/mirage/mirage-covid-ccma-2022.html
https://zenodo.org/records/10728760
https://www.liberouter.org/technology-v2/tools-services-datasets/datasets/cesnet-tls22/
https://www.stratosphereips.org/datasets-iot23
https://ieee-dataport.org/documents/iec-60870-5-104-intrusion-detection-dataset
https://www.ll.mit.edu/r-d/datasets/vpnnonvpn-network-application-traffic-dataset-vnat
https://www.unb.ca/cic/datasets/ids.html
https://projects.cs.dal.ca/projectx/data/Anon17/
https://wangruoyu.github.io/mobilegt/
https://drive.google.com/drive/folders/1cwHhzvaQbi-ap8yfrj2vHyPmUTQhaYOj
http://archive.ics.uci.edu/ml/datasets/detec-tion_of_IoT_botnet_attacks_N_BaIoT
https://ieee-dataport.org/open-access/iot-network-intrusion-dataset
https://ieee-dataport.org/open-access/mqtt-internet-things-intrusion-detection-dataset
http://bit.ly/UW-Orange-2020
https://github.com/YuqiangHeng/UTMobileNetTraffic2021
https://www.unb.ca/cic/datasets/iotdataset-2022.html
https://data.mendeley.com/datasets/nbs66kvx6n/1
https://ieee-dataport.org/documents/edge-iiotset-new-comprehensive-realistic-cyber-security-dataset-iot-and-iiot-applications
https://www.unb.ca/cic/datasets/iotdataset-2023.html
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Table VIII
TOOLS ORGANIZED IN ALPHABETICAL ORDER (↓). THE NAMES OF TOOLS/LIBRARIES ARE CLICKABLE LINKS, DIRECTING TO THEIR RESPECTIVE

REPOSITORIES. (LAST ACCESS TO SOFTWARE REPOSITORIES: JAN 2024)

Commit Yr.
Tool/Library ↓ First-Last XAI techniques

AIX360 [221] ♦ 2019–23 BRCG, Generalized Linear Rule Models, ProtoDash, ProfWeight, Teaching Explanation
for Decision, Contrastive Explanations Method, CEM with Monotonic Attribute Func-
tions, Disentagled Inferred Prior Variational Autoencoder

Alibi [222] 2019–24 Accumulated Local Effects, Anchors, Counterfactual Instances, Contrastive Explanation
Methos, Counterfactuals Guided by Prototypes, IG, SHAP

Anchor [223] 2018–22 Anchor
Captum [224] ‹ 2019–24 Grad-CAM, GuidedBackProp, IG, DeconvNet, SHAP, Occlusion

Dalex [225] 2018–23 Partial Dependence Plot (PDP), LIME, Accumulated Local Effects Plot, Merging Path
Plot, Shapley Values

DiCE [226] 2019–23 Counterfactual Explanations
DoWhy [227] 2018–24 Effect Estimation, Quantify Causal Inferences, What-if analysis, Root cause analysis and

explanations
Dtreeviz 2018–24 DT Visualization

ELI5 2016–20 LIME, Permutation Importance, Grad-CAM, TextExplainer
explainX 2020–24 SHAP, What-if analysis, Model Performance Comparison, PDP

ExplainerDashboar 2019–23 PDP, SHAP, Shap interaction values, Permutation Importance, Visualization of RF Trees
H2O 2017–20 Shapley Feature Importance, Feature Importance, PDP, Individual Conditional Expecta-

tion (ICE), DT, Local Linear Explanations, Global Interpretable Model
InterpretML [228] 2019–24 PDP, Explainable Boosting, DT, Decision Rule List, Linear/Logistic Regression, SHAP,

LIME, Morris Sensitivity Analysis
iNNvestigate [229] 2017–23 PDP, Perturbation Analysis, Gradient*Input, SmoothGrad, IG, DeconvNet, Guided Back-

Prop, PatternNet, LRP, Shapley Value Sampling
LIME [49] 2016–21 LIME

OmniXAI [230] 2022–23 Grad-CAM, Grad-CAM++, Score-CAM, LayerCAM, PDP, GuidedBackProp, IG, Ac-
cumulated Local Effects, Sensitivity Analysis, Counterfactual Expl, Contrastive Expl,
SHAP, LIME, SmoothGrad, Learning to Explain

