
Mattingly problem 4.3 (4.1) 

The inlet for a high-bypass-ratio turbofan engine has an area 𝐴1 = 6.0𝑚
2  and is 

designed to have an inlet Mach number 𝑀1 = 0.6. Determine the additive drag at the flight 
conditions of sea-level static test and Mach number of 0.8 at 12-km altitude. 

𝑀1 = 0.6        𝑀0 = 0       𝑝0 = 1.013 ⋅ 10
5 ⋅ 𝑃𝑎        𝐴1 = 6 ⋅ 𝑚

2 

𝐷𝑎𝑑𝑑 = ∫ (𝑝 − 𝑝0)𝑑𝐴𝑥

1

0

= 𝑚̇1𝑉1 + (𝑝1 − 𝑝0)𝐴1 − 𝑚̇0𝑉0 

𝑝1 =
𝑝1
𝑝𝑡1

𝑝𝑡1
𝑝0
𝑝0 = (𝜓1)

−
1
𝑘 ⋅ 1 ⋅ 1.013 ⋅ 105 = (1.072)−

1
0.286 ⋅ 1 ⋅ 1.013 ⋅ 105 = 79.4 ⋅ 𝑘𝑃𝑎 

𝜓1 = 1 +
γ − 1

2
𝑀1
2 = 1 + 0.2 ⋅ 0.62 = 1.072 

𝑚̇1𝑉1 = ρ1𝑉1
2𝐴1 = ρ1𝑉1

2𝐴1
𝑝1
𝑝1
= 𝑉1

2𝐴1
𝛾𝑝1
𝛾𝑅𝑇1

= 𝛾𝑝1𝑀1
2𝐴1 = 1.4 ⋅ 79.4 ⋅ 10

3 ⋅ 0.62 ⋅ 6

= 24.0 ⋅ 104 ⋅ 𝑁 
(𝑝1 − 𝑝0)𝐴1 = (79.4 − 101.3)6 ⋅ 103 = −131.4 ⋅ 103 ⋅ 𝑁 

𝐷𝑎𝑑𝑑 = 𝑚̇1𝑉1 + (𝑝1 − 𝑝0)𝐴1 − 𝑚̇0𝑉0 = 24.0 ⋅ 10
4 − 131.4 ⋅ 104 = 108.6 ⋅ 𝑘𝑁 

𝐷𝑎𝑑𝑑
𝑝𝑜𝐴1

=
108.6

1.013 ⋅ 105 ⋅ 6
= 0.1787 

𝐷𝑎𝑑𝑑
𝑝𝑜𝐴1

= 𝛾𝑀1 (
𝜓0
𝜓1
)
𝐾

(𝑀1√
𝜓0
𝜓1
−𝑀0) + (

𝜓0
𝜓1
)

𝛾
𝛾−1

− 1 = 𝐴 + 𝐵 

𝐴 = 𝛾𝑀1 (
𝜓0
𝜓1
)
𝐾

(𝑀1√
𝜓0
𝜓1
−𝑀0)               𝐵 = (

𝜓0
𝜓1
)

𝛾
𝛾−1

− 1                     𝐾 =
𝛾 + 1

2(𝛾 − 1)
= 3 

𝜓0 = 1 +
𝛾 − 1

2
𝑀0
2 = 1 + 0.2 ⋅ 02 = 1.000         𝜓1 = 1 +

𝛾 − 1

2
𝑀1
2 = 1 + 0.2 ⋅ 0.62 = 1.072 

𝐴 = 1 + (
𝜓0
𝜓1
)
𝐾

(𝑀1√
𝜓0
𝜓1
−𝑀0) = 1 + (

1

1.072
)
3

(0.6√
1

1.072
− 0) = 0.395 

𝐵 = (
𝜓0
𝜓1
)

