Farokhi problem 3.1

The total pressures and temperatures of the gas in an afterburning turbojet engine are shown (J57 "B" from Pratt & Whitney, 1988). The mass flow rates for the air and fuel are also indicated at two engine settings, the Maximum Power and the Military Power. Use the numbers specified in this engine to calculate:

a) the fuel-to-air ratio f in the primary burner and the afterburner, at both power settings

$$f = \dot{m}_f / \dot{m}_2 = 4.24 / 78.02 = 0.0543$$
 $f_{Mil} = \dot{m}_f / \dot{m}_2 = 1.073 / 74.39 = 0.0144$

b) the low- and high-pressure spool compressor pressure ratios and the turbine pressure ratio (note that these remain constant with the two power settings)

$$\pi_{cLp} = p_{t2.5}/p_{t2} = 372.3/101.4 = 3.672$$

 $\pi_{cHp} = p_{t3}/p_{t2.5} = 1.151/372.3 = 3.09$ $\pi_t = p_{t5}/p_{t4} = 248.2/1089.4 = 0.2278$

 c) the exhaust velocity for both power settings by assuming the specified thrust is based on the nozzle gross thrust (because of sea level static) and neglecting any pressure thrust at the nozzle exit

$$F = \dot{m}_9 V_9 \to V_9 = \frac{F}{\dot{m}_9} = \frac{71,173}{4.24 + 78.02} = 865.2 \cdot \frac{m}{s}$$
$$F_{Mil} = \dot{m}_9 V_9 \to V_9 = \frac{F}{\dot{m}_9} = \frac{45,373}{1.073 + 74.39} = 601 \cdot \frac{m}{s}$$

d) the thermal efficiency of this engine for both power settings (at the sea level static operation), assuming the fuel heating value is 18,600 BTU/lbm and $c_p=0.24BTU/lbmR$. Explain the lower thermal efficiency of the Maximum power setting

$$\eta_{th} = \frac{(1+f)V_9^2 - V_0^2}{2fQ_R} = \frac{1.0543 \cdot 865.2^2}{2 \cdot 0.0543 \cdot 43.266 \cdot 10^6} = 16.8\%$$

$$\eta_{th_{Mil}} = \frac{(1+f)V_9^2 - V_0^2}{2fQ_R} = \frac{1.0144 \cdot 601^2}{2 \cdot 0.0144 \cdot 43.266 \cdot 10^6} = 29.4\%$$

e) the thrust specific fuel consumption in lbm/h/lbf in both power settings

$$TSFC = \frac{\dot{m}_f}{F_u} = \frac{4.24}{71,173} = 59.5 \frac{mg}{N} \qquad TSFC_{Mil} = \frac{\dot{m}_f}{F_u} = \frac{1.0733}{45,373} = 23.7 \frac{mg}{N}$$

the Carnot efficiency of a corresponding engine, i.e., operating at the same f) temperature limits, in both settings

$$\eta_{Carnot} = 1 - \frac{T_{min}}{T_{max}} = 1 - \frac{288.1}{1666} = 82.7\%$$
$$\eta_{Carnot_{Mil}} = 1 - \frac{T_{min}}{T_{max}} = 1 - \frac{288.1}{1128} = 74.4\%$$

 \dot{m}_{fMil}

g) the comparison of percent thrust increase to percent fuel flow rate increase when we turn the afterburner on

$$\%F = 100 \frac{F_{AB} - F_{Mil}}{F_{Mil}} = 100 \frac{71,200 - 45,400}{45,400} = 56.8\%$$

$$\%\dot{m}_{f} = 100 \frac{\dot{m}_{fAB} - \dot{m}_{fMil}}{\dot{m}_{fMil}} = 100 \frac{4.24 - 1.073}{1.073} = 295\%$$

h) why don't we get proportional thrust increase with fuel flow increase (when it is introduced in the afterburner), i.e., doubling the fuel flow in the engine (through afterburner use) does not double the thrust.

	AB	MIL	SI	AB	MIL			
f	0.0543	0.0144	f	0.054	0.014			
$\pi_{\rm cLP}$	3.673	3.673	$\pi_{ ext{cLP}}$	3.673	3.673			
$\pi_{ ext{cHP}}$	3.093	3.093	$\pi_{ m cHP}$	3.093	3.093			
$\pi_{ m t}$	0.228	0.228	$\pi_{ m t}$	0.228	0.228	No change in $\pi_{ m t}$ for AB On /		
V9(ft/s)	2,839	1,973	V9(m/s)	865	601			
${\eta}_{th}$	0.168	0.294	$\eta_{ m th}$	0.168	0.294			
TSFC(lbm/h	2.103	0.8353	TSFC(mg/s N)	59.570	23.659			
η_{carnot}	0.827	0.744	η_{carnot}	0.827	0.744			
%F	56.9		%F	56.9				
%mf	295.0		%mf	295.0				

