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1 Overview

This report provides the technical details of the CLM (Connection and Location Man-
agement) components and NCSOCKS (Nomadic Computing Sockets) API developed by
the Mobilab Group. The aim of this work is supporting the application developer with
a middleware architecture providing an API specifically suited for Nomadic Computing
environments. Nomadic Computing (NC) is referred in literature as a distributed comput-
ing model in which the communication takes place over strongly heterogeneous network
infrastructures. Such infrastructures are composed of one or more wireless domains, glued
together by a fixed infrastructure (the core network), and provide anytime, anywhere ac-
cess to mobile devices [1]. In this kind of infrastructure, the mobile terminals communicate
each other through the core network which is accessed by means of Access Points (APs).
Each AP, with its covering zone, defines a cell in which a mobile device can communicate
with the fixed infrastructure.
The proposed architecture deals with two major issues:

• Mobility Management, i.e. all the activity related to support users with mobile
terminals to enjoy their services through wireless networks when they are moving
into a new service area [2]. Mobility management involves handover management,
that is all the activity related to manage the wireless network connection in spite
of device movements from a cell to another. Since different APs can use different
wireless communication technologies (e.g. Bluetooth [3], Wi-Fi [4], IrDA [5], etc.),
also vertical handover procedures (i.e. handover between AP of different techs [6])
have to be addressed.

• Location Management, i.e. the management of the current mobile device location.
By location, we mean the symbolic location, that encompasses abstract ideas of
where something is [7]: in the kitchen, in the lab, next to a picture in a museum.

Through the NCSOCKS interface, application developers can support their NC applica-
tions with:

• Connection Awareness: applications can be aware of the current state of the con-
nection. This kind of awareness is especially recognized in NC environments, where

∗Contacts D. Cotroneo (cotroneo@unina.it) to obtain CLM and NCSOCKS source code.
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Figure 1: Abstract machine model of our solution

the disconnections are the rule, rather than the exception. Thus the application can
adapt their behavior on the basis of the current state of the connection.

• Location Awareness: applications can be aware of the current device symbolic loca-
tion, thus they can adapt their behavior accordingly to the current location.

In the following sections, the overall architecture, its peculiar aspects, and implementation
details, are deeply described.

2 Overall Architecture

The architecture we propose is depicted in figure 1. Three are the major components that
build the architecture: the Connection and Location Management (CLM), the Map Sever,
and the Nomadic Computing Sockets (NCSOCKS) Interface.
The former run on mobile terminals and it is in charge of handling connections with the
APs. In particular, it is responsible of performing handover operations between different
cells. To this aim, CLM uses information about the current location of the mobile device
by keeping a map of the neighboring APs. Such a map is managed by the Map Server,
which run on the core network. The Map Server provides the current APs topology and
the technology being used by each AP (e.g., Bluetooth, Wi-Fi, and Irda). The CLM we
implemented is a software module placed between application and kernel space. It provides
a set of communication services, by means of a user-level library (the NCSOCKS Interface),
allowing applications to request an IP-based communication channel. In particular, the
CLM layer provides applications with location and connection awareness support. Using
NCSOCKS library enables applications to be notified about changes in the channel status,
in terms of raised exceptions. By this way, applications can perform the correct actions,
adapting their behavior according to the connection status (connection awareness) and
the symbolic location (location awareness).

2.1 CLM Layer

As described earlier, the CLM component is in charge of implementing handover pro-
cedures and of providing the current location information. The handover procedure is
typically composed of three phases [8]:

2



REAL 
CONNECTION A

REAL 
CONNECTION B

INIT STRATEGY 
A

INIT STRATEGY 
B

LOCATION
- name
- techonolgy
- address
- info

+ get()
+ set()

0..n

1

+neighborhood location

0..n
confine with

+current location

1

CONNECTION

+ getRssi()
+ connect()
+ disconnect()
+ search()

<<abstract>>

INITIATION

+ initiateHandover()

<<abstract>>

1..n1 1..n1

monitor

CONNECTION MANAGER
- actualTech
- actualPosition
- state

# decideNextCell()
# executeHandover()
# getMap()
# searchConnection()
+ run()

1 11 1

use

1..n

1

1..n

1

managenn

NCSOCKS

SHARED 
MEMORY

+ read()
+ write()

In
iti

at
io

n 
pa

tte
rn

C
onnection pattern

Figure 2: CLM Design Pattern

• Initiation: the objective of the initiation phase is to recognize the need for handover.
To this aim, the network status is monitored in order to decide when the migration
has to be started;

• Decision: once the need for handover is recognized, it is necessary to decide the new
AP to connect;

• Execution: in this phase, a connection is established to the new AP, which have been
discovered in the previous phase, and the information about the current location is
updated.

