
WEB MINDS
Wide-scalE, Broadband, MIddleware for Network Distributed Services

FIRB - Fondo per gli Investimenti della Ricerca di Base

The Esperanto Broker: a technical report

M. Cinque1, D. Cotroneo1, A. Migliaccio1, and S. Russo1,2

1: Dipartimento di Informatica e Sistemistica
Università di Napoli Federico II

Via Claudio 21, 80125 - Napoli, Italy
2: Consorzio Inter-universitario Nazionale per l’Informatica (CINI)

Via Diocleziano 328, 80125 - Napoli, Italy
(macinque,cotroneo,armiglia,sterusso)@unina.it

Abstract

In the recent past, a plethora of mobile computing middleware are developed. Actually,
most of them do not cope with terminals mobility at each level of the network protocols
stack. We presents a new communication platform which implements a Broker for nomadic
computing environments, named the Esperanto Broker. By using the proposed platform,
developers model application components as a set of objects that are distributed over wire-
less domains and interact via remote method invocations. The Esperanto Broker is able
to guarantee remote object interactions despite terminals movements and/or disconnec-
tions. We believe that the proposed platform acts as a building block for the realization
of mobile-enabled middleware services. We describe the conceptual model behind the ar-
chitecture, discuss implementation issues, and present preliminary experimental results.

WP 2

Numero TR-WEBMINDS-37

Data 10/01/2005

Tipo di prodotto Technical Report

Numero di pagine 16

Unità operativa CINI - Napoli

Persona da contattare Domenico Cotroneo
Dipartimento di Informatica e Sistemistica
Università degli Studi di Napoli Federico II
Via Claudio 21, 80125 - Napoli, Italy
cotroneo@unina.it

1

1 Introduction

Recent advantages achieved in wireless and in mobile terminals technologies are leading
to new computing paradigms, which are generally described as mobile computing. Mobile
Computing encompasses a variety of models which have been proposed in literature[1],
depending on the specific class of mobile terminals (such as PDAs, laptops or sensors),
and on the heterogeneity level of the network infrastructure. Nomadic computing, ad-hoc
computing, and ubiquitous computing are different views of such models, depending on
the characteristics they emphasize. In this work, focus is on Nomadic Computing (NC),
which is a form of mobile computing where communication takes place over strongly het-
erogeneous network infrastructure, composed of several wireless domains, which are glued
together by a fixed network infrastructure (the core network) [2]. A wireless domain may
represent a building floor, a building room, or a certain zone of university campus. Sev-
eral kinds of devices, with different characteristics in terms of resources, capabilities, and
dimensions, may be dynamically connected to domains, and use provided services.
It is widely recognized that traditional middleware platforms (such as CORBA [3], DCOM
[4], and JAVA-based technologies, such as JavaRMI [5]) appear inadequate to be used for
the development of emerging applications for nomadic computing [6, 1, 7]. Indeed, since
mobile computing applications operate under a broad range of networking conditions (in-
cluding rapid QoS fluctuations) and scenarios (including terminals and users movements),
mobility does not make the traditional middleware solutions suitable for supporting emerg-
ing nomadic applications. During past years, a great deal of research has been conducted
on middleware for mobile settings, proposing enhancing versions or new models. Research
efforts have been mainly progressed along the two following directions:

• Providing innovative mechanisms, such as context awareness, reconfiguration, dy-
namic and spontaneous discovery, and adaptation. Examples are solutions proposed
in [8, 9, 10]. Novel strategies emerged from the mentioned works, which are based
on new programming models, such as reflection, and aspect-orientation.

• Dealing with Quality of Service aspects of mobile computing infrastructures, such
as security, network resources allocation, and fault-tolerant strategies. Examples are
solutions proposed in [11, 12, 13]. In mobile computing environment, these issues
become more challenging due to new characteristics of wireless network infrastruc-
tures (in terms of bandwidth, latency, topology, etc.) and mobile terminals (in terms
of hardware and software capabilities).

While we recognize that these studies represent fundamental milestones for the pursuit
of new middleware solutions for mobile/nomadic computing, most of them do not focus
on mobile-enabled interaction mechanisms. Mobile computing environments are charac-
terized by highly dynamic behavior: wireless networks have an unpredictable behavior,
and users are able to move among different service domains. Therefore, the definition
of a mobile-enabled interaction platform is a crucial step of the entire mobile comput-
ing middleware design process. Most of cited works delegate the mobility support to
the underlying (network and transport) layers, by using protocols such as Mobile IP,
Session Initiation Protocol (SIP), or a TCP tailor-made for mobile computing environ-
ments [14, 15, 16]. However, as stated in [17], mobility support is needed on each layer of
the ISO/OSI stack, especially on the middleware layer. As for the interaction paradigms,

2

it is recognized that traditional remote procedure call does not accommodate itself to mo-
bile/nomadic computing environments. However, although many different solutions have
been proposed for adapting interaction paradigms to mobile settings (such as tuple space,
and publish/subscribe [6]), they often result in a programming model which is often un-
typed, unstructured, and thus complex to program. Furthermore, the W3C has recently
carried out a set of interaction paradigms, which have been assuming as standard de facto
in the deployment of distributed and web-based services [18].
The above motivations conduct us to claim that a communication broker, which acts as
a building block for the realization of enhanced services, is needed. This paper proposes
a new communication platform which implements a Broker for nomadic computing envi-
ronments, named the Esperanto Broker (EB), which has the following proprieties:

1. it provides a flexible interaction paradigm: a crucial requirement for such a paradigm
is the decoupling of the interacting entities. EB provides an object oriented ab-
straction of paradigms proposed in WSDL specification [18]. It thus reduces the
development effort, by preserving a structured and typed programming abstraction.

