Miscele by Tom

Due gas (vedi tabella) sono miscelati a volume costante. Determinare: $n, \chi, MW_m, w_i, \bar{c}_{vm}, \bar{c}_{pm}, c_v, c_p, R, T_m, p_i, V, V_i e \gamma_m$.

Specie	Massa kg	MW	N freedom	Т
N2	8	28	5	300
CO2	2	44	7	800
Tot	10			
Ro	8314.5	J/kmolK		
р	101300	Ра		
	n Kmole	χ,p/pm,V/\	χ*MW	wi=mi/m
N2	0.28571	0.862745	24.15686	0.8
CO2	0.04545	0.137255	6.039216	0.2
Tot	0.33117	1	30.19608	

$$\begin{split} n_{N_2} &= \frac{m_{N_2}}{MW_{N_2}} = \frac{8}{28} = 0.286 \cdot kmol \qquad n_{CO_2} = \frac{m_{CO_2}}{MW_{CO_2}} = \frac{2}{44} = 0.0455 \cdot kmol \\ n_m &= n_{N_2} + n_{CO_2} = 0.286 + 0.0455 = 0.332 \cdot kmol \\ \chi_{N_2} &= \frac{n_{N_2}}{n_m} = \frac{0.286}{0.332} = 0.861 \qquad \chi_{CO_2} = 1 - \chi_{N_2} = 1 - 0.861 = 0.139 \\ MW_m &= \chi_{N_2} MW_{N_2} + \chi_{CO_2} MW_{CO_2} = \frac{m_m}{n_m} = \frac{10}{0.332} = 30.1 \cdot \frac{kg}{kmol} \\ w_{N_2} &= \frac{m_{N_2}}{m_m} = \frac{8}{10} = 0.8 \qquad \dots \\ \bar{c}_{vN_2} &= \bar{R} \frac{5}{2} = 8314.5 \cdot \frac{5}{2} = 20.8 \cdot \frac{kJ}{kmole \cdot K} \qquad \bar{c}_{vCO_2} = \bar{R} \frac{7}{2} = 8314.5 \cdot \frac{7}{2} = 29.1 \cdot \frac{kJ}{kmole \cdot K} \\ \bar{c}_{vm} &= \bar{c}_{vN_2} \chi_{N_2} + \bar{c}_{vCO_2} \chi_{CO_2} = 20.8 \cdot 0.861 + 29.1 \cdot (1 - 0.861) = 21.9 \cdot \frac{kJ}{kmole \cdot K} \\ \bar{c}_{pm} &= \bar{c}_{vm} + \bar{R} = 21.9 + 8.3145 = 30.2 \cdot \frac{kJ}{kmole \cdot K} \\ c_{vN_2} &= \frac{\bar{C}_{vN_2}}{MW_{N_2}} = \frac{20.8}{28} = 743 \cdot \frac{J}{kg \cdot K} \qquad \dots \\ c_{vm} &= \frac{\bar{c}_{vm}}{MW_m} = \frac{21.9}{30.1} = 728 \cdot \frac{J}{kg \cdot K} \\ R &= \frac{\bar{R}}{MW_m} = \frac{8314.5}{30.1} = 276 \cdot \frac{J}{kg \cdot K} \\ T_M &= \frac{c_{vN_2} w_{N_2} T_{N_2} + c_{vCO_2} w_{CO_2} T_{CO_2}}{c_{vm}}} = \frac{743 \cdot 0.8 \cdot 300 + 661 \cdot 0.2 \cdot 800}{728} = 390 \cdot K \end{split}$$

$$p_{N2} = p_m \chi_{N_2} = 101.3 \cdot 0.861 = 87.2 \cdot kPa \qquad \dots$$
$$V_m = \frac{n_{N_2} \bar{R} T_m}{p_{N_2}} = \frac{n_m \bar{R} T_m}{p_m} = \frac{0.332 \cdot 8314.5 \cdot 390}{101,300} = 10.63 \cdot m^3$$
$$V_{N_2} = V_m \chi_{N_2} = \frac{n_{N_2} \bar{R} T_m}{p_m} = 10.63 \cdot 0.861 = 9.15 \cdot m^3 \qquad \dots$$
$$\gamma_m = \frac{\bar{c}_{pm}}{\bar{c}_{vm}} = \frac{30.2}{21.9} = 1.379$$