The initiation phase is strongly dependent on technology being used. For instance, in
the case of a Bluetooth cell, in which the mobile device acting as a slave can manage at
most one connection, the initiation phase can use only the information about the signal
strength of the actual connection, both in the case of horizontal and vertical handovers.
In order to design a solution which is independent of the technology, we adopt a strategy
pattern [9], using n different initiation strategies for n different kind of cells. In the decision
phase, a new AP is chosen. The decision can be taken by monitoring some parameters
of the wireless link between mobile device and APs (namely the Receiver Signal Strength
Indicator - RSSI). In order to reduce the number of APs to be inquired, a predictive
handover scheme is adopted. This scheme uses the environment topology map, where
the next cell is chosen among the neighbored APs. The topology map is used also for
locationing purposes: the Connection Manager knows the mobile device symbolic location
by knowing the AP currently used. During the handover, a new AP is chosen (among the
old AP neighborhood) and the location information is updated. The decision algorithm
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has to be implemented in order to choose an AP covering the zone in which the device is
currently present.
We here present the design of the CLM layer as a design pattern. This let us to propose
a general solution which can be adopted by designers facing with similar problems. The
class diagram of CLM is depicted in figure 2. The Connection Manager holds information
about the connection status, actual location, and technology being used. The connection
status can assume three distinct values: i) NOT CONNECTED, i.e. the device is not
connected to any AP; ii)HANDOVER, i.e. the mobile device is performing an handover
procedure; and iii) CONNECTED, i.e. the device is connected to an AP. Two strategy
patterns are adopted, namely Initiation and Connection. The former aims to define a
family of initiation algorithms, encapsulate each one, and make them interchangeable in
spite of technology being used. The latter provides a connection abstraction, in terms of
connections, disconnections, AP discovering, and signal strength monitoring procedures.
The topology map is implemented by means of Location objects and built by invoking
the getMap() method, which has the effect of requesting the overall map to the Map
Server. The Location objects hold also the information about the technology adopted by
each cell. This information allows the Connection Manager to use the initiation strategy
(through the initiationStrategy() method) and the connection primitives accordingly
to the actual cell technology. In order to shade some light on the Connection Manager

behavior, figure 3 depicts its UML state chart diagram.

2.2 NCSOCKS Layer

The NCSOCKS interface provide the applications with transport communication facilities.
Since they have been designed in order to deal with nomadic settings, the NCSOCKS are
responsible of the maintenance of transport channels in spite of lower layers changes. In-
deed, through the NCSOCKS, applications can communicate with the fixed infrastructure
also in spite of device disconnections, due to signal absence or handover being performed.
These facilities are provided by the interaction between the NCSOCKS and the CLM. The
NCSOCKS handle the packet delivering by knowing the current connection status and,
in particular circumstances, also the applications can be notified about changes in the
connection status. At the same time, applications can request the NCSOCKS in order to
read, or to be notified, about the current device symbolic location.
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Figure 4 depicts the NCSOCKS class diagram. As figure shows, the API is similar to the
standard Java sockets library, except for the following: firstly there is a class, the Location
Monitor, that provides the applications with the awareness of the actual symbolic loca-
tion; the applications can request the actual location, and can be notified about location
changes; the current location is provided by the CLM layer trough a shared memory. Sec-
ondly, communication methods adopt a synchronization paradigm taking into account the
connection awareness support. In order to explain such a synchronization paradigm, the
most significant methods are described in the following:

• senseConnection() : status - As the name suggest, the senseConnection()

method performs a connection status sensing. The status information are gathered
through a shared memory, written by the Connection Manager and containing two
fields: the state of the connection (CONNECTED, NOT CONECTED and HAN-
DOVER) and a counter, refconn, indicating the number of connections that have
been made since the CLM has been started-up. Each new connection establishment
(after an handover or a reconnection due to a quite long channel unavailability),
causes refconn to be incremented. A senseConnection() method call causes the
following actions to be performed: i) the shared memory contents are read; ii) if the
NCSOCKS local memorized connection number is less than refconn, then the trans-
port level services are restarted (e.g. trough a sockets re-initialization); indeed, in
this case, some disconnections have been occurred, causing sometime the change of
the IP interface being used (e.g. after a vertical handover); iii) the local memorized
connection number is adjusted to refconn; iv) the read connection state is returned.
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• Send() : int - the Send() primitive provides a data transport service and return
the number of delivered bytes. If the communication cannot succeed, exceptions are
thrown indicating the connection status (e.g. connection unavailable or connection
in progress, that is a too long handover operation). The connectionless implementa-
tion uses UDP; in this case, the Send() C++ signature is:

int UDPSocket::Send (DatagramPacket & packet, int persist duration =

8, int persist interval = 2) throw (Exception)

The PDU exchanged is a DatagramPacket object, which encapsulate the destina-
tion host IP address and port, the payload and its length. As far as the connection
oriented implementation is concerned, it uses TCP, and the Send() C++ signature is:

int TCPClient::Send (const string & packet, const int length, int

persist duration = 8, int persist interval = 2) throw (Exception)

The PDU exchanged is a string containing the message payload. Obviously, there is
no need to specify the destination address. Both the connectionless and connection
oriented solutions, are designed in order to check the wireless connection availability
before the data delivery. After the check, three situation might occur:

1. The wireless connection is available: data are immediately sent;

2. The wireless connection is unavailable: a connection unavailable exception is
thrown to the application;

3. An handover is being performed: the send() waits for persist duration sec-
onds and control the connection status every persist interval seconds. If
in this time the connection became available, data are sent, otherwise, if the
persist duration time is exceeded or if the connection becomes unavailable,
a connection in progress or a connection unavailable exception is thrown.

In the following, the send primitive core C++ simple code is shown:

switch (senseConnection()) {
case CONNECTED :

data delivering //through TCP or UDP

break;

case HANDOVER :

if (WaitConnection(persist interval, persist duration,

STATE DISCONNECTED + STATE CONNECTED) == 0)

throw (CommException("Connection in progress"));

else return(Send(packet));

break;

case DISCONNECTED :

throw (CommException("Connection unavaible"));

break;

}
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Hence the Send() primitive uses the WaitConnection() primitive described below.

• WaitConnection (const int interval, const int dur, const int trigger):

int - this primitive allows the applications to wait for an event, for a time dur,
specified by the trigger parameter, completely enabling the connection awareness
support. The event can be the passage to a CONNECTED status (trigger =
STATE CONNECTED), NOT CONNECTED status (trigger = STATE DIS-
CONNECTED), or from an HANDOVER status to a different one (trigger =
STATE CONNECTED + STATE DISCONNECTED). The interval parameter
specifies how often the status has to be requested during the dur time.

• Receive() : int - the Receive() primitive provides a non-blocking (with time-
out) data reception service, and return the number of effectively received bytes.
Compared with the Send() primitive, the handover situation is handled in a dif-
ferent manner: since it makes no sense to await the connection availability (the
expected packet is probably already lost), the effective reception is performed only
if the connection is available. The connectionless implementation provides the fol-
lowing interface:

int UDPSocket::Receive(DatagramPacket & packet,int timeout) throw

(Exception)

whereas, in the connection oriented implementation, the interface becomes:

int TCPClient::Receive(string & packet, const int length, int

timeout) throw (Exception)

Both the connectionless and connection oriented solutions, implement the non-blocking
behavior by using the Unix select system call.

2.3 Map Server

The Map Server is a fixed-side component. It provides the mobile devices Connection
Manager with the current environmental topology map. Since each environment has its
topology, each environment has to have a Map Server, capable of accepting map requests
from mobile terminals. Furthermore, the topology may change (an AP may fail, or the
system administrator may decide to add or remove a covered zone), so the Map Server
has to recognize topology changes and provide the mobile terminals with the last updated
map version. To this aim, the Map Server is designed as a set of distributed objects: one
object per AP (AP monitors), which are in charge of performing the AP monitoring, and
one Central Manager. Through the Central Manager user interface, the topology can be
managed by the system administrator, whereas the AP monitors notify the manager about
current APs status, thus the topology changes not handled by human administrators are
automatically handled by the Map Server.
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3 Design and Implementation Details