2. it supports terminal mobility by providing mechanisms to handle handovers and
handoffs occurrences: by this way, interactions between involved parts are preserved
despite terminal movements among different domains and/or terminal disconnec-
tions.

By using the proposed platform, developers can model application components as a set of
objects that are distributed over wireless domains and interact via remote method invo-
cations.
The rest of technical report is organized as follows. Section 2 describes the conceptual ar-
chitecture of the overall system, including the adopted interaction model, the programming
abstraction, and mobility support. Section 3 details the implementation issues. Section 4
presents preliminary experimental results. Section 5 concludes the paper with some final
remarks about results achieved and direction of future work.

2 Overall Architecture

The Esperanto Broker is designed according to the layered architecture depicted in figure 1.
As figure shows, such an architecture is composed of two main platforms: Device-side and
Mediator-side. In particular, on each domain of the NC infrastructure runs a crucial com-
ponent, named the Mediator, which is in charge of handling connections with terminals
operating in its domain. Mediators are connected each other via the core network. The
Device-side platform is in charge of connecting devices with the domain’s Mediator, and of
providing applications with distributed object view of services (i.e., services are requested
as remote invocations on a target server object).
The Mediator-side decouples service interactions in order to cope with terminal disconnec-
tions and/or terminal handovers. To this aim, among the mechanisms aiming to achieve
flexibility and decoupling of interactions, we adopt the tuple space model thanks to its
simple characterization. In our approach, the virtually shared memory is conceived as a
distributed space among mediators, and the Device-side platform provides functionalities
to access to it. In the following, we describe both Mediator and Device side platforms, in
order to highlight design issues have been addressed.

3

NCSOCKs

ESPERANTO
CORE

TUPLE DELIVERY
LAYER

ENHANCED
STUB

MOBILITY
SUPPORT

ENHANCED
SKELETON

NCSOCKs

PLATFORMs
BRIDGE

DOC VIEW
STUB/SKEL

LAYER

SERVERCLIENT

WIRELESS
NET

WIRELESS
NET

MOBILITY
SUPPORT

TUPLE
MANAGEMENT

LAYER

TUPLE
SPACE

DEVICE PLATFORM

MEDIATOR COMPONENT

DISPATCHER

Communication Infrastructure (e.g. RPC, CORBA, CCM...)

REMOTE
MEDIATORS

Figure 1: The Esperanto Broker layered architecture

2.1 Device-side platform

Three are the major issues which have been addressed on the device-side platform: i)
providing mobile-enabled communication facilities, which also allows applications to in-
teract each others regardless of wireless technologies being used (e.g., WiFi, Bluetooth,
and IrDA); ii) incapsulating service method invocations into a list of tuples which en-
ables the Mediator to keep the interaction decoupled; and iii) providing an enhanced IDL
language which encompasses all the WSDL interaction types (request/response, oneway,
solicity/response, notify). In the following, we describe the Device-side components,
namely the NCSOCKS communication library, the Tuple Delivery Layer (TDL), and the
Stub/Skeleton layer.
NCSOCKS Layer. It allows above layers to request an IP-based communication channel,
irrespective of the communication technology being used. Nomadic Computing SOCKetS
(NCSOCKS) library is organized into a set of APIs, which are similar to the Java socket
APIs, which provides client application with a uniform communication, and with a lo-
cation and connection awareness support. By using NCSOCKS, applications are able to
monitor communication channel status, and, more important, the AP changes in order to
trigger a lower level handover procedure. Details about such a library is given in the next
section.
Tuple Delivery Layer. This layer provides an API for accessing to the tuple space. More
precisely, three are the provided primitives: write, read, and take. The first accepts a tuple
as input parameter, containing application-level information (e.g. the method signature
to be invoked on the server side). The second (third) accepts as input a tuple template,
containing parameters needed to retrieve (to remove) a tuple from the space. All the
provided primitives are non-blocking, even though it is possible to specify for the read
and the take primitives a timeout value, which indicates the maximum blocking time (i.e.
partial blocking strategy). An asynchronous notify primitive is also provided, in order to
reduce the overhead due to tuple retrieval operations. In other words, an application can
subscribe itself to a tuple notification service, by means of a subscribe primitive. By this
way, once a tuple is written into the space, it is forwarded to the subscribed applications
directly. Similarly to JavaSpaces [5], a lease is associated to each tuple: a tuple will stay
in the space until either it is taken, or its lease expires. This enables the platform to guar-
antee object interactions despite terminal disconnections. As an example, if a terminal
is temporarily disconnected, the Mediator keeps its tuples until the terminal will be able
to reconnect to the domain or its associated lease expires. Configurations of lease values
should be done in accordance of the application and the network characteristics.
Stub/Skeleton Layer. This layer is in charge of providing applications with a distributed ob-

4

4. take 2. take

b) request/response

1. write 3. write

Server
Tuple
SpaceClient

2. take

a) (asynchronous) one-way

1. write
Server

Tuple
SpaceClient

3. write

2. read

4. take

1. write
Tuple
Space

ServerClient

Client

Client

c) solicit/response 1-N

2. read 1. write
Tuple
Space

ServerClient

Client

Client

d) notify 1-N

Figure 2: RMI to tuple-oriented implementation

ject paradigm, by translating and marshalling/unmarshalling remote invocation requests
in terms of tuple-based operations. As stated by the Web Services standard, four distinct
remote invocation strategies are provided: i) request/response; ii) asynchronous one-way ;
iii) notify ; and iv) solicit/response. The notify implements a server-initiated one-way in-
vocation mechanism which aims to send messages to one or more interested clients. The
solicit/response strategy is comparable to the request/response, except that the request
message is initiated by the server, and the response is sent by one or more clients. To sup-
port the defined invocation strategies, the standard OMG IDL is enriched. As an example,
the following interface

interface MyService {

oneway void fooA(in string name);

reqres int fooB(in long op, out long result);

solres void fooC(in string info, out string position);

notify void fooD(in string weather);