TurboJet y Tom

Turbo Jet By TomLevel 4							2		57
	2	3	4	5		7 9		$\sqrt{34}$	
	diff	comp	CC	Tur	AB	No	[d]	cjbit	[P[nj]
с _р	1004			1152		1243	J/kg. 🗸	$\langle \rangle$	
γ	1.4			1.33		1.3			
π	0.96	10	0.95		0.9	8 0.97			
η, e _{c,t}		0.9	0.99	0.9	0.9	9			
Tt				1750		2250			
M0	2		po/p9	1	QR	42800	kJ/kgK		
то	250	к	p0	101,300	Ра	η_m	0.99		

$$k = \frac{\gamma - 1}{\gamma} = \frac{1.4 - 1}{1.4} = 0.2857 \qquad k_t = \frac{1.33 - 1}{1.33} = 0.248 \qquad k_9 = \frac{1.3 - 1}{1.3} = 0.231$$
$$R = kc_p = 1004 \cdot 0.2857 = 287 \frac{J}{kg \cdot K} \qquad R_t = k_t c_{pt} = 1152 \cdot 0.248 \frac{J}{kg \cdot K} = 286$$
$$R_9 = k_9 c_{p9} = 1243 \cdot 0.231 = 287 \frac{J}{kg \cdot K}$$

 $\pi_{AB.off} = 1$

Effetto Ram

$$\begin{aligned} a_0 &= \sqrt{\gamma R T_0} = \sqrt{1.4 \cdot 287 \cdot 250} = 317 \frac{m}{s} \qquad V_0 = M_0 a_0 = 2 \cdot 317 = 634 \frac{m}{s} \\ \tau_r &= \psi_0 = 1 + \frac{\gamma - 1}{2} M_0^2 = 1.8 \\ T_{t0} &= T_0 \tau_r = 250 \cdot 1.8 = 450 \cdot K \qquad p_{t0} = p_0 \tau_r^{\frac{1}{k}} = 1.013 \cdot 10^5 \cdot 1.8 \frac{1}{0.2857} = 7.93 \cdot 10^5 \cdot Pa \end{aligned}$$

Diffusore

 $p_{t2} = p_{t0}\pi_d = 7.93 \cdot 10^5 \cdot 0.96 = 7.61 \cdot 10^5 Pa$

Compressore

 $\begin{aligned} \tau_c &= \pi_c^{\frac{k}{e_c}} = 10^{\frac{0.2857}{0.9}} = 2.08 \qquad p_{t3} = p_{t2}\pi_c = 7.61 \cdot 10^5 \cdot 10 = 7.61 \cdot 10^6 \cdot Pa \\ T_{t3} &= T_{t2}\tau_c = 450 \cdot 2.08 = 936 \cdot K \end{aligned}$

Camera di Combustione

$$\tau_{\lambda} = \frac{c_{pt}T_{t4}}{c_{p}T_{0}} = \frac{1152 \cdot 1750}{1004 \cdot 250} = 8.03$$
$$f = \frac{\tau_{\lambda} - \tau_{c}\tau_{r}}{Q_{R}\eta_{b}/(c_{p}T_{0}) - \tau_{\lambda}} = \frac{8.03 - 2.08 \cdot 1.8}{\frac{42.8 \cdot 10^{6} \cdot 0.99}{1004 \cdot 250} - 8.03} = 0.0266$$
$$\tau_{b} = \frac{\tau_{\lambda}}{\tau_{c}\tau_{r}} = \frac{8.03}{2.08 \cdot 1.8} = 2.14$$

 $p_{t4} = p_{t3}\pi_b = 7.61 \cdot 10^6 \cdot 0.95 = 7.23 \cdot 10^6 \cdot Pa$

Turbina

$$\tau_t = 1 - \frac{(\tau_c - 1)\tau_r}{\eta_m (1 + f)\tau_\lambda} = 1 - \frac{1.08 \cdot 1.8}{0.99 \cdot 1.027 \cdot 8.03} = 0.763 \qquad \pi_t = \tau_t^{\frac{1}{k_t e_t}} = 0.763 \frac{1}{0.248 \cdot 0.90} = 0.298$$
$$p_{t5} = p_{t4}\pi_t = 7.23 \cdot 10^6 \cdot 0.298 = 2.154 \cdot 10^6 \cdot Pa$$
$$T_{t5} = T_{t4}\tau_t = 1750 \cdot 0.763 = 1335 \cdot K$$

