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MOTI IN CONDOTTI

Applicazioni: T
e The Alaskan pipeline carries crude oll
almost 800 miles across Alaska.

e Natural systems of “pipes” that carry
blood throughout our body and air into
and out of our lungs.

e Water pipes in our homes and the
distribution system that delivers the
water from the city well to the house.

e Numerous hoses and pipes carry
hydraulic fluid or other fluids to
various components of vehicles
and machines.

e The air quality within our buildings is
maintained at comfortable levels by
the distribution of conditioned
(heated, cooled, humidified

_/dehumidified ) air through a maze
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MOTI IN CONDOTTI

The transport of a fluid in a closed
conduit (commonly called a pipe if it
is of round cross section or a duct if é]
it is not round) is extremely

important in our daily operations.

a) Pipe flow
b) Open channel flow

O
(2)
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O<Re< 1:
1 < Re < 100:
100 < Re < 107
10° < Re < 10*
10* < Re < 105
10°<Re< oo

These are representative ranges which vary somewhat with flow geometry, surface
roughness, and the level of fluctuations in the inlet stream. The great majority of our
analyses are concerned with laminar flow or with turbulent flow, and one should not

highly viscous laminar *“creeping” motion
laminar, strong Reynolds-number dependence
laminar, boundary-layer theory useful

transition to turbulence

turbulent, moderate Reynolds-number dependence
turbulent, slight Reynolds-number dependence

normally design a flow operation in the transition region.
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EXAMPLE 6.1

The accepted transition Reynolds number for flow in a circular pipe is Re, . = 2300. For flow
through a 5-cm-diameter pipe, at what velocity will this occur at 20°C for (@) airflow and (b) wa-
ter flow?

Solution

Almost all pipe-flow formulas are based on the average velocity V = Q/A, not centerline or any
other point velocity. Thus transition is specified at pVd/p = 2300. With d known, we introduce
the appropriate fluid properties at 20°C from Tables A.3 and A .4:

3
pvd _ (1.205 kg/m”)V(0.05 m) _ 2300 or V=07 M

Air:
(@) Arr i 1.80 E-5 ke/(m - 5) s
pVd (998 kg/m*)V(0.05 m) m
b) Water: - = 2300 vV =0.046 2
(b) Water 0.001 kg/(m - 5) of s

These are very low velocities, so most engineering air and water pipe flows are turbulent, not
laminar. We might expect laminar duct flow with more viscous fluids such as lubricating oils or
glycerin.

]
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EXAMPLE 6.2

A 3-in-diameter water pipe is 60 ft long and delivers water at 5 gal/min at 20°C. What fraction
of this pipe is taken up by the entrance region?

Solution
Convert
3
0 = (5 gal/min) 2025 B _ 66111 #7%
1 gal/min
The average velocity is
3
V=Q= 0.0111 ft’/s — 817 fi/s

A (@[(E12) fi])?

From Table 1.4 read for water »= 1.01 X 10°® m?%s = 1.09 X 10> ft*/s. Then the pipe
Reynolds number is

vd _ (8.17 ft/s)[(3/12) fi]

% 109 x 105 fss o200

Red —

TR




Lunghezza d'ingresso

vd _ (8.17 fus)[(3/12) ft]
v 1.09 X 1077 ft?/s

Re, = = 31,300
This is greater than 4000; hence the flow is fully turbulent, and Eq. (6.6) applies for entrance
length

Lo~ 4.4 Relf'= (4.4)(31,300)" =
The actual pipe has L/d = (60 ft)/[(3/12) ft] = 1440. Hence the entrance region takes up the frac-
tion

L, 25
L 1440

= 0.017 = 1.7% Ans.

This is a very small percentage, so that we can reasonably treat this pipe flow as essentially fully
developed.
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CONSERVAZIONE DELLA MASSA E BILANCIO DELLA QM

m = pVA = cost D) py=pa+Ap
Per flusso incompressibile e sezione
costante si ha V=cost.
m(V -V )+p1A1n P, A, "”2"'S ”Zg
Ricordando che: (
S=r1, PAL

X

Proiettando sull'asse x (AV=0):

W+ AAp + pgAAZ + 7, PAL=0 z
Dividendo per A e indicando con
D.=4A/Pil diametro equivalente:

gy=gsing

AP+ p gAZ + 47, g—L=O
Ovvero:
Ap AP 4r AL _

P9 pgb,
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Perdite di carico distribuite

& + AZ = _ﬂA_Lz — hf
(o] p g D,
Da un analisi dimensionale del fenomeno si vede che:
= F(p; \/)IJ!Defg)
Mediante il Teorema di Buckingham si ottiene:
F=% _f e, - Re = PV2.
pV D, Y

f coefficiente di Darcy (diverso da quello di Fanning). Sostituendo L nella
relazione precedente si trova:

h =f——
D, 2g

Nel seguito si utilizzera al posto del simbolo D, D oppure d.
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Lungo un tubo di flusso vale la relazione di Bernoulli generalizzata:
2
+—+z1=&+v—+z +h, —&+V—+z +h,
P9 29 P9 29 P9 29

A useful v1sual 1nte1pretat10n of Bernoulli’s equation is to sketch two grade lines of a

ade line (EGL) shows the height of the total Bernoulli constant
=" ' ). In fnctlonless ﬂow w1th no work or heat transfer, Eq. (3.77),
'the EGL has constant height. The liydraulicigradenis GL) shows the height corre-
sponding to elevation and pressure head that is, the EGL minus the velocity
head V?/(2g). The HGL is the height to which liquid would rise in a piezometer tube
(see Prob. 2.11) attached to the flow. In an open-channel flow the HGL is identical to
the free surface of the water.
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Lungo un tubo di flusso vale la relazione di Bernoulli generalizzata:

& = I*"I—*"I”
2

Constan
Bernoull
head

17

Arbitrary datum (z = 0)

MOTO IN CONDOTTI

Lungo un tubo di flusso vale la relazione di Bernoulli generalizzata:

2
FA B e
29

h, !
.4 it [hs
29 v’ / -.____-“_1
20 % ]
. ; 29~ p-l| y Hydraulicigradeline
1 2 ~
Water tank 1 56 o0 Ps -
[ g
e
H - i, M N Water tank 2
T
z, z; 33\‘—
0 * = - 7 0
Section 1 Section 2 Section 3 Datum plane
Al AZ AS
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SEZIONE NON CIRCOLARE

Midplane

Fig. 6.16 Illustration of secondary NS |
turbulent flow in noncircular ducts: | I'., (I
(a) axial mean-velocity contours; N,
(b) secondary-flow cellular mo- \——
tions. (After J. Nikuradse, disserta-

tion, Gottingen, 1926.) (a) (b)
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DIAMETRO EQUIVALENTE (IDRAULICO)
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Often the floW entering or leaving a port is Hot Strictly one-dim il. In particular,

the velocity may vary over the cross section, as in Fig. E3.4 In tl*us case the Kinetics
for a given port should be modlﬁed by a dimensionless cor-

rection factor a so that the integral can be proportional to the square of the average

velocity through the port r=R
f @VHp(V - m) dA = aGVa)m e
port
I Ull
where Vav = 7y J’ u dA for incompressible flow

u =0 (no slip)

If the density is also variable, the integration is very cumbersome; we shall not treat

this complication. By letting u be the velocity normal to the port, the first equation
above becomes, for incompressible flow,

P j wdA = 3paVy,A

3
-+l

) dA (3.70)

MOTO IN CONDOTTI

The term « is the Kinetic-energy correction factor, having a value of about 2.0 for fully
developed laminar pipe flow and from 1.04 to 1.11 for turbulent pipe flow. The com-

plete incompressible steady-flow energy equation (3.69), including pumps, turbines,
and losses, would generalize to

p 2.4 P 2
+ -V +V *+ Musvine — Ppum +h'rici0n 3.1
(pg 28 ) (pg 2g )om e~ gy i N
where the head terms on the right (k,, h,, hy) are all numerically positive. All additive
terms in Eq. (3.71) have dimensions of length {L}. In problems involving turbulent
pipe flow, it is common to assume that o = 1.0. To compute numerical values, we can
use these approximations to be discussed in Chap. 6:

3
Laminar flow: u= Ug[l - (%) }
from which Vo = 0.5U,
and a=20 (3.72)
Turbulent flow: gl —Lf s 1
3 ' 0 R .

22




MOTO IN CONDOTTI

from which, in Example 3.4,

_ 2U,
YA+ mQ2+m

Substituting into Eq. (3.70) gives

(1 + m’Q2 + m)®
4(1 + 3m)(2 + 3m)

(3.73)

and numerical values are as follows:

JIENENERERE
Turbulent flow:
a | 1.106 | 1.077 I 1.058 | 1.046 I 1.037

These values are only slightly different from unity and are often neglected in elemen-
tary turbulent-flow analyses. However, a should never be neglected in laminar flow.
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For either laminar or turbulent flow, the continuity equation in cylindrical coordinates
is given by (App. D)

1 o 1 0 ou

e o= +—=0 6.31

5y ) oo (Ve + (6.31)
We assume that there is no swirl or circumferential variation, vy = /36 = 0, and fully
developed flow: u = u(r) only. Then Eq. (6.31) reduces to

L9 =0
r or
or rv, = const (6.32)

But at the wall, r = R, v, = 0 (no slip); therefore (6.32) implies that v, = 0 every-
where. Thus in fully developed flow there is only one velocity component, u = u(r).