};

defines an interface MyService which includes all defined invocation strategies. Parameter-
passing directions emphasize a server-side view, for oneway and reqres, and a client-side
view for solres and notify. In particular, name and op are input parameters for server
objects, but info and weather are input parameters for client objects. The marshaling
procedures involves the following activities: i) extracting parameters from the method
signature; ii) formatting them into a tuple; and iii) writing the tuple into the space.
Remote invocation strategies are thus implemented using tuple-oriented services provided
by the underlying layer. Implementations of such strategies are illustrated in figure 2.

2.2 The Mediator Component

As mentioned, the Mediator component plays a crucial role in a domain, in that it manages
connections with terminals, providing applications with a centralized view of the space (i.e.,
it provides tuple location transparency). More precisely, the Mediator component is in
charge i) of managing connections with terminals by keeping transparent communication
technologies (since a domain may be composed of heterogeneous wireless networks); and
ii) of providing tuple space abstractions. Mediators communicate each others by means of
a CORBA ORB. We thus realize the distributed tuple space, as set of CORBA Objects,
with all benefits stemming from the use of CORBA middleware (e.g. transparency of
communication protocols, object oriented design, the possibility of introducing load bal-
ancing and/or fault tolerance techniques). The Mediator itself is a distributed component,

5

implemented as a set of distributed objects:
Bridge and Dispatcher Objects: since we did not mandate the use of a CORBA imple-
mentation on a mobile terminal, a Bridge object is needed, in order to map Protocol Data
Units (PDUs, such as a tuple write request) coming from the Device side platform, into
tuple-oriented operations. Such operations are implemented as method invocations on
Dispatcher object. The Dispatcher object is in charge of providing tuple location trans-
parency, allowing Device-side platform to interact only with the Mediator being currently
connected. Moreover, the Dispatcher copes with the mobility of terminals, by implement-
ing the protocols TDPAM and HOPAM, as described later.
Tuple Management Objects: they are in charge of providing tuple space primitives, namely
read, write, take, subscribe/unsubscribe. The tuple management layer encapsulates a local
shared memory providing services for accessing to it. It is worth noting that the tuple
space is conceived as a distributed space where each Dispatcher handles a part of the
space.
Mobility support : in order to manages terminals mobility, we adopted a solution that was
inspired by cellular network. Each Mediator has two responsibilities: i) as Home Medi-
ator, it keeps track of domain handovers (namely the domain changes) of devices which
are registered with it; ii) as Host Mediator, it notifies Home Mediators when a roamer
device (i.e. a device which is not currently in its home domain) is currently connected
to it. To this aim, each Mediator has a Device Manager that is in charge of storing a
list of terminals being connected to NC infrastructure. Furthermore, the Mediator side
platform implements two protocols in order to guarantee the correctness of a tuple delivery
process despite terminal movements and/or disconnections: the Tuple Delivery Protocol
Among Mediators (TDPAM) and the HandOver Protocol Among Mediators (HOPAM).
The former defines how a tuple is delivered among Mediators and mobile terminals en-
suring ”seamless” device migrations. [19]. The latter is in charge of managing domain
changes as mobile terminals moves, preserving the correctness of the former. We briefly
details such protocols in the following:
TDPAM : mainly, this protocol concurs to provide tuple location transparency to the De-
vice side platform. Object interactions between a Source Endpoint (SE) and one or more
Destination Endpoints (DEs) take place even though they reside on terminals located in
distinct domains. TDPAM works as follows:

1. When an application (i.e. its related stub or skeleton) issues a write request, TDL
encapsulates tuple in a Protocol Data Unit (named WRITE PDU), which is delivered
to the current Mediator. Three are the possible situations:

(a) DE is running on terminal which is hosted in the domain where TDL PDU is
coming from: tuple is written into the space or notified to interested applica-
tions, directly.

(b) DE is running on terminal which is not hosted in the domain where TDL PDU
is coming from: tuple is forwarded to the Mediator which hosts the device.
Due the terminal mobility, reference to Host Mediator may be obsolete. For
this reason, current Mediator inquires terminal’s Home Mediator, which is in
charge of tracking terminal movements (in term of their actual Host Domain).

(c) DE refers to group of application objects: tuple is forwarded to each Mediator
of NC network infrastructure.

Figure 3 depicts the collaboration diagram of TDPAM in the case (b).

6

SOURCE
MEDIATOR

HOST
MEDIATOR

HOME
MEDIATOR

NEW HOST
MEDIATOR

2: retrieve DeviceID
3: find device

4: b.0 [device is here] write tuple

7: a.2 find device

9: a.3 updating device host

11: retrieve DeviceID
12: a.5 [device is here] write tuple

1: send tuple

5: a.0 [device is not here] exception

6: a.1 get host update8:

10: a.4 send tuple

Figure 3: Collaboration diagram in TDPAM - case b)

2. When an application issues a read request, a tuple retrieval operation is invoked on
the TDL. This causes the TDL to send the READ PDU on current Mediator, which
returns the tuple.

HOPAM : the protocol aims to preserve TDPAM correctness despite device movements
among different domains, namely when a device is in roaming. More precisely, HOPAM
consists of procedures performed by mediators when a device handover occurs. It is de-
scribed in the following:

• Each tuple addressed to a device which has moved to a new domain, is transferred
from the old Mediator’s domain to the new one;

• The device’s Home Mediator is notified about the new Host Domain.