Ugello

$$p_{t9} = p_{t5}\pi_n = 2.154 \cdot 10^6 \cdot 0.97 = 2.09 \cdot 10^6 \cdot Pa \qquad T_{t9} = T_{t5} = 1335 \cdot K$$

$$\frac{p_{t9}}{p_9} = \pi_n \pi_t \pi_b \pi_c \pi_d \pi_r \frac{p_0}{p_9} = \frac{p_{t9} p_0}{p_0 p_9} = \frac{20.9}{1.013} \cdot 1 = 20.63$$

$$M_9 = \sqrt{\frac{2}{\gamma_t - 1} \left[\left(\frac{p_{t9}}{p_9} \right)^{k_t} - 1 \right]} = \sqrt{\frac{2}{0.33} (20.63^{0.248} - 1)} = 2.60$$

$$\frac{T_{t9}}{T_9} = \psi_9 = 1 + \frac{\gamma_t - 1}{2} M_9^2 = \left(\frac{p_{t9}}{p_9} \right)^{k_t} = 20.63^{0.248} = 2.12$$

$$T_9 = \frac{T_9}{T_{t9}} T_{t9} = \frac{1335}{2.12} = 630 \cdot K \qquad a_9 = \sqrt{\gamma_t R_9 T_9} = \sqrt{1.33 \cdot 286 \cdot 630} = 490 \cdot \frac{m}{s}$$

$$V_9 = M_9 a_9 = 2.60 \cdot 490 = 1274 \cdot \frac{m}{s} \qquad V_{9.e} = V_9 \left(1 + \frac{1 - \frac{p_0}{p_9}}{\gamma_9 M_9^2} \right) = V_9 \qquad \frac{V_9}{a_0} = \frac{1274}{317} = 4.02$$

Spinta e rendimenti

$$\begin{aligned} \frac{F_u}{\dot{m}_0 a_0} &= (1+f) \frac{V_{9,e}}{a_0} - M_0 = 1.027 \cdot 4.02 - 2 = 2.13 \\ \eta_{th} &= \frac{\Delta K \dot{E}}{\mathcal{P}_t} = \frac{a_0^2 [(1+f)(V_9/a_0)^2 - M_0^2]}{2fQ_R} = \frac{B}{2fQ_R} \\ \eta_p &= \frac{F_i V_0}{\Delta K \dot{E}} \approx \frac{2F_u V_0/\dot{m}_0}{a_0^2 [(1+f)(V_9/a_0)^2 - M_0^2]} = \frac{2F_u V_0/\dot{m}_0}{B} \\ B &= a_0^2 [(1+f)(V_9/a_0)^2 - M_0^2] = 1.027 \cdot 1274^2 - 634^2 = 1.26 \cdot 10^6 \cdot \frac{m^2}{s^2} \\ \eta_{th} &= \frac{B}{2fQ_R} = \frac{1.26 \cdot 10^6}{2 \cdot 0.0266 \cdot 42.800 \cdot 10^6} = 0.55 \\ \eta_p &= \frac{2a_0 V_0 \frac{F_u}{m_0 a_0}}{B} = \frac{2 \cdot 317 \cdot 634 \cdot 2.13}{1.26 \cdot 10^6} = 0.68 \qquad \eta_o = \eta_p \eta_{th} = 0.55 \cdot 0.68 = 0.374 \\ TSFC &= \frac{\dot{m}_f}{F_u} = \frac{f}{F_u/\dot{m}_0} = \frac{f}{a_0 \frac{F_u}{\dot{m}_0 a_0}} = \frac{0.0266}{317 \cdot 2.13} = 3.94 \cdot 10^{-5} \cdot \frac{kg}{N_S} = 0.0394 \cdot \frac{kg}{kN_S} \end{aligned}$$

Post bruciatore acceso

$$p_{t7} = p_{t5}\pi_{AB} = 2.154 \cdot 10^6 \cdot 0.98 = 2.11 \cdot 10^6 \cdot Pa$$

$$\tau_{\lambda,AB} = \frac{c_{p9}T_{t7}}{c_pT_0} = \frac{1243 \cdot 2250}{1004 \cdot 250} = 11.14$$
$$f_{AB} = \frac{(1+f)(\tau_{\lambda AB} - \tau_{\lambda}\tau_t)}{\frac{Q_{R,AB}\eta_{AB}}{c_pT_0} - \tau_{\lambda,AB}} = \frac{1.027(11.14 - 8.03 \cdot 0.763)}{1004 \cdot 250} = 0.0327$$