(TP =p+ A
()p=p2tap

A 5/
/ 4\4\ ln_.
~ :/,\ \ .
. \Q \\\\'.\\\\.‘\
~. R VN
~ e ~
N !
z, ¢ g A _
d, 3 \\ ;\.’/ /
SRR b “\.\ /B
’:‘;'5 : ‘ e \“\\E /
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MOTO IN CONDOTTI

The momentum differential equation in cylindrical coordinates now reduces to

ou
— = -+ 6.33
s P - - P

where 7 can represent either laminar or turbulent shear. But the left-hand side vanishes
because u = u(r) only. Rearrange, noting from Fig. 6.10 that g, = g sin ¢:

N_ ¢
|~ & @ + pgz) (6.34)

Since the left-hand side varies only with r and the right-hand side varies only with x,
it follows that both sides must be equal to the same constant.” Therefore we can inte-
grate Eq. (6.34) to find the shear distribution across the pipe, utilizing the fact that
T=0atr=20

= %r % (p + pgz) = (const)(r) (6.35)
Complementi di Gasdinamica — T Astarita o5
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Thus the shear varies linearly from the centerline to the wall, for either laminar or tur-
bulent flow. This is also shown in Fig. 6.10. At r = R, we have the wall shear

il

T =

RAp+pgAz

> AL (6.36)

which is identical with our momentum relation (6.27). We can now complete our study
of pipe flow by applying either laminar or turbulent assumptions to fill out Eq. (6.35).

gy=gsing
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MOTI IN CONDOTTI
8.2.1 From F = ma Applied Directly to a Fluid Element

We consider the fluid element at time ¢ as is shown in Fig. 8.7. It is a circular cylinder of
fluid of length ¢ and radius r centered on the axis of a horizontal pipe of diameter D. Be-
cause the velocity is not uniform across the pipe, the initially flat ends of the cylinder of
fluid at time 7 become distorted at time 7 + ot when the fluid element has moved to its new
location along the pipe as shown in the figure. If the flow is fully developed and steady, the
distortion on each end of the fluid element is the same, and no part of the fluid experiences
any acceleration as it flows. The local acceleration is zero (9V/dt = 0) because the flow is
steady, and the convective acceleration is zero (V + V'V = u du/dxi = 0) because the flow
is fully developed. Thus, every part of the fluid merely flows along its pathline parallel to
the pipe walls with constant velocity, although neighboring particles have slightly different
velocities. The velocity varies from one pathline to the next. This velocity variation, com-
bined with the fluid viscosity. produces the shear stress.

Fluid elemeqt at time ¢ Element at time 7 + &t
/
Velocity | \ / J

= profile o = A
— NI N IR
— f T 7 x

I N fe—m———emm—e= — ——

: ! ] Motion of a cylindrical
(1) (2) fluid element within a pipe.

MOTI IN CONDOTTI

If gravitational effects are neglected, the pressure is constant across any vertical cross
section of the pipe, although it varies along the pipe from one section to the next. Thus, if
the pressure is p = p; at section (1), it is p, = p; — Ap at section (2). We anticipate the fact
that the pressure decreases in the direction of flow so that Ap > 0. A shear stress, 7, acts
on the surface of the cylinder of fluid. This viscous stress is a function of the radius of the
cylinder, 7 = 7(r).

Fluid element at time ¢ Element at time ¢ + 61
/
Velocity ‘ \ /
profile ———————— A (BN
L .7 [
— T PRI P *
‘“‘*—-V:u(r)? | ¢ > m FIGURE 8.7
. Motion of a cylindrical

(1) (2) fluid element within a pipe.




MOTI IN CONDOTTI

As was done in fluid statics analysis (Chapter 2), we isolate the cylinder of fluid as is

ing on the end of the cylinder of area 7772, and the shear stress acting on the lateral surface
of the cylinder of area 27rr€. This force balance can be written as

which can be simplified to give

Ap 27

T 5
1
nt r=or < (p+ pg7) (6.35)
T 2 dx
2% ” I (py - Ap) nr
s - = - - e e e
- ¢ - B FIGURE 8.8 Free-body
diagram of a cylinder of fluid.
Complementl di Gasdinamica — [ Astarita 29
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C = 27,/D and the shear stress ditribution throughout the pipe is a linear function of the

radial coordinate
Ap 27
/

(8 3) (8.4)




MOTI IN CONDOTTI

Ideal
Laminar (inviscid)
t(DI2) =1, profile profile
7(r) o ulr) “
L r i % < . n FIGURE 8.9
0)=0 I > Shear stress distribution
‘ > within the fluid in a pipe
4 > i (laminar or turbulent
Ty flow) and typical velocity
v — | lveve i

profiles.

as is indicated in Fig. 8.9. The linear dependence of 7 on r is a result of the pressure force
being proportional to r? (the pressure acts on the end of the fluid cylinder; area = 7rr?) and
the shear force being proportional to r (the shear stress acts on the lateral sides of the cylin-
der; area = 27rrf). If the viscosity were zero there would be no shear stress, and the pres-
sure would be constant throughout the horizontal pipe (Ap = 0). As is seen from Egs. 8.3
and 8.4, the pressure drop and wall shear stress are related by

Ap 21 46t
—=—{8.3 = —
/ r ( ) 2 D

GA small shear stress can produce a large pressure difference if the pipe is relatively long
(¢/D > 1).

(8.5)

MOTI IN CONDOTTI

Although we are discussing laminar tlow, a closer consideration of the assumptions 1n-
volved in the derivation of Egs. 8.3, 8.4, and 8.5 reveals that these equations are valid for
both laminar and turbulent flow. To carry the analysis further we must prescribe how the
shear stress is related to the velocity. This is the critical step that separates the analysis of
laminar from that of turbulent flow—from being able to solve for the laminar flow proper-
ties and not being able to solve for the turbulent flow properties without additional ad hoc
assumptions. As is discussed in Section 8.3, the shear stress dependence for turbulent flow
1s very complex. However, for laminar flow of a Newtonian fluid, the shear stress is simply
proportional to the velocity gradient, “7 = u du/dy” (see Section 1.6). In the notation asso-
ciated with our pipe flow, this becomes

T = —p; (8.6)

The negative sign is included to give 7 > 0 with du/dr < 0 (the velocity decreases from the
pipe centerline to the pipe wall).
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Ap 27 1 d

L -, ©3) MOTO LAMINARE * = 5" g (P £92) (6.35)
Note in Eq. (6.35) that the HGL slope d(p + pgz)/dx is negative because both pres-
sure and height drop with x. For laminar flow, 7= du/dr, which we substitute in
Eq. (6.35)

du _ 1

_ d
== = ="+(p + poz .
o > rK K > (p + pg2) (6.37)

dr

Integrate once

=LpK, C, (6.38)
4 p
The constant C, is evaluated from the no-slip condition at the wall: u = 0 at r = R
o=1rf ;i (6.39)
4 p

or C; = —R?K/u.. Introduce into Eq. (6.38) to obtain the exact solution for laminar
fully developed pipe flow

2
r 1 [ d ,
A =i —— + e )
e 1=z | M T 4y [ P pgz)](R r) (6.40)
Complementi di Gasdinamica — T Astarita 23
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The laminar-flow profile is thus a paraboloid falling to zero at the wall and reaching
a maximum at the axis
R2

Umax — 7 [_%(P + ng)]

" Ap
™ (641

4
It resembles the sketch of u(r) given in Fig. 6.10.

The laminar distribution (6.40) is called Hagen-Poiseuille flow to commemorate the
experimental work of G. Hagen in 1839 and J. L. Poiseuille in 1940, both of whom
established the pressure-drop law, Eq. (6.1). The first theoretical derivation of Eq. (6.40)
was glven lndependently by E. Hagenbach and by F Neumann around 1859.

ither pipe-fl sults follow immediately from 40). The volume flow is

0= LR u dA = _LR umax(l = %)2717 dr

R* Ap
= %”‘mw&'er2 = % [_%(P + pgz)] - (6.42)

8u L
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MOTO LAMINARE
y_Q_0 _1

A aRE 7 lmax

64 L V2 32ulV _ 128ulQ
Bpram = b = —— = = 2 6.47
) Jam pvd d 2g pgd” mpgd* el
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EXAMPLE 6.4

An oil with p = 900 kg/m> and » = 0.0002 m?/s flows upward through an inclined pipe as shown
in Fig. E6.4. The pressure and elevation are known at sections 1 and 2, 10 m apart. Assuming

p, =350,000 Pa, z; =0

steady laminar flow, (a) verify that the flow is up, (b) compute ks between 1 and 2, and compute
(¢) O, (d) V, and (e) Re,. Is the flow really laminar?
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Solution

Part (a) For later use, calculate
w = pv = (900 kg/m>)(0.0002 m?/s) = 0.18 kg/(m - s)
2z = AL sin 40° = (10 m)(0.643) = 6.43 m

The flow goes in the direction of falling HGL; therefore compute the hydraulic grade-line height
at each section

D1 350,000
HGL, =z, + —=0+ —/——— = 39.65
I 900(9.807) m
D> 250,000
HGL, =2, + = =643+ —————=34.75
2727 e 900(9.807) i
The HGL is lower at section 2; hence the flow is from 1 to 2 as assumed. Ans. (a)
Part (b) The head loss is the change in HGL:
hy=HGL, — HGL, = 39.65m — 3475 m =49 m Ans. (b)
Half the length of the pipe is quite a large head loss.
Complementi di Gasdinamica — T Astarita 37
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Part (¢) We can compute Q from the various laminar-flow formulas, notably Eq. (6.47)
_ mpgd hy _ 7900)(9.807)(0.06)*(4.9) _

0076 m? Ans.
128ul 128(0.18)(10) Oleanttys LIS
Part (d) Divide Q by the pipe area to get the average velocity
_ 0 _ 00076 _
V= = oo - 2™ Ans. (d)
Part (e) With V known, the Reynolds number is
_ Vd _ 2.7(0.06) _
Re, = 0.0002 810 Ans. (e)

This is well below the transition value Re; = 2300, and so we are fairly certain the flow is lam-
inar.