In order to trigger handover procedures, the Device side platform is in charge of sending
greeting messages to the current Bridge.

3 Design and Implementation Details

In this section we describe the current implementation of our prototype.

3.1 Device-side platform

NCSOCKS Layer. The NCSOCKS provides C++ APIs for accessing to an IP-based
communication channel. Such APIs are similar to Java sockets [5], indeed they implement
interfaces and classes for providing TCP and UDP communication facilities as described
in the following:

• ServerSocket, and Socket are classes provided to manage TCP connections: ServerSocket
represents the socket on a server that waits and listens for requests for service from a
client, whereas Socket represents the endpoints for communication between a server
and a client.

• DatagramPacket, and DatagramSocket are classes provided to send and to receive
datagrams using UDP: DatagramPacket represents a packet used for connectionless
payload delivery, whereas, DatagramSocket is a socket used for sending and receiving
datagram packets over a network via UDP.

7

However, NCSOCKS primitives differentiate from the Java network API for the follow-
ings characteristics: i) they provide transport level interface which is network technology
independent (in the current prototype, NCSOCKS provides an IP abstraction of both Wi-
Fi [20] and Bluetooth [21] wireless tecnologies); ii) they have a mobility aware behavior;
and iii) they raise exceptions in accordance with the channel status. In such a case, the
application is able to perform actions that depend on specific needs. As for the mobil-
ity aware behavior, the send() primitive works as follows: if the channel is established,
it sends packets to the IP destination; if the connection establishment is in progress, it
waits for a specified timeout; then it tries to send packets only if the channel reaches the
connected status within the time interval. In the all other cases, an exception is raised.
The receive() has a mobility aware behavior, as well: it receives packets only if the
connection is established, otherwise raises an exception. However, applications can specify
a timeout in order to wait for the reconnection.
NCSOCKS are used to allow TDL (that resides on mobile terminal) and the Bridge (that
resides on the core network) to exchange PDUs. A mobile terminal (such as a PDA or a
laptop), is connected to the fixed network infrastructure via an Access Point (AP) through
services of the Connection and Location Manager (CLM, a software module placed be-
tween application and kernel space). The CLM component is in charge of implementing
lower level handover procedures (on data-link and network layer).
Tuple Delivery Layer. In order to provide primitives to access to tuple space (i.e., write,
read, take, subscribe and unsubscribe), the TDL is in charge of exchanging PDU between
the Device side and Mediator side platforms using API provided by NCSOCKS layer. How-
ever, as stated in [22, 23], TCP is unsuitable for mobile computing environments (although
it provides reliable delivery), while UDP appears inadequate for wireless links (although
it introduces lower overhead). Therefore we adopt the NCSOCKS UDP network interface,
but we implement TDL (and its counterpart on the Mediator side, the Bridge), integrating
the necessary strategies in order to overcome the UDP disadvantages, such as the out of
order packet delivery or the datagram packet loss. However, each TDL primitive raises
exceptions in accordance with the status of related PDU process delivery, so that stub and
skeleton classes can perform actions in order to recover from communication failure. In
particular, stub and skeleton class are provided with primitives to detect domain changes
and/or long terminal disconnections. In such cases, it may be possible that tuple delivery
process does not complete correctly. In order to prevent such problems, stub and skeleton
classes implement recovery strategies that take advantages of the presence of tuple space.
Enhanced Stub/Skeleton layer. The enhanced Stub/Skeleton layer is in charge of providing
the DOC view to the developers. At time of this writing we are currently implementing an
enhanced version of a pseudo-IDL compiler for the C++ language. However, we actually
implemented a set of templates in order to generate stubs and skeletons by a semiauto-
matic process (with the developer intervention). Such a process produces the stub/skeleton
classes InterfaceStubC and InterfaceSkelC, for the client-side and InterfaceStubS

and InterfaceSkelS for the server side. InterfaceStubC and InterfaceSkelS classes
implement the proxy pattern [24] in order to provide request/response and oneway meth-
ods; InterfaceSkelC and InterfaceStubS classes implement such a pattern in order to
provide solicit/response and notify methods. To exemplify, in figure 4 is illustrated the
result obtained by such a process in the case of a simple reqres method. In the figure,
we emphasize the mapping process (implemented in the stub class) of a remote method
invocation into subscribe and write tuple-oriented primitives. In order to avoid busy wait

8

interface MyService {
// Request Response method

reqres long foo(in string op1);
};

using namespace ESPERANTO_device_side;
…
namespace stubC {
class MyService {
public:
MyService(const PeerId& se, …);
long foo(const char* op1);
~MyService();

private:
PeerId _this;
PeerId _service;
CallBackImpl foo_callBack;
ParamList foo_pl;
…

};
}

IDL compilation
process…

stubC::MyService::MyService(..., const PeerId& service):
_service(service), ... {

...
foo_pl[0].name = "foo";
foo_pl[0].type = "reqres";
foo_pl[0].value = "";
foo_pl[1].name = "foo_ret";
foo_pl[1].type = "long";
foo_pl[1].value = "";

_tdl->subscribe(_this,foo_pl,foo_callBack.getThis());

}
long stubC::MyService::foo(const char* op1) {
static TupleStruct tps;
tps.sender = _this;
tps.receiver = _service;
tps.pList[0].name = "foo";
tps.pList[0].type = "reqres";
tps.pList[0].value = "";
tps.pList[1].name = "op1";
tps.pList[1].type = "string";
tps.pList[1].value = op1;

_tdl->write(tps);
return atol(foo_callBack.getStruct()->pList[1].value);