𝛾
𝛾−1

− 1 = (
1

1.072
)
0.286

− 1 =  −0.216       
𝐷𝑎𝑑𝑑
𝑝𝑜𝐴1

= 𝐴 + 𝐵 = 0.395 − 0.216 = 0.179 

Mach number of 0.8 at 12-km altitude 

𝑀1 = 0.6        𝑀0 = 0.8       𝑝0 = 19.4 ⋅ 𝑘𝑃𝑎        𝐴1 = 6 ⋅ 𝑚
2 

𝑀0 = 0.8   
    𝐼𝑆𝑂   
→       

𝐴0
𝐴∗
= 1.038       

𝑝0
𝑝𝑡0

= 0.656       

𝑀1 = 0.6   
    𝐼𝑆𝑂   
→       

𝐴1
𝐴∗
= 1.188       

𝑝1
𝑝𝑡1

= 0.784      

𝑝1 =
𝑝1
𝑝𝑡1

𝑝𝑡1
𝑝𝑡0

𝑝𝑡0
𝑝0
𝑝0 =

0.784

0.656
⋅ 19.4 = 23.2 ⋅ 𝑘𝑃𝑎 



𝐴0 =
𝐴0
𝐴∗
𝐴∗

𝐴1
𝐴1 =

1.038

1.188
6 = 5.24 ⋅ 𝑚2 

𝑚̇1𝑉1 = ρ1𝑉1
2𝐴1 = ρ1𝑉1

2𝐴1
𝑝1
𝑝1
= 𝑉1

2𝐴1
𝛾𝑝1
𝛾𝑅𝑇1

= 𝛾𝑝1𝑀1
2𝐴1 = 1.4 ⋅ 23.2 ⋅ 0.6

2 ⋅ 6 = 70.2 ⋅ 𝑘𝑁 

𝑚̇0𝑉0 = 𝛾𝑝0𝑀0
2𝐴0 = 1.4 ⋅ 19.4 ⋅ 0.8

2 ⋅ 5.24 = 91.1 ⋅ 𝑘𝑁 

(𝑝1 − 𝑝0)𝐴1 = (23.2 − 19.4)6 ⋅ 103 = 22.8 ⋅ 𝑘𝑁 

𝐷𝑎𝑑𝑑 = 70.2 + 22.8 − 91.1 = 1.9 ⋅ 𝑘𝑁 

𝐷𝑎𝑑𝑑
𝑝𝑜𝐴1

=
1.9

19.4 ⋅ 103 ⋅ 6
= 0.01632           𝜓0 = 1 +

𝛾 − 1

2
𝑀0
2 = 1 + 0.2 ⋅ 0.82 = 1.128          

𝐴 = 𝛾𝑀1 (
𝜓0
𝜓1
)
𝐾

(𝑀1√
𝜓0
𝜓1
−𝑀0) = 1.4 ⋅ 0.6 ⋅ (

1.128

1.072
)
3

(0.6√
1.128

1.072
− 0) = −0.1806 

𝐵 = (
𝜓0
𝜓1
)

𝛾
𝛾−1

− 1 = (
1.128

1.072
)
0.286

− 1 =  0.1949        

𝐷𝑎𝑑𝑑
𝑝𝑜𝐴1

= 𝐴 + 𝐵 = −0.1806 + 0.1949 = 0.0143 



Farokhi problem 6.3 

Consider a subsonic inlet at a flight cruise Mach number of 0.8. The captured 
streamtube undergoes a prediffusion external to the inlet lip, with an area ratio 𝐴0/𝐴1 =
0.92 as shown. Calculate 

 
(a) Cp  (i.e., the pressure coefficient) at the stagnation point 

𝑐𝑝 =
𝑝𝑡0 − 𝑝0
1
2 𝜌0𝑉0

2 
=

𝛾𝑝0
1
2 𝛾𝜌0𝑉0

2 
(
𝑝𝑡0
𝑝0
− 1) =

𝑎0
2

1
2 𝛾𝑉0

2 
(
𝑝𝑡0
𝑝0
− 1) =

2

𝛾𝑀0
2 (
𝑝𝑡0
𝑝0
− 1) 

𝐴

𝐴∗
=
Ψ∗

Ψ
=

0.810

𝛾𝑀 (1 +
𝛾 − 1
2 𝑀2)

−𝐾                        𝐾 =
𝛾 + 1

2(𝛾 − 1)
 

𝑀0  
   𝐼𝑆𝑂    
→        

𝑝𝑜
𝑝𝑡0

= 0.656      
𝑇𝑜
𝑇𝑡0
= 0.887     

𝐴0
𝐴∗
= 1.038   

𝑐𝑝 =
2

𝛾𝑀0
2 (
𝑝𝑡0
𝑝0
− 1) =

2

1.4 ⋅ 0.82
(
1

0.656
− 1) = 1.171 

(b) inlet lip Mach number M1 

𝐴1
𝐴∗
=
𝐴1
𝐴0

𝐴0
𝐴∗
=
1.038

0.92
= 1.128      

   𝐼𝑆𝑂  
→         𝑀1 = 0.658    

𝑇1
𝑇𝑡1
=     0.920    

𝑝1
𝑝𝑡1
= 0.748 

(c) lip contraction ratio 𝐴1/𝐴𝑡h for a throat Mach number 𝑀𝑡h = 0.75 (assume 𝑝𝑡,𝑡h/𝑝𝑡1 = 1) 