Ugello

$$p_{t9} = p_{t7}\pi_n = 2.11 \cdot 10^6 \cdot 0.97 = 2.05 \cdot 10^6 \cdot Pa \qquad T_{t9} = T_{t7} = 2250 \cdot K$$

$$\frac{p_{t9}}{p_9} = \pi_n \pi_{AB}\pi_t \pi_b \pi_c \pi_d \pi_r \frac{p_0}{p_9} = \frac{p_{t9}p_0}{p_0 p_9} = \frac{20.5}{1.013} \cdot 1 = 20.24$$

$$M_9 = \sqrt{\frac{2}{\gamma_9 - 1} \left[\left(\frac{p_{t9}}{p_9} \right)^{k_9} - 1 \right]} = \sqrt{\frac{2}{0.30} (20.63^{0.231} - 1)} = 2.58$$

$$\frac{T_{t9}}{T_9} = \psi_9 = 1 + \frac{\gamma_9 - 1}{2} M_9^2 = \left(\frac{p_{t9}}{p_9} \right)^{k_9} = 20.5^{0.231} = 2.00$$

$$T_9 = \frac{T_9}{T_{t9}} T_{t9} = \frac{2250}{2.00} = 1125 \cdot K \qquad a_9 = \sqrt{\gamma_9 R_9 T_9} = \sqrt{1.30 \cdot 287 \cdot 1125} = 648 \cdot \frac{m}{s}$$

$$V_9 = M_9 a_9 = 2.58 \cdot 648 = 1672 \cdot \frac{m}{s} \qquad V_{9,e} = V_9 \left(1 + \frac{1 - \frac{p_0}{p_9}}{\gamma_9 M_9^2} \right) = V_9 \qquad \frac{V_9}{a_0} = \frac{1672}{317} = 5.27$$

Spinta e rendimenti

$$\begin{split} \frac{F_u}{\dot{m}_0 a_0} &= (1+f+f_{AB}) \frac{V_{9,e}}{a_0} - M_0 = (1+0.0266+0.0327) \cdot 5.27 - 2 = 3.59 \\ \eta_{th} &= \frac{\Delta K \dot{E}}{\mathcal{P}_t} = \frac{a_0^2 [(1+f)(V_9/a_0)^2 - M_0^2]}{2fQ_R} = \frac{B}{2fQ_R} \\ \eta_p &= \frac{F_i V_0}{\Delta K \dot{E}} \approx \frac{2F_u V_0/\dot{m}_0}{a_0^2 [(1+f)(V_9/a_0)^2 - M_0^2]} = \frac{2F_u V_0/\dot{m}_0}{B} \\ B &= a_0^2 [(1+f+f_{AB})(V_9/a_0)^2 - M_0^2] = (1+0.0266+0.0327) \cdot 1672^2 - 634^2 \\ &= 2.56 \cdot 10^6 \cdot \frac{m^2}{s^2} \\ \eta_{th} &= \frac{B}{2fQ_R} = \frac{2.56 \cdot 10^6}{2 \cdot (0.0266+0.0327) \cdot 42.800 \cdot 10^6} = 0.504 \\ \eta_p &= \frac{2a_0 V_0 \frac{F_u}{\dot{m}_0 a_0}}{B} = \frac{2 \cdot 317 \cdot 634 \cdot 3.59}{2.56 \cdot 10^6} = 0.56 \quad \eta_o = \eta_p \eta_{th} = 0.504 \cdot 0.56 = .284 \\ TSFC &= \frac{\dot{m}_f}{F_u} = \frac{f}{F_u/\dot{m}_0} = \frac{f}{a_0 \frac{F_u}{\dot{m}_0 a_0}} = \frac{(0.0266+0.0327)}{317 \cdot 3.59} = 5.22 \cdot 10^{-5} \cdot \frac{kg}{Ns} = 0.0522 \cdot \frac{kg}{kNs} \end{split}$$

k	0.28571			0.24812		0.23077		
R	286.857			285.835		286.846	kJ/kgK	
a0	316.86	m/s	V0	633.719	m/s			
$\tau_r = T_{t0} = 0$	1.8							
Section	С	t	λ				t	
τ	2.07711	0.76251	8.03187			π	0.29696	
Section	0	2	3	4	5	7	9	
Tt	450	450	934.701	1750	1334.4		1334.4	
pt	792,617	760,912	7.61E+06	7.23E+06	2.15E+06		2.08E+06	
Section	f	Pt9/p9	M9	Tt9/T9	T9/T0	a9		
3	0.0267	2.06E+01	2.60209	2.11719	2.52107	489.492	m/s	
5	0	V9		V9/a0	V9/a0 eff	F/ma0	Num	
		1273.7	m/s	4.01977	4.01977	2.1271	1.26E+06	
Section	t	th	р	0	TSFC*1e3			
n	0.913	0.55303	0.67581	0.37374	0.039617			