Notice that by sticking entirely to consistent SI units (meters, seconds, kilograms, newtons)
for all variables we avoid the need for any conversion factors in the calculations.

: Complementi di Gasdinamica — T Astarita 38

ZN d)’
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EXAMPLE 6.5

A liquid of specific weight pg = 58 Ib/ft® flows by gravity through a 1-ft tank and a 1-ft capil-
lary tube at a rate of 0.15 ft*/h, as shown in Fig. E6.5. Sections 1 and 2 are at atmospheric pres-
sure. Neglecting entrance effects, compute the viscosity of the liquid.

Solution

Apply the steady-flow energy equation (6.24), including the correction factor «:

17

I ft

% ~ vy
ft

@

’ —o| |«— ¢=0.004 ft

|
&

0 =0.15 ft3/h 39
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2 2
PryoiVi, P2 Ve, iy
pg 2g pg 2g

The average exit velocity V, can be found from the volume flow and the pipe size:

3
_Q0 _ 0 _ (0153600) f6fs _ 440 o0

T A, wR* w(0.002 ft)?

Va

Meanwhile p, = p» = p,, and V; = 0 in the large tank. Therefore, approximately,

V3 _ 90332 fi/s)*

he=7z — 2 — a—= =20 ft ~ 1.66 ft
T 2(32.2 fUs?)

where we have introduced a, = 2.0 for laminar pipe flow from Eq. (3.72). Note that ks includes
the entire 2-ft drop through the system and not just the 1-ft pipe length.
With the head loss known, the viscosity follows from our laminar-flow formula (6.47):

32uLV _ 32u(1.0 )(3.32 ft/s)

=1.66 ft = =114,
ol pgd®> (58 Ibf/ft’)(0.004 ft)> S04
1.66
= = 1.45 E-5 slug/(ft - Ans.
or w 114,500 5 E-5 slug/(ft - s) ns

Note that L in this formula is the pipe length of 1 ft. Finally, check the Reynolds number:

pVd _ (58/32.2 slug/ft*)(3.32 f/s)(0.004 ft)

R =
Ty 1.45 E-5 slug/(ft - s)

= 1650 laminar

" Since this is less than 2300, we conclude that the flow is indeed laminar. Actually, for this head
¢loss, there is a second (turbulent) solution, as we shall see in Example 6.8.
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_ U = n
7 K I-L PM U = Tam Tturb

ay

| Average velocity profile,

Velocity profile, > = u(y)
u=uly) C\ ®) ’/ J
A

L 7
/s

J

o) Uy <ty Turbulent
eddies
/
EEEEE—

(a) (b)

B FIGURE 8.14 (a) Laminar flow shear stress caused by random motion of molecules.
(b) Turbulent flow as a series of random, three-dimensional eddies.
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ou —
T= K —PpUV = Tigm t Tourb
dy

Viscous
sublayer

r m
la | e T I Overlap
/ﬂ layer

Pipe wall

QOuter
layer

Pipe centerline

/

7(r) i(r)
(a) (b)

Structure of turbulent flow in a pipe. (a) Shear stress. (b) Average
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MOTO TURBOLENTO
The Logarithmic-Overlap Law

We have seen in Fig. 6.8 that there are three regions in turbulent flow near a wall:

1. Wall layer: Viscous shear dominates.
2. Outer layer: Turbulent shear dominates.
3. Overlap layer: Both types of shear are important.
From now on let us agree to drop the overbar from velocity u. Let 7,, be the wall shear
stress, and let & and U represent the thickness and velocity at the edge of the outer
layer, y = é.

For the wall layer, Prandtl deduced in 1930 that # must be independent of the shear-
layer thickness

u = fl, T P y) (6.17)

By dimensional analysis, this is equivalent to
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(6.18)

Equation (6.18) is called the law of the wall, and the quant.lty_

because it has dlmensmns [LT 1}, although it is not actually a flow velocity.

Subsequently, Karman in 1933 deduced that & in the outer layer is independent of

molecular viscosity, but its deviation from the stream velocity U must depend on the
layer thickness 6 and the other properties

(U = Wouter = 8(8, T P, y) (6.19)

Again, by dimensional analysis we rewrite this as

—-u _ v
== 8) (6.20)

where u* has the same meaning as in Eq. (6.18). Equation (6.20) is called the
velocity-defect law for the outer layer.
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Over the full range of turbulent smooth w
B are found to have the approximate values
called the {ogamMhmIGOVErIapilayer.
Thus by dimensional reasoning and physical insight we infer that a plot of u versus
In y in a turbulent-shear layer will show a curved wall region, a curved outer region,
and a straight-line logarithmic overlap. Figure 6.9 shows that this is exactly the case.
The four outer-law profiles shown all merge smoothly with the logarithmic—overlai law

but have different magnitudes because they vary in external pressure gradient.

(6.22)

MOTO TURBOLENTO

Strong increasing pressure P 7
Flat plate flow
i Pipe flow
Strong decreasing pressure

Experimental data

[
102 103 104
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Believe it or not, Fig. 6.9, which is nothing more than a shrewd correlation of ve-
locity profiles, is the basis for most existing “theory” of turbulent-shear flows. Notice
that we have not solved any equations at all but have merely expressed the streamwise

velocii in a neat form.
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For turbulent pipe flow we need not solve a differential equation but instead proceed
with the logarithmic law, as in Example 6.3. Assume that Eq. (6.21) correlates the lo-
cal mean velocity u(r) all the way across the pipe

where we_ Compute the average velocity from this profile

R — A\
V=§—=—1—2J u*[—l-lnLr)—u+B}2m'dr
0

7R K 7
= lu*(z e on = 3) (6.49)
2 K v K
Introducing ¥ = 0.41 and B = 5.0, we obtain, numerically,
* *
Y 2441 B 4 134 ut = |2 (6.50)
u- v p

This looks only marginally interesting until we realize that V/u* is directly related to
« the Darcy friction factor

& “u
4 i 'ﬂf:?'




8r . T

V ~244n™Y 134 MOTOTURBOLENTO f=_% u'=|>
u v P P
Vv p_V2 1/2= 8\1”2

u* ( r,,,,.) ( f) 6.51)
Moreover, the argument of the logarithm in (6.50) is equivalent to
Ru* _ aVd w* _ 1 (f\~
PR "(8) (052

Introducing (6.52) and (6.51) into Eq. (6.50), changing to a base-10 logarithm, and re-
arranging, we obtain

1
f[!'.?.

In other words, by simply computing the mean velocity from the logarithmic-law cor-
relation, we obtain a relation between the friction factor and Reynolds number for tur-
bulent pipe flow. Prandtl derived Eq. (6.53) in 1935 and then adjusted the constants
slightly to fit friction data better

~ 1.99 log (Re, /%) — 1.02 (6.53)

f% = 2.0 log (Reyf'"*) = 0.8 (6.54)
" Complementi di Gasdinamica — T Astarita 49
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A number of other correlations exist for the velocity profile in turbulent pipe flow. In
the central region (the outer turbulent layer) the expression (V, — u)/u* = 2.5 In(R/y), where
V. is the centerline velocity, is often suggested as a good correlation with experimental data.
Another often-used (and relatively easy to use) correlation is the empirical power-law velocity

profile
E r 1/n
= (] = E) (8.31)

C

In this representation, the value of » is a function of the Reynolds number, as is indicated in
Fig. 8.17. The one-seventh power-law velocity profile (n = 7) is often used as a reasonable
approximation for many practical flows. Typical turbulent velocity profiles based on this

power-law representation are shown in Fig. 8.18.
11

10
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A closer examination of Eq. 8.31 shows that the power-law profile cannot be valid near
the wall, since according to this equation the velocity gradient is infinite there. In addition,
Eq. 8.31 cannot be precisely valid near the centerline because it does not give du/dr = 0 at
r = (0. However, it does provide a reasonable approximation to the measured velocity pro-
files across most of the pipe.