}
stubC::MyService::~MyService() {

_tdl->unsubscribe(_this,foo_pl,foo_callBack.getThis());

}

Waiting for the
notification

Figure 4: Pseudo-IDL compilation results

on client and server sides, the stub and skeleton use callback interfaces. According to the
implementation strategies depicted in figure 2, mapping of request/response into tuple-
oriented primitives consists of the following operations: i) callback interface subscription
in order to retrieve the response/request tuple (implemented in the stub/skeleton con-
structor by providing the tuple template); ii) tuple write operation; and iii) waiting for
the notification. If the tuple can not be notified to the interested entities, due to tem-
porarily disconnections, it is written in the tuple space. When the network is available
again, interested objects (i.e. related stubs or skeletons) can retrieve the tuple via the take
operation.
Mobility support : a daemon on Device platform periodically sends a GREETINGS PDU to
current Host Mediator (i.e., its related Bridge). GREETINGS PDU contains the following
information: Device HoSt Mediator Identifier (DHSI), Device HOme Mediator Identifier
(DHOI), and DEvice Identifier (DEID). An handover procedure is triggered if DHSI 6=
CHSI, i.e. when reference to Host Mediator is different from Current Host Mediator
Identifier. To this aim, the Device side platform has also the responsibility of keeping
information about DHSI, DHOI, and DEID.

3.2 Mediator-side platform

Figure 5 depicts a detailed UML CORBA component diagram of the Mediator-side plat-
form. As figure shows, the Mediator component consists of four CORBA servers: the first
contains the Bridge and Dispatcher objects; the second, the TupleManager, implements
the Mediator’s tuple space; the third, the TupleFactory, acts as tuple factory server; and,
the fourth, the DeviceManager, is in charge of handling information concerning mobile
devices actually connected to the domain. As far as the implementation is concerned, we
used TAO [25] as CORBA platform.
As depicted in figure 6, a tuple consists of a XML descriptor containing the following tags:
i) sender, which is the Source Endpoint (SE) of the remote interaction, i.e. the object
that sends messages; ii) receiver, which is the Destination Endpoint (DE) of the remote
interaction, i.e. the object that receives messages (a DE may represent also a group of
objects, so that more objects may receive messages from one SE); iii) paramList, which

9

NCSOCKs

WIRELESS
NET

*

*

+ update()
+ load()
+ cancel()

TupleDMTupleList

+ createFreeTuple(int): TupleList
+ restoreTuple(): TupleList
+ destroyTuple(TupleList)

TupleFactory

+ sender: PeerId
+ receiver: PeerId
+ pList: ParamList
+ tte: Time

TupleStruct

+ set()
+ get()

Tuple

WrittenTupleMap SubscriberMapFreeTuplePool

+ read(TupleStruct, Time): Tuple
+ take(TupleStruct, Time): Tuple
+ write(TupleStruct)
+ subscr(PeerId, ParamList, CallBack)
+ unsubscr(PeerId,ParamList, CallBack)
+ scan(DeviceId): TupleList

TupleManager

<<uses>>

*

DeviceInfo

+ dId: DeviceId
+ home: DispatcherRef
+ host: DispatcherRef

DeviceManager

+ find(DeviceId):DeviceInfo
+ add(DeviceInfo)
+ remove(DeviceInfo)
+ update(DeviceId, HostRef)

Bridge

Dispatcher

<<uses>>
<<uses>>

<<uses>>

Figure 5: Detailed Component diagram of Mediator-Side platform

<tuple>

<sender> </sender>
<receiver> </receiver>

<parameters>

<parameter>
<name> </name>
<type> </type>
<value> </value>

<parameter>
...

</parameters>

<timeToExpiration> </timeToExpiration>

</tuple>

//module Mediator ...
struct DeviceId {

DeviceIndex idx;
DomainId homeId;

};
struct PeerId {

PeerIndex pI;
DeviceId dI;

};
struct Param {

string type, name, value;
};
typedef sequence<Param> ParamList;
struct TupleStruct {

PeerId sender, receiver;
ParamList pList;
Time tte;

};
interface Tuple {

attribute TupleStruct ts;
};

Figure 6: Tuples description: XML view and their mapping into CORBA Objects

is a list of parameters, where each one has a name, an attribute, and a value; and iv)
tte (Time To Expiration), which indicates the lease time of the tuple. As figure 6 shows,
each communication endpoint is represented by a PeerId : a PeerId allows EB to locate an
Esperanto object, despite its terminal movements. It is composed of a PeerIndex, which
allows EB to dispatch requests to several objects that are running on the same terminal,
and a DeviceId, which consists of a device identifier, and of terminal’s home domain iden-
tifier. By this way, the EB is able to locate a terminal in the entire NC environment. In
order to achieve persistence of XML descriptors, our solution mandates such responsibil-
ity to a CORBA object (i.e. Tuple, see figure 6). Such an approach allows to preserve
the transparency of a specific database technology, encapsulating the persistence strategy
(e.g. XML-native DB, RDBMS, file stream) in the CORBA servant implementation. In
the current prototype, persistence is achieved by the TupleDM class, which implements a
serialization of the TupleStruct attribute into a XML file.
Tuple Factory . It is a factory of Tuple servants. Servants can be created in two ways: i)
factory creates ready-to run Tuple servants; ii) factory creates recovered instances of Tuple