The CLM and NCSOCKS components have been implemented by using the C++ lan-
guage and the Linux OS (kernel 2.4.19 or above) primitives. The code have been compiled
both for PCs and laptops (having installed a Linux mandrake 9.1 distribution) and cross-
compiled for the Strong ARM target machine in order to be run on Compaq IPAQ 3970
(with a Linux Familiar 0.7.1 distribution). Current development efforts are involving the
Map Server implementation and the java-porting of the NCSOCKS library. The Map
Server is being implemented using java and JacORB (www.jacorb.org), a java implemen-
tation of the CORBA specification. As far as the implementation is concerned, our CLM
has been conceived as a daemon process running on mobile devices. Communication
between users applications and the CLM is made possible through NCSOCKS by using
shared memory IPC system calls, which are encapsulated in the SharedMemory class. The
following sections describe some key details of the CLM design and implementation, that
is the integration of the Bluetooth and Wi-Fi technologies, the IP channel configuration
and the description of our decision algorithm designed to address also locationing issues.

3.1 Integrating the Bluetooth Technology

3.1.1 Connection

The Bluetooth connection is achieved by a specific PANConnection class, which implements
the Connection abstract class. Such a class is in charge of creating IP over L2CAP
channels based on Bluetooth Personal Area Network profile (PAN) and Bluetooth Network
Encapsulation Protocol (BNEP) [3]. The Bluetooth channel access and power monitoring
is implemented by using BlueZ, the official Linux Bluetooth stack implementation. On
the AP side, we implemented a specific daemon process, namely NAPdaemon, which is
in charge of accepting incoming PAN connections and bridge them upon a unique virtual
datalink interface, as suggested by BlueZ implementors (http://bluez.sourceforge.net
/contrib/HOWTO-PAN). To this aim, the Linux kernel we use has to be compiled with Bridge
Control (brctl 802.1d) option. Behind the AP we enable a Network Address Translantion
Server (NAT), allowing bluetooth-enabled devices to use private IP network addresses.
Further information about the NAPdaemon, its source code and installation guidelines can
be found at www.mobilab.unina.it/BlueNAPHOWTO.htm.

3.1.2 Initiation Strategy

The Bluetooth technology do not support neither horizontal nor vertical handover pro-
cedures, where horizontal handovers are intended as handover procedures between APs
using the same technology. We thus manage both handover types in the same manner,
that is, when the mobile terminal leave a Bluetooth cell it will be able to reconnect either
to another Bluetooth enabled AP or to an AP using some other technology. In our so-
lution, Bluetooth APs are Bluetooth master device, whereas mobile terminals are slaves.
This assumption is needed to overcome some limitations of the current Bluetooth hard-
ware implementations, in which slave devices can manage at most one connection at the
same time. We decide also to not monitor AP of technologically different cells at the same
time in order to reduce the interferences near the mobile device (e.g. using Bluetooth and
Wi-Fi at the same time can result in high interferences [10]). With this assumption, only
the RSSI of the actual connection is monitored, reducing the battery consumption.
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A problem that arise with this kind of assumption is that the initiation can be affected by
transient RSSI degradation, due to temporary interferences and shadowing. For this rea-
son, we propose a count and threshold scheme, namely alpha-count scheme [11], capable
of discriminate transient and permanent RSSI degradations. We define the alpha-count
function as follows:

α(L) =











α(L−1) + 1 if RSSI(L) < SRSSI

α(L−1) − dec if RSSI(L) ≥ SRSSI and α(L−1) − dec > 0

0 if RSSI(L) ≥ SRSSI and α(L−1) − dec ≤ 0

During the L-th measurement, if RSSI falls below the threshold SRSSI , the value of the
α(L) function is incremented, otherwise the value is decremented by a positive quantity dec.
An handover is initiated when α(L) becomes greater than a threshold αT , which represents
the tolerance of the algorithm. This means that, the value of such a parameter has to be
carefully tuned in order to achieve a trade-off between the availability and accuracy of the
location mechanism. Indeed, αT along with values of dec and SRSSI indicates which is the
zone covered by an AP. So each AP has to have its characteristic parameters to be held
in its Location object.
The proposed initiation strategy have been implemented through a specific InitBlue class
that implements the abstract Initiation class.