Note from Fig. 8.18 that the turbulent profiles are much “flatter” than the laminar profile
and that this flatness increases with Reynolds number (i.e., with n). Recall from Chapter 3
that reasonable approximate results are often obtained by using the inviscid Bernoulli equa-
tion and by assuming a fictitious uniform velocity profile. Since most flows are turbulent and
turbulent flows tend to have nearly uniform velocity profiles, the usefulness of the Bernoulli
equation and the uniform profile assumption is not unexpected. Of course, many properties
of the flow cannot be accounted for without including viscous effects.

; Compfementi di Gasdinamica — T Astarita
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ABACO DI MOODY 8.V

8.4.1 The Moody Chart

A dimensional analysis treatment of pipe flow provides the most convenient base from which
to consider turbulent, fully developed pipe flow. An introduction to this topic was given in
Section 8.3. As is discussed in Sections 8.2.1 and 8.2.4, the pressure drop and head loss in
a pipe are dependent on the wall shear stress, 7,,, between the fluid and pipe surface. A fun-
damental difference between laminar and turbulent flow is that the shear stress for turbulent
flow is a function of the density of the fluid, p. For laminar flow, the shear stress is inde-
pendent of the density, leaving the viscosity, w, as the only important fluid property.

Thus, the pressure drop, Ap, for steady, [incompressible turbulent flow in a horizontal
round pipe of diameter D can be written in functional form as

where V is the average velocity, € is the pipe length, and ¢ is a measure of the roughness of
the pipe wall. It is clear that Ap should be a function of V, D, and €. The dependence of Ap
on the fluid properties u and p is expected because of the dependence of 7 on these parameters.

Complementi di Gasdinamica — T Astarita 53

ABACO DI MOODY

Although the pressure drop for laminar pipe flow is found to be independent of the
roughness of the pipe, it is necessary to include this parameter when considering turbulent
flow. As is discussed in Section 8.3.3 and illustrated in Fig. 8.19, for turbulent flow there is
a relatively thin viscous sublayer formed in the fluid near the pipe wall. In many instances
this layer is very thin; If a typical wall rough-
ness element protrudes sufficiently far into (or even through) this layer, the structure and prop-
erties of the viscous sublayer (along with Ap and 7,,) will be dlfferent than if the wall were
roughness For lammar ﬂow there is nO thm viscous layer—vnscous effects are 1mportant across
the entire pipe. Thus, relatively small roughness elements have completely negligible effects

on Ly ppe los: OF course, or pipes with vry lnge vl “roughnes” (o0 = 0.1
such as that in corrugated pipes, the flowrate may be a function of the “roughness.” We will

consider onl pical constant diameter pipes with relative roughnesses in the range
Analysis of flow in corrugated pipes does not fit into the standard constant

diameter pipe category, although experimental results for such pipes are available (Ref. 30).
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2 Velocity
R=D/2 . profile, & = w(y)
| 3, *
f Viscous sublayer _ x
_L T i AT — \ _f_____? _____ A
So@ns & T T
@ n»p—+— B FIGURE 8.19 Flow in the vis-
T S . cous sublayer near rough and smooth
Rough wall Smooth wall walls.

vu
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The list of parameters given in Eq. 8.32 is apparently a complete one. That is, exper-
iments have shown that other parameters

(steady, incompressible flow; round,
horizontal pipe). Since there are seven variables (k = 7) which can be written in terms of the
three reference dimensions MLT (r = 3), Eq. 8.32 can be written in dimensionless form in
terms of k — r = 4 dimensionless groups. As was discussed in Section 7.9.1, one such rep-
resentation is
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As was done for laminar flow, the functional representation can be simplified by im-

sumption supported by experiments.) The only way that this can be true is if the €/D de-
pendence is factored out as

As was discussed in Section 8.2.3, the quantity ApD/(£pV?/2) is termed the friction factor,

f. Thus, for a horizontal pipe

(8.33)

where

For laminar fully developed flow, the value of fis simply f = 64/Re, independent of &/D.
For turbulent flow, the functional dependence of the friction factor on the Reynolds number
and the relative roughness, f = ¢(Re, /D), is a rather complex one that cannot, as yet, be
obtained from a theoretical analysis. The results are obtained from an exhaustive set of ex-

periments and usually presented in terms of a curve-fitting formula or the equivalent graph-
ical form.

ABACO DI MOODY

Nikuradse [7] simulated roughness by gluing uniform sand grains onto the inner
walls of the pipes. He then measured the pressure drops and flow rates and correlated
friction factor versus Reynolds number in Fig. 6.125. We see that laminar friction is
unaffected, but turbulent friction, after an onset point, increases monotonically with the
roughness ratio €/d. For any given €/d, the friction factor becomes constant (fully rough)
at high Reynolds numbers. These points of change are certain values of € = eu*/v:
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0.00397
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0.02 — \ 0.00099

Eq. (6.55a )\Eq 6.54)
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S
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mula

This is the accepted design formula for turbulent friction. It was plotted in 1944 by
Moody [8] into what is now called the _for pipe friction (Fig. 6.13). The
Moody chart is probably the most famous and useful figure in fluid mechanics. It is
accurate to EEN IS percent for design calculations over the full range shown in Fig. 6.13.
It can be used for circular and noncircular (Sec. 6.6) pipe flows and for open-channel
flows (Chap. 10). The data can even be adapted as an approximation to boundary-layer
flows (Chap. 7).

Equation (6.64) is cuambersome to evaluate for fif Re, is known, although it easily yields
to the EES Equation Solver. An alternate explicit formula given by Haaland [33] as

(6.64a)
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Values of (Vd) for water at 60°F (velocity, ft/s = diameter, in)

02 04 06 081 2 6 8 10 20 40 60 B0 100 200 400 600 RBOO 1000 4000 6000 10,000
| | Values of (Vd) for atmospheric air at 60°F | | | | | SUI(!D |
2 4 6 810 20 I 40 | 60 |1I'J(I1 | 200 I 400 1600 800 10001 2000 4000 16000 10,000 40,000 60,000 100,000
010 e Ty
0.09 |-+Laminar-Critical IEEANI
flow | zone | Transition
008 T LZ0NE Ty Complete turbulence, rough pipes
P —
0.07 S 0.05
R T 0.04
0.06 \ St
L mu= 0.03
005 g =FHRRISII—=S — = 0.02
2 YT T RN < 0.015
= 0.04 |- B N ] 1N ] 1]
?‘.‘:'hl ) - \*‘_% \\ - \\\,_‘:\"'“‘*--.__‘_ = SR EE 0.01 W=
~ = e P
Il — 0.03 Rezr LS \§\\‘ mEss \.-\ S 'CIE-D
t;:? 3 AN e = 0.004 g
8 5 T || - L —
2 002 n . i = . P
e 4 E S| = 0.002 E
= A SISIIN; S 2N 7
2 0.02 . SRS T 0.001
£ e L 0.0008
\‘\‘: :H L A 0.0006
n ) Mttt | *
& SN =] 3y 0.0004
0015 "2’% =~ NS ""‘n-—_._______ L
B oy NN T 0.0002
e TN Emec 0.0001
\ \\ Hh"""--..
] ==
0.01 n._\\:m i 0.000,05
0.009 N anSu X
0.008 =S Sl =L 0.000,01
103 2“03] 3 4 56 8104 2(]04}3 4 56 3[05 2(]05)3 4 56 8106 2(106)3 4 56 8107 2“0?) 3 456 3]08
Reynolds number Re = % 5- = 0.000,001 3- = 0.000,005
TR AT
€
Material Condition ft mm Uncertainty, %
Steel Sheet metal, new 0.00016 0.05 + 60
Stainless, new 0.000007 0.002 *+50
Commercial, new 0.00015 0.046 30
Riveted 0.01 3.0 +70
Rusted 0.007 2.0 + 50
Iron Cast, new 0.00085 0.26 + 50
Wrought, new 0.00015 0.046 * 20
Galvanized, new 0.0005 0.15 *+ 40
Asphalted cast 0.0004 0.12 *+50
Brass Drawn, new 0.000007 0.002 + 50
Plastic Drawn tubing 0.000005 0.0015 + 60
Glass — Smooth Smooth
Concrete Smoothed 0.00013 0.04 + 60
Rough 0.007 2.0 *+=50
Rubber Smoothed 0.000033 0.01 *+ 60
Wood Stave 0.0016 0.5 + 40
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TRE POSSIBILI PROBLEMI

The Moody chart (Fig. 6.13) can be used to solve almost any problem involving fric-
tion losses in long pipe flows. However, many such problems involve considerable it-
eration and repeated calculations using the chart because the standard Moody chart is
essentially a head-loss chart. One is supposed to know all other variables, compute
Re,, enter the chart, find £, and hence compute /. This is one of three fundamental
problems which are commonly encountered in pipe-flow calculations:

1. Givend, L, and V or Q, p, u, and g, compute the head loss A, (head-loss prob-
lem).

2. Given d, L, hy, p, p, and g, compute the velocity V or flow rate Q (flow-rate
problem).

3. Given Q, L, hg, p, p, and g, compute the diameter d of the pipe (sizing problem).
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EXAMPLE 6.6°

Compute the loss of head and pressure drop in 200 ft of horizontal 6-in-diameter asphalted cast-
iron pipe carrying water with a mean velocity of 6 ft/s.