PyCaret 2019–24 Calibration Curve, Feature Importance, t-SNE, SHAP, PDP, Morris Sensitivity Analysis,
PFI

Py-CIU 2020–24 Contextual Importance and Utility
SHAP [48] 2016–24 SHAP

Shapash ■ 2020–24 SHAP, LIME
Skater 2017–23 PDP, LIME, IG, Feature Importance, LRP, Tree Surrogates, Scalable Bayesian Rule Lists

Tensorboard 2015–24 Visualization Techniques
Tf-explain 2019–22 Saliency Maps, Activations Visualization, Vanilla Gradients, Graident*Inputs, Occlusion

Sensitivity, Grad-CAM, SmoothGrad, IG
TSViz [231] 2019–19 Visualization Techniques for Time-Series Analysis

Weight Watcher 2018–24 Diagnostics Techniques (layer-by-layer) for DL models
What-If Tool [232] 2018–23 Visualization, Probe, Interactive Evaluation

XAI 2019–21 Imbalance Analysis and Mitigation, Feature Correlation, Permutation Feature Importance
(check all)

Xplique [233] 2020–23 SHAP, LIME, Occlusion, Rise, Sobol Attribution, Hsic Attribution, DeconvNet, Grad-
CAM, Grad-CAM++, GradientInput, GuidedBackPropegation, IG, Saliency, SmoothGrad,
SquareGrad, VarGrad

Yellowbrick 2016–23 Visualization Techniques

Explanation-quality metrics:
We report the metric name as used in the tool documentation, and within parentheses the corresponding property as systematized in [4].
♦: Faithfulness, Monotonicity (both ∈ Correctness)
‹: Infidelity, Sensitivity (both ∈ Continuity)
■: Stability (Continuity), Consistency (Consistency), Compacity (Completeness)

https://github.com/Trusted-AI/AIX360
https://github.com/SeldonIO/alibi
https://github.com/marcotcr/anchor
https://github.com/pytorch/captum
https://github.com/ModelOriented/DALEX
https://github.com/interpretml/DiCE
https://github.com/py-why/dowhy
https://github.com/parrt/dtreeviz
https://github.com/TeamHG-Memex/eli5
https://github.com/explainX/explainx
https://github.com/oegedijk/explainerdashboard
https://github.com/h2oai
https://github.com/interpretml
https://github.com/albermax/innvestigate
https://github.com/marcotcr/lime
https://github.com/salesforce/OmniXAI
https://www.pycaret.org
https://github.com/KaryFramling/py-ciu
https://github.com/shap/shap
https://github.com/MAIF/shapash
https://github.com/GapData/skater
https://github.com/tensorflow/tensorboard
https://github.com/sicara/tf-explain
https://github.com/shoaibahmed/TSViz-Core
https://github.com/CalculatedContent/WeightWatcher
https://github.com/PAIR-code/what-if-tool
https://github.com/EthicalML/xai
https://github.com/deel-ai/xplique
https://github.com/DistrictDataLabs/yellowbrick
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insights into models and analyze data. Often, these tools enable
the extraction of specific visualizations concerning various
aspects of the models under examination, thereby enhancing
the understanding of the model itself. Beyond those listed in
the table, it is worth mentioning some other libraries that aim
to investigate/evaluate fairness and bias mitigation. Among
these, we find AIF360 [235], Aequitas [236], Fairlearn [237],
Fat-Forensics [238], PyCaret [239].

Concerning the metrics, although they represent a crucial
aspect for reaching good explanations, it is evident from the
table that only a limited number of tools (3) provide implemen-
tations of metrics for evaluating the explanations. Furthermore,
we remark that there is no agreement on the nomenclature of
metrics nor on their definition (see Section V-A). This does
not make it straightforward to understand which metric is
available in each library and which aspects it pertains to. To
avoid ambiguities, in the footnote of Table VIII we report the
metrics with the names used in the respective libraries and
match them with the categories systematized in [4].

Last but not least, another aspect that should be carefully
considered when choosing the library to leverage regards the
cost related to an explainability technique. However, such an
evaluation requires several factors to be taken into account: the
theoretical complexity of the technique, the language used, and
the specific implementation provided within a particular tool
or library. Given the complexity of such evaluation and the
current maturity of XAI field, it is unsurprising that current
libraries overlook this aspect.