j/kmolK	сv	cv*χ	Ср	cp*χ
N2	20786.3	17933.24	29100.75	25106.529
CO2	29100.8	3994.221	37415.25	5135.4265
	medio	21927.46		30241.956
	J/kgK			
	сv	cv wi	ср	cp wi
N2	742.366	593.8929	1039.313	831.45
CO2	661.381	132.2761	850.3466	170.06932
	Medio	726.169		1001.5193
γ	1.37918			
	wi cv T	wi cp T	R	R wi
N2	178168	249435	296.9464	237.55714
CO2	105821	136055.5	188.9659	37.793182
Somma	283989	385490.5		275.35032
Tm	391.078	384.9057		
		V costante	p costante	
	Vm	10.63016	10.46238	
	рі	Vi	Vi	
N2	87396.1	9.171114	9.026366	
CO2	13903.9	1.459041	1.436013	
		10.63016	10.46238	

Write the chemical reaction for the complete combustion of JP-4 and air. JP-4 has the formula CH_{1.93}. Also, calculate the stoichiometric fuel-to-air ratio for this blended jet fuel.

 $CH_{1.93} + x(O_2 + 3.76N_2) \rightarrow CO_2 + yH_2O + z3.76N_2$ $x = z \qquad 2y = 1.93 \qquad 2x = 2 + y$ $2x = 2 + \frac{1.93}{2} \rightarrow 2x = \frac{4 + 1.93}{2} \rightarrow x = \frac{5.93}{4}$ $CH_{1.93} + \frac{5.93}{4}(O_2 + 3.76N_2) \rightarrow CO_2 + \frac{1.93}{2}H_2O + \frac{5.93}{4}3.76N_2$ $f = \frac{\dot{m}_f}{\dot{m}_0} = \frac{1 \cdot 12 + 1 \cdot 1.93}{\frac{5.93}{4}(2 \cdot 16 + 3.76 \cdot 2 \cdot 14)} = 0.0684$

Calculate the lower and higher heating values of octane, C₈H₁₈,in the stoichiometric chemical reaction with oxygen at a reference temperature of 298.16 K and the pressure of 1 bar ($h_{WWW} = 2243 k I/k a$)

I Dar $(n_{VapH_2O} =$	$I \text{ Dar}(n_{VapH_2O} = 2243 \text{ kJ/kg}).$							
CO ₂	Carbon dioxide	Gas	-393.522	-8.944				
CO	Carbon monoxide	Gas	-110.53	-3.947				
H_2	Hydrogen	Gas	0	0				
Н	Hydrogen atom	Gas	217.999	217.999				
OH	Hydroxyl radical	Gas	39.463	2.321				
H_2O	Water	Gas	-241.827	-13.435				
H_2O_2	Hydrogen peroxide	Gas	-136.106	-4.003				
C_2H_5OH	Ethyl alcohol	Liquid	-277.20	-6.026				
C_3H_8	Propane	Gas	-103.90	-2.3614				
C_4H_{10}	Butane	Gas	-126.148	-2.175				
$C_{8}H_{18}$	Octane	Gas	-208.447	-1.8285				
$C_{8}H_{18}$	Octane	Liquid	-249.93	-2.1924				

$$\begin{aligned} C_8 H_{18} + \frac{25}{2} O_2 &\to 8CO_2 + 9H_2O \\ Q_{ext} &= \sum_j \left[n_j \bar{c}_{pj} (T_2 - T_f) \right]_{prod} - \sum_i \left[n_i \bar{c}_{pi} (T_1 - T_f) \right]_{rea} + \Delta H_{RPf} \\ Q_{ext} &= \Delta H_{RPf} = \sum_j \left[n_j \Delta \bar{h}_{fj}^0 \right]_{prod} - \sum_i \left[n_i \Delta \bar{h}_{fi}^0 \right]_{rea} = -8 \cdot 394 - 9 \cdot 242 - (-208) \\ &= -5120 \cdot \frac{kJ \cdot kmol}{gmol} = -5.120 \cdot MJ \\ LHV &= \frac{-Q_{ext}}{m_f} = \frac{5114 \cdot 10^3}{12 \cdot 8 + 1 \cdot 18} = 44.5 \cdot 10^3 \cdot \frac{kJ}{kg} \\ HHV &= LHV + \frac{m_{H_2O}}{m_{c_8H_{18}}} h_{VapH_2O} = 44.5 \cdot 10^3 + \frac{18 \cdot 9}{12 \cdot 8 + 1 \cdot 18} 2243 = 47.7 \cdot 10^3 \cdot \frac{kJ}{kg} \end{aligned}$$