Solution

One can estimate the Reynolds number of water and air from the Moody chart. Look across the
top of the chart to V (ft/s) X d (in) = 36, and then look directly down to the bottom abscissa to
find that Re(water) = 2.7 X 10°. The roughness ratio for asphalted cast iron (e = 0.0004 ft) is

€

= 0.0004 = 0.0008
d 6

12

Find the line on the right side for €/d = 0.0008, and follow it to the left until it intersects the
vertical line for Re = 2.7 X 10°. Read, approximately, f = 0.02 [or compute f = 0.0197 from
Eq. (6.64a)]. Then the head loss is

LV 200 (6 fus)®
he=f—— = (0.02) =45 ft Ans.
=102 = 0905 2622 fush) "
The pressure drop for a horizontal pipe (z; = z,) is
Ap = pghy = (62.4 Ibf/ft*)(4.5 ft) = 280 Ibf/ft> Ans.
#55% Moody points out that this computation, even for clean new pipe, can be considered accurate

:ﬁonly to about = 10 percent.




Esempi (Head loss)

EXAMPLE 6.7

Oil, with p = 900 kg/m? and v = 0.00001 m?/s, flows at 0.2 m’/s through 500 m of 200-mm-
diameter cast-iron pipe. Determine (a) the head loss and (b) the pressure drop if the pipe slopes
down at 10° in the flow direction.

Solution

First compute the velocity from the known flow rate

0 0.2 m%/s
V= = = 6.4 m/
7R? 0.1 m)>? ®

Then the Reynolds number is

Vd _ (6.4 m/s)(0.2 m)

Re,; = = 128,000
T T 0.00001 m¥s
From Table 6.1, € = 0.26 mm for cast-iron pipe. Then
€ 0.26 mm
—=——=0.0013
d 200 mm 00
Esempi (Head loss)

Enter the Moody chart on the right at e/d = 0.0013 (you will have to interpolate), and move to
the left to intersect with Re = 128,000. Read f = 0.0225 [from Eq. (6.64) for these values we
could compute f = 0.0227]. Then the head loss is

L V? 500 m (6.4 m/s)’
hy= f—— = (0.0225
=1 2g ( ) 02 m 20981 mis)

=117 m Ans. (a)

From Eq. (6.25) for the inclined pipe,

=22 4 g — =28 4 1 sin 10°
Pg pg

or Ap = pglh; — (500 m) sin 10°] = pg(117 m — 87 m)

= (900 kg/m>)(9.81 m/s*)(30 m) = 265,000 kg/(m - s*) = 265,000 Pa  Ans. (b)
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ESEMPI (FLOW RATE)

EXAMPLE 6.9

Oil, with p = 950 kg/m’ and v = 2 E-5 m?/s, flows through a 30-cm-diameter pipe 100 m long with
a head loss of 8 m. The roughness ratio is €/d = 0.0002. Find the average velocity and flow rate.

By definition, the friction factor is known except for V:

2
F= hf% %521 = (8 m)( ?6%111111)[2(9‘8:/;11/5 )] or fV? = 0471 (SI units)

To get started, we only need to guess f, compute V = V0.471/f, then get Re,;, compute a better
f from the Moody chart, and repeat. The process converges fairly rapidly. A good first guess is
the “fully rough” value for e/d = 0.0002, or f = 0.014 from Fig. 6.13. The iteration would be as
follows:
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Guess f= 0.014, then V = V0.471/0.014 = 5.80 m/s and Re,; = Vd/v = 87,000. At Re,; =
87,000 and e/d = 0.0002, compute f..,, = 0.0195 [Eq. (6.64)].

New f=0.0195, V= V0.481/0.0195 = 491 m/s and Re, = Vd/v = 73,700. At Re, =
73,700 and €/d = 0.0002, compute f,.,, = 0.0201 [Eq. (6.64)].

Better f =~ 0.0201, V = V0.471/0.0201 = 4.84 m/s and Re, = 72,600. At Re, = 72,600 and
e/d = 0.0002, compute f,. = 0.0201 [Eq. (6.64)].

We have converged to three significant figures. Thus our iterative solution is

V =4.84 m/s
0= v(f)dz = (4.84)(%)(0.3)2 ~ 0.342 m%/s Ans.

The iterative approach is straightforward and not too onerous, so it is routinely used by engi-
neers. Obviously this repetitive procedure is ideal for a personal computer.
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ESEMPI (SIZING PROBLEM)

EXAMPLE 6.11

Work Example 6.9 backward, assuming that Q = 0.342 m*/s and € = 0.06 mm are known but
that d (30 cm) is unknown. Recall L = 100 m, p = 950 kg/m3, v =2 E-5 m%/s, and hs= 8 m.

Iterative Solution

First write the diameter in terms of the friction factor:

_ 7 _(9.81 m/s)(8 md®

> = 8.284° ~ 0. 1/5
8 1000 e e d=06y (1)

f

in SI units. Also write the Reynolds number and roughness ratio in terms of the diameter:
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4(0.342 m%s) 21,800

Re, = = 2

®¢ = 72 E5 mls)d d 2)
€ O6E-5m

1 4 (3)

Guess f, compute d from (1), then compute Re, from (2) and €/d from (3), and compute a bet-
ter f from the Moody chart or Eq. (6.64). Repeat until (fairly rapid) convergence. Having no ini-
tial estimate for f, the writer guesses f= 0.03 (about in the middle of the turbulent portion of
the Moody chart). The following calculations result:

f=0.03 d =~ 0.655(0.03)"”° =~ 0.325 m

21,800 €
Re, ~ =22 ~ 67,000 —~~ 1.85 E-4
4™ 0325 d
Eq. (6.54): frew =~ 0.0203  then  dyey ~ 0301 m
R new = 72,500 5 ~2.0E-4
Eq. (6.54): Joerter = 0.0201 and d =0.300 m Ans.

% The procedure has converged to the correct diameter of 30 cm given in Example 6.9.




EXAMPLE 6.12

Work Moody’s problem, Example 6.6, backward to find the unknown (6 in) diameter if the flow
rate Q = 1.18 ft*/s is known. Recall L = 200 ft, € = 0.0004 ft, and » = 1.1 E-5 ft%/s.

Solution

Write f, Re,, and €/d in terms of the diameter:

_ @ ghd® 7 (322 fus(4.5 yd

- _ 5 ~ 1/5
F=8 I ~ 8 @oofyLis sz 024 or d=LO%f M

4(1.18 f’/s) 136,600

Rea= Tl Ests d 4 @
e _ 0.0004 ft
P A aa 3)

with everything in BG units, of course. Guess f; compute d from (1), Re, from (2), and €/d from
(3); and then compute a better f from the Moody chart. Repeat until convergence. The writer tra-
ditionally guesses an initial f = 0.03:

f=~003  d=~1093(0.03)"° =~ 0.542 ft

136,600 i
Roym—2000 o850 w7 38 B4
= 70542 P
faow = 00196  dyey ~ 0498 ft  Rey ~ 274,000 5 ~ 8.03 E-4
fbelier = 00198 d = 0499 fl Ans.

% cor Convergence is rapid, and the predicted diameter is correct, about 6 in. The slight discrepancy

(0.499 rather than 0.500 ft) arises because ks was rounded to 4.5 ft. 4

PERDITE DI CARICO CONCENTRATE

Le perdite di carico concentrate si hanno in:

e Ingressi (o uscite) di condotti

Variazioni di sezione repentine

Variazioni di sezione graduali

Curve, condotti a T, in generale tutte le connessioni di condotti
Valvole (aperte, o parzialmente chiuse)

__h __Ap
V2i/2g V?/2g

Coefficiente di perdita K

Oppure si utilizza una lunghezza equivalente.
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Valvole

_h,  Ap
V229 V*/2g

D 7772777277 § 777777 j

r | U ) 0
(d)

s _

E A

h D

Y

2222222722872

(c) (e)
“"““‘% Valvola a saracinesca; b) Valvola a globo c) Valvola ad angfolo d) Valvola a farfalla
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Fig. 6.17 Typical commercial valve
geometries: (a) gate valve;

(b) globe valve; (c) angle valve;
(d) swing-check valve; (e) disk-
type gate valve.