𝑀𝑡h = 0.75    
   𝐼𝑆𝑂  
→         

𝐴𝑡h
𝐴∗
= 1.062    

𝐴1
𝐴𝑡h

=
𝐴1
𝐴∗
𝐴∗

𝐴𝑡h
=
1.128

1.062
= 1.062 

(d) the diffuser area ratio 𝐴2/𝐴𝑡h if 𝑀2 = 0.5 and 𝑝𝑡2/𝑝𝑡,𝑡h = 0.98 

𝑀2 = 0.5   
   𝐼𝑆𝑂  
→         

𝐴2
𝐴∗
= 1.340        

𝐴2
𝐴𝑡h
|
𝑖𝑑𝑒𝑎𝑙

=
𝐴2
𝐴∗
𝐴∗

𝐴𝑡h
=
1.340

1.062
= 1.262       

𝐴2
𝐴𝑡h

=
𝐴2
𝐴𝑡h
|
𝑖𝑑𝑒𝑎𝑙

⋅
𝑝𝑡,𝑡h
𝑝𝑡2

=
1.262

0.98
= 1.288 

(e) the nondimensional inlet additive drag 𝐷𝑎𝑑𝑑/𝑝0𝐴1 

𝐷𝑎𝑑𝑑 = 𝑚̇1𝑉1 + (𝑝1 − 𝑝0)𝐴1 − 𝑚̇0𝑉0 

𝑎1
𝑎0
= √

𝑇1
𝑇𝑡1

𝑇𝑡0
𝑇0
= √

0.920

0.887
= 1.018        

𝑝1
𝑝0
=
𝑝1
𝑝𝑡1

𝑝𝑡1
𝑝𝑡0

𝑝𝑡0
𝑝0
= 0.748 ⋅ 1

1

0.656
= 1.140 



𝐷𝑎𝑑𝑑
𝑝0𝐴1

=
(𝑝1 − 𝑝0)𝐴1
𝑝0𝐴1

+
𝑚̇0
𝑝0𝐴1

(𝑉1 − 𝑉0) = (
𝑝1
𝑝0
− 1) +

𝛾ρ0𝑉0
2𝐴0

𝛾𝑝0𝐴1

(𝑉1 − 𝑉0)

𝑉0

= (
𝑝1
𝑝0
− 1) +

𝛾𝑀0
2𝐴0
𝐴1

(
𝑉1
𝑉0
− 1) = (

𝑝1
𝑝0
− 1) + 𝛾

𝐴0
𝐴1
𝑀0 (𝑀1

𝑎1
𝑎0
−𝑀0)

= 0.140 + 1.4 ⋅ 0.92 ⋅ 0.8(0.658 ⋅ 1.018 − 0.8) = 5.890 ⋅ 10−3 

 



Farokhi problem 6.17 

A normal-shock inlet is operating in a supercritical mode, as shown. Flight Mach number is 
𝑀0 = 1.6. The inlet capture area ratio 𝐴0/𝐴1 =  0.90 and the diffuser area ratio 𝐴2/𝐴1 = 1.2 
and 𝑝𝑡2/𝑝𝑡1 = 0.95 Calculate 
(a) 𝑀1,  𝑀2 
(b) inlet total pressure recovery 𝜋𝑑, i.e. 𝑝𝑡2/𝑝𝑡0 
 

 

𝑀0 = 1.6    
     𝑁𝑆𝑊    
→          𝑀0𝑣 = 0.668         

𝑝𝑡0𝑣
𝑝𝑡0

= 0.895 

𝑀0𝑣 = 0.668      
    𝐼𝑠𝑜    
→       

𝐴0𝑣
𝐴0𝑣
∗ = 1.120       

𝐴1
𝐴1
∗ =

𝐴1
𝐴0

  
𝐴0
𝐴𝑜𝑣

 
𝐴0𝑣
𝐴0𝑣
∗ =

1

0.90
1 ⋅ 1.120 = 1.244      

    𝐼𝑆𝑂    
→        𝑀1 = 0.557 

𝐴2
𝐴2
∗ =

𝐴2
𝐴1

  
𝐴1
𝐴1
∗  
𝐴1
∗

𝐴2
∗ = 1.2 ⋅ 1.244 ⋅ 0.95 = 1.418      

    𝐼𝑆𝑂    
→        𝑀2 = 0.463 

𝑝𝑡2
𝑝𝑡0

=
𝑝𝑡2
𝑝𝑡1

𝑝𝑡1
𝑝𝑡0𝑣

𝑝𝑡0𝑣
𝑝𝑡0

= 0.95 ⋅ 1 ⋅ 0.895 = 0.850 

 