3.2 Integrating the Wi-Fi Technology

3.2.1 Connection

The Wi-Fi connection is achieved by a specific WiFiConneciton class, implementing the
Connection abstract class. Since the IP abstraction is already provided by Wi-Fi adapters,
this implementation was straightforward. The RSSI monitoring have been performed by
using the source code of the iwconfig command, a Wi-Fi configuration tool for Linux.

3.2.2 Initiation Strategy

Since the Wi-Fi technology automatically performs the horizontal handover, the initiation
phase has only to recognize the need for a vertical handover. Hence, the RSSI is moni-
tored with the α-count scheme and, when the α function overcome the threshold (hence,
horizontal handovers are not capable of improving the RSSI level), a vertical handover is
performed. However, during the Wi-Fi utilization, it is needed to keep track of the current
location of the device. This task is actually implemented by keeping track of the current
Wi-Fi AP being used. Further improvements can be obtained by implementing triangu-
lation techniques among Wi-Fi APs. Indeed, whereas Bluetooth sensors cover little zones
that are likely representative of the current device symbolic location, Wi-Fi APs cover
bigger zones, resulting in a low locationing accuracy.

3.3 IP addresses configuration

Since the network layer is abstracted trough IP, allowing also the portability of legacy
client applications, the IP addresses have to be assigned. The address assignment must be
performed after a vertical handover (after which a different network interface will be used)
and after an horizontal handover in the case of technology that does not automatically
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handle it. The configuration is performed using automatic techniques, such as DHCP or
Zero Conf IP (http://files.zeroconf.org). This means that, after the handover oper-
ation, the IP address might change. However, if the mobile-side applications are clients
of stateless servers residing on the fixed infrastructure, the IP address changing do not
represent a problem. This is the normal situation for a wide class of legacy client-server
application, such as UDP applications or some TCP applications (SMTP mail upload and
POP or IMAP mail retrieval, web browsing) that are characterized by TCP connections
being short enough to make the cost of having to re-attempt an operation (e.g. an HTTP
transaction that was aborted due to handover or the download of a single email) rela-
tively small. In any case, the implementation of mobile and/or state-full servers, requires
the adoption of proxy-based solution (e.g. providing the servers mobility support and
session management using the Session Initiation Protocol - SIP [12]). To this aim, the
NCSOCKS can be adopted as the core communication infrastructure between the mobile
clients/servers and the proxy, residing on the core network.

3.4 Decision Algorithm and Locationing Issues

The decision algorithm is encapsulated in the decideNextCell()method of the Connection
Manager. In the actual implementation, we adopt a topology-based schema. The decision
algorithm is in charge of electing a new AP among the neighbored APs. The decision is
taken by using a score criteria: let N = {ng1, ..., ngn} to be the set of neighbored APs.
For each ngi ∈ N a score s(ngi) is evaluated on the basis on some parameters (RSSI,
delay, delay variation, information loss). The decision algorithm selects the AP ng∗ with
the score s∗ = maxngi∈N s(ngi). As for the locationing issues, we assume that a mobile
device is in the room x when it is attached to the AP x. The initiation phase, with a fine
tuning of its parameters, assures that when a mobile device leaves a room, an handover
will be performed. The decision algorithm assures that when a mobile device enter in a
room x, with an AP x, it is quite certain that the AP x will be chosen. In fact, the score
parameters used by the algorithm are strongly influenced by the distance between the
device and the AP and the presence of walls (the norm is that neighbors of the old AP are
shadowed each other by means of walls), as studies, such as [10], confirm. For this reason,
since the AP x is the closest and not covered by walls, its score will be better. However,
even if pathological situations can lead to the decision of a wrong AP, poor values of the
signal strength, which are measured on the selected AP, will result in the initiation of a
new handover,thus correcting the error.

4 Conclusions and Future Works

This work presented a communication architecture for Nomadic Environments. We pre-
sented the design of the proposed architecture used a pattern-oriented design approach.
Indeed, our effort has been progressed from the design to the implementation issues, trying
to make design independent on technology details. The objective of future activity will
be thorough evaluation of the effectiveness of the communication service, both in terms
of robustness and performance. Further analysis are needed to assess the decision process
by implementing the score criteria decribed in section 3.4. Finally, we plan to use our
communication library as communication service core in our enhanced distributed object
computing middleware for nomadic environments, namely ESPERANTO.
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