Nominal diameter, in

Screwed Flanged
4 1 2 4 1 2 4 8 20
Valves (fully open):
Globe 14 8.2 6.9 5.7 13 8.5 6.0 5.8 55
Gate 030 024 016  0.11 080 035 016  0.07 0.03
Swing check 5.1 29 2.1 2.0 20 2.0 2.0 2.0 2.0
Angle 9.0 4.7 2.0 1.0 4.5 24 20 20 2.0
Elbows:
45° regular 0.39 0.32 0.30 0.29
45° long radius 0.21 0.20 0.19 0.16 0.14
90° regular 2.0 1.5 0.95 0.64 0.50 0.39 0.30 0.26 0.21
90° long radius 1.0 0.72 0.41 0.23 0.40 0.30 0.19 0.15 0.10
180° regular 2.0 1.5 0.95 0.64 0.41 0.35 0.30 0.25 0.20
180° long radius 040 030 021 0.15 0.10
Tees:
Line flow 0.90 0.90 0.90 0.90 0.24 0.19 0.14 0.10 0.07
Branch flow 24 1.8 1.4 1.1 1.0 0.80 0.64 0.58 0.41 75
Globe, fully open 10
Angle, fully open 2
Gate, fully open 0.15
Gate, ; closed 0.26
Gate, % closed 2.1
*‘;‘ 3 Gate, ; closed 17
T '
/ﬁ/ i Swing check, forward flow 2
% ()
' Swing check, backward flow o
Wﬁ%[&m\z : Ball valve, fully open 0.05
| ) 7
N @ " =7 Ball valve, g'. closed 55
L Ball valve, 3 closed 210
Nominal diameter, in
Screwed Flanged
4 1 2 +4 1 2 4 8 20
Valves (fully open):
Globe 14 8.2 6.9 7 13 8.5 6.0 5.8 35
Gate 0.30 0.24 0.16 0.11 0.80 0.35 0.16 0.07 0.03
Swing check 5.1 2.9 2.1 2.0 2.0 2.0 2.0 20 2.0
Angle 9.0 4.7 20 1.0 4.5 24 2.0 2.0 2.0
Elbows:
45° regular 039 032 030 029
45° long radius 0.21 0.20 0.19 0.16 0.14
90° regular 2.0 1.5 095  0.64 050 039 030 026 0.21
90° long radius 1.0 0.72 0.41 0.23 0.40 0.30 0.19 0.15 0.10
180° regular 2.0 1.5 0.95 0.64 0.41 0.35 0.30 0.25 0.20
180° long radius 0.40 0.30 0.21 0.15 0.10
Tees:
Line flow 0.90 0.90 0.90 0.90 0.24 0.19 0.14 0.10 0.07
Branch flow 24 1.8 14 1.1 1.0 0.80 0.64 0.58 0.41 76
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Fig. 6.19 Performance of butterfly
valves: (a) typical geometry (cour-
tesy of Grinnell Corp., Cranston,
R.I); (b) loss coefficients for three
different manufacturers.
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Secondary
flow pattern:

d = constant

(Note: Resistance
due to bend
length must
be added.)

Curve

1.00

0.80 —
0.70 —

0.60 —
0.50
0.40 —

0.30

020 &

|

0.10

0.08 l

I | I | | [
15 2 3 4 5 6 7 8910

(A)

(A)

(B)

(B)




A, L

(a) (b)

L
r

‘f
Y

Y

3
Y

~

/*

(c) (d)

B FIGURE 8.22 Entrance flow conditions and loss coefficient (Refs. 28, 29). (a) Reen-
N trant, K; = 0.8, (b) sharp-edged, K; = 0.5, (¢) slightly rounded, K; = 0.2 (see Fig. 8.24),
| (d) well-rounded, K; = 0.04 (see Fig. 8.24).
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VARIAZIONI DI SEZIONE REPENTINE

0.6

2
Va

Ay =Kyt

85

—————— Control volume

a{ Q — : >
. l—l-
: - : » / —
> —_—] —

Vi . by Vi : V3
> —_— —
, > : > \ b
S =
c | —

(2) (3)

A [Sudden expansion is one of the few components (perhaps the only one) for which
the loss coefficient can be obtained by means of To do this we consider
the continuity and momentum equations for the control volume shown in Fig. 8.28 and the
energy equation applied between (2) and (3). We assume that the flow is uniform at sections
(1), (2), and (3) and the pressure is constant across the left-hand side of the control volume

(Pa = P = P. = py). The resulting three governing equations (ESSOMENMMIARAEAEESY )
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h,

VARIAZIONI DI SEZIONE REPENTINE

These can be rearranged to give the loss coefficient, K, = h; /(V1/2g), as

where we have used the fact that A, = A;. This result,
ment with experimental data.

is in good agree-

results for a with a given area ratio, A,/A,, are shown in Fig. 8.29. (A dif-

fuser is a device shaped to decelerate a ﬂuid.i Clearli the included anile of the diffuser, 6,
is a very important parameter.

For moder-

In fact, for mod-
erate or large values of 6 (1. or the case shown 1n Fig. 8.29), the conical diffuser
is, perhaps unexpectedly, less efficient than a sharp-edged expansion which has K; = 1. There
is an optimum angle (f =~ 8° for the case illustrated) for which the loss coefficient is a min-
imum. The relatively small value of 6 for the minimum K results in a long diffuser and is
an indication of the fact that it is difficult to efficiently decelerate a fluid.

Complementi di Gasdinamica — T Astarita 88




VARIAZIONI DI SEZIONE GRADUALE

1.4

0 30 60 90 120 150 180
0, degrees

B FIGURE 8.29 Loss coefficient for a typical conical diffuser (Ref. 5).
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Air at standard conditions is to flow through the test section [between sections (5) and (6)]
of the closed-circuit wind tunnel shown in Fig. E8.6 with a velocity of 200 ft/s. The flow is
driven by a fan that essentially increases the static pressure by the amount p, — p, that is
needed to overcome the head losses experienced by the fluid as it flows around the circuit.
Estimate the value of p; — py and the horsepower supplied to the fluid by the fan.

Fan
' 5 N Location Area (ft?) Velocity (ft/s)

/'f(z:" @ :\\\ | 22.0 36.4
' s 2 28.0 28.6
3 35.0 22.9
4 35.0 22.9
3 Flow-straightening 5 4.0 200.0
(3 screens 6 4.0 200.0
CEHW) (6) - 7 10.0 80.0
Sofod—f W] 3 m w

section

Vs = 200 ft/s
é B FIGURE E8.6




MOTI IN CONDOTTI ESERCIZI

The maximum velocity within the wind tunnel occurs in the test section (smallest area). Thus,
the maximum Mach number of the flow is Mas = Vs/cs, where Vs = 200 ft/s and from
Eq. 1.20 the speed of sound is ¢5 = (kRTS)V2 {1.4(1716 ft - Ib/slug - °R)[(460 + 59)°R]}/
= 1117 ft/s. Thus, Mas = 200/1117 =0.179. As was indicated in Chapter 3 and discussed
fully in Chapter 11, most flows can be considered as incompressible if the Mach number is
less than about 0.3. Hence, we can use the incompressible formulas for this problem.

The purpose of the fan in the wind tunnel is to provide the necessary energy to over-
come the net head loss experienced by the air as it ﬂows around the circuit. This can be
found from the energy equation between points (1

where h;, _ is the total head loss from (1) to (9). With z; = z9 and V| = V, this gives

Similarly, by writing the energy equation (Eq. 5.84) across the fan, from (9) to (1), we obtain
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where £, is the actual head rise supplied by the pump (fan) to the air. Again since zo = z;
and Vy, = V, this, when combined with Eq. 1, becomes

The actual power supplied to the air (horsepower, %,) is obtained from the fan head by

Thus, the power that the fan must supply to the air depends on the head loss associ-
ated with the flow through the wind tunnel. To obtain a reasonable, approximate answer we
make the following assumptions. We treat each of the fOUFfiFiifg COMMers as a mitered bend
with guide vanes so that from Fig. 8.31 Kgi 8 &0i28 Thus, for each corner

where, because the flow is assumed incompressible, V = V;As/A. The values of A and the
corresponding velocities throughout the tunnel are given in Table E8.6.
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We also treat the dilargingisections from the end of the test section (6) to the begin-
ning of the nozzle (4) as a conical diffuser with a loss coefficient of _ This value
is larger than that of a well-designed diffuser (see Fig. 8.29, for example). Since the wind
tunnel diffuser is interrupted by the four turning corners and the fan, it may not be possible
to obtain a smaller value of K;_ for this situation. Thus,

Ve Ve

h — — =06 —
o = Ky 5, =065,

The loss coefficients for the and (5) and the flow-
straightening screens are assumed to be and K; = 4.0 (Ref. 13), respectively. We
neglect the head loss in the relatively short test section.

Thus, the total head loss is

Bpo o™ Brp F Wy Tl FWy o B+ B iy

or

b, = [02(V3 + Vi + Vi + V3) + 0.6V2 + 02V2 + 4.0V3]/2¢
= [0.2(80.0> + 44.4* + 28.6° + 22.9%) + 0.6(200)
+ 0.2(200)> + 4.0(22.9)?] ft®/s*/[2(32.2 ft/s?)]

MOTI IN CONDOTTI ESERCIZI

Hence, from Eq. 1 we obtain the pressure rise across the fan as

From Eq. 2 we obtain the power added to the fluid as

P, = (0.0765 Ib/f*)(4.0 f2)(200 £t/s)(560 ft) = 34,300 ft - Ib/s

34300 ft - Ib/s
@ 550 (ft - Ib/s)/hp

nel. If heat transfer across the tunnel walls is negligible, the air temperature within the tun-
nel will increase in time. For steady state operations of such tunnels, it is often necessary to
gprovide some means of cooling to maintain the temperature at acceptable levels.

= 623 hp (Ans)
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is that needed by the fluid to overcome losses in the tunnel, excluding those in the fan. If
the fan were 60% efficient, it would require a shaft power of % = 62.3 hp/(0.60) = 104 hp
to run the fan. Determination of fan (or pump) efficiencies can be a complex problem that
depends on the specific geometry of the fan. Introductory material about fan performance is
presented in Chapter 12; additional material can be found in various references (Refs. 14,
15, 16, for example).