10

servants, i.e., it creates tuples by XML tuple representations from mass storage. As far as
the allocation strategy is concerned, since it is expensive to create a new tuple for an each
incoming request, a pool of tuple servants is created at initialization time (the adminis-
trator sets the number of tuples which make up the pool). The allocation algorithm may
be specialized for achieving load balancing among servers, or redundancy by replicating
tuples over the available servers.
Tuple Manager . It is a crucial component, in that it offers tuple space primitives: read,
write, take, subscribe, unsubscribe, and scan. The read and the take methods implement
the template matching algorithm. Such an algorithm performs a template matching be-
tween a tuple template (i.e. a tuple with both formal and actual parameters) provided as
input, and all the tuples residing on the Mediator’s space. A template matches a tuple if
the following conditions hold: i) the tuple and the template have the same XML schema
or the template has a null schema (i.e. the parameters section is empty); ii) the tuple
and the template have the same DE; iii) the tuple and the template have the same SE,
if specified in the template, otherwise this condition will be ignored; and iv) the list of
parameters matches, i.e. each parameter has the same name, type, and (if specified) the
same value. The shared memory (that contains a limited number of tuples) is implemented
in terms of two classes, the WrittenTupleMAP class, and the FreeTuplePOOL class. The
former contains the IORs of Tuple servants related to tuples being written in the space,
the latter contains the IORs of Tuple servants which are available in the space. When
TupleManager stores a tuple in the shared memory, it pops an IOR from FreeTuplePOOL,
sets the TupleStruct attribute, and then it pushes tuple into WrittenTupleMAP. In order to
implement the asynchronous notification of a tuple to an Esperanto object, TupleManager
has a subscriberMAP class. It is a Standard Template Library (STL) multimap which
stores the relationship among PeerID, callback interface, and tuple template. It also keeps
the association (1-to-n) between the groupID and all the belonging PeerIDs. By this way,
it possible to manage 1-to-n communication. The write algorithm works as follow: i) it
extracts the tuple structure, provided as input parameter, and in particular the receiver
field; ii) it checks if the provided Destination Endpoint are already subscribed to the write
event (by means of subscribe() method); iii) for all subscribed Esperanto objects, it sim-
ply forwards tuple to them; iv) if there are destinations which are not reachable (i.e., they
may be temporarily disconnected) or not subscribed, it stores the tuple into the space. It
should be emphasized, that such an algorithm has been designed trying to minimize the
overhead in the case of all the endpoints are “alive and kicking”. Subscribe and unsubscribe
methods allows Esperanto objects to register and to unregister their callback interfaces.
The scan method is in charge of retrieving all tuples addressed to a specific mobile termi-
nal. It processes the whole shared space, returning to the caller the list of tuples whose
receiver field contains the specified DeviceId. This method is crucial for HOPAM imple-
mentation because it allows tuples belonging to a roamer device to be moved from old
Host Mediator to new Host Mediator.
Device Manager . It is in charge of keeping the information about devices being con-
nected to the NC infrastructure. More precisely, for each connected device identified by its
DeviceId, DeviceManager holds IOR to its actual Host Mediator and its Home Mediator.
Bridge and Dispatcher . The Bridge interprets (creates) PDUs coming from (directed
to) devices, and the Dispatcher is charge of performing operations described in the PDU.
PDU may be of the following types: WRITE PDU, to write a tuple, READ/TAKE PDU, to
read/take a tuple, UN/SUBSCRIBE PDU, to register/unregister to a tuple notification, GREETINGS PDU,

11

module Mediator {
...

interface TupleManager {
void write(in TupleStruct ts);

...
};
interface DeviceManager {
Device find(in DeviceID dID);

...
};
interface Dispatcher {
write(in TupleStruct ts);
// d is device, oh is old host
DomainId greeting(in DeviceId d, in DomainId oh);

};
interface RemoteDispatcher {
remoteWrite(in TupleStruct ts);
void notify(in DomainId host, in DeviceId dev);
// d is device, nh is new host
TupleList moveTuples(in DeviceId d, in DomainId nh);

...
};

};

Figure 7: Partial view of Mediator IDL Module

to notify mobile terminal status to the current Mediator1. To exemplify, let assume that
a WRITE PDU, coming from a device, contains a tuple that an Esperanto object would
write into the shared space. From this point on, i) the Bridge extracts the PDU from the
tuple and invokes the write operation on the Dispatcher object; ii) the Dispatcher extracts
DeviceId from the tuple and retrieves device’s state from the DeviceManager (namely, its
current host domain and its home domain); then iii) it checks if the tuple is addressed
to a device residing in the same domain; iv) if it is, it invokes the write operation on
the TupleManager object, otherwise, it invokes a remote write on the Dispatcher which is
currently connected to destination device. In figure 7 we give a partial view of Mediator
IDL module. When a GEETINGS PDU is delivered to the current Mediator, it potentially
triggers an handover procedure. Once the handover has been triggered, the new Mediator’s
Dispatcher i) notifies the current device location to device’s Home Mediator (by invoking
the notify() method); and ii) transfers all the tuples concerning the terminal, from the
old domain space to its local space (by invoking the moveTuples() on the old Dispatcher.
The resolution of Dispatcher IORs is performed by means of distributed CORBA Naming
Service structure, in which all Mediators are bound.