One mole of octane is burned with 120% theoretical air. Assuming that the octane and air enter the combustion chamber at 25C and the excess oxygen and nitrogen in the reaction will not dissociate, calculate

(a) the fuel-air ratio

(b) the equivalence ratio ϕ

(c) the adiabatic flame temperature T_{af}

Assume: $\bar{c}_{pCO_2} = 61.9kJ/kmol \cdot K$, $\bar{c}_{pO_2} = 37.8kJ/kmol \cdot K$, $\bar{c}_{pN_2} = 33.6kJ/kmol \cdot K \bar{c}_{pH_2O} = 52.3kJ/kmol \cdot K$

(d) Evaluate also the flame temperature by considering non constant specific heat.

%Oss	1.2		FA7.9						
Reagenti	n	MW	h0f	Prodotti	n	MW	h0f	ср	
C8H18	1	114	-208.447	CO2	8	44	-393.522		61.9
02	15	32		H2O	9	18	-241.827		52.3
N2	56.4	28		N2	56.4	28			33.6
Tot	72.4			02	2.5	32			37.8
Tot	298.15			Tot	75.9				
mf	114		ΔH	-5.116E+06					
mair	2059.2			Stima	Valore me	dio esatto			
f	0.05536		Cpm	38.938603	36.4777				
fst	0.06643		Т	2029.2633	2146.04				
ϕ	0.83333		Dif	-324,038					
Tf guess	2029		Err%	-6.334E+00					

 $C_{8}H_{18} + x(O_{2} + 3.76N_{2}) \rightarrow 8CO_{2} + 9H_{2}O + x3.76N_{2}$ $2x = 16 + 9 \rightarrow x = 25/2 = 12.5$ $C_{8}H_{18} + 12.5(O_{2} + 3.76N_{2}) \rightarrow 8CO_{2} + 9H_{2}O + 12.5 \cdot 3.76N_{2}$ $\alpha = 0.2 \quad x = 12.5$ $C_{8}H_{18} + (1 + \alpha)x(O_{2} + 3.76N_{2}) \rightarrow 8CO_{2} + 9H_{2}O + yO_{2} + (1 + \alpha)x3.76N_{2}$ $y = \alpha x = 12.5 \cdot 0.2 = 2.5 \quad (1 + \alpha)x = 1.2 \cdot 12.5 = 15$ $C_{8}H_{18} + 15(O_{2} + 3.76N_{2}) \rightarrow 8CO_{2} + 9H_{2}O + 2.5O_{2} + 15 \cdot 3.76N_{2}$ (a) the fuel-air ratio $f = \frac{\dot{m}_{f}}{\dot{m}_{0}} = \frac{8 \cdot 12 + 18 \cdot 1}{15(2 \cdot 16 + 3.76 \cdot 2 \cdot 14)} = \frac{114}{2060} = 0.0553$

(b) the equivalence ratio ϕ

$$\phi = \frac{f}{f_{st}} = \frac{0.0554}{\frac{8 \cdot 12 + 18 \cdot 1}{12.5(2 \cdot 16 + 3.76 \cdot 2 \cdot 14)}} = \frac{1}{\alpha} = 0.833$$

(c) the adiabatic flame temperature T_{af} ($T_f = 25^{\circ}C$)

$$Q_{ext} = \sum_{j} [n_{j} \bar{c}_{pj} (T_{2} - T_{f})]_{prod} - \sum_{i} [n_{i} \bar{c}_{pi} (T_{1} - T_{f})]_{rea} + \Delta H_{RPf}$$