It should also be noted that the above results are only approximate. Clever, careful de-
sign of the various components (corners, diffuser, etc.) may lead to improved (i.e., lower)
values of the various loss coefficients, and hence lower power requirements. Since /; is pro-
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Water, p = 1.94 slugs/ft’ and v = 0.000011 ft*/s, is pumped between two reservoirs at 0.2 ft*/s
through 400 ft of 2-in-diameter pipe and several minor losses, as shown in Fig. E6.16. The rough-
ness ratio is €/d = 0.001. Compute the pump horsepower required.

Screwed Sharp =120 ft
regular it —
90° elbow =
® X )—="
7 =20 ft
= Sharp
entrance Half-open —
gate valve
—
12-in
— ‘ bend radius
Open globe 2

valve 400 ft of pipe, d = I ft
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Write the steady-flow energy equation between sections 1 and 2, the two reservoir surfaces:

2 2
Pip 1y, =(P—2+K2—+z)+h+ By — h
pg 2 ' \pg 28 ?) 2 P

where h,, is the head increase across the pump. But since p; = p, and V; = V, = 0, solve for the
pump head

_ _ V(L
kp—Zg—zl+hf+th—120ﬁ—20ft+2—g(d+ZK) (1)

Now with the flow rate known, calculate

3
v Q _ 0216

A o = 0,17 ft/s
(i3 ft)
Now list and sum the minor loss coefficients:
Loss K
Sharp entrance (Fig. 6.21) 0.5
Open globe valve (2 in, Table 6.5) 6.9
12-in bend (Fig. 6.20) 0.15
Regular 90° elbow (Table 6.5) 0.95
Half-closed gate valve (from Fig. 6.18b) 2.7
Sharp exit (Fig. 6.21) 1.0
°§Complementi di Gas SK=122 97
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Calculate the Reynolds number and pipe-friction factor

vi 917G

Res === = 0000011

139,000

For €/d = 0.001, from the Moody chart read f = 0.0216. Substitute into Eq. (1)

= +
hpy =100t + 5 252 f0sd) 2

2
(9.17 f/s) [0.0216(400) + 12.2]

1

= 100 ft + 84 ft = 184 ft pump head
The pump must provide a power to the water of
P = pgQh, = [1.94(32.2) 1bf/ft’](0.2 ft*/s)(184 ft) = 2300 ft - 1bf/s
The conversion factor is 1 hp = 550 ft - Ibf/s. Therefore

_ 2300 _
P 550 4.2 hp Ans.

Allowing for an efficiency of 70 to 80 percent, a pump is needed with an input of about 6 hp.
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Munson 8.8

Water at 60 °F flows from the basement to the second floor through the 0.75-in. (0.0625-ft)-

diameter copper pipe (a drawn tubing) at

a rate of Q = 12.0 gal/min = 0.0267 ft’/s and ex-

its through a faucet of diameter 0.50 in. as shown in Fig. E8.8a. Determine the pressure at
point (1) if: (a) all losses are neglected, (b) the only losses included are major losses, or (c) all

losses are included.

K, = 2 based on

-
——

0.75-in. diameter (©) T ol !
copperpipe 5 10 ft Wide open
ft globe valve

Threaded
90° elbows

pipe
velocity

(2)

0.50-in.
diameter

M FIGURE E8.8a

30.5 psi
30 I~ JTTI ESERCIZI
27.8 (a) No losses
' (¢) Including all
losses 80
o Slope due to pipe friction
| Pressure g Sharp drop due to component loss
loss = 60
20 )
2 Energy line including all
i 2 losses, case (c)
2 S 40
< 5
<
10.7 2 5o
@
10 5 Energy line with no losses, case (a)
Elevation 5
! ki?]’;‘gic 0 10 20 30 40 50 60
energy Distance along pipe from point (1), ft
0
0 10 60
Distance along pipe from point (1), ft
_ocation: (1) (3) (4) (5) (6) (7)(@8) (2)

More detailed calculations will show that the pressure distribution along the pipe
is as illustrated in Fig. E8.8b for cases (a) and (c)—neglecting all losses or including

__all losses. Note that not all of the pressure drop, p; — p,, is a “pressure loss.” The pres-
. sure change due to the elevation and velocity changes is completely reversible. The
7 portion due to the major and minor losses is irreversible.
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Munson 8.9

Crude oil at 140 °F with y = 53.7 Ib/ft® and w = 8 X 107> Ib - s/ft* (about four times the
viscosity of water) is pumped across Alaska through the Alaskan pipeline, a 799-mile-long,
4-ft-diameter steel pipe, at a maximum rate of Q = 2.4 million barrels/day = 117 ft'/s, or
V = Q/A = 9.31 ft/s. Determine the horsepower needed for the pumps that drive this large
system.

Munson 8.10

According to an appliance manufacturer, the 4-in.-diameter galvanized iron vent on a clothes
dryer is not to contain more than 20 ft of pipe and four 90° elbows. Under these conditions
determine the air flowrate if the pressure within the dryer is 0.20 inches of water. Assume a
temperature of 100 °F and standard pressure.
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Munson 8.11

The turbine shown in Fig. E8.11 extracts 50 hp from the water flowing through it. The
| -ft-diameter, 300-ft-long pipe is assumed to have a friction factor of 0.02. Minor losses are
negligible. Determine the flowrate through the pipe and turbine.

vV Q) |u=90ft

300-ft-long,
1-ft-diameter pipe

@ %=0 mFIGURE E8.11
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Munson 8.12

Air at standard temperature and pressure flows through a horizontal, galvanized iron pipe
(e = 0.0005 ft) at a rate of 2.0 ft’/s. Determine the minimum pipe diameter if the pressure
drop is to be no more than 0.50 psi per 100 ft of pipe.

Munson 8.13

Water at 10 °C (v = 1.307 X 107° m?*/s, see Table B.2) is to flow from reservoir A to reser-
voir B through a cast-iron pipe (¢ = 0.26 mm) of length 20 m at a rate of Q = 0.0020 m’/s

as shown in Fig. E8.13. The system contains a sharp-edged entrance and six regular threaded
90° elbows. Determine the pipe diameter needed.

Elevation z; =2 m

Total length =€ =20m

Elevation z, =0 m ra

B FIGURE E8.13

MOTI IN CONDOTTI MULTIPLI

Figure 6.24 shows three examples of multiple-pipe systems.

or

(6.105)

Rule 2 is that the total head loss through the system equals the sum of the head loss
in each pipe

Ahy_p = Ahy + Ah, + Ahs (6.106)

In terms of the friction and minor losses in each pipe, we could rewrite this as
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2
Ahy p= ; (flL‘ + ZK,) (f’j? i TK,,)

(M“ + VK:;) (6.107)
28 \ ds

and so on for any number of pipes in the series. Since V, and V; are proportional to
V, from Eq. (6.105), Eq. (6.107) is of the form

2

V
Ahy_p = 2_‘;(0’0 + a1 fi + axfs + asf3) (6.108)

where the «; are dimensionless constants. If the flow rate is given, we can evaluate the
right-hand side and hence the total head loss. If the head loss is given, a little iteration
is needed, since fi, f>, and f3 all depend upon V, through the Reynolds number. Begin
by calculating f;, f>, and f3, assuming fully rough flow, and the solution for V, will
converge with one or two iterations. EES is ideal for this purpose.
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AhA-—»B — Ahl = Ahz = Ah:; (6.109&)
O0=0rt 0+ 05 (6.109b)
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0 Pod’
hf = (Z \/?/f;)z where C; SL{ (6.1090)

Since the f; vary with Reynolds number and roughness ratio, one begins Eq. (6.109¢)
by guessing values of f; (fully rough values are recommended) and calculating a first
estimate of . Then each pipe yields a flow-rate estimate Q; = (C,-hf/f,-)”2 and hence
a new Reynolds number and a better estimate of f;. Then repeat Eq. (6.109¢) to con-
vergence.

It should be noted that both of these parallel-pipe cases—finding either %Q or hy—
are easily solved by EES if reasonable initial guesses are given.

¢Complementi di Gasdinamica — T Astarita 107

MOTI IN CONDOTTI MULTIPLI

01+ +0:=0 (6.110)

which obviously implies that one or two of the flows must be away from the junction.
The pressure must change through each pipe so as to give the same static pressure p;
at the junction. In other words, let the HGL at the junction have the elevation

g
Pg

hJ: 2y
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where p; is in gage pressure for simplicity. Then the head loss through each, assum-
ing p; = p» = p3 = 0 (gage) at each reservoir surface, must be such that

Ahy = Vi ila o z1 — hy
2g d,
V2 L,
Ay =Y2lle _ oy 6.111)
28 d,
V3 fils
Ahy = —= ::_h
5=y s 7

We guess the position 4, and solve Eqgs. (6.111) for V,, V5, and V3 and hence Q;, 05,
and (s, iterating until the flow rates balance at the junction according to Eq. (6.110).
If we guess h; too high, the sum Q; + Q, + Q5 will be negative and the remedy is to
reduce h;, and vice versa.
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EXAMPLE 6.17

Given is a three-pipe series system, as in Fig. 6.24a. The total pressure drop is p, — pg = 150,000
Pa, and the elevation drop is z4 — zz = 5 m. The pipe data are

Pipe L, m d, cm €, mm eld
1 100 8 0.24 0.003
2 150 6 0.12 0.002
3 80 4 0.20 0.005

The fluid is water, p = 1000 kg/m> and » = 1.02 X 10~ m%/s. Calculate the flow rate Q in m*/h
through the system.