The two aspects discussed above, concerning metrics and
complexity, represent significant challenges that must be ad-
dressed to develop more comprehensive frameworks for eval-
uating XAI techniques. Tackling these challenges is not only
essential for enhancing the comprehensiveness of the frame-
works but it is also crucial for achieving full reproducibility
of results that take these aspects into account.

IX. CONCLUDING REMARKS ON OPEN CHALLENGES

Integrating the evolving landscape of XAI into NTA poses
both promising advancements and formidable challenges.
While XAI holds the potential to enhance our understanding
of network behaviors and facilitate more informed decision-
making processes, its application in this domain confronts
several complex hurdles [240]. These challenges range from
leveraging XAI at the design stage for improving and adapting
NTA tools to the inherent trade-offs between accuracy and
transparency and the unavoidable costs of interpretability as
well [2]. Additionally, providing NTA-focused XAI tools and
ensuring the robustness via XAI frameworks in dynamic
network environments remains a critical concern.

In this section, we discuss the open challenges and gaps that
arise when applying XAI techniques to NTA, shedding light
on the areas that demand further investigation and innovation
to realize its full potential in the product line.

A. Inadequate Methods for XAI in the Loop

The integration of XAI methods into the decision-making
loop is essential for achieving actionable improvements in

 Absence of XAI-driven 
 Foundation Models

 Non-Standardized
 Metrics and Interfaces
 for Human-Friendly XAI 

 Lack of Networking 
 Specific XAI Mehods

 Cost of XAI Integration

 Inadequate Methods
 for XAI in the loop

Figure 6. Open Challenges for XAI in Networking.

close-to-automatic fashion. XAI methods should not only
elucidate the reasons behind predictions but also explicitly
indicate the necessary steps to enhance the quality of these
predictions. In addition, future XAI methods should embrace a
holistic approach by seamlessly integrating with cutting-edge
tools or platforms (e.g., ModelOps) to support this process.
By doing so, they can extract deeper insights from the data
and effectively associate actionable recommendations with
decision-making processes. This integration would enable a
more productive and data-driven decision-making ecosystem,
where XAI serves as a key enabler of continuous improvement
and informed choices.

Further, given the dynamic nature of network traffic, NTA
models evolving via lifelong learning techniques are a key
challenge. In such a case, the need for explainability is further
heightened. In fact, incremental training is inherently more
complex with resulting models exhibiting subpar performance.
Hence, explainability is critical to enable a comprehensive
analysis of the model’s internal dynamics, understand the fac-
tors contributing to poor performance, guide diagnosing, make
informed adjustments, uncover the hidden challenges within
the model, and rectify its shortcomings. In this context, XAI
methods encounter challenges due to the lack of methodolo-
gies tailored for incremental training. Indeed, the dynamic
nature of incremental updates surpasses conventional XAI
tools’ capabilities, hindering a comprehensive understanding
of model decisions over time. Addressing this gap requires the
development of robust and standardized approaches that would
enable meaningful insights into evolving models’ decision-
making processes, enhancing our understanding of their be-
havior.

B. Cost of XAI Integration in NTA-based Systems

A first observation regarding the integration of NTA systems
into XAI is the need for carefully taking into account the
accuracy-interpretability trade-off. The latter problem refers
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to the inherent conflict between achieving high predictive ac-
curacy and maintaining interpretability (or comprehensibility)
in predictive models or algorithms within the field of ML and
data analysis.

Achieving interpretability through XAI also entails asso-
ciated computational cost [241]. Additionally, economic
factors [242] must be considered when embracing XAI into
NTA.

One challenge with current XAI solutions is their diffi-
culty in integrating into networking systems for on-the-fly
model interpretation. To enhance AI confidence within the
networking community, there is a growing need for system-
level support. This includes the development of standard
application programming interfaces and software development
kits aimed at seamlessly incorporating XAI techniques into the
operational network environment. These advancements would
enable real-time, automated scrutiny and validation of various
AI-based solutions.

From an economic perspective, organizations should con-
sider the specific requirements of their application, avail-
able resources, and constraints to determine the feasibility
of implementing XAI techniques in their NTA systems. This
involves also considering the costs of creating and storing audit
logs, the impact on innovation speed (e.g., time-to-market for
network devices), and the potential loss of flexibility due to
future shifts that may not align with prior explanations.