$Q_{ext} = 0 = \sum_{j} \left[n_j \bar{c}_{pj} \left(T_2 - T_f \right) \right]_{prod} + \Delta H_{RPf}$
$\Delta H_{RPf} = \sum_{j} \left[n_{j} \Delta \bar{\mathbf{h}}_{fj}^{0} \right]_{prod} - \sum_{i} \left[n_{i} \Delta \bar{\mathbf{h}}_{fi}^{0} \right]_{rea} = 10^{3} \left(-8 \cdot 394 - 9 \cdot 242 - (-1 \cdot 208) \right)$
$= -5120 \cdot \frac{MJ}{kmol_{C_8H_{18}}}$
$n_m = 8 + 9 + 2.5 + 15 \cdot 3.76 = 75.9$
$c_{pm_{prod}} = \sum \chi_j \bar{c}_{pj} = \frac{8 \cdot 61.9 + 9 \cdot 52.3 + 2.5 \cdot 37.8 + 15 \cdot 3.76 \cdot 33.6}{75.9} = 38.9 \cdot \frac{kJ}{kmol \cdot K}$
$n_m c_{pm_{prod}} (T_2 - T_f) = -\Delta H_{RPf}$
$T_2 = T_f - \frac{\Delta H_{RPf}}{n_m c_{pm_{prod}}} = 298.15 + \frac{5120 \cdot 10^3}{75.9 \cdot 38.9} = 2030 \cdot K$
■ TABLE 7.2

Molar Specific Heats of Various Gases

Gases at low pressures $\bar{c}_{p0} = \text{kJ/kmol} \cdot \text{K} \theta = \text{T(K)/100}$

Gas		Range K	Max. error (%)
N ₂	$\bar{c}_{p0} = 39.060 - 512.79\theta^{-1.5} + 1072.7\theta^{-2} - 820.40\theta^{-3}$	300-3500	0.43
0 ₂	$\bar{c}_{p0} = 37.432 + 0.020102\theta^{1.5} - 178.57\theta^{-1.5} + 236.88\theta^{-2}$	300-3500	0.30
$\tilde{H_2}$	$\bar{c}_{p0} = 56.505 - 702.74\theta^{-0.75} + 1165.0\theta^{-1} - 560.70\theta^{-1.5}$	300-3500	0.60
cõ	$\bar{c}_{p0} = 69.145 - 0.70463\theta^{0.75} - 200.77\theta^{0.5} + 176.76\theta^{-0.75}$	300-3500	0.42
OH	$\bar{c}_{p0} = 81.564 - 59.350\theta^{0.25} + 17.329\theta^{0.75} - 4.2660\theta$	300-3500	0.43
HO	$\bar{c}_{p0} = 59.283 - 1.7096\theta^{0.5} - 70.613\theta^{-0.5} + 74.889\theta^{-1.5}$	300-3500	0.34
H_2O	$\bar{c}_{p0} = 143.05 - 183.54\theta^{0.25} + 82.751\theta^{0.5} - 3.6989\theta$	300-3500	0.43
$\tilde{CO_2}$	$\bar{c}_{p0} = -3.7357 + 30.529\theta^{0.5} - 4.1034\theta + 0.024\ 198\theta^2$	300-3500	0.19
NO ₂	$\bar{c}_{p0} = 46.045 + 216.10\theta^{-0.5} - 363.66\theta^{-0.75} + 232.550\theta^{-2}$	300-3500	0.26
CH_4	$\bar{c}_{p0} = 672.87 + 439.74\theta^{0.25} - 24.875\theta^{0.75} + 323.88\theta^{-0.5}$	300-2000	0.15
C_2H_4	$\bar{c}_{p0} = 95.395 + 123.15\theta^{0.5} - 35.641\theta^{0.75} + 182.77\theta^{-3}$	300-2000	0.07
C_2H_6	$\bar{c}_{p0} = 6.895 + 17.26\theta - 0.6402\theta^2 + 0.00728\theta^3$	300-1500	0.83
$\tilde{C_{3}H_{8}}$	$\bar{c}_{p0} = -4.042 + 30.46\theta - 1.571\theta^2 + 0.03171\theta^3$	300-1500	0.40
C_4H_{10}	$\bar{c}_{p0} = 3.954 + 37.12\theta - 1.833\theta^2 + 0.03498\theta^3$	300-1500	0.54

Source: Adapted from Van Wylen and Sonntag 1985.