EXAMPLE 6.18

Assume that the same three pipes in Example 6.17 are now in parallel with the same total head
loss of 20.3 m. Compute the total flow rate Q, neglecting minor losses.

EXAMPLE 6.19

Take the same three pipes as in Example 6.17, and assume that they connect three reservoirs at
these surface elevations

z1 =20 m 2 =100 m 73 =40 m

" Find the resulting flow rates in each pipe, neglecting minor losses.
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The ultimate case of a multipipe system is the piping network illustrated in Fig. 6.25.
This might represent a water supply system for an apartment or subdivision or even a
city. This network is quite complex algebraically but follows the same basic rules:

N—=

MOTI IN CONDOTTI MULTIPLI

1. The net flow into any junction must be zero.

2. The net head loss around any closed loop must be zero. In other words, the HGL
at each junction must have one and only one elevation.

3. All head losses must satisfy the Moody and minor-loss friction correlations.

By supplying these rules to each junction and independent loop in the network, one
obtains a set of simultaneous equations for the flow rates in each pipe leg and the HGL
(or pressure) at each junction. Solution may then be obtained by numerical iteration,
as first developed in a hand-calculation technique by Prof. Hardy Cross in 1936 [17].
Computer solution of pipe-network problems is now quite common and covered in at
least one specialized text [18]. Solution on microcomputers is also a reality. Some ex-
plicit numerical algorithms have been developed by Ormsbee and Wood [19]. Network
analysis is quite useful for real water distribution systems if well calibrated with the
actual system head-loss data.
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Hardy Cross Technique for hydraulic networks

When three or more branches occur in a pipe flow system, it is called a
network.

The Hardy Cross technique is a rational approach to the analysis employing
an iterative procedure.

The Cross technique requires that the head loss terms for each pipe in the
system should be expressed in the form:

V: K, popl WV L

— 2 — —
°2g 2gA’ Q "D, 29 D, 2gA*
Lets look at an easy example (pipes of Example 6.18).

h=h +h, =kQ>  h, =K

, I
e’ N

P
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Hardy Cross Technique for hydraulic networks

1. The Cross iteration technique requires an initial estimates of the volume
flow rate for each branch. Clearly at each junction the flow should be
balanced. This step can be made easily by solving the underdetermined
system of equations in the nodes (I and II).

e The fluid tends to follow the path of least resistance. Therefore, a pipe having a
lower value of k will carry a higher flow rate than those having higher values. But

in the present example we may simply assume: 1
Qpot 6 @
. = - 1 —
2. Evaluate the head loss in each pipe (can be negative): | @)

3. Evaluate the total head loss in each circuit, that should be equal to 0O,
with the correct sign s (positive when the flow is concordant with the
circulation):

; S;ih; = ;sjkaf
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Hardy Cross Technique for hydraulic networks

4. Correct the volume flow rate for each branch by a first order iteration for
each circuit ¢ (where the correction should be multiplied by s:

Qr.‘.-ew :Qj +SjAQc

j 8h = SkQ2
ZSIRJ(Q;'JFS;AQC)Z —0 ; it ZC: JRN
C

But ,
S.AQ, 25, AQ,
Y5k (Q +5,0Q,F = 3 s,k,Q7| 1+~ = D 8;k,Qf| 1+— =
C C Qj c Q;
— > 8.h,
2S-AQ Z o -
Zsjh{‘lJr : CJ:O-)AQ S - S (Sj)z 1
¢ 2h,
C j Z =
c Q =
5. lIterate steps 2 to 4 until convergence is found. . 6 (1) I
! 2 =
_Qm
2
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Hardy Cross Technique for hydraulic networks

Now solve this problem with:

1=1.15e-6;

L=[18 15 6 15 15 6 18 15]; meters
Eps=[1 1 1 1 1 1 1 1]*1.5e-6;
D=1 111111 1]%2.907*2.54/100;

Q=0.100m’/s
I

5 @ PO\ _

SO\ 2\

0025 0025 0025 0025

N

._-'.
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Pompe centrifughe
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Effect of cavitation
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%
O
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Flow rate Q

X
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Pompe centrifughe

head required at the pump inlet to keep the liquid from cavitating or boiling. The pump
inlet or suction side is the low-pressure point where cavitation will first occur. The

NPSH is defined as

where p; and V; are the pressure and velocity at the pump inlet and p,, is the vapor pres-
sure of the liquid. Given the left-hand side, NPSH, from the pump performance curve,
we must ensure that the right-hand side is equal or greater in the actual system to avoid
cavitation.
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| 1
800 n= 1170 r/mii
=
z
700 == 363-in dia. ] B
e
< N Potenza
£ 32-in dia.
F 500 —
=
400 L
28-in dia.
300
200
0 4 8

U.S. gallons per minute X 1000
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Accoppiamento

The ultimate test of a pump is its match with the operating-system characteristics. Phys-
ically, the system head must match the head produced by the pump, and this intersec-
tion should occur in the region of best efficiency.

where % K denotes minor losses and V is the flow velocity in the principal pipe. Since
V is proportional to the pump discharge Q, Eq. (11.34) represents a system-head curve

The intersection of the system curve with the pump performance curve H(Q) defines

able if system variables change, but the pump should be changed in size or speed if its

operating point is consistently off design. Of course, a perfect match may not be pos-

sible because commercial pumps have only certain discrete sizes and speeds. Let us il-
_ lustrate these concepts with an example.
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Accoppiamento
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Accopbpiamento

EXAMPLE 11.6

We want to use the 32-in pump of Fig. 11.7a at 1170 r/min to pump water at 60°F from one
reservoir to another 120 ft higher through 1500 ft of 16-in-ID pipe with friction factor f = 0.030.
(a) What will the operating point and efficiency be? (b) To what speed should the pump be
changed to operate at the BEP?

Solution

For reservoirs the initial and final velocities are zero; thus the system head is

V? fL VZ 0.030(1500 ft)
H=z2—731+——=120ft + —
2 AT % D 26 g
From continuity in the pipe, V = Q/A = Q/[+m(i5 ft)*], and so we substitute for V above to get
H, =120 + 0.269Q2 O in ft’/s ()

Since Fig. 11.7a uses thousands of gallons per minute for the abscissa, we convert Q in Eq. (1)
to this unit:

H, =120 + 1.335Q*  Q in 10’ gal/min )

We can plot Eq. (2) on Fig. 11.7a and see where it intersects the 32-in pump-head curve, as in
Fig. E11.6. A graphical solution gives approximately

H =~ 430 ft Q = 15,000 gal/min




Pompe centrifughe
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Accoppiamento

The efficiency is about 82 percent, slightly off design.
An analytic solution is possible if we fit the pump-head curve to a parabola, which is very
accurate

Hyump = 490 — 0.26Q°  Q in 10° gal/min (3)
Equations (2) and (3) must match at the operating point:

490 — 0.260% = 120 + 1.3350?
490 — 120

ar Q=026+ 1335 22
Q = 15.2 X 10° gal/min = 15,200 gal/min Ans. (a)
H = 490 — 0.26(15.2)*> = 430 ft Ans. (a)

To move the operating point to BEP, we change n, which changes both Q = n and H * n?.
From Fig. 11.7a, at BEP, H* = 386 ft; thus for any n, h Also read Q* =
20 X 10° gal/min; thus for any »[J@¥E=I20@MIT0) Match H* to the system characteristics,
Eq. (2),

n

1170

* —
7 386( 1170

2 n 2
) ~ 120 + 1.335(20 —) Ans. (b)

-which gives n* < 0. Thus it is impossible to operate at maximum efficiency with this particular
.system and pump.




Pompe in parallelo

If a pump Provides ieghlieadbuntoolifIedisehargesa possible remedy is to com-

bine two similar sharing the same suction and inlet conditions.

The two pumps in parallel need not be ic 1. Physically, their flow rates will
sum for the same head, as illustrated in Fig. 11.18. If pump A has more head than pump
B, pump B cannot be added in until the operating head is below the shutoff head of
pump B. Since the system curve rises with Q, the combined delivery Q4 will be less

than the separate operating discharges Q4 + Qp but certainly greater than either one.
H y

t Pump A Combined
in parallel
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Pompe in parallelo

flow. The combined brake horsepower is found by adding brake horsepower for each
of pumps A and B at the same head as the operating point. The combined efficiency
equals pg(Qa+p)(Ha+p)/(550 bhp, 4 p).

If pumps A and B are not identical, as in Fig. 11.18, pump B should not be run and
cannot even be started up if the operating point is above its shutoff head.
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Pompe in serie
If a pump provides the right discharge but too little head, consider adding a similar

A. As sketched in Fig. 11.19, the physical principle for summing in series is that the

H,
Pump A

Pump B
0
B A A+B —_ 0
) Operating points
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Pompe in serie

The need for a series arrangement implies that the system curve is steep, i.e., re-

rate. The combined efficiency is

p8(Qa+B)Hy )
550 bhpA +B

similar to ara]lel pumps.

A
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