C. Lack of Specialized XAI Methods in Networking

Previous sections have underlined that existing studies com-
monly utilize XAI methods introduced in other application
domains like SHAP and LIME. Such methods are not inher-
ently crafted to harness the distinctive features of contem-
porary networking systems and data (see Section VII-E).
Therefore, this approach may result in inconsistent or mis-
leading outcomes. Accordingly, it is crucial to account for
the specificity of the target problem and develop tailor-made
XAI methods that align with the corresponding network and
system configurations. One relevant example is the integration
of causal explanation methods aligning to the aforementioned
constraints. As modern networks grow in complexity, there is
a need for the creation of more XAI techniques specifically
tailored for current NTA tools and network settings.

D. Non-Standardized Metrics and Interfaces for Human-
Friendly and Trusted XAI

Stakeholders in NTA include network administrators, net-
work service providers, cybersecurity analysts, regulatory
authorities, and end-users. All these categories can benefit
from the provision of explainability, but a single type of
explanation may not work for everyone. Before considering
how to achieve explainability, having a clear understanding
of the explanations’ end users is crucial. To effectively com-
municate the results to users and network operators, it is
necessary to establish a suitable format that ensures usability.
This highlights the need for the development of interfaces
that facilitate the presentation and interpretation of the
explainability outcomes. These interfaces play a vital role in

conveying the obtained insights in a manner that can be readily
comprehended and utilized by the intended recipients.

Equally important, there is an urgent need for shared (and
possibly rigorous) metrics to evaluate the explanations
obtained. Different techniques may return different results,
and it is difficult to know which technique is to be preferred.
Furthermore, having shared metrics allows for a standard-
ized framework to assess the quality and effectiveness of
explanations. By employing rigorous metrics, we can ensure
that the evaluation process is objective and unbiased. This
not only enhances transparency but also enables meaningful
comparisons between different XAI techniques.

Unfortunately, NTA literature is still in its early stages in
this respect, as highlighted by the scattered nature of relevant
literature (Sec. V-A). Current evaluations are often not well-
suited for evaluating the complex and multifaceted nature
of explanations. While some metrics used in NTA focus on
properties like Correctness and Continuity, these represent
only two of twelve key properties of explainability [4]. On the
other hand, for each of the twelve properties different metrics
and techniques are available, and several of them require non-
trivial computing (and thus a cost-time tradeoff): an exhaustive
assessment of explanation quality would be impractical. Thus,
there is a pressing need for a consensus on essential properties
that cover the content, presentation, and user dimensions, pro-
viding a practical yet comprehensive framework. Tab. V marks
a significant step toward a unified approach to explanation
quality metrics in the NTA context, but achieving this goal
will require collaboration among researchers and practitioners.

Linked to this topic, the sharing of datasets including
annotated ground truth for explanations is crucial for eval-
uating new methods and selecting the most effective one.
Networking poses even greater challenges compared to more
established fields like computer vision, as even just assessing
the plausibility of results—although straightforward for an
image—becomes more complex in the case of network traffic.
Consider, for instance, a model with payload as input that
should be interpreted (even more complex if encrypted).
Additional privacy-related issues are present regarding traffic
trace sharing.

E. Absence of XAI-driven Foundation Models for Diverse NTA
Tasks

At the time of writing, there is a recent and growing effort
in developing foundation models that can suit different NTA
tasks, but none of them is built upon XAI guidelines. Indeed,
XAI can also assist network administrators in discovering the
(otherwise hidden) security threats and loopholes in an inter-
pretable way [20]. Accordingly, this will make such models
easy to be tuned for different NTA tasks, but also resilient to
different types of attacks specifically targeting the workflow
of AI algorithms, such as evasion and privacy-leaking (e.g.,
membership inference). For instance, if the model behavior
is changed due to attacks, XAI itself can be used as a
potential detection mechanism against the attacks, even if the
changes are subtle and not visible, merely observing model
predictions [243]. Analyzing a model’s resilience against at-
tacks is essential in AI before integrating it into a real-world
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application in future networks. In this regard, a lack of metrics
for resilience evaluation in the literature can be also observed.
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