(d) Evaluate also the flame temperature by considering non constant specific heat.

$$\bar{h}_{j} = \left(\int_{T_{f}}^{T_{2}} \bar{c}_{pj} dT + \Delta \bar{h}_{fj}^{0}\right) \qquad \bar{c}_{pj} = \frac{1}{T_{2} - T_{f}} \int_{T_{f}}^{T_{2}} \bar{c}_{pj} dT \qquad \theta = \frac{T}{100}$$

$$\bar{c}_{p_{CO_{2}}} = \frac{1}{T_{2} - T_{f}} \int_{T_{f}}^{T_{2}} 100 \sum (a_{i}\theta^{e_{i}}) d\left(\frac{T}{100}\right) = \frac{1}{T_{2} - T_{f}} \left[100 \frac{\sum a_{i}\theta^{e_{i}+1}}{e_{i}+1}\right]_{T_{f}}^{T_{2}} = \frac{1}{T_{2} - T_{f}} \left[T \frac{\sum a_{i}\theta^{e_{i}}}{e_{i}+1}\right]_{T_{f}}^{T_{2}}$$

$$\bar{c}_{p_{CO_{2}}} = \frac{1}{T_{2} - T_{f}} \left[-3.736 \cdot T + \frac{30.53}{1.5} \cdot T \left(\frac{T}{100}\right)^{0.5} - \frac{4.103}{2} \cdot T \left(\frac{T}{100}\right)^{1} + \frac{0.02420}{3} \cdot T \left(\frac{T}{100}\right)^{2}\right]_{T_{f}}^{T_{2}}$$

$$\bar{c}_{p_{CO_2}} = \frac{\left[(-7,590 + 186,200 - 84,500 + 6,750) - (-1,115 + 10,470 - 1,822 + 21.4)\right]}{T_2 - T_f}$$
$$= \frac{\left[100,900 - 7,550\right]}{2030 - 298.15} = 53.9 \cdot \frac{kJ}{kmol \cdot K} \cdot K$$

Da https://cearun.grc.nasa.gov/ThermoBuild/:

$$h_{2030} - h_{298.15} = 93.2 \frac{kJ}{mole}$$

$$\bar{c}_{p_{CO_2}} = \frac{h_{2029} - h_{298.15}}{2030 - 298} = \frac{93.2 \cdot 1000}{2030 - 298} = 53.8 \cdot \frac{kJ}{kmol \cdot K} \cdot K$$

$$T_2 = T_f - \frac{\Delta H_{RPf}}{n_m c_{pm_{prod}}} = 298.15 + \frac{5120 \cdot 10^3}{75.9 \cdot 36.5} = 2150 \cdot K$$

Si deve iterare e si ha:

$$T_2 = T_f - \frac{\Delta H_{RPf}}{n_m c_{pm_{prod}}} = 298.15 + \frac{5120 \cdot 10^3}{75.9 \cdot 36.9} = 2130 \cdot K$$

$$T_2 = T_f - \frac{\Delta H_{RPf}}{n_m c_{pm_{prod}}} = 298.15 + \frac{5120 \cdot 10^3}{75.9 \cdot 36.8} = 2130 \cdot K$$

	CO2	T1	298	T2	2030
Cost	Esp	Ср	Int	Ср	Int
-3.7357	0	-3.74	-1115	-3.74	-7,590
30.529	0.5	52.7	10470	137.6	186,200
-4.1034	1	-12.23	-1822	-83.3	-84,500
0.024198	2	0.215	21.4	9.97	6,750
		36.9	7550	60.5	100,900
				Diff	93,400
H2O		T1	298	Т2	2030
Cost	Esp	Ср	Int	Ср	Int
143.05	0	143.1	42600	143.1	290,000
-183.54	0.25	-241	-57500	-390	-633,000
82.751	0.5	142.9	28400	373	505 ,000
-3.6689	1	-10.93	-1629	-74.5	-75,600
		34.1	11870	51.6	86,400
					74,500
N2		T1	298	Т2	2030
Cost	Esp	Ср	Int	Ср	Int
39.06	0	39.1	11650	39.1	79,400
-512.79	-1.5	-99.7	59400	-5.61	22,800
1072.7	-2	120.8	-36000	2.6	-5,280
-820.4	-3	-31	4620	-0.0981	100
		29.2	39700	36	97,000
					57 ,300
02		T1	298	Т2	2030
Cost	Esp	Ср	Int	Ср	Int
37.432	0	37.4	11150	37.4	75,900
0.020102	1.5	0.1034	12.33	1.839	1,493
-178.57	-1.5	-34.7	20700	-1.952	7,930
236.88	-2	26.7	-7960	0.575	-1,167
		29.5	23900	37.9	84,200
					60,300