4 Preliminary experimental results

In this section we discuss the results obtained from performance experiments we have
conducted, as compared with MIwCO, an open-source implementation of OMG Wireless
CORBA [26]. The Wireless CORBA reference architecture is quite similar to the Es-
peranto Broker: it forces the presence of a special component on mobile terminal which
is similar to ESPERANTO mobility support on Device side platform (named Terminal
Bridge, TB), and two components on the network core (one named Home Location Agent,
HLA, and one named Access Bridge, AB) which have the same role of the ESPERANTO
Dispatcher and Device Manager respectively. However, the OMG Wireless CORBA does
not offer all the paradigms standardized by the W3C, and method invocations are imple-
mented by means of synchronous invocations. Moreover, network monitoring algorithms
needed to trigger handover procedures are not specified in the Wireless CORBA, and they
are not implemented in the current version of MIwCO. The Esperanto Broker addresses
such issues in its architecture and implementation.
The main objective of our experiments is to evaluate the performance penalty due to i)

1while the former are exchanged by the Esperanto objects, the latter is a PDU for mobility support

12

WIRELESS
NET

WIRELESS
NET

WIRELESS
NET

CORE NETWORK

TupleManager

TupleFactoryBridge+Dispatcher

DeviceManager

Mediator A

Mediator B

DOMAIN A

DOMAIN B

client A
server A

server B

Figure 8: Experimental testbed

the adoption of a CORBA implementation for connecting Mediators; ii) the tuple space
management (i.e. lease management, callback interfaces handling); iii) the decoupled inter-
actions; and iv) the mobility management (i.e. the implementation of TDPAM/HOPAM),
in order for reducing the introduced overhead.
All experiments were performed with following testbed (see figure 8): Mediators (Device
Manager, Tuple Manager, Tuple Factory and Tuple, Bridge and Dispatcher) and AB+HLA
are distributed on two 1.8Ghz CPU PIV computer with 1GB of RAM running on Linux
2.4.19. As far as mobile devices are concerned, we use Compaq IPAQ 3970, equipped with
Linux familiar v0.7.1, Wi-Fi 802.11b and Bluetooth modules. As far as the core network
is concerned, we used a Fast Ethernet switch which links all the servers where Mediators
(ABs) are running. In order to interconnect Mediators, we used the CORBA TAO version
1.4.1. During tests, the external load was the normal background load of active services
and applications. As for performance measurements, we aim to evaluate round-trip latency
of a method invocations, according to guidelines given in [27]. More precisely, in order
to compare ESPERANTO measurements with MIwCO ones, we evaluate the two-way re-
quest/response interaction paradigm. It should be emphasized that it does not represent a
limitation, in that the round-trip latency, obtained by a request/response method invoca-
tion, can be used as a fine-grained evaluation to analyze the other interaction paradigms.
As for MIwCO, we used both GTP over TCP and GTP over Bluetooth L2CAP protocols,
but we experienced that obtained results differs only from a constant value (as function
of parameter size). For this reason we used GTP (for MIwCO) and NCSOCKS (for ES-
PERANTO) over Bluetooth. As for the comparison, we referred to the following IDL and
pseudo-IDL interfaces, which express the same service, namely Measure.

interface Measure { interface Measure {

reqres long foo(in string op); reqres long foo(in string op);

}; };

The generated stub and skeleton contains the same signature of the foo method, both for
MIwCO and for ESPERANTO. The performance penalty was measured as the the ratio of
the ESPERANTO to the MIWCO round-trip latency time, i.e. K = tESPERANTO/tMiWCO.
We also measured the latency increment (calculated as ti+1−ti) for two subsequent invoca-
tions, as function of the dimension of the input parameter, namely op. Measurements are
performed under two scenarios. In the first scenario, the client and the server objects are
connected to the same domain (the same Mediator, for ESPERANTO, and the same AB,
for MIwCO). Results are depicted in figure 9, which shows that the obtained performance

13

0,00

500,00

1000,00

1500,00

2000,00

2500,00

1 10 100 1000 10000

Units of Data type sent [byte]

la
te

nc
y

in
cr

em
en

t [
us

]

ESPERANTO MIw CO

0,95

1

1,05

1,1

1,15

1 10 100 1000 10000

Units of Data type sent [byte]

K 0,00

40,00

80,00

120,00

1 10 100

Figure 9: Client/Server interaction by means of same Mediator/Access Bridge

0,8

1

1,2

1,4

1,6

1 10 100 1000 10000

Units of Data type sent [byte]

K

0,00

500,00

1000,00

1500,00

2000,00

2500,00

1 10 100 1000 10000

Units of Data type sent [byte]

la
te

nc
y

in
cr

em
en

t [
us

]

ESPERANTO MIw CO

Figure 10: Client/Server interaction by means of different Mediators/Access Bridges

are quite similar.
In the second scenario, client and server objects are located in two distinct domains. As
for MIwCO, client and server interactions take place as follows: i) client sends the CORBA
Request, which encapsulates the Mobile IOR, to the TB; ii) the TB sends the request to
the AB via the GTP; and iii) the AB contacts the HLA, first, to retrieve the IOR (by
means of LOCATION_FORWARD message) of the AB where the server object is operating,
and, for all successive invocations, it sends the request to the server’s AB directly. Results
are depicted in figure 10. As figure shows, ESPERANTO has a cost in terms of perfor-
mance, due to the fact that it uses more complex interactions among Mediators. However,
as stated in the next section, we are currently integrating real time facilities provided by
TAO in order to improve performance.

5 Conclusions and Future Work

This paper has described the Esperanto Broker for Nomadic Computing, which provides
application developers with an enhanced Distributed Object programming model, integrat-
ing mobility management support and adopting mobile-enabled interaction mechanisms.
A prototype was developed and tested over distributed heterogeneous platform.
From a methodological point of view, this experience has shown that ESPERANTO pro-