 



Farokhi problem 6.18 

An isentropic convergent–divergent supersonic inlet is designed for 𝑀0 = 1.6. Calculate 
the inlet’s 
(a) area contraction ratio 𝐴1/𝐴𝑡h 
(b) subsonic Mach number where the throat first chokes  

𝑀0 = 1.6         
    𝐼𝑠𝑜    
→          

𝐴0
𝐴0
∗ =

𝐴1
𝐴1
∗ =

𝐴1
𝐴𝑡h

= 1.250          
    𝐼𝑠𝑜    
→          𝑀𝑠𝑢𝑏 = 0.553 

(c) percent spillage at 𝑀0 = 0.7  

(d) percent spillage at 𝑀0 = 1.6 (in the unstarted mode)  

 

%𝑆𝑃 =
𝑚̇𝑠
𝑚̇𝑡0𝑡

=
𝑚̇∞−𝑚̇0
𝑚̇∞

= 1 −
𝑚̇0
𝑚̇∞

 

𝑚̇0 = 𝑚̇1 =
𝑝𝑡1𝐴1

∗Ψ∗

𝑎𝑡
         𝑚̇∞ = 𝑚̇0

𝐴1
𝐴0

       
𝑚̇0
𝑚̇∞

=
𝐴0
𝐴1
=
𝐴0
𝐴0
∗

𝐴0
∗

𝐴1
∗

𝐴1
∗

𝐴1
  𝑑𝑜𝑣𝑒 𝑖𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑒  

𝐴0
∗

𝐴1
∗ =

𝑝𝑡1
𝑝𝑡0

 

𝑀0 = 0.7      
    𝐼𝑠𝑜    
→          

𝐴0
𝐴0
∗ = 1.094       

𝐴1
𝐴1
∗ =

𝐴1
𝐴𝑡h

= 1.250 

%𝑆𝑃 =
𝑚̇𝑠
𝑚̇𝑡0𝑡

= 1 −
𝐴0
𝐴0
∗

𝑝𝑡1
𝑝𝑡0

𝐴1
∗

𝐴1
= 1 − 1.094 ⋅ 1 ⋅

1

1.250
= 12.48% 

𝑀0 = 1.6      
    𝐼𝑠𝑜    
→          

𝐴0
𝐴0
∗ = 1.250       

𝐴1
𝐴1
∗ =

𝐴1
𝐴𝑡h

= 1.250 

𝑀0 = 1.6      
    𝑁𝑆𝑊    
→          

𝑝𝑡1
𝑝𝑡0

= 0.895 

%𝑆𝑃 =
𝑚̇𝑠
𝑚̇𝑡0𝑡

= 1 −
𝐴0
𝐴0
∗

𝑝𝑡1
𝑝𝑡0

𝐴1
∗

𝐴1
= 1 − 1.250 ⋅ 0.895 ⋅

1

1.250
= 10.50% 

(e) overspeed Mach number to start this inlet, M overspeed  

𝑀𝑠𝑢𝑏 = 0.553   
    𝑁𝑆𝑊   
→            𝑀𝑜𝑣𝑒𝑟 = 2.16 

(f) throat Mach number after the inlet was started, with still M overspeed as the flight Mach 
number  

𝑀𝑜𝑣𝑒𝑟 = 2.16           
       𝐼𝑆𝑂    
→          

𝐴1
𝐴∗
= 1.935           

𝐴𝑡h
𝐴∗
=
𝐴𝑡h
𝐴1

𝐴1
𝐴∗
=
1.935

1.250
= 1.548 



𝐴𝑡h
𝐴∗
= 1.548        

       𝐼𝑆𝑂    
→              𝑀𝑡h = 1.894 

 



Farokhi problem 6.23 

 

 