One mole of oxygen, $O_2(g)$, is heated to 4000 K at the pressure of p_m . A fraction of the oxygen dissociates to oxygen atoms according to $xO_2 \rightarrow 2xO$. Assuming a state of equilibrium is reached in the mixture, calculate

(a) mole fraction of O_2 at equilibrium when p_m is 1 atm.

(b) mole fraction of O_2 at equilibrium when p_m is 10 atm.

Assume the equilibrium constant for the reaction $O_2 \leftrightarrow 2O$ is $K_p= 2.19$ atm at the temperature of 4000 K. Explain the effect of pressure on dissociation.

Т(К)	$\frac{1}{2}0_2\leftrightarrow0$	$\frac{1}{2} \mathbb{H}_2 \leftrightarrow \mathbb{H}$	$\frac{1}{2}H_2 + \frac{1}{2}O_2 \leftrightarrow OH$	$\mathrm{H}_2 + \frac{1}{2}\mathrm{O}_2 \leftrightarrow \mathrm{H}_2\mathrm{O}$
3500	-0.310	-0.231	0.160	0.712
4000	0.170	0.201	0.233	0.238

Logaritmo in base 10 delle cosanti d'equilibrio K

$$\begin{split} &K = \frac{\chi_0}{\chi_{0_2}^{\frac{1}{2}}} p^{\frac{1}{2}} = 10^{0.170} = 1.479 \qquad K_p = \frac{\chi_0^2}{\chi_{0_2}} p = K^2 = 1.479^2 = 2.187 \\ &0_2 \to (1-x)0_2 + 2x0 \qquad n = 1 - x + 2x = 1 + x \qquad \chi_0 = \frac{2x}{1+x} \qquad \chi_{0_2} = \frac{1-x}{1+x} \\ &\frac{\left(\frac{2x}{1+x}\right)^2}{\frac{1-x}{1+x}} p = K^2 = 1.479^2 = 2.187 \qquad \frac{4x^2}{1+x} p = K_p(1-x) \qquad 4x^2p = 2.187(1-x^2) \\ &x^2(4p+2.187) = 2.187 \qquad x = \sqrt{\frac{2.187}{4p+2.187}} \\ &p_m = 1 \qquad x = \sqrt{\frac{2.187}{4+2.187}} = 0.595 \\ &\chi_0 = \frac{2 \cdot 0.595}{1+0.595} = 0.746 \qquad \chi_{0_2} = \frac{1-0.595}{1+0.595} = 0.254 \\ &p_m = 10 \qquad x = \sqrt{\frac{2.187}{40+2.187}} = 0.228 \\ &\chi_0 = \frac{2 \cdot 0.228}{1+0.228} = 0.371 \qquad \chi_{0_2} = \frac{1-0.228}{1+0.228} = 0.629 \\ &\text{In realtà se si considera la reazione } xO_2 \to 2xO \text{ la costante sarebbe } Kx. \end{split}$$

$$K_{x} = \frac{\chi_{O_{2}}^{2x}}{\chi_{O_{2}}^{x}} p^{2x-x} = \frac{\chi_{O_{2}}^{2x}}{\chi_{O_{2}}^{x}} p^{x} = K^{2x} = K_{p}^{x}$$

Si dovrebbe risolvere quindi:

$$\frac{\left(\frac{2x}{1+x}\right)^{2x}}{\left(\frac{1-x}{1+x}\right)^{x}}p^{x} = K_{x} = K^{2x} = K_{p}^{x}$$

Ma facendo la radice x esima di questa equazione si riottiene quella precedente:

$$\sqrt[x]{\frac{\left(\frac{2x}{1+x}\right)^{2x}}{\left(\frac{1-x}{1+x}\right)^{x}}}p^{x} = \frac{\left(\frac{2x}{1+x}\right)^{2}}{\frac{1-x}{1+x}}p = \sqrt[x]{K_{x}} = \sqrt[x]{K^{2x}} = \sqrt{K_{p}}$$