14

vides an effective means for supporting applications running over a nomadic environment.
From an experimental point of view, result demonstrated that the proposed architecture
has a cost in term of performance. Our future work aims to integrate QoS-based mech-
anisms, and to support applications with requirements in terms of desired QoS. Indeed,
although QoS issues may be not relevant to nomadic applications, we recognize that two
kinds of application may run on a nomadic environment: applications specifically designed
for mobile environments, e.g. Mobile News Services, which may tolerate frequent discon-
nections; and applications which are designed to operate in a stable environment but they
are developed to be executed on mobile terminals, e.g. multimedia (streaming-based)
smart guided. It is evident that the latter are less mobility tolerant than the former. For
such applications, the middleware has to provide QoS-enabled mechanisms, in order to
notify applications when the QoS requirements cannot be satisfied. In order to allow no-
madic applications to specify the mobility tolerance, i.e. if the application may operate or
not under frequent disconnections and QoS fluctuations, we are currently concentrating on
real-time facilities provided by TAO, in term of its Real Time Scheduling Service (RTSS)
and its RT Current ORB interface (which can be configured with different RT CORBA
QoS Policies, in terms of ThreadPool, Explicit Binding, and TCPProtocolProperties). We
are also concentrating QoS policies provided by the wireless network infrastructure in the
case of Bluetooth connections. More precisely, NCSOCKS library allow to create Blue-
tooth Asynchronous ConnectionLess (ACL) connections, with different values of assigned
temporal slots (DH1, DH3, DH5 modes [21]) achieving different levels of QoS. We claim
that this approach will also result in a performance improvement.

References

[1] C. Mascolo, L. Capra, and W. Emmerich. Mobile Computing Middleware. Lecture Notes In
Computer Science, advanced lectures on networking, pages 20 – 58, 2002.

[2] L. Kleinrock. Nomadicity: Anytime, Anywhere in a disconnected world. Mobile Networks and
Applications, 1(1):pages 351 – 357, December 1996.

[3] OMG. Object Management Group: The Common Object Request Broker: Architecture and
Specification 3.0.3 ed., 2004.

[4] Microsoft. DCOM tecnology, 2004. http://www.microsoft.com/com/tech/DCOM.asp.

[5] Sun Microsystems: Sun Microsystem Home Page, 2004. http://www.sun.com.

[6] A. Gaddah and T. Kunz. A Survey of Middleware Paradigms for Mobile Computing. Techical
Report, July 2003. Carleton University and Computing Engineering.

[7] C. Mascolo, L. Capra, and W. Emmerich. An XML-based Middleware for Peer-to-Peer Com-
puting. In Proc. of 21st IEEE Int. Conf. on Distributed Computing Systems, pages 69–74,
2001.

[8] A.T.S. Chan and S.N. Chuang. MobiPADS: a reflective middleware for context-aware mobile
computing. IEEE Transactions on Software Engineering, 29(12):1072–1085, 2003.

[9] L. Capra, W. Emmerich, and C. Mascolo. CARISMA: Context-Aware Reflective mIddleware
System for Mobile Applications. IEEE Transactions on Software Engineering, 29(10):929–945,
2003.

[10] A. Popovici, A. Frei, and G.Alonso. A proactive middleware platform for mobile computing.
Proc. of the 4th ACM/IFIP/USENIX International Middleware Conference, 2003.

15

[11] J. He, M.A. Hiltunen, M. Rajagopalan, and R.D. Schlichting. Providing QoS Customization
in Distributed Object Systems. Proceedings of the IFIP/ACM International Conference on
Distributed Systems Platforms, LNCS 2218:351–372, 2001.

[12] J. Luo, P.T. Eugster, and J.P. Hubaux. Pilot: Probabilistic Lightweight Group Communi-
cation System for Ad Hoc Networks. ACM transaction on mobile computing, 3(2):164–179,
April-June 2004.

[13] A. Montresor. The Jgroup Reliable Distributed Object Model. In Proc. of the 2th IFIP WG
6.1 Int. Conf. on Distributed Applications and Interoperable Systems, 1999.

[14] Network Working Group, IETF. IP mobility support, RFC 2002, 1996.

[15] H. Schulzrinne and E. Wedlund. Application-Layer Mobility Using SIP. Mobile Computing
and Communications Reviews, 4(3):47–57, 1999.

[16] A. Bakre and B. Bradinah. I-TCP: Indirect TCP for mobile hosts. in Proc. of 15th Int. Conf.
on Distributed Computing Systems, 1995.

[17] K. Raatikainen. Wireless Access and Terminal Mobility in CORBA. Technical Report, De-
cember 1997. OMG Technical Meeting, University of Helsinky.

[18] W3C. The World Wide Web Consortium. Web Services Description Language (WSDL) 1.1,
2004. http://www.w3.org/TR/wsdl.html.

[19] M. Endler and V. Nagamuta. General Approaches for Implementing Seamless Handover. in
Proc. of the 2nd ACM int. workshop on Principles of mobile computing, pages 17–24, 2002.

[20] IEEE. IEEE 802.11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
specifications, 1999.

[21] Bluetooth SIG. Specification of the Bluetooth System - core and profiles v.1.1, 2001.

[22] V. Cahill and T. Wall. Mobile RMI: Supporting Remote Access to Java Server Objects. in
Proc. of 3rd Int. Symp. on Distributed Objects and Applications (DOA), pages 41–51, 2001.

[23] A. Bakre and B. R. Badrinath. M-RPC: a remote procedure call service for mobile clients.
in Proc. of 1st Int. Conf. on Mobile Computing and Networking (MobiCom), pages 97–110,
1995.

[24] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[25] Douglas C. Schmidt, D. L. Levine, and S. Mungee. The Design of the TAO Real-Time Object
Request Broker. Computer Communications, 21(4):pages 294–324, 1998.

[26] Mico project: MIWCO and Wireless CORBA home page, 2004.
http://www.cs.helsinki.fi/u/jkangash/miwco/.

[27] A. S. Gokhale and D. C. Schmidt. Measuring and optimizing CORBA latency and scalability
over high-speed networks. IEEE Transactions on Computers, 47(4):pages 391–413, 1998.

16