𝑀𝐷 = 1.7           
     𝑁𝑆𝑊    
→              𝑀𝑣 = 0.641      

     𝐼𝑆𝑂    
→           

𝐴1
𝐴∗
=
𝐴1
𝐴𝑡h

= 1.144 

𝑀𝐷 = 1.7             
    𝐼𝑆𝑂      
→           

𝐴1
𝐴∗
= 1.338            

𝐴𝑡h
𝐴∗
=
𝐴𝑡h
𝐴∗
𝐴1
𝐴∗
=
1.338

1.144
= 1.170     

𝐼𝑆𝑂
→      𝑀𝑡h = 1.491  

𝑀𝑡h = 1.491       
     𝑁𝑆𝑊    
→              

𝑝𝑡2
𝑝𝑡1
= 0.933 

𝑀𝐷 = 1.7       
     𝑁𝑆𝑊    
→              

𝑝𝑡2
𝑝𝑡1

= 0.856 

 
 

 
 



Farokhi problem 6.43 

A convergent nozzle experiences 𝜋𝑛 of 0.98, the gas ratio of specific heats 𝛾 = 1.30, and 
the gas constant is 𝑅 = 291 𝐽/𝑘𝑔𝐾. First, calculate the minimum nozzle pressure ratio that 
will choke the expanding nozzle, i.e., 𝑁𝑃𝑅𝑐𝑟𝑖𝑡. This nozzle operates, however, at a higher 

NPR than the critical, namely, NPR=4. 2 and with an inlet stagnation temperature of 𝑇𝑡7  =
 939𝐾. Assuming this nozzle operates in 𝑝0 = 100𝑘𝑃𝑎  ambient static pressure, calculate: 

𝛾 = 1.3         𝑘 =
𝛾 − 1

𝛾
=
0.3

1.3
= 0.231          𝜓(𝑀 = 1) = 1 +

γ − 1

2
= 1 + 0.15   = 1.150 

𝑝𝑡8
𝑝8
= 𝜓

1
𝑘 = 1.15

1
0.231 = 1.831      𝑁𝑃𝑅𝑐𝑟𝑖𝑡 =

𝑝𝑡7
𝑝0
=
𝑝𝑡7
𝑝8
=
𝑝𝑡7
𝑝𝑡8

𝑝𝑡8
𝑝8
=
1

π𝑛

𝑝𝑡8
𝑝8
=
1.831

0.98
= 1.868 

(a) the exit static pressure and temperature 𝑝9 and 𝑇9, respectively  

𝑁𝑃𝑅 =
𝑝𝑡7
𝑝0
= 4.2       𝑝𝑡7 = 𝑁𝑃𝑅 ⋅ 𝑝0 = 4.2 ⋅ 100 = 420 ⋅ 𝑘𝑃𝑎  

𝑝𝑡8 = 𝑝𝑡7π𝑛 = 420 ⋅ 0.98 = 412 ⋅ 𝑘𝑃𝑎          𝑝9 = 𝑝8 =
𝑝8
𝑝𝑡8
𝑝𝑡8 =

412

1.831
= 225 ⋅ 𝑘𝑃𝑎 

𝑇9 = 𝑇8 =
𝑇𝑡7
𝜓
=
939

1.150
= 817 ⋅ 𝐾 

(b) the actual exit velocity 𝑉9 in m/s  

𝑉9 = 𝑎9 = √𝛾𝑅𝑇9 = √1.3 ⋅ 291 ⋅ 817 = 556 ⋅
𝑚

𝑠
 

(c) nozzle adiabatic efficiency 𝜂𝑛   

𝜂𝑛 =
ℎ𝑡7 − ℎ9
ℎ𝑡7 − ℎ9𝑠

=
𝑉9
2/2

𝑉9𝑠
2 /2

=   
(𝑁𝑃𝑅

𝑝0
𝑝9
)
𝑘9
− 𝜋𝑛

−𝑘9

(𝑁𝑃𝑅
𝑝0
𝑝9
)
𝑘9
− 1

=
1.8680.231 − 0.98−0.231

1.8680.231 − 1
=
1.155 − 0.98−0.231

1.155 − 1

= 0.970 

(d) the ideal exit velocity 𝑉9𝑠 in m/s  

𝑉9𝑠 =
𝑉9

√𝜂𝑛
=

556

√0.970
= 565 ⋅

𝑚

𝑠
 

(e) percentage gross thrust gain, had we used a convergent–divergent nozzle with perfect 
expansion  

𝐹𝑢𝑐𝑜𝑛𝑣
𝑚̇8𝑎8

=
𝑉8
𝑎8
+ 𝐴8

𝑝8 − 𝑝0
𝑚̇8𝑎8

=
𝑉8
𝑎8
+
𝑝8 − 𝑝0
𝑝8

𝑝8𝐴8
𝑚̇8𝑎8

=
𝑉8
𝑎8
+
𝑝8 − 𝑝0
𝑝8

 𝛾𝑝8
𝐴8

𝛾𝜌8𝑉8𝐴8𝑎8

=
𝑉8
𝑎8
+
𝑝8 − 𝑝0
𝑝8

𝑎8
2

𝛾𝑉8𝑎8
= 1 + (1 −

100

225
)
1

1.3
= 1.427 

𝐹𝑢𝑐𝑜𝑛𝑣𝑑𝑖𝑣
𝑚̇8𝑎8

=
𝑉9
𝑎8

          
𝑇9
𝑇𝑡9
= (

𝑝9
𝑝𝑡9
)
𝑘

= (
𝑝9
𝑝𝑡7

𝑝𝑡7
𝑝𝑡9
)
𝑘

= (
𝑝0
𝑝𝑡7

𝑝𝑡7
𝑝𝑡9
)
𝑘

= (
1

𝑁𝑃𝑅

1

𝜋𝑛
)
𝑘

= (
1

4.2

1

0.98
)
0.231

= 0.721 

𝑇9 =
𝑇9
𝑇𝑡9
𝑇𝑡7 = 0.721 ⋅ 939 = 677 ⋅ 𝐾           𝑎9 = √𝛾𝑅𝑇9 = √1.3 ⋅ 291 ⋅ 677 = 506 ⋅

𝑚

𝑠
 



𝑇𝑡9
𝑇9
= 𝜓9 = 1 +

γ − 1

2
𝑀9
2         𝑀9 = √

2

𝛾 − 1
(𝜓9 − 1) = √

2

0.3
(
1

0.721
− 1) = 1.606        

𝑉9 = 𝑀9𝑎9 = 1.606 ⋅  506 = 813 ⋅
𝑚

𝑠
 

𝐹𝑢𝑐𝑜𝑛𝑣𝑑𝑖𝑣
𝑚̇8𝑎8

=
𝑉9
𝑎8
=
813

556
= 1.462         %𝐹 =

𝐹𝑢𝑐𝑜𝑛𝑣𝑑𝑖𝑣 − 𝐹𝑢𝑐𝑜𝑛𝑣
𝐹𝑢𝑐𝑜𝑛𝑣

=
1.462 − 1.427

1.427
= 2.45%  

(f) nozzle discharge coefficient 𝐶𝐷8 

𝐶𝐷8 =
𝑚̇8

𝑚̇8𝑖𝑑𝑒𝑎𝑙
= 𝜋𝑛 = 0.98 

(g) draw a qualitative wave pattern in the exhaust plume  
 

 
 



Farokhi problem 6.44 

 
 

𝐶𝐴3𝐷 =
1 + cos(𝛼)

2
=
1 + cos(25)

2
= 0.953                                𝐶𝐴2𝐷 =

sin(𝛼)

𝛼
=
sin(25)

25
𝜋
180

= 0.969 

 
 

 



Mattingly 2.6 

 

 

𝐷𝑟𝑎𝑚 = 𝑚̇𝑎𝑖𝑟𝑉0 = 1500 ⋅ 450 = 675 ⋅ 10
3
𝑙𝑏𝑚 ⋅ 𝑓𝑡

𝑠2
= 675 ⋅ 103 ⋅

0.454 ⋅ 𝑘𝑔 ⋅ 0.305 ⋅ 𝑚

𝑠2

= 675 ⋅ 103 ⋅ 0.1383
𝑘𝑔 ⋅ 𝑚

𝑠2
= 93.4 ⋅ 𝑘𝑁 

𝐹𝑐𝑜𝑟𝑒 = 𝑚̇9𝑉9 = 250 ⋅ 1200 = 300 ⋅ 10
3
𝑙𝑏𝑚 ⋅ 𝑓𝑡

𝑠2
= 41.5 ⋅ 𝑘𝑁 

𝐹𝑏𝑦 = −𝑚̇19𝑉19 cos(60) = 1250 ⋅
890

2
= −556 ⋅ 103

𝑙𝑏𝑚 ⋅ 𝑓𝑡

𝑠2
= −76.9 ⋅ 𝑘𝑁 

𝐹 = 𝐹𝑏𝑦 + 𝐹𝑐𝑜𝑟𝑒 − 𝐷𝑟𝑎𝑚 = −556 + 300 − 675 = −931 ⋅ 10
3
𝑙𝑏𝑚 ⋅ 𝑓𝑡

𝑠2
= −128.8 ⋅ 𝑘𝑁 

 


